
-~----~----~---------

THE CYBERNETIC FOUNDATION OF MATHEMATICS

by

Valentin F. Turchin

[hr (!1 il!J <!lnllrgr
uf

illl1r Q1 il!J llttittrrnit!l of N rw lurk

SCHOOL OF ENGINEERING

DEPARTMENT OF COl\:IPUTER SCIENCES

Copyright c 1983 by Valentin F. Turchin

All rights reserved. No part of this preprint can be reproduced
without the permission of the author.

P R E F A C E

This is a preprint of the book with the same title which has
not yet taken its final form. Chapter 7 and the part of Chapter 6
dealing with the continuum hypothesis are not included because I
am still working on them. I am also planning to include much more
exercises than can be found in this edition.

I appreciate the discussions of the early version of parts
of this book which I had with professors Karel Hrbacek and
Michael Anshel of the City College of New York. I am much obliged
to Susan Goeckel, Robert Nirenberg, and James Piccarello for
their help in editing.

The work on this book was partly supported by the National
Science Foundation grant i MCS-8~~7565.

i

ALL figures are at the end of the book. Symbol v signifies
the end of a subsection starting with a boldface specifier, like
Proof, Example, etc.

ii

C 0 N T E N T S

Introduction

Chapter 1 THE NATURE OF MATHEMATICS

1. The reflection theory
2. Mathematical logic
3. Naive set theory
4. The cybernetic approach

Chapter 2 OBJECTS, PROCESSES, MACHINES

1. The Turing machine
2. Refa1, informally
3. Formal definition of Refal
4. Examples of processes and machines
5. Metacode and self-simulation
6. Searches and generators

Chapter 3 PROPOSITIONS

1-1
1-14
1-18
1-18

1

2-1
2-1
2-6

2-10
2-13
2-15

1. Models ,selections, predictions . 3-1
2. Propositions . 3-6

3. Knowledge ... 3-14
4. Logical connectives and quantifiers 3-21
5. Prefix notation and free format 3-27

Chapter 4 INTERPRETABILITY

l. Real time and model time 4-1
2. Formal systems and theories . 4-8
3. Strong interpretavility 4-14
4. Weak interpretability. Correctness theorem 4-23

iii

Chapter 5 LOGIC

l. First-order theories
2. Definition and verification
3. Basic logical principles. Intuitionism

5-l
5-6
5-9

4. Goedel's theorem . 5-19

5. Metasystem transition 5-26
6. Classical logic 5-35

Chapter 6 SET TBEORY

1. Extensionality and regularity . 6-l
2. Basic set constructors. Paradoxes 6-8
3. The axioms of set theory 6-16

iv

in t. t*'Caduc t i c•n

At the turn of this century there was a lot of talk about
the crisis in the foundations of mathematics. Although no convin
cing answers have been found yet to the questions which arose
then, the word 'crisis' is not used in that context any more.
This is understandable: a crisis which lasts for almost one
hundred years becomes perceived as a normal condition, not a
crisis. A normal condition, however, is not necessarily a satis
factory one. The 'crisis' is still there. A vivid testimony to
that is provided by the excellent picture of "the ideal mathema
tician" of the present day given by P.J.Davis and R.Hersh in
their recent book The Mathematical Experience. The authors, well
known mathematicians themselves, call the hero of this picture
'ideal' not because he is perfect in any sense, but because he
ideally represents his kind, or type. He is "the most mathemati
cian-like mathematician". His imaginary field is "non-Riemannian
hypersquares", and he pursues his studies with passionate devo
tion. He spends all his days in contemplating the non-Riemannian
hypersquare. "His life is successful to the extent that he can
discover new facts about it".

There are two aspects of the crisis in mathematics, and they
are reflected in the picture of "the ideal mathematician": one
concerns the nature and the very existence of the things he
studies; the other is the reason he should study them. But let us
give the floor to the authors.

The objects which our mathematician studies were unknown
before the twentieth century; most likely, they were unknown even
thirty years ago. Today they are the chief interest in life for a
few dozen (at most, a few hundred) of his comrades. He and his
comrades do not doubt, however, that non-Riemannian hypersquares
have a real existence as definite and objective as that of the
Rock of Gibraltar or Halley's comet. In fact, the proof of the
existence of non-Riemannian hypersquares is one of their main
achievements, whereas the existence of the Rock of Gibraltar is
very probable, but not rigorously proved.

l

... He rests his faith on rigorous proof; he believes that
the difference between a correct proof and an incorrect one is an
unmistakable and decisive difference ... Yet he is able to give no
coherent explanation of what is meant by rigour, or what is
required to make a proof rigorous In his own work the line
between complete and incomplete proof is always somewhat fuzzy,
and often controversial.

The authors summarize the discussion of the objects of
mathematics in the following way.

Mathematicians know that they are studying an objective
reality. To an outsider, they seem to be engaged in an esoteric
communion with themselves and a small clique of friends. How
could we as mathematicians prove to a skeptical outsider that out
theorems have meaning in the world outside our fraternity?

If such a person accepts our discipline, and goes through
two or three years of graduate studies in mathematics, he absorbs
our way of thinking, and is no longer a critical outsider he once
was. In the same way, a critic of Scientology who underwent
several years of "study" under "recognized authorities" in Scien
tology might well emerge a believer instead of a critic.

If the student is unable to absorb our way of thinking, we
flunk him out, of course. If he gets through our obstacle course
and then decides that our arguments are unclear or incorrect, we
dismiss him as a crank, crackpot, or misfit.

Of course, none of this proves that we are not correct in
our self-perception that we have a reliable method for discove
ring objective truths. But we must pose to realize that, outside
our coterie, much of what we do is incomprehensible. There is no
way we could convince a self-confident skeptic that the things we
are talking about make sense, let alone "exist".

The failure to convince the skeptic is not simply a result
of the complexity of mathematical constructs. One need not know
in detail the construction of a machine to understand what the
machine is doing. No computer scientist would second the mathema
tician's complaint of incomprehensibility, although the complexi
ty of big computer systems created by dozens of people leaves far
behind the information content of the theory of "non-Riemannian
hypersquares" or the likes of it. Also, such a complaint could

2

hardly have been made before the end of the nineteenth century.
Should "the self-confident skeptic" say that he does not under
stand what are numbers end geometric figures, he would be simply
sent to hell, and with good reason.

I believe that mathematics is incomprehensible for outsiders
because it is incomprehensible for the mathematicians themselves;
otherwise they would be able to explain at least its base. But it
is just in the ~ase where the trouble is. Contemporary mathe
matics is based on set theory, which deals with entities that
defy comprehension. Yet the objects of mathematics, though built
on the set-theoretical base, convey to everyone who is studying
them the feeling that he is dealing with "a real thing". Paradox
ically, this feeling is shared also by those mathematicians who
specialize in set theory itself. There can be only one explana
tion of this paradox, or at least no other can be immediately
seen. It is that the formalism of set theory does refer to some
reality, which is -- as a reality -- quite comprehensible, while
the present interpretation of this formalism based on the concept
of actual infinity is not only incomprehensible, but simply
wrong. It is conceivable that if this really is the case, the
mathematicians could have developed their set-theoretical intui
tion in response to the real, and not the proclaimed, objects of
set theory.

Now look at the set-theoretical foundation of mathematics
from the angle of consistensy. Working with set theory, one gets
an intuitive impression, maybe even a certainty, that it is non
contradictory, consistent. But its con~~tency has never been
proved. This is very strange, if we come~hink about it. Axioma
tic set theory in the Zermelo-Frenkel form rests on eleven axi
oms, most of which are very far from being elementary, or primi
tive. Taken all together, they make up a still less primitive
whole. It is inconceivable that our intuition can perceive the
consistency of this whole without basing itself on some simple,
primitive, intuitively consistent concepts and truths. We come to
believe, therefore, that such primitive and intuitively unques
tionable truths must exist. To separate them and to express in
terms of them the ZF axioms, would be to prove the consistency of
set theory. From Goedel's theorem we know, however, that it is
impossible to prove the consistency of set theory by means which
can be formalized in set theory. Hence the primitive concepts and
truths the existence of which we derived must be very unusual,
strange, because they must be non-expressible in set theory,

3

while we habitually entertain the idea that in set theory we can
express everything that can be subject to rigorous mathematical
treatment. A theory based on these concepts must be equally
'strange'. To use an expression popular among physicists and
coined by Niels Bohr, such a theory must be 'crazy enough'.

Such a 'crazy' theory is developed in the present book. It
leads to a full acceptance of the formalism of set theory, but
interprets it in the agreement with the principles of constructi
vism, using only the idea of potential, but not actual, infinity.
Our theory of mathematics has the following features.

(1) Mathematics is seen as a branch of science. The objects of
mathematical knowledge are of the same nature as those of other
sciences: the abstracted phenomena of the world we live in. As
every branch of science, mathematics has its own type of objects,
and this may lead to significant differences of quantitative
character. However, there is no difference of principle with
regard to the nature, method of acquisition and reliability of
mathematical knowledge as compared to the knowledge of natural
sciences.

(2) In ageement with the contemporary philosophy of science, the
meaning of a mathematical (as well as any other) proposition is
defjned as our ability to use it as a generator of verifiable
predictions about real world processes. If a proposition cannot
be interpreted as a generator of predictions, it is meaningless
and has no place in our theory.

(3)
the

Our theory is concerned with symbolic mathematics,
official language of all mathematicians nowadays.

which is
While the

importance of three-dimensional geometric intuition is acknow
ledged, no attempt is made to analyze its role.

(4) In addition to mechanical processes of computation and
proof, which play so important a role in contemporary mathema
tics, we introduce metamechanical processes, which cannot be
modeled in such devices as Turing machines, or defined through
recursive functions. Metamechanical processes differ from mecha
nical processes not by the kind of machinery they use, but in
that they are controled by the subject of knowledge, i.e. its
owner and developer. In the conceptual apparatus of modern phy
sics, the inseparability of the phenomenon and the observer, i.e.
of the object and the subjects of knowledge, is well known. Our

4

theory introduces it in mathematics.

(5) With this conceptual toolbag we interpret the fundamental
aspects of mathematics, in which we also include formal logic. We
show that there are two ways to define the concept of truth in
our formalism. One leads to intuitionist&a logic, the other to
classical logic. Goedel's theorem is shown to be of crucial
importance for the acceptance of the law of the excluded middle.
Our theory stresses the positive aspect of Goedel's theorem.

(6) Set theory is interpreted and the axioms of Zermelo-Frenkel
are proven as theorems. No special effort is made to avoid para
doxes. They simply do not appear, which is 15 one of the results
of our definition of the interpretable proposition. Sets are
interpreted as processes which generate objects. Metamechanical
processes provide for not recursively-enumerable and uncountable
sets.

(7) The consistency of set theory is proved. This does not
contradict Goedel's result of the impossibility of proving the
consistency of a theory in the theory itself, because our theory
cannot be formalized in set theory. The continuum hypothesis is
also proved.

(B) The basic, all-pervading methodological principle of our
approach is the concept of metasystem transition. The technical
means we use to formalize this idea is the language Refal. Our
formalism is designed so as to avoid explosive increase in volume
when translating mathematical propositions. Refal is implemented
on computers and used as a programming language for writing
complicated symbol-manipulation programs. At the present time,
the machines introduced in mathematics for the purpose of formal
ization are used only for mental experiments, as theoretical de
vices. One of our goals is to bridge the gap between mathematics
and computer science by formalizing mathematics in such a way
that the mechanical processes referred to in its definitions
could be actually run on a computer.

Let us return to "the ideal mathematician" created by Davis
and Hersh. They give a remarkable description of the way the
mathematician works. It deserves a long citation.

The ideal mathematician's work is intelligible only to a
small group of specialists. numbering a few dozen or at most a

5

few hundred. The group has existed only for a few decades, and
there is every possibility that it may become extinct in another
few decades ...

