
Defining a language by an interpreter Separating binding times Conclusions

Higher-Order Functions
as a Substitute for Partial Evaluation

(A Tutorial)

Sergei A.Romanenko
sergei.romanenko@supercompilers.ru

Keldysh Institute of Applied Mathematics
Russian Academy of Sciences

Meta 2008 – July 3, 2008



Defining a language by an interpreter Separating binding times Conclusions

Outline

1 Defining a language by an interpreter
Interpreters and partial evaluation
An example interpreter
Representing recursion by cyclic data structures

2 Separating binding times
What is “binding time”
Lifting static subexpressions
Liberating control
Separating binding times in the interpreter
Functionals and the separation of binding times

3 Conclusions



Defining a language by an interpreter Separating binding times Conclusions

Outline

1 Defining a language by an interpreter
Interpreters and partial evaluation
An example interpreter
Representing recursion by cyclic data structures

2 Separating binding times
What is “binding time”
Lifting static subexpressions
Liberating control
Separating binding times in the interpreter
Functionals and the separation of binding times

3 Conclusions



Defining a language by an interpreter Separating binding times Conclusions

Outline

1 Defining a language by an interpreter
Interpreters and partial evaluation
An example interpreter
Representing recursion by cyclic data structures

2 Separating binding times
What is “binding time”
Lifting static subexpressions
Liberating control
Separating binding times in the interpreter
Functionals and the separation of binding times

3 Conclusions



Defining a language by an interpreter Separating binding times Conclusions

Outline

1 Defining a language by an interpreter
Interpreters and partial evaluation
An example interpreter
Representing recursion by cyclic data structures

2 Separating binding times
What is “binding time”
Lifting static subexpressions
Liberating control
Separating binding times in the interpreter
Functionals and the separation of binding times

3 Conclusions



Defining a language by an interpreter Separating binding times Conclusions

Interpreters and partial evaluation

“Extending” a language by means of an interpreter

Suppose, our program is written in Standard ML (a strict
functional language). Let us define an “interpreter”, a function
run, whose type is

val run : prog * input -> result

Then, somewhere is the program we can write a call

... run (prog, d) ...

where

run – an interpreter.

prog – a program in the language implemented by run.

d – input data.



Defining a language by an interpreter Separating binding times Conclusions

Interpreters and partial evaluation

Removing the overhead due to interpretation

Problem

A näıve interpreter written in a straightforward way is likely to
introduce a considerable overhead.

Solution

Refactoring = rewriting = “currying” the interpreter.

val run : prog * input -> result
... run (prog, input) ...

can be replaced with

val run : prog -> input -> result
... (run prog) input ...



Defining a language by an interpreter Separating binding times Conclusions

Interpreters and partial evaluation

1st Futamura projection in the 1st-order world

1st-order world

A program p is a text, which cannot be applied to an input d
directly.

We need an explicit function L defining the “meaning” of p,
so that L p is a function and L p d is the result of applying p
to d .

Definition

A specializer is a program spec, such that
L p (s, d) = L (L spec (p, s)) d

The 1st Futamura projection

L run (prog , input) = L (L spec(run, prog)) input



Defining a language by an interpreter Separating binding times Conclusions

Interpreters and partial evaluation

1st Futamura projection in the higher-order world

Higher-order world

We can pretend that a program p is a function, so that p d is
the result of applying p to d .

Definition

A specializer is a program spec, such that
p (s, d) = spec (p, s) d

The 1st Futamura projection

run (prog , input) = spec(run, prog) input

The 2nd Futamura projection

run (prog , input) = spec(spec, run) prog input



Defining a language by an interpreter Separating binding times Conclusions

Interpreters and partial evaluation

Refactoring run to spec(spec , run) by hand

Observation

spec(spec, run) takes as input a program prog and returns a
function that can be applied to some input data input.

An idea

Let try to manually refactor a näıve, straightforward interpreter run
to a “compiler”, equivalent to spec(spec, run).

The sources of inspiration

A few old papers (1989–1991) about “fuller laziness” and “free
theorems”.

