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Most implementations of the language Refal represent ground expressions by
doubly-linked lists, which results in low-cost concatenation. On the other hand,
that representation necessitates the real copying of expressions in all cases where
a variable’s value has to be used two or more times. The high cost of copying
often prevents the user from writing Refal programs in truly functional style. The
paper describes an alternative representation of ground expressions, which allows
the copying of expressions to be reduced to copying of pointers to the expressions.
The concatenation of expressions, however, becomes more expensive.
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1 The Problem of Copying

Everybody who has been taught how to write programs in Refal [Tur79, Tur86]
is unlikely to forget the inarticulate fear and mystical trepidation inspired by the
necessity to copy ground expressions. Most Refal text-books vividly describe the
perils of copying, and suggest numerous saving remedies and means of escape
[Tur71, Tur77, Kor86, Tur89].

However ingenious those remedies may seem, they do obscure the meaning
of Refal programs, as the user is forced to write programs in imperative, rather
than in functional, style.

As an example, let us define a Refal function SUBST that is to be called in
the following way:

<SUBST (Etab) Ee>

where Ee is a ground expression, and Etab a “substitution table”, which is a
sequence of ordered pairs

(S1E1) (S2E2) ... (SnEn)

where Si are some symbols, and Ei some ground expressions. For each symbol S
appearing in the expression Ee, the function SUBST must examine the table Etab
to see whether it contains a pair SiEi, such that S = Si. If so, the occurrence
of the symbol S in Ee must be replaced with Ei. Otherwise, the occurrence of S
must remain unchanged. For instance:

<SUBST ( (A X X X)(B Y Y Y) )

A B C (A C B)() B> -->

X X X Y Y Y C (X X X C Y Y Y) () Y Y Y

A straightforward definition of SUBST—which can be written in Refal without
any difficulty—is shown in Figure 1.

<SUBST tT > =

<SUBST tT sX eY> =

<LOOKUP tT sX> <SUBST tT eY>

<SUBST tT (eX) eY> =

( <SUBST tT eX> ) <SUBST tT eY>

<LOOKUP (eA (sX eV) eB) sX> = eV

<LOOKUP (eT) sX> = sX

Figure 1: A functional-style definition of SUBST.

This definition, however, would be severely criticized by the authors of stan-
dard Refal text-books for making no effort to avoid copying the substitution
table. In accordance with the standard approach, the “näıve” definition ought
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to be “improved” by making use of clever programming tricks. For example,
applying a famous trick known as “expression traversal” [Tur71, Tur77, Tur89],
we get a new definition of SUBST shown in Figure 2, which traverses expressions
by means of two stacks.

<SUBST tT eX> = <THRU tT (()) eX ()>

<THRU (eA (sX eV) eB)

(eP (eQ)) sX eY (eR)> =

<THRU (eA (sX eV) eB)

(eP (eQ eV)) eY (eR)>

<THRU (eT) (eP (eQ)) sX eY (eR)> =

<THRU (eT) (eP (eQ sX)) eY (eR)>

<THRU (eT) (eP) (eX) eY (eR)> =

<THRU (eT) (eP ()) eX ((eY) eR)>

<THRU (eT) (eP (eQ) (eX)) ((eY) eR)> =

<THRU (eT) (eP (eQ (eX))) eY (eR)>

<THRU (eT) ((eQ)) ()> = eQ

Figure 2: An imperative-style definition of SUBST.

It can be easily seen that the second definition of SUBST is, essentially, an
imperative one: it is tail-recursive and generates neither nested nor parallel
function calls. Thus, the computation may be considered as “control-driven”,
rather that “data-driven”, which, in certain situations, is undesirable (for exam-
ple, it may be a hindrance to parallel execution in multiprocessor systems). On
the other hand, the first “näıve” definition of SUBST is quite functional, and its
parallelism can be easily seen.

2 Alternative Representations of Ground
Expressions

2.1 Doubly-Linked Lists

The strong dislike shown by Refal text-books for copying expressions seems
to be rather strange in view of the fact that the freedom from constrains on
the use of copying would enable the programmer to write more concise and
natural programs. This dislike, however, becomes understandable, if we take
into account the way in which ground expressions are kept in computer memory
by most popular Refal implementations.