He finds it difficult to establish meaningful conversation
with that large portion of humanity that has never heard of a
non-Riemannian hypersquare. This creates grave difficulties for
him; there are two colleagues in his department who know some
thing about non-Riemannian hypersquares, but one of them is on
sabbatical, and the other is much more interested in non-Eulerian
sem1r1ngs. He goes to conferences, and on summer visits to col
leagues, to meet people who talk his language, who can appreciate
his work and whose recognition, approval, and admiration are the
only meaningful rewards he can ever hope for.

At the conferences, the principal topic is usually "the
decision problem" (or perhaps "the construction problem" or "the
classification problem") for non-Riemannian hypersquares. This
problem was first stated by Professor Nameless, the founder of
the theory of non-Riemannian hypersquares. It is important be
cause Professor Nameless stated it and gave a partial solution
which, unfortunately, no one but Professor Nameless was ever able
to understand. Since Professor Nameless' day, all the best non
Riemannian hypersquarers have worked on the problem, obtaining
many partial results. Thus the problem has acquired great pres
tige.

When speaking with fellow-hypersquarers the ideal mathemati
cian uses an informal jargon, but the style of his published
writing is different .

. . . There he piles up formalism on top of formalism. Three
pages of definitions are are followed by seven lemmas and,final
ly, a theorem whose hypotheses take half a page to state, while
its proof reduces essentially to "Apply Lemmas l-7 to definitions
A-H."

His writing follows an unbreakable convention: to conceal
any sign that the author or the intended reader is a human being.
It gives the impression that, from the stated definitions, the
desired results follow infallibly by a purely mechanical proce
dure. In fact, no computing machine has ever been built that
could accept his definitions as inputs. To read his proofs, one
must be privy to a whole subculture of motivations, standard

6

arguments and examples, habits of thought and agreed-upon modes
of reasoning... If (heaven forbid) the fraternity of non-Rie
mannian hypersquarers should ever die out, our hero's writings
would become less translatable than those of the Maya.

A series of conversations follows between the ideal mathema
tician and people of different professions. A public information
officer of the University asks him what possible applications his
research may have. Here is the answer of the mathematician and a
portion of the subsequent dialogue.

1 .H.: I've been told that some attempts have been made to use
non-Riemannian hypersquares as models for elementary particles in
nuclear physics. I don't know if any progress was made.

P.l.O.: Do you see any way that the work in your area could lead
to anything that would be understandable to the ordinary citizen
of this country?
l.H.: No.
P.l.O.: How about engineers or scientists?
l.H.: I doubt it very much.
P.l.O.: Among pure mathematicians, would the majority be inte
rested in or acquainted with your work?
l.H.: No, it would be a small minority.

It is enough. To give your life to the non-Riemannian hyper
square only because Professor Nameless defined the concept and
proved a theorem which nobody except him could understand, this
is not an appealing prospect to a young man. With all the beauty
and depth of contemporary mathematics, the picture of the ideal
mathematician is rather depressing. It seems that something is
missing in mathematics: the top of the hierarchy of goals. There
is no general strategy of mathematics in sight, such as we clear
ly see in physics,biology, or computer science. There is no
approach or conception which would not simply indicate the place
of mathematics in the contemporary world -- the place that is
secured by the achievements of our predecessors -- but would
indicate where and how we should go on. "The ideal mathematician"
reminds one of a week offspring of a once strong family who is
rich in heritage but poor in his own spirit, and completely
absorbed by minor family affairs.

I believe that this situation is a direct consequence of the
crisis of foundations. Indeed, how can we hope to find a lead in

7

constructing mathematics if for one hundred years there has been
no understanding on what mathematics is about? Conversely, we can
hope that a new approach to the foundations will provide at least
some new guidance to tell the important from the unimportant in
mathematics.

Other sciences, notably physics, are dependent on mathema
tics for the models they can use to construct their own models of
reality. Quantum mechanics could emerge because the physicists
discerned in some mathematical structures, which were created
before and with a different purpose, the features they could use
for the descripton of observed facts. This can serve as an argu
ment for "zoological mathematics", that is for the study of all
sorts of mathematical creatures in anticipation of their possible
use. But if one remembers the huge, potentially infinite, volume
of this "fauna", it will become clear that we can hardly hope for
success without any guide, without a theory which could tell us
how to create useful structures. But such a theory presupposes a
convincing theory of mathematics.

According to the present formalistic philosophy, mathematics
is a language without semantics. This philosophy reduces all
mathematics to just the axiomatic method. You give me your axi
oms, says.the mathematician, and I shall deduce as much from them
as I can. I do not know and do not want to know what your axioms
mean. For me they have no meaning: just formal objects to manipu
late.

Davis and Hersh express strong dissatisfaction with the
formalistic philosophy of mathematics as contradicting the belief
of the working mathematician in the objective existence of his
objects, and downgrading, if not damaging, his perception of
these objects. My impression is that even though some mathema
ticians may resent the portrait of their "ideal" colleague, the
general attitude with regard to the present condition of mathema
tics expressed by Davis and H~rsh is going to be shared by more
and more people. This is why I found it important to discuss "the
ideal mathematician" at length.

The axiomatic method is a great invention, but it is not
everything; moreover, in the present situation it is, probably,
not the most important thing. The axiomatic method is good for
studying, from different angles, a given mathematical object. But
the question now is: what mathematical objects do we need? The

8

most important and creative part of the job needed today by
natural sciences, by physics for example, is left hanging in the
air between the physicist and the mathematician. Theories we
create are based on formalizations of our intuitive and informal
concepts pertinent to the studied phenomenon into formal mathema
tical models. But very often we have no, or not enough, pertinent
intuitive concepts to construct a mathematical model. It may
happen because our concepts are too fractional, and models based
on them become too complicated and unilluminating. This is a
frequent case in biology and social sciences. Or we may simply
have no valid intuitive concepts about phenomena; this happens in
the physics of elementary particles, where our macroscopic intui
tion is more misguiding than guiding. Then who will formulate the
axioms and, before that, create the formal objects the axioms are
about? If the axioms are given, will the mathematician really be
able to work with them without understanding their meaning and
basing his effort only on the formal rules of inference? It is
more than doubtful, especially if you consider the very limited,
not to say miserable, successes of computer theorem proving up to
date.

Our approach to mathematics is semantic. We treat the lan
guage of mathematics as having a definite, precise and unique
meaning and speaking about real observable phenomena. The concept
of a process, on which our semantics hinges, bridges mathematics
and natural sciences, because it is applicable both to linguistic
processes of mathematics, and to natural phenomena. I hope,
therefore, that this theory will help find new approaches to the
most general and important problem of contemporary science: how
to construct mathematical structures necessary for successful
theories of natural phenomena? What we need is a metatheory of
scientific theories.

As to the internal needs of mathematics and compter science,
a quite definite program follows from the theory; it is briefly
outlined in Chapter 7. With our philosophical approach, mathema
tics and computer science share the same conceptual foundation.
At present, a wide gap separates the foundations of mathematics
and those of computer science. A theory which essentially unites
them into one scientific discipline should be for their mutual
benefit.

9

C H A P T £ R 1

The Nature of Mathematics

1. The reflection theory

The first and very long-lived philosophy of mathematics
known to us was elaborated, as many other firsts in philosophy,
by Plato. Mathematics is understood by Plato in the framework of
his theory of ideas. According to this theory, the things we see
around us and perceive otherwise do not represent the ultimate
rteality of the world. They are sort of reflections, or manifes
tations, or shadows of something else, namely the abstract ideas
of things. It is these ideas that constitute the ultimate reality
and make the observable material things possible. Material things
are unstable and imperfect, they come and go. Ideas are unchange
able and eternal. While we know material things by means of sense
organs, ideas are perceived by our mind through the process of
reasoning.

The first reaction of a modern man when exposed to this
theory is usually: what a nonesense! How does he know about these
ideas? Is not it a pure invention, a fantasy? The second reaction
would be: how strange that people could take this stuff seriously
for two thousand years. Was it a collective self-hypnosis? It
seems incomprehensible.

But if we care to give it a second thought, we find that far
from being a strange aberration, Platonism is an inevitable stage
in the development of philosophy. First of all, we should not be
confused with the use of the word 'idea' in Plato's theory. It
has nothing to do with 'thought'. Plato is no subjectivist or
spiritualist. His 'idea' of a thing must be understood rather as
the pattern, or form, to be discerned in it; or, as we would say
in todays language, its organization. Plato's dichotomy between
things and ideas corresponds to the dichotomy in our language
between energy-matter and information.

1-1

How do we come to Platonism? We start thinking about our
thinking. We see that to express our thoughts we use language,
therefore thinking about our thinking we also think about lan
guage; we are dealing with a thought-language complex. The use
fulness of this complex, as everyone knows, is that it gives us a
sort of copy, or a reflection, of reality. We say "Socrates". and
this is only a word, but it has a meaning because it corresponds
to the real person Socrates. Also, when I say "give me that
apple", you will understand me if and only if you can see the
real, material apple which corresponds to the word "apple" I have
used. Sometimes we lie or deceive ourselves. I can say or think
that I am holding an apple, while in fact it is a rock. In such
cases there is no correspondence between the thing and th thought
or language. So, the first step of philosophizing lead us to what
is known as the theory of reflection. It says that the meaning
and the significance of thought-language is in its possible
correspondence with the reality. If this correspondence takes
place, the thought is true, otherwise it is false.

If you accept the theory of reflection, and people usually
do, you come immediately to Platonism. Our language includes not
only those words which are in a direct one-to-one correspondence
with specific material objects, like "Socrates", or "the apple 1
am·now eating", but also general or abstract concepts: "a man",
"an apple", "a triangle". We face a dilemma now. Either we throw
away the greater part of the language as meaningless and leave
only proper names and concrete propositions, or we have to admit
that there is some reality standing behind our abstract notions.
Hardly anybody would seriously contemplate the first alternative.
Then only the second is left, and this is Platonism. If the
existence of the second type of reality is accepted, it immedia
tely becomes primary, and the first, empiric reality-- seconda
ry. Because you can kill Socrates and destroy a house, but you
cannot kill the concept of a man or the idea of a house. You can
eliminate every triangular thing you can reach, but in doing that
you do not eliminate the triangle as such. Knowing what the
triangle is, you can again create a lot of triangular things. At
the same time, when you create those things you do not create the
triangle. It has always existed and will exist forever.

when
have

In the above passage, the reader could have noticed that
I used the abstract triangle as an example of an idea to
an independent existence, the argument became more persua-

1-2

sive than when using the house or the apple. Mathematics has
always played an important role in Platonism, supplying it with
the best examples and arguments. It is impossible to simply say
that the mathematicians deal with non-existent objects. Yet it is
clear that the number two and the equilateral triangle do n0t
exist in the same way as rocks, apples and houses. They eKist as
ideas. Therefore, ideas do exist. Without a further and deeper
analysis of thinking, Platonism is inevitable.

Philosophers, of course, went on with their analysis. Diffi
culties and inconsistencies were discovered (mostly at the inter
face between the world of things and the world of ideas), skep
tics announced that. they were not convinced, and heated debates
abounded. The heat, of course, came not because of mathematics,
but because of religion. For not only numbers and triangles are
abstract notions, but also good and evil, justice, grace, and
God. It was, and still is, very important for people to know if
these things really exist.

The angle from which we look at the history of philosophy in
this very quick review is the theory of reflection and its signi
ficance for the concept of truth in mathematics. Our next station
will be with Immanuel Kant. We want only a brief summary of what
happened to the theory of reflection during the two millenia
between Plato and Kant.