What is different

We shall apply the ideas developed for lazy languages to a strict
language.



Defining a language by an interpreter Separating binding times Conclusions

Interpreters and partial evaluation

References – “Fuller laziness”

Carsten Kehler Holst. Syntactic currying: yet another
approach to partial evaluation. Student report 89-7-6, DIKU,
University of Copenhagen, Denmark, July 1989.

Carsten Kehler Holst. Improving full laziness. In Simon L.
Peyton Jones, Graham Hutton, and Carsten Kehler Holst,
editors, Functional programming, Ullapool, Scotland, 1990,
Springer-Verlag.

Carsten Kehler Holst and Carsten Krogh Gomard. Partial
evaluation is fuller laziness. In Partial Evaluation and
Semantics-Based Program Manipulation, New Haven,
Connecticut. (Sigplan Notices, vol. 26, no.9, September
1991), pages 223–233, ACM, 1991.



Defining a language by an interpreter Separating binding times Conclusions

Interpreters and partial evaluation

References - “Free theorems”

Philip Wadler. Theorems for free! In Functional Programming
Languages and Computer Architectures, pages 347–359,
London, September 1989. ACM.

Carsten Kehler Holst and John Hughes. Towards improving
binding times for free! In Simon L. Peyton Jones, Graham
Hutton, and Carsten Kehler Holst, editors, Functional
programming, Ullapool, Scotland, 1990, Springer-Verlag.



Defining a language by an interpreter Separating binding times Conclusions

An example interpreter

An interpreter as a function in Standard ML

Let us consider an interpreter defined in Standard ML as a function
run having type

val run : prog -> int list -> int

We suppose that

A program prog is a list of mutually recursive first-order
function definitions.

A function in prog accepts a fixed number of integer
arguments.

A function in prog returns an integer.

The program execution starts with calling the first function in
prog.



Defining a language by an interpreter Separating binding times Conclusions

An example interpreter

Abstract syntax of programs

datatype exp =
INT of int

| VAR of string
| BIN of string * exp * exp
| IF of exp * exp * exp
| CALL of string * exp list

type prog =
(string * (string list * exp)) list;



Defining a language by an interpreter Separating binding times Conclusions

An example interpreter

Example program in abstract syntax

The factorial function
fun fact x =
if x = 0 then 1 else x * fact (x-1)

when written in abstract syntax, takes the form

val fact_prog = [
("fact", (["x"],
IF(

BIN("=", VAR "x", INT 0),
INT 1,
BIN("*",
VAR "x",
CALL("fact",
[BIN("-", VAR "x", INT 1)])))

)) ];



Defining a language by an interpreter Separating binding times Conclusions

An example interpreter

First-order interpreter – General structure

fun eval prog ns exp vs =
case exp of
INT i => ...

| VAR n => ...
| BIN(name, e1, e2) => ...
| IF(e0, e1, e2) => ...
| CALL(fname, es) => ...

and evalArgs prog ns es vs =
map (fn e => eval prog ns e vs) es

fun run (prog : prog) vals =
let val (_, (ns0, body0)) = hd prog
in eval prog ns0 body0 vals end



Defining a language by an interpreter Separating binding times Conclusions

An example interpreter

First-order interpreter – INT, VAR, BIN, IF

fun eval prog ns exp vs =
case exp of
INT i => i

| VAR n =>
getVal (findPos ns n) vs

| BIN(name, e1, e2) =>
(evalB name) (eval prog ns e1 vs,

eval prog ns e2 vs)
| IF(e0, e1, e2) =>

if eval prog ns e0 vs <> 0
then eval prog ns e1 vs
else eval prog ns e2 vs

| CALL(fname, es) => ...



