INTRODUCTION	PROVING PROPERTIES OF PROGRAMS	Proving equality and equivalence	Applications	Summary
0	000	0000 000000 00000	00	

Proving the Equivalence of Higher-Order Terms by Means of Supercompilation

Ilya Klyuchnikov and Sergei Romanenko

Keldysh Institute of Applied Mathematics Russian Academy of Sciences

Novosibirsk, June 17 2008

INTRODUCTION	Proving properties of programs	PROVING EQUALITY AND EQUIVALENCE	Applications	Summary
0	000	0000 000000 00000	00 0	

Outline

Introduction

A Brief Survey on Supercompilers HOSC - an Experimental Supercompiler

Proving properties of programs HOSC DEMO: Parameterized testing

Proving equality and equivalence

HOSC DEMO: Church numbers HOSC DEMO: Map composition The Idea of Proving term equivalence

Applications

Library of Lemmas Towards a Higher-Level Supercompiler

Summary

SPEC SCP[1,2,3] - Turchin et al. SCP4 - A. Nemytykh Supero - N. Mitchell SC for Timber - P. Jonnson JScp - A. Klimov Poitin - G. Hamilton

SPEC	Primary goal
SCP[1,2,3] - Turchin et al.	OPT
SCP4 - A. Nemytykh	SELF-APP
Supero - N. Mitchell	OPT
JScp - A. Klimov	OPT
Poitin - G. Hamilton	OPT

INTRODUCTION	Proving properties of programs	PROVING EQUALITY AND EQUIVALENCE	Applications	Summary
•	000	0000 000000 00000	00	

SPEC	Primary goal	Preserves semantics
SCP[1,2,3] - Turchin et al.	OPT	NO
SCP4 - A. Nemytykh	SELF-APP	NO
Supero - N. Mitchell	OPT	YES
SC for Timber - P. Jonnson	OPT	YES
JScp - A. Klimov	OPT	YES
Poitin - G. Hamilton	OPT	YES

INTRODUCTION	Proving properties of programs	Proving equality and equivalence	Applications	Summary
•	000	0000 000000 00000	00	

SPEC	Primary goal	Preserves semantics	Easy to try
SCP[1,2,3] - Turchin et al.	OPT	NO	-
SCP4 - A. Nemytykh	SELF-APP	NO	If you know Refal
Supero - N. Mitchell	OPT	YES	If you use YHC
SC for Timber - P. Jonnson	OPT	YES	-
JScp - A. Klimov	OPT	YES	If you are Klimov
Poitin - G. Hamilton	OPT	YES	-

INTRODUCTION	Proving properties of programs	PROVING EQUALITY AND EQUIVALENCE	Applications	Summary
•	000	0000 000000 00000	00 0	

SPEC	Primary goal	Preserves semantics	Easy to try
SCP[1,2,3] - Turchin et al.	OPT	NO	-
SCP4 - A. Nemytykh	SELF-APP	NO	If you know Refal
Supero - N. Mitchell	OPT	YES	If you use YHC
SC for Timber - P. Jonnson	OPT	YES	-
JScp - A. Klimov	OPT	YES	If you are Klimov
Poitin - G. Hamilton	OPT	YES	-
HOSC		YES	If you have a
			browser

INTRODUCTION	Proving properties of programs	PROVING EQUALITY AND EQUIVALENCE	Applications	Summary
•	000	0000 000000 00000	00	

SPEC	Primary goal	Preserves semantics	Easy to try
SCP[1,2,3] - Turchin et al.	OPT	NO	-
SCP4 - A. Nemytykh	SELF-APP	NO	If you know Refal
Supero - N. Mitchell	OPT	YES	If you use YHC
SC for Timber - P. Jonnson	OPT	YES	-
JScp - A. Klimov	OPT	YES	If you are Klimov
Poitin - G. Hamilton	OPT	YES	-
HOSC	ANALYSIS	YES	If you have a
			browser

INTRODUCTION	Proving properties of programs	PROVING EQUALITY AND EQUIVALENCE	Applications	Summary
•	000	0000 000000 00000	00 0	

HOSC - an Experimental Supercompiler

- Deals with a simple higher-order functional language with lazy semantisc (a subset of Haskell)
- Preserves semantics
- Open Source
- Runs in a browser. Try it at http://hosc.appspot.com