Plato's doctrine was challenged in two planes: ontological
and epistemological. In the ontological plane the debate was
between the realists, or Platonists, and the nominalists; the
problem was known as the Problem of Universals: do the Univer
sals, i.e. the entities corresponding to general, abstract con
cepts, really exist? Those who contended, with Plato, that they
really exist were called realists. Now, since the word 'realist'
acquired later another meaning, this party in the debate is
usually called Platonists. The other party asserted that Univer
sals were only words, names, to denote all those real things that
qualified according to the meaning of the concept. 'The house'
does not exist as such, it is only a name applicable to all
specific houses. (At last I see people who sound reasonable, the
modern man will say). But mathematics was a stumbling block for
consistent nominalism. 'The house' may be only a name, a symbol,
and have no existence of its own. We could replace it by another
name, e.g. 'maison'. But what about the objects of mathematics?
If they are only names which can be arbitrarily chosen and

1-3

changed, how can mathematicians discover their properties and
prove theorems? The triangle of mathematics cannot be identified
with the set of all material objects of triangular form, because
we have no exact triangles in nature. Mathematics proves that the
sum of the angles of any triangle is 180 degrees. But if we
measusre the sum of the angles of any real triangular object, it
will be close but never exactly 180°.

In the epistemological plane, the opposite trends of thought
were rationalism and empiricism; the problem was: what is the
reliable and preferable source of our knowledge? For rationalists
this source was our reason. Empirical data are chaotic, there can
be no necessity in them, necessity is to be found in the world of
ideas only. We use our sensual experience as the source of sug
gestions for our reason to look in certain directions, and to
test and try our conclusions, but a proposition can be cosidered
as necessarily true only if it is derived by our reason
primary, fundamental, self-evident truths perceived as
in the world of ideas directly by the mind. Thus the
source of true knowledge is reason.

from some
necessary
ultimate

Nothing of that kind, said empiricists. All we know is
learnt through our sense organs. The soul of a newborn baby is a
clean slate (Locke: tabula rasa) into which his experience writes
down the story. Our ideas are only a reflection, usually and most
usefully a condensed one, of our experience. The ultimate source
of knowledge is our sensual experience. The knowledge which is
not rooted in experience is not a knowledge but a fiction, a
fantasy.

By the end of the eighteenth century, a working compromise
was established between the two camps. Natural sciences, which
made tremendous success and compelled the old philosophy to
retreat, became the province of nominalism and empiricism. Mathe
matics and religion were retained by Platonism and rationalism.
The common ground for both camps, on which there was no fighting
was the theory of reflection. It was admitted now that there are
different types of knowledge. But no matter what the source of
knowledge and the nature of its objects, the idea that knowledge
is a correspondence between thought and object seemed self
evident.

The downfall of the reflection theory started with Kant.
Compromise is good for politicians but not for philosophers. Kant

1-4

looked for an organic synthesis of empiricism and rationalism
which could explain the success of empirical science, leave place
for mathematics, and provide a sound basis for ethics and reli
gion.

The essence of Kant's message is this. (Let me stress the
word message. I am not trying to expose the whole of Kant's
philosophy in its actual terminology. It is rather a contemporary
reading of Kant).

Both empiricism and rationalism are in error when they think
that they can discuss or even think about the relation between
the thought and its ultimate object. Suppose I want to compare my
idea of an apple and this apple as it really is. But what does it
mean 'as it really is'? When we come to think about it, we see
that 'the apple as it really is' is again my idea of the apple.
Things we perceive, as Berkeley eloquently argued, are given to
us only in our own sensations, only as objects of our thought. We
do not know and have no means to know what are things in them
selves, independently of our perception.

Let us analyze how the reflection theory comes into being.
When we start to think about our thinking and our language, we
notice, quite correctly, that our ideas reflect, or correspond
to, or refer to, some reality. (If they do not, in an obvious
way, a psychiatrist should be consulted). So my thought of an
apple, represented in cell b in Fig. 1.1, reflects the real apple
of cell a. How do I know it? Well, from my observation of other
people and reasoning by analogy. My friend professor Nameless
sees an apple, takes it, bites and chews. He certainly does not
mistake it for a cigaret or a bus. Neither do I, I am sure. I
also can analyze my thinking about my idea of an apple, which is
represented in cell c. Again, it reflects something, namely the
reality of cell b. I can go up and up in this hierarchy, but I
hardly need it. Much more interesting is to go down. I note that
if somebody looked at me -- or at us, the collective subject of
human knowledge, humanity-- then he would see that what I accept
for an apple
it reflect?
it. It seems
by my idea
states: our
really are.

in cell a, is only my perception or idea. What does
I denote the missing cell x and start thinking about
obvious that x is the real apple, which is reflected

of the apple. This is what the reflection theory
ideas of things are reflections of things as they

1-5

When we look closer, however, we see that 'the thing as it
really is' is a mirage, like a spurious sun. When I look at
myself from outside. I put in correspondence to every cell y the
cell 'my thought of y', as shown in the second column in Fig.l. I
say now: what I take for a is really b'; what I take for b, is
really c', etc. It seems to me that I found the answer to the
question what is x: it is really a'. But in fact a' is identical
to a. Cell x is only a position in the diagram devoid of any
contents. When we speak about x, we imply that there is some
contents in it, but this contents is a. The reflection theory
makes a copy of a, i.e. of our perception of a thing, and sells
it for a new item x, the thing as it really is. Kant's thing-in
itself is the position x in the diagram, but not a meaningful
part of speech. It should play no role in our reasoning.

Knowledge ts not the correspondence between the thing and
the thought, because we never compare the thought and the thing.
We compare only one thought to another. But what is knowledge
then? Is it simply a chaotic collection of the data of our sense
organs? Not at all. Simplest analysis will show that our ideas
are organized in a certain way. This organization is the work of
reason. We can distinguish three levels in thought: sensations,
perceptions, conceptions.

on the first, basic level we find the raw material of the
mind, our feelings, sensations: light flashes, coloured spots,
the sound of somebody yelling, the warmth of the milk in the
mouth, the touch of cold stone, etc. This is the experience of an
infant in the first days of his life. It does not yet constitute
knowledge.

There must be a tremendous work done to organize the primary
stream of sensations into our perception of distinct objects
situated in space and changing in time. This work is done by our
mind and it produces the second level of thought, the level of
perceptions. Space and time, according to Kant, are not things
in-themselves, they are forms of perception.

On the third level, the peceptions organized in space and
time serve as the material to be processed into still higher type
of thought, conceptions. The forms used by the mind to mold
conceptions from perceptions are called by Kant categories. The
idea of cause, for instance, is one of categories we use in
forming conceptions. There is no causality in the sensations we

l-6

get from the eMternal world; it is our way to organize the sensa
tions.

What is the the goal of the philosopher? What can he do and
what he cannot? He certainly cannot know anything about "things
as they really are", their "real nature". Knowledge is not a
reflection in the subject of knowledge of the object of know
ledge. Knowledge is their interaction. The subject and the object
are inseparable in knowledge. When we try to consider the object
of knowledge in isolation from the subject, we leave no place for
knowledge. The only task a philosopher can set to himself is the
critical analysts of our knowledge on all three levels: sensa
tions, perceptions, conceptions. By this analysis we can distin
guish what comes from the raw material of sensations from what is
introduced by the mind in processing this material. The empiric
and the rational are not two opposing sources or methods of
knowledge; they are two aspects of the same phenomenon.

Kant divides judgements (propositions) into analytic and
synthetic. The analytic judgements are those in which the con
tents of the judgement, the logical predicate, only expresses
what must be there by the definition of the logical subject of
the judgement. When you say, for instance, that the apple is a
fruit, this is an analytcal judgement. Essentially, analytical
judgements are definitions, which can be made a priori, without
any reference to experience. To put it in the terms of the pre
sent time, they carry no information. Synthetic judgements carry
information, because they link things which are not linked by
their definition. 'Jack killed a wolf' is a synthetic judgement.
We can state that Jack killed a wolf only after having the cor
responding experience, a posteriori.

As in the case of Plato, mathematics plays an important role
in Kant's philosophy. Mathematics, says Kant, contains a lot of
synthetic judgements. For instance, the proposition that the sum
of the angles of a triangle is 180 degrees is synthetic, because
the triangle is defined as a figure of three sides and three
angles, but nowhere in the definition do we find that the sum of
the angles must be 180°. Yet this judgement is made without any
reference to empiric facts, a priori? How can it be possible? How
can synthetic judgements be possible a priori?

Kant's answer is: because they have nothing to do with
sensations, but reflect the way our mind processes sensations.

1-7

Mathematics is about the forms which our reason applies to sensa
tions in order to mold them into perceptions. This is why mathe
matics is so important and useful on the one hand, and does not
depend on empiric data and our experience. on the other hand. The
example of mathematics shows that the pure forms of our reason
can be subject to a detailed analysis. The purpose of Kant's main
work, The Critique of Pure Reason, was to explore the limits of
such an analysis with respect to the traditional problems of
metaphysics.

The rationalist trend of thought was first to realize the
importance of Kant's synthesis, and draw conclusions from it. The
result is known as German idealism. If object and subject are
inseparable in knowledge, and our knowledge is the only reality
we have, then does it not suggest that the subjective element,
the quality which makes it possible to be the subject of know
ledge, is at least as important a constituent of reality as the
objective element. the quality which is common to all material
things we perceive? This is the starting point of idealism. The
forms which our mind applies to sense experience, in particular
the ·' laws of logic, reflect (the reflection theory again!) the
deepest laws of All That Exists. From the ancient Greeks the law
of contradiction, i.e. the principle that a proposition is proved
if its negation is shown to be contradictory, was considered the
most fundamental logical law which allows one to discover those
truths which are necessary, but not immediately obvious. Hegel,
the most influential German idealist, transforms this law into
the universal driving force of the developing world.

During one hundred years after Kant, the empiricist trend of
thought ignored the work of the Koenigsberg philosopher. This was
the time of the triumph of science, especially of Newtonian
mechanics and its applications. The scientists did not need Kant;
the reflection theory and the compromise between empiricism and
rationalism kept on working excellently. The only noticeable
change was with respect to hypothesis. Newton believed that he
managed to discover the true and absolute laws of mechanics,
which cannot be renounced or modified any more than the laws of
geometry. He draw a sharp distinction between a discovery and a
hypothesis, and did not see much sense in the latter. "Hypotheses
non f i ngo", he said: I do not feign hypotheses. Later, however,
the scientists found it necessary to "feign" hypotheses. The
method of science became described as hypthetico-deductive. A
scientific theory is always created as a hypothesis, and then is

1-8

tested against experimental facts. However. if it is well-tested,
then, according to the views of the 19th century scientists, the
theory still was tt be considered as a discovery. This word shows
that the contents of the theory "is there" as an objective reali
ty, an objective law of nature, and scientists only express it in
terms of some -- usually mathematical -- language. We see here
the reflection theory in its full. Not only do the nouns of the
scientific language correspond to real material particles and
their conglomerates, but the sentences of that language also
reflect the objectively existing natural laws.

This view of scientific knowledge is formally independent
from the ontology you assume; in practice, however, it strongly
prefers the materialistic worldview, according to which the ulti
mate reality of the world is matter. This term may be understood
with different degrees of sophistication, but its general tenden
cy is to move the ultimate reality away from the subject of
knowledge or action and closer to its object.

Only in the very end of the 19th century the importance of
Kant's message for science was recognized, and only by a few far
seeing philosophers and scientists. Probably, the single most
important factor which led to the formation of a new trend of
thought was the discovery of non-Euclidean geometry and the
related tendency toward axiomatization of mathemtics. For two
thousand years the view of geometry as the only possible and
unshakably true theory of spatial relations was one of sustaining
pillars for the belief in human ability to discover the truth. It
turned out now, that one of the axioms of geometry (i.e. geometry
as given by Euclid) can be replaced by another axiom, which is
diametrically opposite to the original axiom, and yet this does
not lead either to internal contradiction in the theory, or to a
contradiction with our sense experience. What is left then of the
necessity and the objectivity of mathematical truths? Which of
the two geometries is true?