Namely, ground expressions are usually represented by doubly-linked lists,
each cell of a list having the structure shown in Figure 3.

The fields prev and next are used for linking cells to form linear sequences.
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prev tag info next

Figure 3: A cell of a doubly-linked list.
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Figure 4: “Classical” representation of the term (E).

The field prev holds a pointer to the previous cell, and the field next to the
next one.

The main advantage of doubly-linked lists is that the concatenation of two
expressions amounts to modifying two pointers, the first one being the field next

in the last cell of the first expression, and the second one the field prev in the
first cell of the second expression. Consequently, the cost of concatenation does
not depend on the size of the two expressions.

The field tag contains flags indicating the meaning of the information held
in the field info.

The fields tag and info can be used in (at least) two different ways, resulting
in two different representations of ground expressions. These representations will
be—rather arbitrarily—referred to as “classical” and “conciliatory” ones.

In the case of the “classical” representation, each cell corresponds either to a
symbol or to a parenthesis. If a cell represents a left parenthesis, the field info

contains a pointer to the cell representing the corresponding right parenthesis,
and vice versa (see Figures 4 and 5). The lists organized in this way were
used as early as in the middle 60s in the implementation of the system AMBIT
[Chr66].

It is obvious that, in the case of the “classical” representation, the cost of
copying an expression is directly proportional to the expression’s size.

Most Refal implementations are based on the “classical” representation [FOT69,
KRT72, Tur77, Rom87a].

� � � � � � � �- - - - - - - -
? ?

� �
? ?

� �
A ( B ( C D ) ) E

Figure 5: “Classical” representation of the expression A (B (C D)) E.
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Figure 6: “Conciliatory” representation of the term (E).w-�A -� E
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Figure 7: “Conciliatory” representation of the expression A (B (C D)) E.

In the case of the “conciliatory” representation, each cell corresponds to
a Refal term, which is either a symbol or a pair of parentheses enclosing an
expression. If a cell represents a pair of parentheses, the field info contains a
pointer to another cell, called the “head” of the contents of the parentheses. The
beginning and the end of the contents are linked to the head, thereby forming a
circular structure (see Figures 6 and 7).

If two or more cells represent parentheses enclosing identical expressions,
they may share a common head. Therefore, the copying of an expression can be
reduced to copying the cells representing the top level of the expression, whereas
the copying of the subexpressions enclosed in parentheses can be reduced to
copying pointers to the heads of the subexpressions. In each head the field info

can be used for counting references to the head. The lists organized in this way
were used as long ago as in the early 60s in the system SLIP [Wei63].

2.2 Vectors

The “conciliatory” representation of expressions gives only a partial solution to
the problem of copying. First, the top level of the expressions still has to be
copied. Second, copying the contents of a pair of parentheses can be avoided
only in cases where the whole subexpression is to be copied (in which case the
copying amounts to copying the pointer to the head of the subexpression). But,
in the case of copying a proper part of a subexpression, the top level of the
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Figure 8: The expression (B C D) (A B C) represented with double references.
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Figure 9: “Vector” representation of the expression (B C D) (A B C).

subexpression still has to be copied.
As an example, consider the function LR:

<LR eX> = <LEFT eX> <RIGHT eX>

<LEFT tA eP> = (eP)

<RIGHT eQ tB> = (eQ)

If we try to evaluate the following function call

<LR A B C D> --> (B C D) (A B C)

we will see that the fragments of the expression A B C D cannot be used for
building the terms (B C D) and (A B C), in view of the fact that the common
subexpression B C cannot be included into two different linear sequences by
modifying the contents of the fields prev and next.

We can, however, overcome the difficulty by changing the representation of
parentheses. Namely, each pair of parentheses can be represented by a single cell
containing two pointers: to the beginning and to the end of the subexpression
enclosed in the parentheses (see Figure 8). This enables us to get rid of the head
cells, and provides a means for referencing common subexpressions.

But now the following question arises: what benefit can be gained from the
fields prev and next? They were previously used for reducing the expression
concatenation to adjusting the contents of these fields. But now that we have
permitted sharing of common subexpressions, the concatenation of expressions
necessitates the copying of the top level of the operand expressions. Hence, there
is no point in having these fields, and, eliminating them, we come to the “vector”
representation of expressions (see Figures 9 and 10).