NTRODUCTION	Proving properties of programs	PROVING EQ
)	000	0000
2		000000

Proving equality and equivalence A

Applications Summary 00

HOSC DEMO

00		HOSC		
A http://hosc.appspore A http://hos	ot.com/supercompiler		C Q- Google)
AppEngine - Docs Reader Ap	ple Google Maps YouTube Wil	ikipedia Popular v		
HOSC			4	
Supercompilation Tasks Supercompiler = T	asks = Checker Mine Authors	il;	lya.klyuchnikov@gmail.com <u>Help and source code</u> <u>Sign out</u>	n
Supercompiler				
Input code:				
data List a = Nil Cons a (List a);				
(compose (map f)(map g)) xs				J
where				1
compose = $fg x \rightarrow f(g x)$;				H
map = \f xs -> case xs of { Nil -> Nil; Cons x1 xs1 -> Cons (f x1) (map f x: };	s1);			
				H
Supercompile				1
Supercompiled code:				H
data List a = Nil Cons a (List a	1);			H
(letrec h=(\yl-> case yl of { Nil	l -> Nil; Cons t r -> (Cons	(f (g t)) (h r)); })	in (h xs))	H
Process tree:				1
		(((compose (map f))) (nap g)) xs)	1
				1
				U
				4
-	· · · · · · · · · · · · · · · · · · ·			-

INTRODUCTION	Proving properties of programs	PROVING EQUALITY AND EQUIVALENCE	Applications	Summary
0	000	0000 000000 00000	00	

Parameterized testing: a source program

```
data List a = Nil | Cons a (List a);
data Enum = A | B:
data Boolean = True | False;
contains x (app xs (app (Cons x Nil) zs)) where
app = \xs ys \rightarrow
     case xs of {
        Nil \rightarrow ys;
        Cons z zs \rightarrow Cons z (app zs ys);};
contains = \x xs \rightarrow
  case xs of {
     Nil \rightarrow False;
     Cons x1 xs1 \rightarrow or (eq x1 x) (contains x xs1);};
eq = \ x \ y \rightarrow case \ x \ of \ \{
  A \rightarrow case \ y \ of \ \{A \rightarrow True; B \rightarrow False;\};
  B \rightarrow case \ y \ of \ \{A \rightarrow False; B \rightarrow True;\};\};
or = x y \rightarrow case x of {True}; False \rightarrow y;;
```

INTRODUCTION	Proving properties of programs	PROVING EQUALITY AND EQUIVALENCE	Applications	Summary
0	000	0000 000000 00000	00	

Parameterized testing: the residual program

```
data List a = Nil | Cons a (List a);
data Enum = A | B ;
data Boolean = True | False ;
letrec f=\w2 p2\rightarrow
  case p2 of {
     Nil \rightarrow case w2 of { A \rightarrow True; B \rightarrow True; };
     Cons w p \rightarrow
        case w of {
           A \rightarrow case \quad w2 \quad of \{ A \rightarrow True; B \rightarrow f B p; \};
           B \rightarrow case \quad w2 \quad of \{ A \rightarrow f A p; B \rightarrow True; \};
        };
  }
i.n.
  f x xs
```

INTRODUCTION	Proving properties of programs	Proving equality and equivalence	Applications	Summary
0	000	0000 000000 00000	00	

Church numbers

 $0 = \langle f | x \to x \rangle$ $1 = \langle f | x \to f | x \rangle$ $2 = \langle f | x \to f | (f | x) \rangle$ $3 = \langle f | x \to f | (f | (f | x)) \rangle$... $n = \langle f | x \to f^{n} x \rangle$ $f^{m+n} x = f^{m} (f^{n} x) \rangle$ churchAdd = $\langle m | n \to (\langle f | x \to m | f | (n | f | x)) \rangle$;

INTRODUCTION	Proving properties of programs	Proving equality and equivalence	Applications	Summary
0	000	0000 000000 00000	00	

Church numbers

data Nat = Z | S Nat;

unchurch(churchAdd (church x) (church y)) = add x y where church = $\ n \rightarrow case n of \{$ $Z \rightarrow \backslash f x \rightarrow x;$ S $n1 \rightarrow f x \rightarrow f$ (church n1 f x): }; unchurch = $\n \rightarrow n \ (\x \rightarrow S \ x) \ Z;$ churchAdd = $\mbox{m n} \rightarrow (\mbox{f x} \rightarrow \mbox{m f (n f x)});$ add = $\ x \ y \rightarrow case \ x \ of \ \{$ $Z \rightarrow v$; $S x1 \rightarrow S (add x1 y);$ };

INTRODUCTION	Proving properties of programs	Proving equality and equivalence	Applications	Summary
0	000	0000 000000 00000	00	

Church numbers: a source program

data Nat = Z | S Nat; data Boolean = False | True; eq (add x y) (unchurch(churchAdd (church x) (church y))) eq = $\x y \rightarrow case x of {$ $Z \rightarrow case \ y \ of \ \{Z \rightarrow True; S \ y1 \rightarrow False; \};$ S x1 \rightarrow case y of {Z \rightarrow False; S y1 \rightarrow eq x1 y1;}; }; church = $\n \rightarrow case$ n of { $Z \rightarrow \int f x \rightarrow x:$ S $n1 \rightarrow f x \rightarrow f$ (church n1 f x): }: unchurch = $\n \rightarrow n$ ($\x \rightarrow S$ x) Z: churchAdd = $\mbox{m n} \rightarrow (\mbox{f x} \rightarrow \mbox{m f (n f x)});$ add = $\ x \ y \rightarrow case \ x \ of \ \{$ $Z \rightarrow y;$ S $x1 \rightarrow S$ (add x1 y); };