Neither, answers Henri Poincare in his Science and Hypothe
sis. But not because both are false. Geometry cannot be true or
false. It tells us nothing about real events in the world, it
only provides us with a conceptual scheme to describe events.
With respect to such schemes the concept of being true or false
is simply out of place; a scheme can be more or less applicable,
depending on the circumstances, but it can be neither 'true', nor
'false'. Suppose we measured the sum of the angles of a gigantic

l-9

triangle formed by light rays._Ac~ording to the Euclidian geomet
ry it must be exactly 180°, according to the Lobachevsky geomet
ry, less than that. Suppose we tound that the sum is less than
180°. Does it prove that Euclidian geometry is false? Not in the
least. We could hold on to it as true but conclude that the sides
of the triangle are not straight lines. In these conditions, we
might say, light propagates along some curved lines, maybe arcs
of some sphere.

This is a Kantian approach taken one step further. Mathema
tics is still considered as dealing with forms or schemes which
we introduce in order to organize our sense experience. But for
Kant these forms were immanent to our reason and therefore given
and immutable, in a sense, objective. But Poincare sees two
geometries in front of him, and knows that he can choose between
them, or use them both, by his own accord. Ernst Mach analyzes
the foundations of Newton's mechanics. The parallel between me
chanics and geometry, which gave grounds for Newton to consider
his creation as necessarily true, now works against him. If there
are two geometries possible, then why not two or more mechanics?
Richard Avenarius authored a philosophy known as empiriocriti
cism. Mach and Avenarius laid down the foundation of a philosophy
of science which can be characterized as 'post-Kantian empiri
c ism' .

Using this term, I have in mind not one definite philosophi
cal system or school, but a family of such, with the most impor
tant epistemological features in common. Like earlier empiricism,
post-Kantian empiricism accepts only sensations for the source of
knowledge, and rejects Kant's idea of extracting from intuition
some pure and immutable, transcendental forms of knowledge. Toge
ther with Kant, it rejects the reflection theory as naive and
uncritical, maintains that the subject and object are inseparable
in knowledge, and seeks to analyse critically their relationship.
When we perceive a material object, our perception is not a
r e f 1 e c t i on of a ' rna t e r i a 1 o b j e c t as i t r e a 11 y i s ' , but on 1 y a
complex of sensations. When we create a theory which is amply
corroborated by experiments, it is not a reflection of an 'objec
tive law of nature', but a way to organize and foresee our sen
sations. The philosopher, or a thoughtful scientist, critically
analyzes the stream of sensations we get from our sense organs
and the way we form concepts to organize it. The meaning of these
concepts is determined by the way they are translated into veri
fiable (in terms of sensations) facts. The concepts which cannot

1-10

be translated into sensations are meaningless, spurious.

I n Am e r i c a , c h a r 1 e s P e i r c e . t he f o u n de r o f the s c h o o 1 o f
philosophical pragmatism, associated the meaning of a concept or
a theory with the consequences that result from the application
of this concept or theory. In particular,a theory is true if it
allows us to achieve our goals, if it "works in practice". This
is close enough to the principle of verification. Pragmatism is
also a variety of post-Kantian empiricism. In fact, we can reckon
among the members of the same family all the most influential
trends in the philosophy of science of the present time. To
discuss these philosophies is not our intention.But it is impor
tant for our goals to discuss the relation between the post
Kantian empiricism and the discoveries of the physics of the 20th
century.

A remarkable thing happened to post-Kantian empiricism: its
conclusions, which resulted from pure philosophical reasoning
seemingly unrelated to the current immediate needs of science,
turned out to be of vital importance for the further development
of physics. Albert Einstein, who like many other physicists of
the turn of this century was deeply impressed by Mach's analysis,
created in 19S5 his (special) theory of relativity and produced a
revolution in physics. He did that without writing a lot of
formulas. The core of his theory was an analysis, in Mach's
style, of some fundamental concepts of physics, primarily the
concept of simultaneity. For our common sense it seems absolutely
obvious that if two events occur at the same time, then it is "an
objective fact", which cannot depend on whether or not you and I
know about it, or whether we measure the times, and if we do then
what reference system we use. It seems so obvious to our intui
tion that there is no need to check it and no possibility to
avoid it. But Einstein discovered that the independence of the
speed of light from the movement of the source, which had been
firmly established as an experimental fact, can be explained if
we abandon this postulate. He analyzed what it actually means,
in terms of observable facts, for two events to be simultaneous.
This analysis led him to a theory which was consistent with all
experimental facts, but treated simultaneity as a relative pheno
menon, dependent on the system of reference. Two events as per
ceived by one observer could occur at the same time, while in the
perception of another observer one event would occur after the
other. Acting on the primacy of observable facts over precon
ceived ideas, even when intuitively trustworthy, Einstein accep-

1-11

ted the constancy of the speed of light and rejected the absolute
simultaneity.

In quantum mechanics, the physicists went even further in
the decomposition of the "reality" of the mechanistic worldview
into elementary obsevable facts. Quantum mechanics deals with
material particles. But if we see these particles the way classi
cal mechanics sees them, that is as tiny balls moving in the
three-dimensional space along definite trajectories, then we
immediately come to contradiction with experimental facts. A
quantum-mechanical particle, say an electron, cannot have a defi
nite position and a definite velocity at the same time. Wait a
minute, a naive realist will say. You probable want to say that
one cannot measure the position and the velocity of the electron
simultaneously. But no, it is worse than that. If we assume that
in realtty, the electron is moving along a definite trajectory,
then even admitting that there is no way to measure the position
and the velocity simultaneously we still come to unresolvable
paradoxes and contradictions with experiment. Maybe the electron
is an amount of stuff distributed in space? No, this idea does
not work either. Maybe the electron is a wave motion, like a
sound or electromagnetic wave? No. We do describe the state of
the electron by its wave (unction, but this function does not
represent .a distribution of energy-matter over the space, it is
rather a probability wave, which represents our knowledge of the
electron. When our knowledge changes abruptly as a result of
measurement, so does the wave function.

Then what is this electron? Does it exist at all, or is it a
-pure fiction?

It was not easy to accept the idea that an electron is a
material body, like an apple, but cannot be described in terms of
the usual space-time concepts. It would be easier to think that
'actually' it still moves in a definite way, but we simply cannot
know its trajectory. It takes some effort to recognize that what
we want as 'the real electron' would not be 'the real electron',
but just another model, a conception. If it could be used to pre
dict observable facts, then it would be justified. Otherwise it
is a fiction. In the case of the electron of modern physics, the
picture of a small ball, if it comes with all its common sense
details is a fiction.

It was still more difficult to accept the absense of ulti-

1-12

mate causality in the microworld. For centuries science held the
view that all events have their ultimate causes, which can be in
principle, if not in fact, discovered. This view was found wrong
in the 20th century.

So, does this strange electron really exist, in the sense
apples and other macroscopic objects exist? Of course it does. If
the apple is an objectively existing material object, whatever
precise meaning may be assigned to this statement, then the
electron exists too. There is an important difference between
them, yet it is not a difference of principle. Using Kant's
terms, a bit too freely prhaps, the apple is a perception while
the electron is a conception. But both result from our contact
with the world through sense organs and a very considerable
amount of brainwork. In the case of the apple, the work is done
mostly using inborn features of sense perception, which are
hereditarily determined and hardly changeable. In the case of the
electron a very important part of the job is done using language;
this type of work is an invention of human culture, and the
concepts thus created change from time to time. The quantitative
differences between the two cases with respect to brainwork are
very significant, but with respect to such aspects as existence
or objectivity there is no qualitative difference between elec
trons and apples.

The reason why the physicists of the 20th century had to
reconsider radically their philosophy of nature is that they
intruded into such spheres where their means of exploration
became a significant part of the phenomenon. In the case of
relativity theory, it is light, which can no longer be considered
an instantaneous signal when the distances and the speeds became
very great. In the case of quantum mechanics, it is collisions
between elementary particles and their interaction with -- again
-- light, but this time on a very small scale. European philoso
phy came to reject the reflection theory in a purely speculative
way. Then its conclusions were confirmed by science. In retro
spect, we can see that this confirmation had to arrive sooner or
later. The reflection theory can picture 'the things as they
really are' only by abstracting from the means of observation. As
long as we explore our world's most general, crude, and macrosco
pic featurs, we can always find such means of observation and
exploration which do not appreciably change the picture, stay out
of it for all practical purposes. Then the abstraction from the
means of observation is valid. The light which we need to see

1-13

apples does not knock them down !rom the tree. But at some point
in the refinement of scientific knowledge we must come to the
exploration, experimental and theoretical, of our means of explo
ration. At this point the abstraction made by the reflection
theory becomes invalid, contradicting experimental facts. One of
the greatest discoveries of 20th century physics is the discovery
of the impossibility of the reflection theory and the necessity
of the critical philosophy of nature. It became a scientifically
established fact that the subject and object of knowledge are
inseparable. Knowledge is not a reflection of some 'objective
reality', it is a part of reality, one of the world's processes.
While engaged in that process, we are changing the world around
us.

2. Mathematical logic

Strange enough, the development of mathematics has complete
ly ignored the revolution in the philosophy of science produced
by the discoveries of physics. For the mathematicians, 'the
wor~ing compromise' between empiricism and rationalism has re
mained in force. Mathematics was left, together with religion, in
the sphere of influence of pure rationalism and Platonism. In
mathemat~cs itself, another 'working compromise' has been estab
lished. Formalism became 'the official ideology' of mathematics,
while 'unofficially' the mathematicians live and work as most
straightforward Platonists (see Infinity and the Mind by Rudy
Rucker). Although many modern philosophers, for example Bertrand
Russel, used the ideas and even the formalism of mathematical
logic, mathematical logic itself remained based on the pre
Kantian philosophy and the reflection theory. Brouwer initiated
an attack on the Platonist approach to logic and set theory from
the positions of modern philosophy. Unfortunately, the intui
tionist logic developed by Brouwer and his followers, as well as
analogous later developments known collectively as constructi
vism, were unable to interpret a considerable part of "classical"
mathematics, and had simply to reject it. The main body of mathe
maticians could not agree to such sacrifices, and Platonism
formalism prevailed.

Since its very inception, mathematical logic has been taking
the reflection theory for granted. Its method and fundamental
concepts were most clearly formulated by Gottlob Frege (1848-
1925), who more than any other person can be considered the

1-14

author of this discipline. One of the most illuminating papers by
Frege was published in 1892 under the title "Ueber Sinn and
Bedeutung" (On Thought and Meaning). Frege considers signs, such
as names, word combinations and expressions, and distinguishes
the sense, or meaning, of the sign from its nomtnatum. The latter
is what the sign denotes. If the lines a, band c intersect at
the same point, then the nominata of the expressions 'the point
of intersection of a and b' and 'the point of intersection of b
and c' are the same, although their meanings are different. Also,
the expressions 'evening star' and 'morning star' have different
senses but the same nominatum: Venus. Frege limits his considera
tion to those signs which function as 'proper names', i.e. have
definite nominata.

Concerning the sense of signs, Frege writes: "The sense of a
proper name is grasped by everyone who knows the language or the
totality of designations of which the proper name is a part;
this, however, illuminates the nominatum, if there is any, in a
very one-sided fashion. A complete knowledge of the nominatum
would require that we could tell immediately in the case of any
given sense whether it belongs to the nominatum. This we shall
never be able to do".
only primary reality;

So, nominata are treated by Frege as the
the sense we put into words is needed only

in order to indicate a specific nominatum, which is there anyway.
The sense is always partial and often vague. Without a complete
knowledge of the nominata, which of course we never have, we are
unable to guarantee the establishment of a correct link between
every possible sense and the corresponding nominatum. Moreover,
there can be a sense which has no nominatum at all. Frege's
example: "The words 'the heavenly body which has the greatest
distance from the earth' have a sense; but it is very doubtful as
to whether they have a nominatum". Frege concludes:"Therefore the
grasping of a sense does not with certainty warrant a correspond
ing nominatum". He also notices that "when words are used in the
customary manner then what is talked about are their nominata".