In the case of the “vector” representation, all the cells representing the top-
level terms of an expression are arranged in computer memory so as to form a
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Figure 10: “Vector” representation of the expression A (B (C D)) E.
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Figure 11: A cell of the “vector” representation.

one-dimensional array. Each cell has the configuration depicted in Figure 11,
and includes the “left information” field li, the “right information” field ri,
and the one-bit flag br determining the meaning of the fields li and ri.

If br = 1, the cell represents an expression enclosed in parentheses. If the
contents of the parentheses is non-empty, li and ri contain pointers to the first
cell and to the last cell of this expression, respectively. If the contents of the
parentheses is empty, li = ri = 0.

If br = 0, the cell represents a symbol. In this case li and ri contain some
information about the symbol, which will be of little interest to us.

Besides, each cell contains three more one-bit fields: used, lc, and rc, whose
purpose will be explained later.

If E is a ground expression, the number of symbols and parentheses appearing
in E will be referred to as the size of the expression. If E = T1T2 . . . Tk, where
T1, T2, . . . , Tk are ground terms, the number k will be referred to as the length
of the expression E . For instance, the expression A (B C) () has the size 7 and
the length 3.

As can be easily seen, the “vector” representation allows the copying of an
expression to be reduced to the copying of a pair of pointers, the cost of copying
being unaffected by the size of the expression.

On the other hand, the concatenation of two expressions necessitates the
creation of a new vector, whose length is the sum of the lengths of the operand
expressions. Therefore, the cost of concatenation is directly proportional to the
sum of the lengths of the operands.
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Figure 12: Dynamic memory allocation.

2.3 Memory Allocation

In the case of the “vector” representation, we have to use a storage management
system enabling vectors of arbitrary size to be allocated on request. Thus it
seems reasonable to adopt the following memory allocation scheme.

We assume that the storage space from which vectors are dynamically allo-
cated is a contiguous area of the memory (see Figure 12). One part of this area,
referred to as the heap, is used for storing ground expressions, whereas the rest
of the area contains the stack (if one is needed).

In the following, the heap is assumed to reside at the beginning of the area
(i.e. at low addresses), and the stack at its end (i.e. at high addresses). However,
we could have placed—equally well—the heap at the high addresses, and the
stack at the low addresses.

The variable heap high contains a pointer to the last cell of the heap, and
the variable stack top to the top element of the stack.

The area between the heap and the stack contains free cells. So, if a contigu-
ous group of cells is requested, the storage manager occupies the cells lying just
after the heap, and, accordingly, increases the value of heap high.

3 Garbage Collection

3.1 What is the Use of Garbage Collection?

Since we have allowed arbitrary subexpressions to be shared by different expres-
sions, we need a means for identifying and reclaiming unused cells. This process
is usually referred to as garbage collection [Hen80].

Moreover, the storage manager may run into the situation where, despite
there being plenty of free cells, it is unable to find a sufficiently large block of
adjacent unused cells. Therefore, the garbage collector must be able to perform
compaction of all used cells into one end of the memory, so that the other end
will contain a single block of adjacent unused cells.

The one-bit fields used, lc, and rc mentioned above are used during garbage
collection, and, otherwise, must be equal to zero.

The field used is used for marking cells accessible to the program. The
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purpose of the fields lc (left cluster) and rc (right cluster) will be explained
later.

3.2 An Informal Description of the Algorithm

The garbage collection algorithm comprises two separate phases: marking and
compaction.

The task of the marking phase is to find all cells that can be accessed by
the user’s program, and to mark them by setting their fields used to 1. The
algorithm takes as input a set of initial pointers to “directly accessible” cells, and
then marks all cells that can be accessed through that set (directly or indirectly).

The task of the compaction phase is to move the marked cells to their new lo-
cations, and to update all pointers to these cells contained in other marked cells.
Compaction is the most complicated phase of the garbage collection algorithm.

The main difficulty is that there is no limitation on the number of references
to a cell (contained in other cells), and all such references have to be updated.

In the following, for brevity’s sake, all marked cells containing pointers to a
cell will be referred to as “masters” of that cell, and that cell will be called their
“slave”.

