
Introduction Proving properties of programs Proving equality and equivalence Applications Summary

Proving the Equivalence of Higher-Order Terms
by Means of Supercompilation

Ilya Klyuchnikov and Sergei Romanenko

Keldysh Institute of Applied Mathematics
Russian Academy of Sciences

Novosibirsk, June 17 2008

Introduction Proving properties of programs Proving equality and equivalence Applications Summary

Outline

Introduction
A Brief Survey on Supercompilers
HOSC - an Experimental Supercompiler

Proving properties of programs
HOSC DEMO: Parameterized testing

Proving equality and equivalence
HOSC DEMO: Church numbers
HOSC DEMO: Map composition
The Idea of Proving term equivalence

Applications
Library of Lemmas
Towards a Higher-Level Supercompiler

Summary

Introduction Proving properties of programs Proving equality and equivalence Applications Summary

A Brief Survey on Supercompilers

SPEC
SCP[1,2,3] - Turchin et al.
SCP4 - A. Nemytykh
Supero - N. Mitchell
SC for Timber - P. Jonnson
JScp - A. Klimov
Poitin - G. Hamilton

HOSC

Primary goal
OPT
SELF-APP
OPT
OPT
OPT
OPT

ANALYSIS

Preserves semantics
NO
NO
YES
YES
YES
YES

YES

Easy to try
-
If you know Refal
If you use YHC
-
If you are Klimov
-

If you have a
browser

Introduction Proving properties of programs Proving equality and equivalence Applications Summary

A Brief Survey on Supercompilers

SPEC
SCP[1,2,3] - Turchin et al.
SCP4 - A. Nemytykh
Supero - N. Mitchell
SC for Timber - P. Jonnson
JScp - A. Klimov
Poitin - G. Hamilton

HOSC

Primary goal
OPT
SELF-APP
OPT
OPT
OPT
OPT

ANALYSIS

Preserves semantics
NO
NO
YES
YES
YES
YES

YES

Easy to try
-
If you know Refal
If you use YHC
-
If you are Klimov
-

If you have a
browser

Introduction Proving properties of programs Proving equality and equivalence Applications Summary

A Brief Survey on Supercompilers

SPEC
SCP[1,2,3] - Turchin et al.
SCP4 - A. Nemytykh
Supero - N. Mitchell
SC for Timber - P. Jonnson
JScp - A. Klimov
Poitin - G. Hamilton

HOSC

Primary goal
OPT
SELF-APP
OPT
OPT
OPT
OPT

ANALYSIS

Preserves semantics
NO
NO
YES
YES
YES
YES

YES

Easy to try
-
If you know Refal
If you use YHC
-
If you are Klimov
-

If you have a
browser

Introduction Proving properties of programs Proving equality and equivalence Applications Summary

A Brief Survey on Supercompilers

SPEC
SCP[1,2,3] - Turchin et al.
SCP4 - A. Nemytykh
Supero - N. Mitchell
SC for Timber - P. Jonnson
JScp - A. Klimov
Poitin - G. Hamilton

HOSC

Primary goal
OPT
SELF-APP
OPT
OPT
OPT
OPT

ANALYSIS

Preserves semantics
NO
NO
YES
YES
YES
YES

YES

Easy to try
-
If you know Refal
If you use YHC
-
If you are Klimov
-

If you have a
browser

Introduction Proving properties of programs Proving equality and equivalence Applications Summary

A Brief Survey on Supercompilers

SPEC
SCP[1,2,3] - Turchin et al.
SCP4 - A. Nemytykh
Supero - N. Mitchell
SC for Timber - P. Jonnson
JScp - A. Klimov
Poitin - G. Hamilton
HOSC

Primary goal
OPT
SELF-APP
OPT
OPT
OPT
OPT

ANALYSIS

Preserves semantics
NO
NO
YES
YES
YES
YES
YES

Easy to try
-
If you know Refal
If you use YHC
-
If you are Klimov
-
If you have a
browser

Introduction Proving properties of programs Proving equality and equivalence Applications Summary

A Brief Survey on Supercompilers

SPEC
SCP[1,2,3] - Turchin et al.
SCP4 - A. Nemytykh
Supero - N. Mitchell
SC for Timber - P. Jonnson
JScp - A. Klimov
Poitin - G. Hamilton
HOSC

Primary goal
OPT
SELF-APP
OPT
OPT
OPT
OPT
ANALYSIS

Preserves semantics
NO
NO
YES
YES
YES
YES
YES

Easy to try
-
If you know Refal
If you use YHC
-
If you are Klimov
-
If you have a
browser

Introduction Proving properties of programs Proving equality and equivalence Applications Summary

HOSC - an Experimental Supercompiler

• Deals with a simple higher-order functional language with lazy
semantisc (a subset of Haskell)