This is the conceptual basis for the predicate calculus, and
it certainly is the reflection theory. For post-Kantian empiri
cism, it is exactly the meaning of words that is valuable because
it relates the words to the corresponding observable facts and
constitutes the only true reality. The nominata separated from
the meaning are nothing more than fruits of fantasy. Yet it is
exactly the meaning of words that is thrown away in the abstrac
tion of an object in mathematical logic, which is its first

1-15

fundamental concept.

we proceed now to sum up the formalism of mathematical logic
in its relation to the unde1 lying philosophy and methodology. The
objects of mathematical logic are supposed to exist and form a
set called a domain. In different applications of logic, i.e. in
different mathematical theories using its formalism, the domains
may be different. A domain may be finite or infinite,but must not
be empty. The language of mathematical logic includes variables:
x 1 , x 2 .•. , etc., which can take objects from the domain as their
values. An n-place predicate is denoted as a function of n
variables: P(X 1 , •.. , xn). When some values are substituted for
the variables in a predicate, the result is a proposition, or
sentence. Some predicates are primary, that is not decomposable
into more elementary units. They generate primary propositions.

If the object of mathematical logic is a formalization of
the proper name of language, the proposition is a formalization
of the declarative sentence. Gottlob Frege, in the paper quoted
above, treats propositions from the same standpoint as he treats
objects. Like a proper name, a declarative sentence has a sense
and a nominatum. The sense, again, is uderstood only informally.
It depends on the sense of the names used in it. If we replace
one name in a sentence by another name with the same
but a different sense, then the sense of the sentence
changed. But if the sentence has a nominatum, then it

nominatum
will be

certainly
must not be changed by such a replacement. So, can a sentence
have a nominatum? (The presumption here is, of course, that the
sense of the sentence is no good for mathematical logic).

It can, answers Frege. It is its truth value. He writes:
"By the truth-value of a sentence I mean the circumstance of its
being true or false. There are no other truth-values. For
brevity's sake I shall call the one the True and the other the
False. Every declarative sentence, in which what matters are
the nominata of the words, is therefore to be considered as a
proper name; and its nominatum, if there is any, is either the
True or the False. These two objects are recognized, even if only
tacitly, by everyone who at all makes judgements, holds anything
as true, thus even by the skeptic."

Like the objects, the propositions are stripped of all
meaning when thay are admitted into the kingdom of mathematical
logic. A propositions is something that can be, and must be,

l-16

either true or false. That is all.

This is not to say that mathematical logic has no sense or
is useless. Frege's was a tremendous intellectual achievement.
The very abstract nature of formal logic allows one to apply it
to a wide range of phenomena, and the brilliant record of mathe
matical logic shows this only too clearly. But gaining in the
range of a conceptual scheme, we lose in its contents. It is my
impression that the failure to tackle the problem of meaning has
almost always and almost universally been recognized as the
fundamental weakness of formal logic.

The concept of a predicate can be better grasped using the
following representation of it, which we are tempted to accept as
a sort of "interpretation", although it is not associated with
any semantics or interpretation of propositions. This "interpre
tation" is based on the following idea. Consider a theory with
the domain D. Consider some predicate P(x 1 , ... ,xn). For every n
tuple of objects from D, our predicate becomes a proposition
which must be either true or false. Therefore, we are dealing
with a function, which takes an n-tuple of objects from D as its
argument and produces a truth-value as its value. We shall call
such functions logical. Two predicates which for every n-tuple
produce identical truth-values are essentially the same.
predicate is interpreted as a logical function of n
from D. There are as many predicates as there are
logical functions possible.

Thus, a
variables
different

I put quotes on "interpretation" because it is no interpre
tation at all. An interpretation of a theory is something that
makes you closer to comparing the predictions of the theory with
some facts, be they from observations of natural phenomena or
from another theory. Nothing like that happens here. We simply
unite a great mass of separate uninterpreted propositions into
one big array, which is called 'function', but does not become
less uninterpreted. It is the same as to say: 'I know who the
intruders are; they are members of the intruding band'.

[The contents of the rest of Section 1.2

Logical connectives.
Quantifiers. Bound and free variables.
Two approaches to truth: deductive and quasi-semantic.

1-17

Formal systems. Axioms and rules Af inference.
Quasi-semantic approach. Truth-evaluation procedure.
Universally valid formulas.
Deduction theorem.]

3. Naive set theory

[Cantor's concept of set.
Again the reflection theory in background.
Russel's paradox.
Operations on sets.
Relations and functions.
Cardinality. Uncountable sets.
The static character of math. logic and set theory.]

4. The cybernetic approach

I call my own approach to philosophy of science cybernetic.

Essentially, it is a variety of postkantian empiricism which uses
the ideas of cybernetics and our recent experience in modeling
intelligent behaviour. Such an approach is as natural in the
second half of the 20th century as was the use of mathematical
logic by philosophers in the first half of this century. Kant
started thinking in terms of how our brain processes the stream
of sensations. Now, there is not less than a branch of computer
science, referred to as 'Artificial Intelligence', which is en
gaged in modeling brain processes. Even though we are still very
far from a reasonably complete understanding of the work of the
human brain, we have acquired insights into this subject which
should not be ignored by philosophy.

Norbert Wiener introduced the term 'cybernetics' in 1947 for
the science of ·"control and communication in the animal and the
machine". It is not my intention here to review either Wiener's
ideas or their further development. I understand 'cybernetics' in
a very wide sense as a science which is, so to say, complementary
to physics. If physics studies the most fundamental aspects of
the world which can be expressed in terms of energy-matter,
cybernetics takes up the aspect of structure, organization, and
information. More specifically, cybernetics is the exploration
and construction of highly organized systems, by which I mean

l-18

systems with a multilevel hierarchical structure of
and control. Computer science and technology is
branch of cybernetics.

communication
an important

The philosophy of mathematics on which the theory exposed in
the present book rests is based on the philosophy of science
exposed in my previous book The Phenomenon of Science: a Cyberne
tic Approach to Human Evolution (Columbia University Press,
1977). In this section, I am summing up those essentials of my
approach which I need here, but I realize that this summary can
hardly be convincing without reading and discussing the book
itself.

My approach is centered around the idea of metasystem tran
sition, by which I mean a transition from a cybernetic system to
a metasystem, which includes a set of systems of the initial type
integrated and controlled in some manner. Each metasystem transi
tion creates a new level in the hierarchy of control inherent in
the system. Metasystem transition is the quantum of evolution;
through the accumulation of these quanta, more and more highly
organized cybernetic systems evolve.

Seen in the functional aspect, metasystem transition is the
emergence of a new type of activity which can be described as
control of the most sophisticated activity of the preceding
hierarchical level. Let A be the top-level activity of a cyberne
tic systemS, i.e. the functioning of the highest level of cont
rol in the system. For the system so formed by a metasystem
transition from S, the top-level activity A0 can be defined by
the formula:

A0 = control of(A)

We can observe changes in the types of activities and conclude
about metasystem transitions even without knowing the exact
structure of cybernetic systems. In the evolution of life we can
discern the following seven stages resulting form consecutive
large-scale metasystem transitions:

1.

2.

chemical foundation of life; clusters of
macromolecules positioned at random

control of position = movement

1-19

3.

4.

5.

6.

7.

control of movement = irritability
(simple reflex)

control of irritability = complex reflex
(nerve net, pattern recognition)

control of reflex = associating
(conditioned reflex)

control of associating = human thinking

control of thinking = culture

The processing of sensory data in higher animals is orga
nized hierarchically. The elements of the processing machinery
are classifiers, their states make up representations of the
environment. The lowest-level classifiers are receptors of the
sense organs; the corresponding representation is the flow of
sensations. Other classifiers recognize stable complexes of sen
sations, .thereby creating different representations and providing
inputs for classifiers of the next level. They translate repre
sentations from one language to another, retaining information
essential for the survival of the animal and leaving out the
unessential information. Classifiers of higher levels receive
information from below in the hierarchy and send it further up.
Comparing this scheme with Kant's picture of the work of mind, we
can loosely identify perceptions with representations created by
relatively low-level space-time classifiers which are mostly
common to humans and higher animals, and conceptions with the
representations of higher-level classifiers.

Knowledge is the existence in a cybernetic system of a model
of some part of reality as it is perceived by the system. The
concept of a model is illustrated in Fig. 1.2. The system B
models the system ~ if some correspondence can be established
between the states of ~ and B such that if a state A 1 of ~ after
some time ta goes over into a state A 2 , then the state B 1 of B
corresponding to A 1 goes over, after some time tb, into the state
B 2 corresponding to A2 . To one state of B more than one state of
~ may correspond, while one definite state of ~must correspond

l-20

to not more than one state of 8.

Having a model may allow making predictions. The time tb may
a be less than t . Then observing A 1 , translating it into 8 1 and

transforming into 8 2 , the system can predict that a state of ~

will occur which corresponds to 8 2 , like A2 .

A cybernetic animal of stage 4 in our table (complex reflex
determined hereditarily) can be said to have a knowledge of the
world "implemented in hardware". If the environment of such an
animal is the system~ on Fig. 1.2, its instinctive responces to
changes in the evironment put it in the position of the system 8.
Further metasystem transitions make knowledge more and more cont
rolable, variable, transferable. On stage 5, animals become cap
able of learning, i.e. acquiring new models of reality during
their lifetime. On stage 6, animals, who are now respectfully
called humans, become capable of manipulating their images of the
reality at will: the ability known as imagination. They also
create languages by arbitrarily associating with the world's
objects and processes certain objects of special kind: words. On
stage 7, human society accumulates tremendous amounts of know
ledge which is passed from generation to generation.

Language can be thought of as a continuation of the indivi
dual human brain, as the super-brain of the social super-being.
Language is used to exchange knowledge between individual brains
and to create new knowledge for the human society as a whole.
Linguistic objects play the same role as classifiers in the
brain, they implement some functional units of sensation proces
sing which we identify as concepts. A concept is a symbol (a
linguistic object), plus the activity in which this symbol is
used. Low level concepts of natural languages simply denote
certain patterns of recognition implemented in the nerve net of
our brain. Other concepts are new, not existing in the brain
independently of language. For example, the concept of spatial
relation would be impossible if there were no words expressing
spatial relations, like 'lower', 'to the left', 'bigger', etc.
The words 'spatial relation' depend for their meaning on the
existence of words which denote specific partial relations. We
can see logical, i.e. implemented in language, concepts as clas
sifiers of the social super-brain. Such classifiers as 'apple',
'lower', 'to the left', etc. make up the interface between the
super-brain and the individual brain, they are based on the
ability of our brain to recognize certain patterns. All the

l-21

inputs these first-level classif:~rs require exist independently
of language. The classifier 'spatial relation' requires other
logical classifiers, such as 'lower' and 'to the left' as inputs.
More precisely, the activity associated with 'spatial relation'
and described as understanding and using this concept, includes
activities associated with other linguistic objects.

Like the individual brain, the linguistic super-brain has a
hierarchical structure. Concepts which are high in the hierarchy
do not allow direct translation into sense perceptions. Still
they may be used in some linguistic activity which will ultimate
ly lead to verifiable or refutable models of reality. Then they
have
a ted
with

meaning. If we see no way for linguistic activities associ
with a symbol to lead outside the language to the interface
the brain and the sense organs, then this symbol has no

meaning.