Suppose we are relocating a cell, and want to readjust all the references
contained in its masters and pointing to the cell. This could be done, if we knew
the cell’s new address, the cell’s old address, and the addresses of all masters. It
is clear that the main difficulty is to find all the masters of the cell. As suggested
by Morris [Mor78, Coh81, CN83], this problem can be solved by linking all the
masters of each cell into a linear list (which will be referred to as the “cluster”
of the cell’s masters). Then, when relocating a cell, we shall be able to find all
the masters and to readjust the pointers to the cell contained in the masters.

Unfortunately, a straightforward attempt at implementing this plan runs
into the following contradiction. On the one hand, the masters of a cell must
eventually be relocated. On the other hand, relocating any of the cell’s masters
is sure to corrupt the linear list of the masters.

This obstacle can be overcome in the following way. We can start by con-
structing the clusters for all cells. Then we can readjust all pointers without
relocating the cells, thereby eliminating all the clusters before the actual relo-
cation of the cells. (When readjusting the pointers to a cell, the only thing we
need to know is the address of its new location.) Thus we get the state in which
all cells are at their old locations, but all pointers have been readjusted to the
new locations of the cells. Therefore, now the cells can safely be moved to their
new locations.

One more difficulty still remains: each cell such that br = 1 contains two
pointers, and both of them must be readjusted! Therefore, that cell may be the
master of two different cells, in which case it has to be included in two different
clusters. This problem can be solved by means of a simple trick. As can be
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Figure 13: How a double reference is replaced with a single one.

easily seen, when an expression is moved to a new place, its length—which is
equal to the number of its top-level terms—remains unchanged. Therefore, if a
cell contains pointers to the beginning and the end of the expression in the fields
li and ri, the difference of the pointers held in ri and li does not change when
the expression is moved.

Thus, by replacing the contents of the field li with the difference of the
pointers held in li and ri (for all cells representing a pair of parentheses), we
can halve the number of pointers that have to be readjusted (see Figure 13).

This transformation will be referred to as “replacing a double reference with
a single one”, and the inverse transformation as “replacing a single reference
with a double one”.

Now the cluster of a cell’s masters can be built in the following way. The
field li will be used for referencing the first master, and the field ri for linking
the masters into a linear list. The fields lc and rc will be used as follows. If
lc = 1, it will mean that the cell’s cluster is non-empty. If rc = 1, it will mean
that the cell belongs to a cluster, and ri contains a pointer to the next cell in
the cluster (see Figure 14).

It should be noted that the information that was initially held in the field li

in the slave cell has to be saved somewhere else, as the contents of li must be
restored after the cell has been relocated. So, this information is put into the
field ri of the last cell in the linear list of masters. This can be done, because
that field is needed for no other purpose.

Thus we come to the following six-pass garbage collection algorithm:

1. Marking.

2. Replacing double references with single ones.

3. Building clusters.

4. Readjusting pointers.

5. Relocating cells.

6. Replacing single references with double ones.
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Figure 14: A slave cell and the cluster of its masters.

3.3 A Six-Pass Algorithm

Now we can give a detailed description of the six-pass garbage collection algo-
rithm written in the language C [KR88].

The computer memory will be represented by a one-dimensional array of
the size MEMORY SIZE, each element of the array representing a cell. The size
of a memory address is assumed to be equal to ADDR SIZE bits, and the cells to be
stored in the memory area between two addresses MEMORY LOW and MEMORY HIGH−
1.

#define ADDR_SIZE 14

#define MEMORY_SIZE 1000

typedef unsigned int address;

typedef unsigned int bool;

/* A cell representing a term. */

struct term

{

address li: ADDR_SIZE;

bool lc: 1;

bool used: 1;

address ri: ADDR_SIZE;

bool rc: 1;

bool br: 1;

};
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struct term t[MEMORY_SIZE];

#define MEMORY_LOW 1

#define MEMORY_HIGH 1000

Garbage collection is performed by the function garb coll(), which, in turn,
calls the function mark term().

The function mark term() takes a pointer to a term and marks all terms
accessible from that term.