Defining a language by an interpreter Separating binding times Conclusions

An example interpreter

First-order interpreter – CALL

fun eval prog ns exp vs =
case exp of
INT i => ...

| VAR n => ...
| BIN(name, e1, e2) => ...
| IF(e0, e1, e2) => ...
| CALL(fname, es) =>

let
val (ns0, body0) =

lookup prog fname
val vs0 =

evalArgs prog ns es vs
in eval prog ns0 body0 vs0 end

A problem



Defining a language by an interpreter Separating binding times Conclusions

Representing recursion by cyclic data structures

Potentially infinite recursive descent

Formally, the present version of run is “curried”, i.e. the
evaluation of run prog returns a function. But, in reality, the
evaluation starts only when run is given 2 arguments:

run prog vals

A problem

For the most part, eval recursively descends from the current
expression to its subexpressions. But, when evaluating a function
call, it replaces the current expression with a new one, taken from
the whole program prog. Thus, if we tried to evaluate eval with
respect to exp, this might result in an infinite unfolding!

Evaluating a call



Defining a language by an interpreter Separating binding times Conclusions

Representing recursion by cyclic data structures

“Denotational” approach: a cyclic function environment

Refactoring: replacing prog with a function environment phi

eval prog ns exp vs → eval phi ns exp vs

phi should map function names to their “meanings”, i.e.
functions.

A problem

Recursive calls in prog lead to a cyclic functional environment
phi.

Standard ML is a strict language, for which reason we cannot
directly represent phi as an infinite tree.

A solution

Standard ML allows us to use “imperative features”: locations,
references and destructive updating.



Defining a language by an interpreter Separating binding times Conclusions

Representing recursion by cyclic data structures

Imperative features of Standard ML

ref v creates a new location, initializes it with v, and returns
a reference to the new location.

! r returns the contents of the location referenced to by r.
The contents of the location remains unchanged.

r := v replaces the contentes of the location referenced by r
with a new value v.

An idea

phi fname should return a reference to the “meaning” of the
function fname.

We can easily create phi fname with locations initialized with
dummy values and update the locations with correct values at
a later time.



Defining a language by an interpreter Separating binding times Conclusions

Representing recursion by cyclic data structures

eval using a functional environment

fun eval phi ns exp vs =
case exp of
INT i => ...

| VAR n => ...
| BIN(name, e1, e2) => ...
| IF(e0, e1, e2) => ...
| CALL(fname, es) =>

let val r = lookup phi fname
in (!r) (evalArgs phi ns es vs) end

and evalArgs phi ns es vs =
map (fn e => eval phi ns e vs) es



Defining a language by an interpreter Separating binding times Conclusions

Representing recursion by cyclic data structures

Initializing phi

fun dummyEval (vs : int list) : int =
raise Fail "dummyEval"

fun app f [] = ()
| app f (x :: xs) = (f x : unit; app f xs)

fun run (prog : prog) =
let val phi = map (fn (n,_) => (n,ref dummyEval))

prog
val (_, r0) = hd phi

in app (fn (n, (ns, e)) =>
(lookup phi n) := eval phi ns e)

prog;
!r0

end



Defining a language by an interpreter Separating binding times Conclusions

Outline

1 Defining a language by an interpreter
Interpreters and partial evaluation
An example interpreter
Representing recursion by cyclic data structures

2 Separating binding times
What is “binding time”
Lifting static subexpressions
Liberating control
Separating binding times in the interpreter
Functionals and the separation of binding times

3 Conclusions



Defining a language by an interpreter Separating binding times Conclusions

What is “binding time”

“Static” and “dynamic”

In an expression like

(fn x => fn y => fn z => e)

x is bound before y, y is bound before z.

The variables that are bound first are called early, and the
ones that are bound later are called late (Holst, 1990).

The early variables are said to be more static than the late
ones, whereas the late variables are said to be more dynamic
than the earlier ones.



Defining a language by an interpreter Separating binding times Conclusions

Lifting static subexpressions

Repeated evaluation of “static” subexpressions

Consider the declarations
val h = fn x =>

fn y =>
sin x * cos y

val h’ = h 0.1
val v = h’ 1.0 + h’ 2.0

When h’ is declared, no real evaluation takes place, because the
value of y is not known yet. Hence, sin 0.1 will be evaluated
twice, when evaluating the declaration of v.