Linguistic activity may be either separable or inseparable
from the meaning of linguistic symbols. In the former case the
language is formal. If the system 8 in Fig. 1.2 is a model of
reat1ty implemented in a formal language, then transformation of
the state B 1 into B 2 does not ~ely on human brain, and can be
performed by a machine. A model created by the brain becomes
independent of the brain and can be, in a metasystem transition,
studied as an independent reality. This transition can be re
peated again and again, and this is what we actually see in the
history of eMact science.

The concept of number and the science of arithmetic illus
trate these ideas well. Small numbers are concepts implemented in
the nerve net of our brain, they are built-in. We distinguish a
collection of two objects from a collection of one or three
objects as immediately as we distinguish an apple from a rabbit.
The concept 'two' in human language could be seen as an "inter
face" concept. The concept 'one hundred and seventy' cannot be
seen as an interface concept. We do not distinguish a collection
of that many objects from collections referred to by neighboring
numbers. Big numbers make sense only through the procedure of
counting, which necessarily involves certain linguistic objects.
The meaning of 170 includes the meaning of 169, 168, etc. The
necessary linguistic objects, which we call numbers, can be of
different kind, (pebbles, notches, marks of paint), but they must
be there, physically, materially. They are cogwheels of the
machinery of language. The process of counting is the functioning

1-22

of that machinery resulting in recognition of concepts like 179,
much as the functioning of certain classifiers in the brain
results in recognition of the concept 'rabbit'.

Numbers, like other concepts, are used to model reality and
make predictions. The statement 5+7=12 is a model with which we
predict that if we have a collection of objects which was recog
nized as 5 by the process of counting, and another collection,
which was recognized as 7, then merging these two will produce a
collection which will be recognized as 12. This model is applied
in the non-linguistic world: to such objects as apples, rabbits,
or whatever we care to count. Numbers, and operations on them,
can be completely formalized; then we deal with material objects
and processes as definite and objective as celestial bodies and
their movements. We call them linguistic objects, linguistic
processes, and linguistic machines.

If specific numbers are first-level linguistic concepts
applied directly to the non-linguistic world, such concepts as
'number' or 'arithmetic operation' belong to the next level of
the hierarchy. They are not applied -- directly -- to apples and
rabbits; we use them to construct models of linguistic processes.
Example of such a model: the sum of two numbers does not depend
on the order of the items. As we introduce the linguistic object
5 to correspond to five apples, five rabbits, etc., we introduce
the linguistic object x to correspond to 5, 7, etc., which gives
rise to algebra. Having created primary linguistic models of
world's processes, we create models of these models, then models
of models of models, etc. It is by metasystem transitions of this
kind that the infrastructure of mathematics has been created.

Science creates linguistic models of reality. When we deal
with concepts and models of the first level, which relate direct
ly to observable facts, we are engaged in natural sciences.
Equations of arithmetic, such as 5+7=12, belong to natural sci
ence to no less an extent than Newton's equations. So do proposi
tions expressing properties of geometric figures. When we deal
with concepts and models which pertain to a special kind of
reality, namely formal linguistic objects and machines, we work
in mathematics proper. Proving that geometric figures have cer
tain properties belongs to mathematics, as well as proving theo
rems about any formal objects, of course.

One can see from the preceding that our approach to the

l-23

foundations of mathematics is inherently dynamic, that is the
idea of time is one of its explicite conceptual constituents.
This stands in a sh~rp contrast with set theory, which is in
herently static. The difference stems from the different philos0-
phical backgrounds of the two approaches. Set theory is based on
the reflection theory, according to which our thought is a re
flection of reality. Both reality and thought are seen as instan
taneous still pictures. Time is allowed here to change reality,
but it is not allowed into reality, nor into the relation between
reality and language. Actual infinity of set theory is an attempt
to represent the concept of potential infinity (which includes
the idea of time) in a static theory.

our theory is based on the cybernetic view of the human
being according to which our thought is the processing of our
sensations. The idea of time enters from the very beginning
through the concepts of a process and a model. The concept of
process is our first ontological primitive.

Processes may be infinite, and this is he only infinity we
allow. in our theory. In fact, a process is always infinite,
because this concept is a formalization of our intuitive notion
of time, and we find no end of time in our intuition. What we
call a 'finite' process is a finite search, that is such a pro
cess. which at some time achieves a certain stage, after which we
are not interested in the process any more. Objects we consider
are always finite, although this does not mean that we put some
restraints on their size. Any collection, or set, of objects
which we treat as an object in our theory must be finite. The
following diagram summarizes the formalization of the intuitive
notions of one, many, and infinite in set theory and in our
theory:

set theory intuitive notion this theory

element one

} object

z many
set

infinite process

l-24

C H A P T £ R 2

Objects, Processes, Machines

1. The Turing machine

An important step towards putting mathematics on the emplrl
cist track was made by Alan M. Turing. In 1936, he introduced in
mathematics an abstract device, or rather a class of devices,
which became known as Turing machines. The idea was to make
mathematical computations an object of mathematical study. Compu
tation is understood in the widest sense: arithmetic calcula
tions, manipulation of algebraic expressions, formal logical
deductions, etc. The common feature of these operations is that
they are conducted according to some rules, which the mathemati
cian can formulate in such a precise and exhaustive manner that
the operations could be performed by a machine. Turing wanted a
type of machine so general that any conceivable computation could
be described as the work of one of the machines of that type.

[The definition and examples of Turing machines.]

2. Refal,informally

The Refal machine will be formally defined in the next
section. In this section we discuss informally, by way of intro
duction, the main features of Refal, so that the reader can
easier see the origin and the purpose of every article of the
formal definition.

'Refal' is the acronym for REcursive Functions Algorithmic
Language, a computer programming language which was developed by
the author and co-workers in 1966-1970 (see bibliography in
Turchin, 1980) and is implemented on several computer systems,
including the IBM/370. Refal as an algorithmic language is con-

2-l

ceived to be simple enough to allow mathematical treatment but
-

still successful as a practical programming language for such
fields as artificial intelligence and word processing. A guide
for programming in Refal can be found in Turchin, 1980.

We shall discuss three types of applications, or purposes of
Refal, in the order of increasing generality.

Refal can be seen as a language of semantic descriptions.
Consider a linguistic object which has some meaning. What does it
mean to understand its meaning? It is to know how to relate it to
some primary reality. Well-developed languages usually include a
hierarchy of concepts, so that to relate a linguistic object to
reality you have to go through a sequence of concretizations,
that is steps which express the meaning of this object in terms
of concepts that take lower positions in the hierarchy. With a
natural language, the process of concretization comes to an end
when relations are established between the linguistic object and
the world of sensations. In the case of a formal language, con
cretizations lead to the concepts defined as the primitives.

The following line:

(1) <ACM> ~ Association for Computing Machinery

is a sentence of Refal. The angular brackets are concretization
brackets. They enclose a linguistic object which must be concre
tized, that is replaced by linguistic objects which in some sense
are closer to the ultimate reality. The sentence (1) expresses
the expansion of the acronym ACM. It consists of the left side
and the right side separated by the arrow~. The Refal machine,
i.e. the device that "understands" Refal, takes this sentence as
the instruction to replace <ACM> by Association for Computing
Machinery. The letters A,C,M,A,s,s,o, ... etc. will be referred to
as symbols. Angular brackets are special signs of Refal, not
symbols.

Consider another sentence:

(2)

It defines what the first symbol of an expression is, and can be
translated as: the first symbol of an expression which consists
of a symbol s 1 after which an expression e 2 immediately follows,
is s 1 . Here s 1 and e 2 are free variables. The first is a symbol

2-2

variable (s-variable,
able (e-variable).

for short), the second an expression vari
This sentence is used in the following way.

Suppose we observe the expression

(3) <the first symbol of APPLE>

To see whether the sentence (2) is applicable, compare its left
side with (3). If it is possible to give such values to the free
variables that the left side of (2) becomes identical to (3),

then the sentence (2) is applicable to the concretization of (3).

In assigning values to variables we must remember that an s
variable must take as its value exactly one symbol, while an e
variable can take any expression. Clearly, (2) is applicable if
s 1 takes the value A, and e 2 the value PPLE. To apply a sentence
means to replace the expression (3) by the right side in which
the values of the free variables are substituted. The result is
A. We have performed one step of the Refal machine.

Now let us look at Refal from another angle, namely as the
language of recursive functions. Let us replace the string 'the
first symbol of' by the single symbol F:

(4)

We can see the replacemnt of <F APPLE> by A as the evaluation of
a function call. Then (4) defines the function F whose value is
the first symbol of its argument. The angular brackets should be
called evaluation brackets. They enclose the expressions which
must be understood as function calls and evaluated. <FA> corres
ponds to F(A) in the usual notation. Besides angular brackets,
which indicate evaluation, we use in Refal usual round brackets
(parentheses). They serve a different purpose: to give a struc
ture to expressions. Any sequence of symbols and parentheses in
which the parentheses are properly paired is a legitimate expres
sion in Refal. Parentheses, like concretization/evaluation brac
kets, are not symbols, but special signs. Here are examples of
Refal expressions:

A
ABC
A+B()
(bbb+(**))(())+-

An empty expression (just nothing) is also a legitimate expres-

2-3

sion. The argument of a Refal function can always be considered
as one expression. If we want to define a function of several
arguments, we use parentheses to combine them into one expression
so that when necessary, it could be uniquely broken down into the
original constituents. For instance, the function which concate
nates its two arguments can be defined as

Here cone is the name of the function. Syntactically, £Qn£ is one
symbol; composite symbols, like this one, are formed by under
lining a group of letters and digits.

Consider the following group of sentences:

(5.1) <chpm + ex> .. -<chpm ex>
(5.2) <chpm saex> ... sa <chpm ex>
(5.3) <chpm (ea)ex> ... (ea)< chpm ex>
(5.4) <chpm> ...

I t de f i n e s the fun c t i on c h pm , ' change p 1 us to m i nus ' . I f t h i s
function is applied to an expression, its value will be the
result of the replacement of every sign + on the top level of the
bracket structure in the argument by the sign - Consider this
fun.ction call

(6.1) <chpm c+(a+bx)>

The Refal machine will evaluate this call by steps, each step
being the application of one sentence. It will try to apply
sentences in the order they are listed. When a sentence is found
applicable, it is applied, and this is the end of the step; on
the next evaluation step, the Refal machine will try to apply
sentences starting with the first one again. The expression to be
evaluated is said to be in the view-fteld of the Refal machine.
The expression (6.1) in our example is the initial state of the
view-field.

Making the first step, the Refal machine tries to apply the
sentence (5.1), but of course fails, because the argumant does
not start with +. Then it tries to apply (5.2) and this time
succeeds. The view-field becomes:

(6.2) C<chpm +(A+BX)>

2-4

The symbol C is in the view-field outside of any evaluation
brackets. It means that it will never be changed into anything
else, and will be there till the end of the work. The Refal
machine alters only those expressions which are bounded by evalu
ation brackets.

The results of the consecutive steps after (6.2) are as
follows:

(6. 3)
(6.4)

(6.5)

c-<chpm (A+BX)>
C-(A+BX)<chpm>
C-(A+BX)

by (5.1)
by (5.3)
by(5.4)

In the state (6.5) of the view-field there are no evaluation
brackets; the Refal machine comes to a normal stop, and the
contents of the view-field is the result of evaluation. Note that
in order to compute the initial call (6.1), the function chpm
called itself (with a different argument) in (6.2). The sentences
(5.1), (5.2) and (5.3) define the value of a function call
through the call of the same function. Functions defined in this
way are called ecurstve.

Now we are going to discuss the third, and the most general
view of the language Refal and the Refal machine. The Refal
machine is a framework for the linguistic representation of the
world.