To simplify the presentation, we assume that, when the garbage collection
starts, there is only one immediately accessible cell: the one located at the
address MEMORY LOW. In the case of a real Refal implementation, of course, there
may be several immediately accessible cells.

void mark_term(address m) {

address k, k_max;

if (!t[m].used) {

t[m].used = 1;

if (t[m].br && t[m].ri != 0) {

k_max = t[m].ri;

for (k=t[m].li; k<=k_max; k++)

mark_term(k); }}

return; }

void garb_coll(void) {

address m, k, new_place;

/* The marking phase. */

/* For the sake of simplicity, we */

/* assume that there is only one */

/* immediately accessible term. */

mark_term(MEMORY_LOW);

/* Replacing double references with */

/* single ones. */

for (m=MEMORY_LOW; m<MEMORY_HIGH; m++)

if (t[m].used

&& t[m].br && t[m].ri != 0)

t[m].li = t[m].ri-t[m].li;

/* Building the clusters. */

for (m=MEMORY_LOW; m<MEMORY_HIGH; m++)

if (t[m].used)
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if (t[m].br && t[m].ri != 0) {

/* A non-empty pair of */

/* parentheses is added to */

/* a cluster. */

k = t[m].ri;

t[m].ri = t[k].li;

t[m].rc = t[k].lc;

t[k].li = m;

t[k].lc = 1; }

/* Readjusting pointers. */

new_place = MEMORY_LOW;

for (m=MEMORY_LOW; m<MEMORY_HIGH; m++)

if (t[m].used) {

/* Updating all references */

/* to the term. */

while (t[m].lc) {

/* Next element of the cluster. */

k = t[m].li;

t[m].li = t[k].ri;

t[m].lc = t[k].rc;

/* Now the pointer in the */

/* term k is readjusted. */

t[k].ri = new_place;

t[k].rc = 0; }

new_place++; }

/* Relocating all used terms. */

new_place = MEMORY_LOW;

for (m=MEMORY_LOW; m<MEMORY_HIGH; m++)

if (t[m].used) {

/* Relocating the term. */

t[m].used = 0;

t[new_place].li = t[m].li;

t[new_place].lc = t[m].lc;

t[new_place].used = 1;

t[new_place].ri = t[m].ri;

t[new_place].rc = t[m].rc;

t[new_place].br = t[m].br;

new_place++; }

/* Setting the marks off */

/* and replacing single references */
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/* with double ones. */

for (m=MEMORY_LOW; m<MEMORY_HIGH; m++)

if (t[m].used) {

t[m].used = 0;

if (t[m].br && t[m].ri != 0)

t[m].li = t[m].ri - t[m].li; }

return; }

3.4 Elimination of Superfluous Passes

The above garbage collection algorithm performs 6 passes of the cell space. We
can, however, reduce the number of passes, thereby increasing the efficiency of
the algorithm at the expense of making it more difficult to understand.

First of all, double references can be replaced with single ones in the course
of marking.

The inverse transformation can, similarly, be performed during the relocation
of cells.

Thus we obtain a four-pass garbage collection algorithm. But the pass dealing
with the readjustment of pointers can also be eliminated, although this can be
achieved only by applying rather subtle tricks! The point is that this pass can
be combined—as a whole—neither with the construction of clusters nor with
the relocation of cells. And yet, its work can still be distributed over two other
passes, so that it will be done partially during the construction of clusters and
partially during the relocation of cells.

The key idea is due to Jonkers [Jon79, Coh81, CN83]. Let C be a typical
cell. Then a master of C whose address is greater than that of C will be said to
be its “right” master, otherwise it will be said to be its “left” master.

During the construction of clusters, all left masters of C (containing forward
pointers to C) are added to its cluster. When C is reached, all its left masters
are already added to the cluster, therefore all forward pointers to C can safely
be updated (and all left masters of C removed from the cluster).

As this pass continues, all right masters of C (containing backward pointers
to C) are added to its cluster.

Thus, at the end of this pass, the cluster of C contains all its right masters,
whereas all forward references to C (contained in its left masters) have already
been readjusted.

The next pass relocates the cells until C is reached. Then all backward
pointers to C are updated (and all right masters of C removed from the cluster).

The aforementioned “segregation” of the left masters of a cell from the right
ones does enable us to circumvent the danger of corrupting the clusters. This is
due to the fact that, when a left master of C is relocated, the forward pointer
to C held in the master has already been updated (during the previous pass).
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On the other hand, when a right master of C is relocated, the backward pointer
to C held in the master has already been updated, as C is reached before all its
right masters.

