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A Brief Survey on Supercompilers

SPEC
SCP[1,2,3] - Turchin et al.
SCP4 - A. Nemytykh
Supero - N. Mitchell
SC for Timber - P. Jonnson
JScp - A. Klimov
Poitin - G. Hamilton

HOSC

Primary goal
OPT
SELF-APP
OPT
OPT
OPT
OPT

ANALYSIS

Preserves semantics
NO
NO
YES
YES
YES
YES

YES

Easy to try
-
If you know Refal
If you use YHC
-
If you are Klimov
-

If you have a
browser
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HOSC - an Experimental Supercompiler

• Deals with a simple higher-order functional language with lazy
semantisc (a subset of Haskell)

• Preserves semantics

• Open Source

• Runs in a browser. Try it at http://hosc.appspot.com
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HOSC DEMO
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Parameterized testing: a source program

data List a = Nil | Cons a (List a);
data Enum = A | B;
data Boolean = True | False;
contains x (app xs (app (Cons x Nil) zs)) where

app = \xs ys →
case xs of {

Nil → ys;
Cons z zs → Cons z (app zs ys);};

contains = \x xs →
case xs of {

Nil → False;
Cons x1 xs1 → or (eq x1 x) (contains x xs1 );};

eq = \x y → case x of {
A → case y of {A → True; B → False;};
B → case y of {A → False; B → True;};};

or = \x y → case x of {True → True;False → y;};
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Parameterized testing: the residual program

data List a = Nil | Cons a (List a);
data Enum = A | B ;
data Boolean = True | False ;
letrec f=\w2 p2→

case p2 of {
Nil → case w2 of { A → True; B → True; };
Cons w p →

case w of {
A → case w2 of { A → True; B → f B p; };
B → case w2 of { A → f A p; B → True; };

};
}

in

f x xs
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Church numbers

0 = \f x → x
1 = \f x → f x
2 = \f x → f (f x)
3 = \f x → f (f (f x))
...
n = \f x → fnx
...
fm+nx = fm(fnx)
churchAdd = \m n → (\f x → m f (n f x));
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Church numbers

data Nat = Z | S Nat;

unchurch(churchAdd (church x) (church y)) = add x y
where

church = \n → case n of {
Z → \f x → x;
S n1 → \f x → f (church n1 f x);

};
unchurch = \n → n (\x → S x) Z;
churchAdd = \m n → (\f x → m f (n f x));
add = \x y → case x of {

Z → y;
S x1 → S (add x1 y);

};
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Church numbers: a source program

data Nat = Z | S Nat;
data Boolean = False | True;
eq (add x y) (unchurch(churchAdd (church x) (church y))) where

eq = \x y → case x of {
Z → case y of {Z → True; S y1 → False; } ;
S x1 → case y of {Z → False; S y1 → eq x1 y1;} ;

};
church = \n → case n of {

Z → \f x → x;
S n1 → \f x → f (church n1 f x);

};
unchurch = \n → n (\x → S x) Z;
churchAdd = \m n → (\f x → m f (n f x));
add = \x y → case x of {

Z → y;
S x1 → S (add x1 y);

};
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Church numbers: the residual program

data Nat = Z | S Nat;
data Boolean = False | True;
case x of {

Z → case y of {Z → True; S w4 →
letrec f=\a → case a of {Z → True; S x4 → f x4;}
in f w4;};

S r6 → letrec g=\u11→
case u11 of {

Z → case y of {
Z → True;
S x9 → letrec h=\v11→
case v11 of { Z → True; S b → h b;} in h x9;

};
S y7 → (g y7);}

in g r6;}



Introduction Proving properties of programs Proving equality and equivalence Applications Summary

Map composition

data List a = Nil | Cons a (List a);

map (compose f g) xs = (compose (map f )(map g)) xs
where

map = \f1 ys →
case ys of {

Nil → Nil;
Cons y1 ys1 → Cons (f1 y1) (map f1 ys1);

};

compose = \f1 f2 x → f1 (f2 x);
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Task

Conjecture

map (compose f) xs = (compose (map f g)(map g)) xs

Restrictions

• No equality out of the box.

• List xs may be infinite (or bottom).