We see the world as the interplay of various processes,
which involve various objects. We can change objects ourselves,
thereby giving rise to processes. We also can create and start
machines, which maintain processes autonomously. The concepts of
object, process, and machine will be considered primary and given
to us intuitively. We can only define them informally for clari
fication, and characterize their relationship.

By an object in this book we mean a stable complex of sensa
tions devoid of the dimension of time. A process is thought of as
a time sequence of objects, while an object is a time section, or
a momentary picture, or a stage of a process. A machine is some-
thing that gives rise to a process when given an object or a
number of objects (the input). An object can also be seen as a
special case of process: such that all its stages are the same.

2-5

Among all the objects we deal with we choose some to serve
the purposes of communication and cognition. This is the phenome
non of language. The objects so used are referred to as linguis
tic objects. In this book we confine ourselves to one-dimensional
discrete languages, in which linguistic objects are strings of
distinct characters. A process the stages of which are linguistic
objects is a linguistic process. A machine which gives rise to a
linguistic process and takes linguistic objects as its input is a
linguistic machine. The Refal machine is a linguistic machine
which can also be called a metamachine, because it is used not
only to define linguistic processes, but also linguistic ma
chines.

Semantic definitions in the theory of languages and computa
tions in mathematics emerged and acquired significance because
they are part of a system of linguistic representation of the
world's processes. Thus, linguistic representation of the world
and the managing of the processes in this representation is the
most
Refal

general kind of activity we are engaged in
will be used here as the language of this

as scientists.
representation.

This gives us one more name for the angular brackets in
Refal: activation brackets. They distinguish a process from an
object .. A character string enclosed in activation brackets, e.g.
<~Be>, represents the current stage of a process, and will be
referred to simply as a process. Later in time <ABC> may turn (be
turned by the Refal machine) into something else, say <ABCD>, as
the process develops. A character string which does not include
activation brackets represents an object that does not change in
time. Change comes only from activation brackets.

3. Formal definition of Refal

We present here a formal definition of the version of the
language known as strict Re(al.

The elementary syntax units of Refal are of two kinds:
special signs and object symbols (or just symbols).

Special signs of Refal include
• structure brackets'(' and')';
• act tva t ion brackets '<' and '>' ;

2-6

• free variables, which are represented by a subscripted 's' (a
symbol variable) or 'e' (an expression variable), e.g. s 1 , sx,
e 5 ; a specifier (see below) may appear between the letter sand
its subscript, e.g. s(ABC) 1 , s(+-)a.

Object symbols used in Refal are supposed to belong to a
finite alphabet, which is not, however, fixed once and forever.
We shall use as object symbols:
• characters distinct from special signs,
• superscripted characters like F 1 ,

• strings of characters underlined to form one (composite) sym
bol, e.g. , then.

We shall use capital italic letters A, B •... etc. as metasym-
bols to denote Refal objects and processes.

Refal's composite syntax units are as follows.

• An expression is an object which can be identified as one of:
(a) the empty string, which we may represent just by nothing, or
by the metasymbol [];
(b) a symbol (i.e. an object symbol, not a special sign);
(c) a variable;
(d) £ 1 £ 2 , or (£ 1), or <£ 1 >, where £ 1 and E 2 are expressions.

• A term is either a symbol, or a variable, or (£). or<£>, where
£ is an expression.

• A pattern expression is an expression which does not include
activation brackets (but generally includes variables). A process
expression is an expression which does not include variables (but
generally includes activation brackets). An object expression is
an expression which includes neither variables nor activation
brackets. An L-expression is a pattern expression which:
(a) contains no more than one entry of every e-variable,
(b) contains no more than one e-variable on every level of brac
ket structure, i.e. can not be represented as

£ 1 e 1 £ 2 eJ E 3 ,

where subscripted £'s are expressions. Examples of L-expressions:

2-7

Examples of pattern expressions which are not L-expressions:

• A Refal sentence is an object of the form:

<L> = R

where L is a pattern expression and R is an arbitrary (general)
expression of Refal. The equality sign is just a symbol (not a
special sign) which is used for visual convenience. L is referred
to as the left side, and R as the right side of the sentence. The
right side can include only such variables which appear also in
the left side.

• A list of expressions £ 1 , £ 2 , ... , En is the expression

• A Refal program is a list of sentences.

The Refal machine has two information storages: the program
field and the vtew-field. The program-field contains a program,
which is loaded into the machine before the run and does not
ch~nge during the run. The view-field contains a process expres
sion which changes in time as the machine works. The process
expression in the view-field may be, in particular, an object
expression, i.e. may not contain activation brackets. Then the
Refal machine stops-- or, one might say, reproduces the same
object expression indefinitely -- until a new run is initiated.
Change, as we said above, comes only from activation brackets.
This is our way of representing the abstraction of invariability,
which lies at the root of the notion of an object. Our object
expressions are linguistic representations of natural objects,
which are supposed not to change with time. Concatenation and the
use ·of structure brackets (parentheses) allow us to render the
hierarchical structure of natural objects as they are built of
certain elementary objects, which we represent by object symbols.
To represent a change in time, i.e., a process, we enclose an
object expression in activation brackets, and then the Refal
machine will transform such expressions step by step, thus gene
rating a linguistic process. If at some stage this process (i.e.,
the process expression in the view-field) becomes an object
expression, we say that the process is finite.

2-8

Activation brackets may be nested; then they will be activated
in a unique order using the principle 'inside-out, from left to
right'. More formally, we define the range of an activation brac
ket as the subexpression limited by this bracket and the one
paired with it. We define the leading activation bracket in a
given expression as the leftmost sign < of those signs < which
have no other signs < in their range. The Refal machine works by
steps, each step being an application of one of the sentences
from the program-field to the term in the view-field which starts
with the leading activation sign; we call this term the active
term of the process.

We say that an object expression £ 0 can be syntactically
recognized as a pattern expression £ if the variables in £P can
be replaced, observing the rules liseed below, by object expres
sions called their values such that EP becomes identical to £0 .

The rules are as follows.

(a) An s-variable s 1 , where I is any index, can take as its value
any symbol.
(b) A specified s-variable s(P) 1 , where Pis a string of symbols,
can take as its value any of the symbols entering P; string P is
called a spect(ter.
(c) An e-variable e 1 can take any expression as its value.
(d) All entries of the same variable in E~, i.e. variables with
the same sign 's' or 'e' and the same index, must be replaced
with the same value.

It can be shown that if EP is an L-expression, then there is
no more than one set of values for the variables in EP such that
their substitutiopn transforms EP into E0 , and there is an effi
cient algorithm which establishes whether E0 can be syntactically
recognized as Ep• and in the case of a positive answer determines
the values of the variables (see Turchin, 1980).

Now we can describe the operation of the Refal machine. Each
step starts with locating the active term in the view-field. If
there is none, the Refal machine comes to a normal stop. Having
found the active term, the Refal machine compares it with the
consecutive sentences in the program-field starting with the
first one in search of an applicable sentence. A sentence is
applicable for an active term if the term can be (syntactically)
recognized as the left side of the sentence. On finding the first

2-9

applicable sentence the Refa~ machine copies its right side and
replaces the variables there by the values they have taken in the
process of recognition. The process expression thus formed is
then substituted for the active term in the view-field. This ends
the current step, and the machine proceeds to execute the next
step. If there is no applicable sentence in the program, the
Refal machine replaces the active term by the term<?>, which at
each next step is replaced by itself again, thus generating an
infinite process, which will be called undefined. This is a
special process with the question mark symbolizing (in this
context only) that if our linguistic process is intended as a
representation of a non-linguistic "real world" process then the
former carries no information about the latter. It is important
for the future to note that an indefinite process is infinite.

4. Examples of processes and machines

Suppose we want to define the process of the growth of a
string of characters A , i.e. a process whose first stage is
empty, then A , then AA , then AM , etc. How can we do that
using the Refal machine?

We ·know that the representaion of a process in the Refal
machine must be enclosed in activation brackets. One possibility
is to represent the consecutive stages of our process simply by
<> <A> , <AA> , etc. But it is a better practice to put a tag
(a name) on every process, so as to be able to have definitions
of different processes without unintended interference between
them. Any object expression may serve as a tag, and in the sim
plest case it will be one symbol. Let us agree that the tag will
always be placed at the left end of the process expression,
immediately after the opening activation bracket. Let symbol ~ be
the tag for our process. Then <~> will be the initial stage, <~A>

will be the next stage, etc. One sentence:

in the program field of the Refal machine will define the pro
cess. To initiate it, we put <~> in the view-field and start the
machine. After the first step the view-field will be <~A> , then
<~AA> , then <~AAA> , and so on infinitely.

Now let us add to the program the following two sentences:

2-10

<8e *> <8e >
X X

<8> end

If we put <8***> into the view-field, the consecutive stages of
the process will be:

<8***>
<8**>
<8*>
<8>

end

This is a finite process with the object symbol end as its final
stage.

Because different programs can be loaded into the program
field, we can use the Refal machine as a metamachine through
which to define various specific machines. Our concept of a
linguistic machine is related but not identical to the concept of
a recursive function on the set of object expressions. A recur
sive function is considered undefined if the process of computa
tion for a given argument is infinite; and if the process is
finite then it is only its result that matters, not the process.
When we are speaking of a machine it is exactly the process we
are interested in, and it may be either finite or infinite.

A machine is defined by specifying: (1) a general Refal
expression F called the format of the machine, and (2) a Refal
program, which is its definition. Substituting some values for
the variables in F, we receive a process expression which is then
put into the view-field of the Refal machine which is loaded with
program P.

For instance, with the above sentences , the format <Be >
X

defines a machine which for every string of asterisks as its
input ex generates a finite process. If we substitute a different
kind of value for ex the resulting process will be undefined. The
machine <~ex> generates an infinite process for every input
expression substituted for ex (it infinitely adds characters A on
the right).

Let us consider less trivial examples. In the unary number
system, where zero is represented by 0, one by 01, two by 011,

2-11

etc .. the adding machine w1th thP format

<+(e)e >
X y

can be defined by the program

<+(ex)0> ~ ex
<+(ex)eyl> ~ <+(ex)ey>l

With the input values 01 for ex and 011 for ey this machine will
generate a finite computation process:

<+(01)011>
<+(01)01> 1
<+(01)0> 11
0111

We could define an equivalent machine choosing a different for
mat, e.g., <+(ex)(ey)>, or <addex,ey>, etc.

As an example of the use of nested activation brackets in
the right side, we define an adding machine for binary numbers:

<ad?<ex0)eys 1> ~ <add(ex)ey>s 1
<add(exl)ey0> ~ <add(ex)ey>l
<add(ex1)eyl> ~ <add(<add(ex)1>)ey>0
<_a_d_d(ex)ey> ~ exey

The format is <add(e 1)e 2>. (Note that the variables we choose to
represent formats are not related in any way to the variables
used in programs; neither are variables in different sentences of
the program. But we usually keep to the same variables as a
matter of convenience). The last sentence of the program for add
may not be understood immediately. It will work correctly because
it will be used only in the situation when at least on of the two
arguments ex and e is empty. The program would be more under
standable if insteaa of that sentence we used these two:

<add(ex)>
<add()ey>

Exercise. Trace the process <add(l0010)101> using the formal
definition of the Refal machine in all its detail.

2-12

5. Metacode and Self-Simulation

ln the Refal machine, symbols and structure brackets (paren
theses) serve to create object expressions, which represent ob
jects of the external world. Variables and activation brackets
can be seen as functional details of the machine itself, which
help to perform operations on objects. Therefore, if we are (and
we ~) to define in Refal processes and machines dealing with
parts of the Refal machine, namely the contents of the memory
field and the view-field, we need a representation of these parts
in the form of object expressions. Such a representation will be
called a metacode. The metacode we are going to use is defined in
the following table:

In the Refal machine

*
s

In the metacode

*SI
*S(P)I
*EI
*(
)
*V
s

Here S stands for any object symbol different from the
asterisk * it is represented in the metacode by itself. One can
see that our metacode transformation has a unique inverse trans
formation. Speaking about linguistic objects and their metacode
representations we shall denote by tX the metacode of X. The
inverse transformation will be denoted by + so that t+X is X.
The range of the signs t and + is the Refal term that follows.
Thus, t(e 1+e 2) is (*El+*E2), while te 1+e 2 is *El+e 2 .