3.5 A Three-Pass Algorithm

Now we can give a description of the three-pass garbage collection algorithm
written in C.

void mark_term(address m) {

address k, k_max;

if (!t[m].used) {

t[m].used = 1;

if (t[m].br && t[m].ri != 0) {

k = t[m].li;

k_max = t[m].ri;

/* Replacing a double reference */

/* with a single one. */

t[m].li = k_max-k;

for ( ; k<=k_max; k++)

mark_term(k); }}

return; }

void garb_coll(void) {

address m, k, new_place;

/* The marking phase. */

mark_term(MEMORY_LOW);

/* Building the clusters. */

new_place = MEMORY_LOW;

for (m=MEMORY_LOW; m<MEMORY_HIGH; m++)

if (t[m].used) {

/* Readjusting all forward */

/* references to the term. */

while (t[m].lc) {

/* Next element of the cluster. */

k = t[m].li;

t[m].li = t[k].ri;

t[m].lc = t[k].rc;

/* Now the pointer in the */

/* term k is readjusted. */

t[k].ri = new_place;

t[k].rc = 0; }
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if (t[m].br && t[m].ri != 0) {

/* A non-empty pair of */

/* parentheses is added to */

/* a cluster. */

k = t[m].ri;

t[m].ri = t[k].li;

t[m].rc = t[k].lc;

t[k].li = m;

t[k].lc = 1; }

new_place++; }

/* Updating backward pointers and */

/* relocating the used terms. */

new_place = MEMORY_LOW;

for (m=MEMORY_LOW; m<MEMORY_HIGH; m++)

if (t[m].used) {

/* Updating all backward pointers */

/* to the term. */

while (t[m].lc) {

/* Next element of the cluster. */

k = t[m].li;

t[m].li = t[k].ri;

t[m].lc = t[k].rc;

/* Now the pointer in the */

/* term k is readjusted. */

t[k].ri = new_place;

t[k].rc = 0; }

/* Setting the mark off and */

/* relocating the term. */

t[m].used = 0;

t[new_place].li = t[m].li;

t[new_place].lc = t[m].lc;

t[new_place].used = t[m].used;

t[new_place].ri = t[m].ri;

t[new_place].rc = t[m].rc;

t[new_place].br = t[m].br;

/* Replacing a single references */

/* with a double one in */

/* a non-empty pair of */

/* parentheses. */

if (t[new_place].br

&& t[new_place].ri != 0)

t[new_place].li =
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Representation Concatenation cost Copying cost
Classical low high
Conciliatory low medium
Vector high low

Figure 15: Peculiarities of different expression representations.

t[new_place].ri

- t[new_place].li;

new_place++; }

return; }

3.6 The Differences from Jonkers’ Algorithm

It is evident that, as far as the compaction phase is concerned, the above three-
pass algorithm bears a strong resemblance to Jonkers’ compaction algorithm
[Jon79]. Nevertheless, the two algorithms are not completely identical, since the
same basic idea is used in different environments.

First of all, unlike Lisp S-expressions, the top level of a Refal expression
is represented by an—arbitrarily long—sequence of adjacent cells, rather than
by a single cell. Therefore, a Refal expression has to be referenced with two
pointers, rather than with a single one. Moreover, the representations of two
Refal expressions may partially overlap! This is not true of S-expressions, since
only the whole top level of an S-expression can be shared.

The applicability of Jonkers’ idea to Refal expressions is based on the fact
that the cells that had been adjacent before the relocation remain adjacent after
having being relocated, with their relative positions unchanged. This observation
enables us to replace double references to subexpressions with single ones, and
to forget, for some time, that each pointer, in fact, makes reference to a vector
of cells, rather than to a single cell.

4 The Peculiarities of the Vector
Representation

4.1 Efficiency of Different Representations

Which of the representations of ground expressions is the most “efficient”? It is
evident that our desire to have fast copying inevitably comes into conflict with
the desire to have fast concatenation (see Figure 15).

Thus different representations imply different styles of programming. There-
fore, the choice of the “best” representation cannot be made on the basis of
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benchmarks obtained by running a few programs on several Refal systems based
on different representations, because, if a program exhibits poor performance
with respect to some Refal implementation, it may prove that the program is
“ill-written”, rather than that the implementation is “inefficient”.