INTRODUCTION	Proving properties of programs	Proving equality and equivalence	Applications	Summary
0	000	0000 000000 00000	00	

Church numbers: the residual program

```
data Nat = Z | S Nat:
data Boolean = False | True;
case x of {
  Z \rightarrow case y \quad of \{Z \rightarrow True; S w4 \rightarrow
      letrec f=\a \rightarrow case a of {Z \rightarrow True; S x4 \rightarrow f x4;}
      in f w4;};
  S r6 \rightarrow letrec g=\u11\rightarrow
      case u11 of {
        Z \rightarrow case \gamma of \{
           Z \rightarrow True:
            S x9 \rightarrow letrec h=\v11\rightarrow
            case v11 of { Z \rightarrow True; S b \rightarrow h b; } in h x9;
        };
        S y7 \rightarrow (g y7);
      in g r6;}
```

INTRODUCTION	Proving properties of programs	Proving equality and equivalence	Applications	Summary
0	000	0000 000000 00000	00	

$Map\ composition$

data List a = Nil | Cons a (List a);

map (compose f g) xs = (compose (map f)(map g)) xs
where

compose = $f1 f2 x \rightarrow f1 (f2 x);$

Task

Conjecture

map (compose f) xs = (compose (map f g)(map g)) xs

Restrictions

- No equality out of the box.
- List xs may be infinite (or bottom).
- Functions f and g may be non-terminating.

INTRODUCTION	Proving properties of programs	Proving equality and equivalence	Applications	Summary
0	000	0000 00000 00000	00	

$map \ (compose \ f \ g) \ xs: \ a \ source \ program$

data List a = Nil | Cons a (List a);

map (compose f g) xs
where

compose = $f1 f2 x \rightarrow f1 (f2 x);$

INTRODUCTION	PROVING PROPERTIES OF PROGRAMS	PROVING EQUALITY AND EQUIVALENCE	Applications	Summary
0	000	0000 000000 00000	00	

map (compose f g) xs: the residual program

```
data List a = Nil | Cons a (List a)

letrec

h = \ys.

case ys of

Nil \rightarrow Nil

Cons y1 ys1 \rightarrow Cons (f (g y1)) (h ys1)

in

h xs
```

INTRODUCTION	PROVING PROPERTIES OF PROGRAMS	Proving equality and equivalence	Applications	Summary
0	000	0000 000000 00000	00	

(compose (map f)(map g)) xs: a source program

data List a = Nil | Cons a (List a)

(compose (map f)(map g)) xs
where

compose = $f1 f2 x \rightarrow f1 (f2 x);$

INTRODUCTION	Proving properties of programs	Proving equality and equivalence	Applications	Summary
0	000	0000 00000 00000	00 0	

map f (map g xs) xs: the residual program

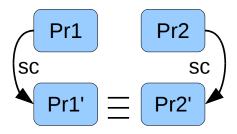
```
data List a = Nil | Cons a (List a)

letrec

h = \ys.

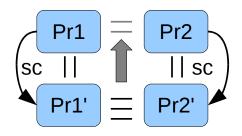
case ys of

Nil \rightarrow Nil


Cons y1 ys1 \rightarrow Cons (f (g y1)) (h ys1)

in

h xs
```


INTRODUCTION	PROVING PROPERTIES OF PROGRAMS	Proving equality and equivalence	Applications	Summary
0	000	0000 000000 •0000	00	

The Idea

INTRODUCTION	PROVING PROPERTIES OF PROGRAMS	Proving equality and equivalence	Applications	Summary
0	000	0000 000000 00000	00	

The Idea

INTRODUCTION	Proving properties of programs	Proving equality and equivalence	Applications	Summary
0	000	0000 000000 00000	00	