• Preserves semantics

• Open Source

• Runs in a browser. Try it at http://hosc.appspot.com

Introduction Proving properties of programs Proving equality and equivalence Applications Summary

HOSC DEMO

Introduction Proving properties of programs Proving equality and equivalence Applications Summary

Parameterized testing: a source program

data List a = Nil | Cons a (List a);
data Enum = A | B;
data Boolean = True | False;
contains x (app xs (app (Cons x Nil) zs)) where

app = \xs ys →
case xs of {

Nil → ys;
Cons z zs → Cons z (app zs ys);};

contains = \x xs →
case xs of {

Nil → False;
Cons x1 xs1 → or (eq x1 x) (contains x xs1);};

eq = \x y → case x of {
A → case y of {A → True; B → False;};
B → case y of {A → False; B → True;};};

or = \x y → case x of {True → True;False → y;};

Introduction Proving properties of programs Proving equality and equivalence Applications Summary

Parameterized testing: the residual program

data List a = Nil | Cons a (List a);
data Enum = A | B ;
data Boolean = True | False ;
letrec f=\w2 p2→

case p2 of {
Nil → case w2 of { A → True; B → True; };
Cons w p →

case w of {
A → case w2 of { A → True; B → f B p; };
B → case w2 of { A → f A p; B → True; };

};
}

in

f x xs

Introduction Proving properties of programs Proving equality and equivalence Applications Summary

Church numbers

0 = \f x → x
1 = \f x → f x
2 = \f x → f (f x)
3 = \f x → f (f (f x))
...
n = \f x → fnx
...
fm+nx = fm(fnx)
churchAdd = \m n → (\f x → m f (n f x));

Introduction Proving properties of programs Proving equality and equivalence Applications Summary

Church numbers

data Nat = Z | S Nat;

unchurch(churchAdd (church x) (church y)) = add x y
where

church = \n → case n of {
Z → \f x → x;
S n1 → \f x → f (church n1 f x);

};
unchurch = \n → n (\x → S x) Z;
churchAdd = \m n → (\f x → m f (n f x));
add = \x y → case x of {

Z → y;
S x1 → S (add x1 y);

};

Introduction Proving properties of programs Proving equality and equivalence Applications Summary

Church numbers: a source program

data Nat = Z | S Nat;
data Boolean = False | True;
eq (add x y) (unchurch(churchAdd (church x) (church y))) where

eq = \x y → case x of {
Z → case y of {Z → True; S y1 → False; } ;
S x1 → case y of {Z → False; S y1 → eq x1 y1;} ;

};
church = \n → case n of {

Z → \f x → x;
S n1 → \f x → f (church n1 f x);

};
unchurch = \n → n (\x → S x) Z;
churchAdd = \m n → (\f x → m f (n f x));
add = \x y → case x of {

Z → y;
S x1 → S (add x1 y);

};

Introduction Proving properties of programs Proving equality and equivalence Applications Summary

Church numbers: the residual program

data Nat = Z | S Nat;
data Boolean = False | True;
case x of {

Z → case y of {Z → True; S w4 →
letrec f=\a → case a of {Z → True; S x4 → f x4;}
in f w4;};

S r6 → letrec g=\u11→
case u11 of {

Z → case y of {
Z → True;
S x9 → letrec h=\v11→
case v11 of { Z → True; S b → h b;} in h x9;

};
S y7 → (g y7);}

in g r6;}

Introduction Proving properties of programs Proving equality and equivalence Applications Summary

Map composition

data List a = Nil | Cons a (List a);

map (compose f g) xs = (compose (map f)(map g)) xs
where

map = \f1 ys →
case ys of {

Nil → Nil;
Cons y1 ys1 → Cons (f1 y1) (map f1 ys1);

};

compose = \f1 f2 x → f1 (f2 x);

Introduction Proving properties of programs Proving equality and equivalence Applications Summary

Task

Conjecture

map (compose f) xs = (compose (map f g)(map g)) xs

Restrictions

• No equality out of the box.

• List xs may be infinite (or bottom).

• Functions f and g may be non-terminating.

Introduction Proving properties of programs Proving equality and equivalence Applications Summary

map (compose f g) xs: a source program

data List a = Nil | Cons a (List a);

map (compose f g) xs
where

map = \f1 ys →
case ys of {

Nil → Nil;
Cons y1 ys1 → Cons (f1 y1) (map f1 ys1);

};

compose = \f1 f2 x → f1 (f2 x);

Introduction Proving properties of programs Proving equality and equivalence Applications Summary

map (compose f g) xs: the residual program

data List a = Nil | Cons a (List a)
letrec

h = \ys.
case ys of

Nil → Nil
Cons y1 ys1 → Cons (f (g y1)) (h ys1)

in

h xs

Introduction Proving properties of programs Proving equality and equivalence Applications Summary

(compose (map f)(map g)) xs: a source program

data List a = Nil | Cons a (List a)