It is fairly easy to construct artificial example programs exhibiting behavior
either favorable or unfavorable for the “vector” representation. For instance,
consider the function TT:

<TT () tX> = tX

<TT (* eA) tX> = <TT (eA) (tX tX)>

It can be easily seen that, in the case of the “classical” representation, the
execution time of TT exponentially depends on the first argument’s length. On
the other hand, in the case of the “vector” or “conciliatory” representation, the
execution time is proportional to the first argument’s length.

4.2 How to Reduce the Cost of Concatenation

Since, in the case of the “vector” representation, the cost of concatenation is
comparatively high, the question arises: does the cheap copying makes up for
the loss in the speed of concatenation?

Fortunately, in many cases, actual concatenation is not needed and can be
avoided. This will be shown in the following sections.

4.2.1 Special Cases of Concatenation

If expressions are represented by vectors, the concatenation of two expressions
E1 and E2 has to be performed by copying the top-level terms of the expressions.
If E1 has the length L1, and E2 the length L2, a contiguous vector of the size
L1 + L2 is requested, and the top-level terms of the two expressions are copied
into that vector to produce a representation of the expression E1E2. Note that
the subexpressions appearing in E1 and E2 inside parentheses do not have to be
copied, as it is sufficient to copy only references to them.

In many cases, however, the cost of concatenation can be reduced.

1. If E1 is empty, the concatenation amounts to returning two pointers: to
the beginning and to the end of E2.

2. If E2 is empty, the concatenation amounts to returning two pointers: to
the beginning and to the end of E1.

3. If the vector representing E1 is situated in the memory just before the vector
representing E2, the concatenation amounts to returning two pointers: to
the beginning of E1 and to the end of E2.



20

4. If the vector representing E1 is situated in the memory at the very end of
the heap, only the vector representing E2 has to be copied (into the place
just after the representation of E1).

At first glance, case 3 seems to be unlikely to be met with in practice. Real
programs, however, often traverse their argument expression by moving its top-
level terms—one by one—from one variable to another. Thus both variables ref-
erence two adjacent parts of the same expression, and the concatenation amounts
to readjusting pointers.

4.2.2 Functions with Explicit Arity and Co-Arity

In real programs most user-defined functions take a fixed number of inputs and
return a fixed number of results. The number of inputs is usually called the arity
of the function, and the number of outputs its co-arity.

Most current Refal implementations, however, require the arity and co-arity
of all functions to be equal to 1. In other words, each function is supposed always
to take one input and to return one result.

This limitation, traditionally, is circumvented by Refal programmers in the
following way.

If a function FUNC has to be given m input expressions E1, E2, . . . , Em, these
expressions are enclosed in parentheses and concatenated to produce a single
input expression in the function call

<FUNC (E1)(E2) . . . (Em)>

Then, if FUNC has to produce n results R1, R2, . . . , Rn, the results are enclosed
in parentheses and concatenated to produce a single result expression.

(R1)(R2) . . . (Rn)

It is evident that in both cases the real concatenation could have been avoided,
if Refal enabled the programmer to specify the arities and co-arities of functions.

On the other hand, the arities and co-arities could be inferred by a Refal
compiler automatically [Rom88, Rom90], in which case only the internal inter-
mediate language of the Refal system would need to explicitly specify the arities
and co-arities of functions.

4.2.3 Structuring Data with Parentheses

Concatenation becomes expensive only when applied to long expressions (recall
that the length of an expression is equal to the number of the top-level terms
of the expression). Thus keeping the length of expressions within reasonable
limits—by rational use of parentheses—may reduce the cost of concatenation.

For example, suppose that a Refal program has to operate on stacks whose
elements are ground expressions. Let the empty stack be represented by the
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empty expression, and the result of pushing an expression Etop on the top of a
stack Estack by the expression

Estack (Etop)

Then the stack containing expressions E1, E2, . . . , Ek takes the form

(E1)(E2) . . . (Ek)

where the stack’s top is on the right. It is obvious that, as the stack size grows,
pushing a new element on the stack becomes rather expensive, necessitating as
it does the concatenation of the whole stack with the new element. However, if
the result of pushing Etop on the stack Estack were represented by the expression

(Estack) (Etop)

then the problems caused by concatenation would be avoided, as pushing a new
element on the stack would result in copying no more than two (top-level) terms.