Normalization by supercompilation

More formally

$$\frac{sc(A) = A' \qquad sc(B) = B' \qquad A' \equiv B'}{A = B}$$

= means equivalent, \equiv means syntactically isomorphic

Power of strict equivalence

We can use transitivity when reasoning:

$$\frac{A=C}{A=B} = C$$

Non-strict equivalence:

$$\frac{A \rightsquigarrow C \qquad B \rightsquigarrow C}{A ? B}$$

INTRODUCTION	Proving	PROPERTIES	OF	PROGRAMS	
0	000				
0					

Automatic Checker

HOSC	
	C Q- Google
🛱 🇰 AppEngine - Docs Reader Apple Google Maps YouTube Wikipedia Popular	
HOSC	+
Supercompilation Tasks Supercompiler = Tasks = Checker Mine Authors	ilya.klyuchnikov@gmail.com Help and source code Sign out
≈ Checker	
Types:	
data List a = Nil Cons a (List a);	
Goal 1: Goal 2:	
map (compose f g) xs (compose (map f)(map g)) xs	
Definitions:	Z
$compose = \langle fg x \rightarrow f(g x);$	
map = \f xs ->	
case xs of { Nil -> Nil;	
Cons x1 xs1 -> Cons (f x1) (map f xs1); };	
	U
Test	
EQUIVALENT!! Residual code 1:	
data List a = Nil Cons a (List a);	
(letrec h=(\r-> case r of { Nil -> Nil; Cons u x -> (Cons (f (g u)) (h x));)) in (h xs))
Residual code 2:	
data List a = Nil Cons a (List a);	A T

INTRODUCTION	PROVING PROPERTIES OF PROGRAMS	Proving equality and equivalence	Applications	Summary
0	000	0000 000000 00000	00	

Normalization-based approach to proving term equivalence

- Works for polymorphic data types
- Works for non-terminating functions
- Works for infinite data structures

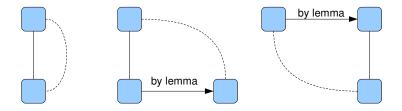
INTRODUCTION PROVING PROPERTIES OF PROGRAMS 0 000

PROVING EQUALITY AND EQUIVALENCE 0000 000000 Applications

Library of Lemmas

```
compose (map f) unit = compose unit f
compose (map f) join = compose join (map (map f))
append (map f xs) (map f ys) = map f (append xs ys)
append (append xs ys) zs = append xs (append ys zs)
filter p (map f xs) = map f (filter (compose p f) xs)
iterate f (f x) = map f (iterate f x)
map (compose f g) xs = (compose (map f)(map g)) xs
rep (append xs ys) zs = (compose (rep xs) (rep ys)) zs
(compose abs rep) xs = idList xs
map (fp (P f g)) (zip (P x y)) = zip (fp (P (map f) (map g)) (P x y))
append r (Cons p ps) =
    case (append r (Cons p Nil)) of
    Nil → ps
    Cons v vs → Cons v (append vs ps)
```

INTRODUCTION PROVING PROPERTIES OF PROGRAMS


PROVING EQUALITY AND EQUIVALENCE APPLICATIONS

Library of Lemmas

```
data List a = Nil | Cons (List a):
data Boolean = True | False;
data Pair a b = P a b;
compose = \f g x \rightarrow f (g x);
unit = \x \rightarrow Cons x Nil;
rep = \xs \rightarrow append xs:
abs = \f \rightarrow f Nil:
iterate = f x \rightarrow Cons x (iterate f (f x));
fp = p1 p2 \rightarrow case p1 of \{P a1 a2 \rightarrow
     case p2 of {P b1 b2 \rightarrow P (a1 b1) (a2 b2);};;
map = \fambox{ so } case \ xs \ of \ {Nil \rightarrow Nil};
     Cons x1 xs1 \rightarrow Cons (f x1) (map f xs1);}
join = \xs \rightarrow case xs of {Nil \rightarrow Nil};
        Cons x1 xs1 \rightarrow append x1 (join xs1);};
append = \xs \ ys \rightarrow case \ xs \ of \ {Nil \rightarrow ys};
     Cons x1 xs1 \rightarrow Cons x1 (append xs1 ys);};
idList = \xs \rightarrow case xs of {Nil \rightarrow Nil};
        Cons x1 xs1 \rightarrow Cons x1 (idList xs1);};
filter = \ p \ xs \rightarrow case \ xs \ of \ {Nil \rightarrow Nil};
        Cons x xs1 \rightarrow case (p x) of {
             True \rightarrow Cons x (filter p xs1);
             False \rightarrow filter p xs1;};;;
zip = \ p \rightarrow case p of \{P xs ys \rightarrow case xs of \{
        Nil \rightarrow Nil:
        Cons x1 xs1 \rightarrow case ys of{
                Nil \rightarrow Nil:
                Cons y1 ys1 \rightarrow Cons (P x1 y1) (zip (P xs1 ys1));};;;;
```


Improved configuration analysis

INTRODUCTION	Proving properties of programs	Proving equality and equivalence	Applications	SUMMARY
0	000	0000 000000 00000	00	

• Summary

- The experimental opern-sourced supercompiler HOSC: easy to run.
- The simple idea for proving term equivalence by means of supercompilation was described.
- The fully automatic equivalence checker was implemented.
- Future Work
 - Automatic generation of lemma library for a given program.
 - Encorporate lemmas into HOSC to make it more powerful.
- Announcement
 - "SPSC: a Simple Supercompiler in Scala" at PU'09