(compose (map f)(map g)) xs
where

map = \f1 ys →
case ys of {

Nil → Nil;
Cons y1 ys1 → Cons (f1 y1) (map f1 ys1);

};

compose = \f1 f2 x → f1 (f2 x);

Introduction Proving properties of programs Proving equality and equivalence Applications Summary

map f (map g xs) xs: the residual program

data List a = Nil | Cons a (List a)
letrec

h = \ys.
case ys of

Nil → Nil
Cons y1 ys1 → Cons (f (g y1)) (h ys1)

in

h xs

Introduction Proving properties of programs Proving equality and equivalence Applications Summary

The Idea

Pr1 Pr2

Pr1' Pr2'

sc sc

Introduction Proving properties of programs Proving equality and equivalence Applications Summary

The Idea

Pr1 Pr2

Pr1' Pr2'

sc sc

Introduction Proving properties of programs Proving equality and equivalence Applications Summary

Normalization by supercompilation

More formally

sc(A) = A′ sc(B) = B ′ A′ ≡ B ′

A = B

= means equivalent, ≡ means syntactically isomorphic

Power of strict equivalence
We can use transitivity when reasoning:

A = C B = C

A = B

Non-strict equivalence:

A C B C

A ? B

Introduction Proving properties of programs Proving equality and equivalence Applications Summary

Automatic Checker

Introduction Proving properties of programs Proving equality and equivalence Applications Summary

Normalization-based approach to proving term
equivalence

• Works for polymorphic data types

• Works for non-terminating functions

• Works for infinite data structures

Introduction Proving properties of programs Proving equality and equivalence Applications Summary

Library of Lemmas

compose (map f) unit = compose unit f

compose (map f) join = compose join (map (map f))

append (map f xs) (map f ys) = map f (append xs ys)

append (append xs ys) zs = append xs (append ys zs)

filter p (map f xs) = map f (filter (compose p f) xs)

iterate f (f x) = map f (iterate f x)

map (compose f g) xs = (compose (map f)(map g)) xs

rep (append xs ys) zs = (compose (rep xs) (rep ys)) zs

(compose abs rep) xs = idList xs

map (fp (P f g)) (zip (P x y)) = zip (fp (P (map f) (map g)) (P x y))

append r (Cons p ps) =

case (append r (Cons p Nil)) of

Nil → ps

Cons v vs → Cons v (append vs ps)

Introduction Proving properties of programs Proving equality and equivalence Applications Summary

Library of Lemmas

data List a = Nil | Cons (List a);

data Boolean = True | False;

data Pair a b = P a b;

compose = \f g x → f (g x);

unit = \x → Cons x Nil;

rep = \xs → append xs;

abs = \f → f Nil;

iterate = \f x → Cons x (iterate f (f x));

fp = \p1 p2 → case p1 of {P a1 a2 →
case p2 of {P b1 b2 → P (a1 b1) (a2 b2);};};

map = \f xs → case xs of {Nil → Nil;

Cons x1 xs1 → Cons (f x1) (map f xs1);}

join = \xs → case xs of {Nil → Nil;

Cons x1 xs1 → append x1 (join xs1);};

append = \xs ys → case xs of {Nil → ys;

Cons x1 xs1 → Cons x1 (append xs1 ys);};

idList = \xs → case xs of {Nil → Nil;

Cons x1 xs1 → Cons x1 (idList xs1);};

filter = \p xs → case xs of {Nil → Nil;

Cons x xs1 → case (p x) of {

True → Cons x (filter p xs1);

False → filter p xs1 ;};};

zip = \p → case p of {P xs ys → case xs of {

Nil → Nil;

Cons x1 xs1 → case ys of{

Nil → Nil;

Cons y1 ys1 → Cons (P x1 y1) (zip (P xs1 ys1));};};}

Introduction Proving properties of programs Proving equality and equivalence Applications Summary

Improved configuration analysis

by lemma

by lemma

Introduction Proving properties of programs Proving equality and equivalence Applications Summary

• Summary
• The experimental opern-sourced supercompiler HOSC: easy to run.
• The simple idea for proving term equivalence by means of

supercompilation was described.
• The fully automatic equivalence checker was implemented.

• Future Work
• Automatic generation of lemma library for a given program.
• Encorporate lemmas into HOSC to make it more powerful.

• Announcement
• ”SPSC: a Simple Supercompiler in Scala” - at PU’09

	Introduction
	A Brief Survey on Supercompilers
	HOSC - an Experimental Supercompiler

	Proving properties of programs
	HOSC DEMO: Parameterized testing

	Proving equality and equivalence
	HOSC DEMO: Church numbers
	HOSC DEMO: Map composition
	The Idea of Proving term equivalence

	Applications
	Library of Lemmas
	Towards a Higher-Level Supercompiler

	Summary