4.3 Vector Representation and Virtual Memory

A virtual memory system is worth using only when memory accesses exhibit the
property of locality , which means that memory accesses are concentrated—over
a long period of time—in a few relatively small areas of the address space.

The property of locality is not usually satisfied in the case of list processing
systems, as, in the course of time, the elements of lists become intermixed.
Hence, logically adjacent elements cease to be adjacent in the address space.
Besides, in systems with garbage collection, the lists tend to spread throughout
the whole address space, with the really used cells being separated by vast gaps
of free space. Thus, for example, if the main memory contains 1/10 of the lists,
then 9 of 10 accesses to the lists result in the page fault [BM67].

Numerous garbage collection algorithms have been developed that try to
counteract the harmful effects of “spreading” and “shuffling” by linearizing and
compacting lists [Coh81, AT83].

The “vector” representation of expressions is likely to exhibit better perfor-
mance in the virtual memory environment than the “classical” and “conciliatory”
ones, as it represents logically adjacent terms by cells adjacent in the address
space. Besides, the compacting garbage collection tends to reduce the size of the
active address space.

4.4 The Copying Problem and Implementations of Refal

The high cost of copying prevented Full Refal [Tur71], Refal-4 [Rom87b, Rom87c]—
and other similar projects—from being implemented. The implementation of
Refal-5 [Tur89], based as it is on the “classical” representation, does not enable
the programmer to use all resources of the language.
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tA︷ ︸︸ ︷ eP︷ ︸︸ ︷
A B C D︸ ︷︷ ︸

eQ
︸ ︷︷ ︸
tB

Figure 16: Overlapping variable values.

The implementation of Refal Plus, an extension to Refal-5, is based on the
“vector” representation, which enables the user to write programs in functional
style [GR91], and to make extensive use of the advanced features of the language.
Consider, for example, the following function definition written in Refal Plus:

LR { eX, eX: tA eP, eX : eQ tB

= (eP)(eQ); };

We can see that the argument of a Refal Plus function can be matched against
several different patterns—which is not true of programs written in Refal-2.
Now, if we evaluate the call

<LR A B C D>

the variable eX takes the value A B C D. Then this value is matched against the
two patterns tA eP and eQ tB, so that the expression A B C D is decomposed
in two different ways: first, into the subexpressions A and B C D, and then into
A B C and D.

Thus, in the case of Refal Plus (and Refal-5), the values of different variables
may overlap (see Figure 16). Consequently, if a new expression has to be built
from the—possibly overlapping—values of variables, the fragments of the vari-
able values cannot be freely concatenated to form the result: they may have to
be copied.

This problem, however, has never emerged in the implementations of Basic
Refal [Tur71, Tur77] and Refal-2 [KR87, Rom87a], as those Refal dialects do
not provide means for referencing overlapping fragments of the same expression
via several variables, which has enabled the “classical” representation to be
successfully used.

The “Refal Assembly Language” used as an intermediate language by the im-
plementations of Basic Refal and Refal-2 [KRT72, Tur77, Rom87a], was tailored
to the peculiarities of the “classical” representation, for which reason it is of
little use in the implementations of Refal Plus. On the other hand, the language
RL [Rom88] could be used as an intermediate language in the implementations
of Refal Plus as well as in those of other Refal-like languages, such as FLAC
[Kis87].
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5 Conclusion

The “vector” representation of ground expressions allows the copying of ex-
pressions to be reduced to the copying of pointers, thereby enabling the Refal
programs to be written in more functional style. Besides, this representation
can serve as a basis for implementing advanced dialects of Refal, such as Refal
Plus.

In addition, the “vector” representation consumes less storage space, as com-
pared to those based on doubly-linked lists, eliminating as it does the references
both to the previous cell and to the next one. In this respect the change-over
to the “vector” representation is a more “revolutionary” step than the elimina-
tion of the reference to the previous cell only, as suggested by Mansurov and
Ejsymont [ME87].

In the virtual memory environment, the “vector” representation should ex-
hibit better performance than the representations based on doubly-linked lists,
as the logically adjacent terms become adjacent in the address space, whereas
the compacting garbage collector tends to reduce the size of the active address
space.
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