• Functions f and g may be non-terminating.
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map (compose f g) xs: a source program

data List a = Nil | Cons a (List a);

map (compose f g) xs
where

map = \f1 ys →
case ys of {

Nil → Nil;
Cons y1 ys1 → Cons (f1 y1) (map f1 ys1);

};

compose = \f1 f2 x → f1 (f2 x);
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map (compose f g) xs: the residual program

data List a = Nil | Cons a (List a)
letrec

h = \ys.
case ys of

Nil → Nil
Cons y1 ys1 → Cons (f (g y1)) (h ys1)

in

h xs
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(compose (map f)(map g)) xs: a source program

data List a = Nil | Cons a (List a)

(compose (map f)(map g)) xs
where

map = \f1 ys →
case ys of {

Nil → Nil;
Cons y1 ys1 → Cons (f1 y1) (map f1 ys1);

};

compose = \f1 f2 x → f1 (f2 x);
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map f (map g xs) xs: the residual program

data List a = Nil | Cons a (List a)
letrec

h = \ys.
case ys of

Nil → Nil
Cons y1 ys1 → Cons (f (g y1)) (h ys1)

in

h xs
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The Idea

Pr1 Pr2

Pr1' Pr2'

sc sc
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Normalization by supercompilation

More formally

sc(A) = A′ sc(B) = B ′ A′ ≡ B ′

A = B

= means equivalent, ≡ means syntactically isomorphic

Power of strict equivalence
We can use transitivity when reasoning:

A = C B = C

A = B

Non-strict equivalence:

A C B  C

A ? B
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Automatic Checker
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Normalization-based approach to proving term
equivalence

• Works for polymorphic data types

• Works for non-terminating functions

• Works for infinite data structures
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Library of Lemmas

compose (map f) unit = compose unit f

compose (map f) join = compose join (map (map f))

append (map f xs) (map f ys) = map f (append xs ys)

append (append xs ys) zs = append xs (append ys zs)

filter p (map f xs) = map f (filter (compose p f) xs)

iterate f ( f x) = map f (iterate f x)

map (compose f g) xs = (compose (map f)(map g)) xs

rep (append xs ys) zs = (compose ( rep xs) (rep ys)) zs

(compose abs rep) xs = idList xs

map (fp (P f g)) (zip (P x y)) = zip (fp (P (map f) (map g)) (P x y))

append r (Cons p ps) =

case (append r (Cons p Nil)) of

Nil → ps

Cons v vs → Cons v (append vs ps)
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Library of Lemmas

data List a = Nil | Cons (List a);

data Boolean = True | False;

data Pair a b = P a b;

compose = \f g x → f (g x);

unit = \x → Cons x Nil;

rep = \xs → append xs;

abs = \f → f Nil;

iterate = \f x → Cons x (iterate f (f x));

fp = \p1 p2 → case p1 of {P a1 a2 →
case p2 of {P b1 b2 → P (a1 b1) (a2 b2 );};};

map = \f xs → case xs of {Nil → Nil;

Cons x1 xs1 → Cons (f x1) (map f xs1);}

join = \xs → case xs of {Nil → Nil;

Cons x1 xs1 → append x1 (join xs1 );};

append = \xs ys → case xs of {Nil → ys;

Cons x1 xs1 → Cons x1 (append xs1 ys);};

idList = \xs → case xs of {Nil → Nil;

Cons x1 xs1 → Cons x1 (idList xs1 );};

filter = \p xs → case xs of {Nil → Nil;

Cons x xs1 → case (p x) of {

True → Cons x (filter p xs1);

False → filter p xs1 ;};};

zip = \p → case p of {P xs ys → case xs of {

Nil → Nil;

Cons x1 xs1 → case ys of{

Nil → Nil;

Cons y1 ys1 → Cons (P x1 y1) (zip (P xs1 ys1 ));};};}
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Improved configuration analysis

by lemma

by lemma
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• Summary
• The experimental opern-sourced supercompiler HOSC: easy to run.
• The simple idea for proving term equivalence by means of

supercompilation was described.
• The fully automatic equivalence checker was implemented.

• Future Work
• Automatic generation of lemma library for a given program.
• Encorporate lemmas into HOSC to make it more powerful.

• Announcement
• ”SPSC: a Simple Supercompiler in Scala” - at PU’09
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