Defining a language by an interpreter Separating binding times Conclusions

Lifting static subexpressions

Avoiding repeated evaluation by lifting “static”
subexpressions

This can be avoided by “lifting” sin x in the following way:

val h = fn x =>
let val sin_x = sin x
in fn y => sin_x * cos y end

The transformation of that kind, when applied to a program in a
lazy language, is known as transforming the program to a “fully
lazy form” (Holst 1990).



Defining a language by an interpreter Separating binding times Conclusions

Lifting static subexpressions

Lifting may be unsafe

A danger

In the case of a strict language, the lifting of subexpressions may
change termination properties of the program!

For example, if monster is a function that never terminates, then
evaluating

val h = fn x => fn y => monster x * cos y
val h’ = h 0.1

terminates, while the evaluation of

val h = fn x =>
let val monster_x = monster x
in fn y => monster_x * cos y end

val h’ = h 0.1

does not terminate.



Defining a language by an interpreter Separating binding times Conclusions

Liberating control

Lifting a condition

fn x =>
fn y => if (p x) then (f x y) else (g x y)

By lifting (p x) we get

fn x =>
let val p_x = (p x)
in

fn y => if p_x then (f x y) else (g x y)
end

The result is not as good as we’d like

Lifting the condition (p x) does not remove the conditional.

We still cannot lift (f x) and (g x), because this would
result in unnecessary computation.



Defining a language by an interpreter Separating binding times Conclusions

Liberating control

An alternative: pushing fn y => into branches

Let us return to the expression

fn x =>
fn y => if (p x) then (f x y) else (g x y)

Instead of lifting the test (p x), we can push fn y => over
if (p x) into the branches of the conditional!

fn x =>
if (p x) then

fn y => (f x y)
else

fn y => (g x y)



Defining a language by an interpreter Separating binding times Conclusions

Liberating control

Safely lifting static subexpression inside each branch

Finally, (f x) and (g x) can be lifted, because this will not
necessary lead to unnecessary computation.

fn x =>
if (p x) then

let val f_x = (f x)
in (fn y => f_x y) end

else
let val g_x = (g x)
in (fn y => g_x y) end

A subtlety

Evaluating (f x) or (g x) may be still useless, if the function
returned by the expression is never called.



Defining a language by an interpreter Separating binding times Conclusions

Liberating control

Pushing fn y => into branches of a case

fn y => can also be pushed into other control constructs,
containing conditional branches. For example,

fn x =>
fn y =>

case f x of
A => g x y

| B => h x y

can be rewritten as
fn x =>
case f x of

A => fn y => g x y
| B => fn y => h x y



Defining a language by an interpreter Separating binding times Conclusions

Separating binding times in the interpreter

Refactoring eval: moving vs to the right-hand side

The function run is good enough already, and need not be revised.
So let us consider the definition of the function

fun eval phi ns exp vs =
case exp of

INT i => i
...

First of all, let us move vs to the right hand side:

fun eval phi ns exp =
fn vs =>
case exp of
INT i => i

...



Defining a language by an interpreter Separating binding times Conclusions

Separating binding times in the interpreter

Refactoring eval: pushing vs to the branches

Now we can push fn vs => into the case construct:

fun eval phi ns exp =
case exp of

INT i => (fn vs => i)
...

so that the right hand side of each match rule begins with
fn vs =>, and can be transformed further, independently from the
other right hand sides.



Defining a language by an interpreter Separating binding times Conclusions

Separating binding times in the interpreter

Refactoring eval: final result for INT, VAR, BIN

fun eval phi ns exp =
case exp of
INT i => (fn vs => i)

| VAR n =>
getVal’(findPos ns n)

| BIN(name, e1, e2) =>
let val b = evalB name

val c1 = eval phi ns e1
val c2 = eval phi ns e2

in (fn vs => b (c1 vs, c2 vs)) end
| IF(e0, e1, e2) => ...
| CALL(fname, es) => ...

and evalArgs phi ns [] = ...



Defining a language by an interpreter Separating binding times Conclusions

Separating binding times in the interpreter

Refactoring eval: final result for IF

fun eval phi ns exp =
case exp of
INT i => ...

| VAR n => ...
| BIN(name, e1, e2) => ...
| IF(e0, e1, e2) =>

let val c0 = eval phi ns e0
val c1 = eval phi ns e1
val c2 = eval phi ns e2

in fn vs => if c0 vs <> 0 then c1 vs
else c2 vs

end
| CALL(fname, es) => ...

and evalArgs phi ns [] = ...



Defining a language by an interpreter Separating binding times Conclusions

Separating binding times in the interpreter

Refactoring eval: final result for CALL

fun eval phi ns exp =
case exp of
INT i => ...

| VAR n => ...
| BIN(name, e1, e2) => ...
| IF(e0, e1, e2) => ...
| CALL(fname, es) =>

let
val r = lookup phi fname
val c = evalArgs phi ns es

in fn vs => (!r) (c vs) end

and evalArgs phi ns [] = ...



Defining a language by an interpreter Separating binding times Conclusions

Separating binding times in the interpreter

Refactoring eval: final result for getVal’ and evalArgs

fun getVal’ 0 = hd
| getVal’ n =

let val sel = getVal’ (n-1)
in fn vs => sel (tl vs) end

fun eval phi ns exp = ...

and evalArgs phi ns [] = (fn vs => [])
| evalArgs phi ns (e :: es) =

let val c’ = eval phi ns e
val c’’ = evalArgs phi ns es

in fn vs => c’ vs :: c’’ vs end



Defining a language by an interpreter Separating binding times Conclusions

Functionals and the separation of binding times

Separating binding times by removing functionals

We do not know how to lift static subexpressions appearing in the
arguments of higher-order functions:

and evalArgs phi ns es vs =
map (fn e => eval phi ns e vs) es

A straightforward solution consists in replacing functionals with
explicit recursion:

and evalArgs phi ns [] vs = []
| evalArgs phi ns (e :: es) vs =

eval phi ns e vs ::
evalArgs phi ns es vs



Defining a language by an interpreter Separating binding times Conclusions

Functionals and the separation of binding times

Separating binding times without removing functionals

A suggestion by Holst and Hughes (1990)

Binding times can be separated by applying commutative-like laws,
which can be derived from the types of polymorphic functions
using the “free-theorem” approach (Wadler 1989).

For example, for the function map a useful law is

map (d o s) xs = map d (map s xs)

because, if s and xs are static subexpressions, and d a dynamic
one, then map s xs is a static subexpresion, which can be lifted.



Defining a language by an interpreter Separating binding times Conclusions

Functionals and the separation of binding times

Refactoring evalArgs without removing map

The following subexpression in the definition of evalArgs

map (fn e => eval phi ns e vs) es

can be transformed into

map ((fn c => c vs) o (eval phi ns)) es

and then into

map (fn c => c vs)
(map (eval phi ns) es)

Now the subexpression

(map (eval phi ns) es)

is purely static, and can be lifted out.



Defining a language by an interpreter Separating binding times Conclusions

Outline

1 Defining a language by an interpreter
Interpreters and partial evaluation
An example interpreter
Representing recursion by cyclic data structures

2 Separating binding times
What is “binding time”
Lifting static subexpressions
Liberating control
Separating binding times in the interpreter
Functionals and the separation of binding times

3 Conclusions



Defining a language by an interpreter Separating binding times Conclusions

If we write language definitions in a first-order language, we
badly need a partial evaluator in order to remove the overhead
introduced by the interpretation.

If the language provides functions as first-class values, an
interpreter can be relatively easily rewritten in such a way that
it becomes more similar to a compiler, rather than to an
interpreter.

The language in which the interpreters are written need not
be a lazy one, but, if the language is strict, some attention
should be paid by the programmer to preserving termination
properties.


	Defining a language by an interpreter
	Interpreters and partial evaluation
	An example interpreter
	Representing recursion by cyclic data structures

	Separating binding times
	What is ``binding time''
	Lifting static subexpressions
	Liberating control
	Separating binding times in the interpreter
	Functionals and the separation of binding times

	Conclusions