A program consisting of sentences z1 ,z2 , ... ,Zn will become

in the metacode. To give an example of metacode transformation,
the program for the + machine above will be transformed into

(*(+(*EX)0) ~ *EX) (*(+(*EX)*EYl) ~ *(+(*EX)*EY)l)

We shall also use a shorthand notation for metacoded vari-

2-13

ables, by which E~ stands fo~ *EX, E~ stands for 1Exn-I, and the
analogous convention holds for s-variables. The superscript 1 can
be omitted. Examples follow:

Shorthand Strict notation meaning

EI *El 'tel

Et
a *VEA ttea

sx *SX tex

S4(?!)3 *VVVS(?!)3 tttts(?!) 3

The asterisk * is singled out to represent
signs in metacode, so it must undergo change in
transformation for the inverse transformation to be

special Refal
the metacode

unique. An
transformed object expression which may contain asterisks can be

into metacode by using the function <~ex> defined by:

<~ *el> ...
<~ sael> ..
<~ (el)e2>
<~ > ..

*V <~ e 1>
sa <~el>

.. (<~ el>)

The inverse function <0 ex> is defined correspondingly:

<ll*Ve 1> ..
<ilsae 1> ..
<ace 1)e2>
<il> ..

* <Ue 1>
sa <Ue 1>

.. (<Ue 1 >) <Ue 2 >

We introduce now a machine <stepu(ep)ea> ("step-universal"),
which simulates one step of the Refal machine. If P is a process
loaded into the program field of the Refal machine, and A is a
process expression put into its view-field, then the process
<stepu(tX)tA> is always finite and its result is the metacode of
the expression to be found in the view-field after the Refal
machine has made exactly one step. Using the stepu machine we can
define the actu machine ("activate-universal"), which simulates
fully the operation of the Refal machine, as if activating the
metacode representation tA of a process A into the process it
self. Using repeatedly the stepu machine, the actu machine passes
over from the current state of the view-field to the next. If a

2-14

Refal machine loaded as above generates a finite process then the
process <actu(tP)tAl 1s also f1nite and produces the same result
but in the metacode; otherwise it is infinite. Machines stepu and
2ctu can be defined in Refal; we shall not list theit defini

tions, though.

Whenever we run the Refal machine, there is a certain prog
ram P in its memory (program field). The machines we actually
need and shall use in the following simulate the Refal machine
loaded with a specific program P, namely the one that includes
all the definitions we have done up to date, and only them. These
machines are step and act:

Thus
the
and

<step ex>
<act ex>

~ <stepu(tP)ex>
~ <actu(tP)ex>

<step tA> will produce the metacode of the next stage
view-field after A under the current cumulative program

<acttA> will activate A under the same program.

6.Searches and generators

of
P,

We shall deal with processes of two kinds: searches, and
generators.

An expression is passive if it includes no activation brac
kets. A search is a process each stage of which is either of the
form <£> or passive. The latter case takes place, obviously, at
the end of a finite search. The terminal stage of a search will
be referred to as its result. An infinite search produces no
result. Processes <~A> and <B***> with~ and 8 defined as above
are searches, although these are not very edifying examples. A
search, as the name suggests, is a process which you would typic
ally initiate in order to find (construct) a certain object: the
result of the search.

A generator is a process each stage of which is either L<£>

or L, where Lis a list of object expressions. Recall that a list
is an expression of the form

where n can be any number, including zero (an empty list). The

2-15

subexpressions £ 1 etc. which appear in the view-field at any
stage of a process-generator G are said to be generated by G. A
trivial example of a generator is simply a list of object expres
sions, e.g. (A)(B)(C), which generates symbols A, B, and C, and
stops the Refal machine before it has a chance to make a single
step. We create generators in order to generate sets. A finite
set can be represented by an object: the list of its members. An
infinite set can be defined only through an actual process. For
example, we can construct a generator of all natural numbers
represented in the unary form as above by defining the DQID ma
chine as follows:

The process <DYID 9> is a generator of all natural numbers. The
process <nYID N> generates the set of all numbers that are greater
then, or equal toN.

The process <+(91)911> is neither a search, nor a generator.
Machines like + , which gradually build up the result in the
view~field, are very convenient when programming in Refal, but in
the part of our theory that interprets logic and axiomatic mathe
matics it is easier to manipulate processes if we restrict our
selves to.searches and generators. This does not lead to any loss
of . expressive power of the language. Every machine which is
constructed to compute something can be slightly modified so that
it initiates a search for the desired result. To achieve that, it
is sufficient to replace in the program every right side R which
does not start and end with an activation bracket and is not
passive, by <out R>, where the function out is defined by:

Thus the definition of the addition of unary numbers will become:

<+(e 1)9>
<+(e 1)e 21>

ez
<out<+(e 1)e 2>1>

Now the process of computing 91+911 is a search:

<+(91)911>
<out<+(91)91>1>
<out<out<+(91)9>1>1>
<out<out 911>1>

2-16

<out 0111>
0111

Parallel execution of processes plays an important role in
engineering and in our mental pictures of the world. It takes a
prominent place in our theory. We can simulate parallel execution
of processes in our sequential Refal machine, and we shall define
the necessary machines below. However, definitions in Refal will
be much more readable if we have the simulation "on the hardware
level" so to say, i.e. if we somewhat expand the abilities of the
Refal machine. Therefore, in addition to the familiar form of a
Refal sentence:

L ~ R

we allow the following two sentential forms:

Rt

(s) L ~ sl
I Rz

and

Rt

(g) L ~ gl
I Rz

When a sentence of the form (s) is applied, the Refal ma
chine creates two auxilliary view-fields. It puts R 1 into one of
them, and R2 into the other (after the substitution of values for
variables as usual). Then it runs processes R1 and R2 in paral
lel. The moment any of them comes to an end, the Refal machine
takes its result, substitutes it for the expression under concre
tization (recognized as L) in the original view-field, and re
sumes the running of the process in it.

When a sentence of the form (g) is applied, ·the Refal
chine, again, creates two auxiliary view-fields and runs
simultaneously. The interaction between branches, however,
organized differently in this case. Each time that any of

rna
them

is
the

branches produces a list of members, this list is extracted from
the branch and placed at the left edge of the projection of L in
the main process. The execution of the branch processes goes on
as far as at least one of the branches is active. The effect is
that every member produced by R1 or R2 will be produced by the

2-17

generator which used sentence (g).

The Refal machine endowed with the described abilities may
be called "parallelistic". It can execute searches and set gene
rations in parallel. Since each of the branches R 1 and R 2 can
again use a sentence of the form (s) or (g) the parallelistic
Refal machine can generate a potentially infinite tree of paral
lel branches.

As mentioned before, the parallelistic Refal machine can be
easily simulated on the regular (sequential) Refal machine. For
that, every sentence of the form (s) must be replaced by

and every sentence of the form (g) must be replaced by

The machines pars (parallel searches) and ~ (parallel genera
tor~) are defined as follows:

<pars(*(e 1))(e 2)
<pars(ep)(e 2)>

~ <pars(e 2)(<step*(e 1)>)>
<iiep>

<~((em)el)(e2) ~

<~(*(el))(e2)> ~

<~()(e2)> ~ <act

(<iiem>) <~(e 1)(e 2)>

<~(e2)(<step*(e 1)>)>

e2>

We can think of all our models as taking place in the se
quential Refal machine and see (s) and (g) as a convenient repre
sentation of (s') and (g').

2-18

C H A P T e R 3

Propositons

1. Models,Selections,Predictions

We proceed now to examine the intuitive notion of a model.
Acccording to the philosophy outlined in Chapter l, a mathema
tical proposition has a meaning to the extent it produces some
models of reality. Now we want to formalize the notion of a model
and find something like minimal units of semantics, some elemen
tary propositions, combining which we could construct every mean
ingful proposition.

Informally, we say that the process B models the process A
if there is some relation or similarity between the stages of B
and A. It is not necessary that every stage of A or B be related
to some stage of the other process; generally, we select some
stages in B which should be somehow put into correspondence with
some stages selected from A. The notion of a relation or a cor
respondence between the stages of two processes will be discussed
and formalized a bit later. First, let us deal with the general
structure of a model.

Marking some of the stages of a process as selected for a
certain purpose creates what we shall call a selection. In
Fig.3.1, the stages of process Bat moments of time t= 2,3,6,8,
etc. make up a selection; so do stages t=l.~,6.ll, etc. of A. The
selected stages will be called the members of the selection; the
process whose stages are selected will be referred to as the
underlying process.

The concept of a selection is a better approximation to our
perception of the world than the concept of a discrete process.
Non-linguistic processes may be continuous; representing them as
discrete with a certain choice of time interval includes a good
deal of arbitrariness. But speaking of a selection we must not
necessarily specify how many stages of the underlying process are
left between its neighboring members. The criterion for selecting
a stage can use the current configuration of the process and not
the sequential number of that stage in a discrete representation

3-1

ot the process. Suppose, tor lll!.tance, that we write down the
readings of a measuring instrument at certain moments of time.
This is a selection, and it is the same no matter what t1me
interval is chosen to represent the underlying process as dis
crete.

Unlike processes, which are essentially infinite because
time never stops, selections may be genuinely finite. If after a
certain stage of a process all the subsequent stages do not
satisfy the criterion of a selection, there will be no more
members of this selection: it is finite. The notion of finiteness
when applied to a selection is very different from when it is
applied to a search. The finiteness of a search can be directly
verified, while the finiteness of a selection cannot. Verifying
that a search is finite, we discover a stage which satisfies the
search (is selected), and do not care what happens to the process
afterwards. To establish that a selection is finite, we have to
prove that after a certain stage, no selected stage will ever
appear. Speaking about finite searches and processes defined in
Refal, we identify the end with the appearance of a passive
stage. From the definition of the Refal machine it follows that
once a passive stage appears in the view-field, it will never
change. But we cannot verify this directly, of course. So, the
finiteness of a Refal process can be seen both as the finiteness
of a search for a passive stage, and as the finiteness of a
selection with active stages selected. In the first case it is
directly verifiable; in the second case we must add a little bit
of belief.

A selection can be seen as a sequence of searches, which
lead to the consecutive selected stages of the underlying pro
cess. One of them may be infinite, in which case it is the last
one. A selection is finite if and only if the number of
constituent searches is finite and the last search is infinite.

The assertion that the process Bin Fig.3.1 models the
process A means that on each of the processes a selection is
defined and the members of these selections with the same sequen
tial numbers are in a certain relation, which is shown by dashes
in Fig.3.1. (It is not necessary, though, that the relation is
the same for all pairs). This assertion can be split into as many
constituent parts as there are pairs of selected stages.

Consider the first part of this assertion, namely that the
first members of the two selections are in a certain relation. We

3-2

shall call such an assertion a prediction. In a typical case, one
of the processes, say A, will be the subject of the assertion,
while the other, i.e. B, will be created (defined) to formulate
the assertion (to serve as a model of A). Process B is always
linguistic, by the definition of language. Process A may be
either natural, like planet movement, chemical reaction in blood,
etc., or linguistic, like multiplication of numbers; in the
former case the assertion belongs to the natural sciences, in the
latter -- to mathematics.

The meaning of an assertion is the way we use it as a model
of reality. It is as follows. We first activate linguistic pro
cess B and run it until the first selected stage is reached; in
other words we run the first constituent search of the selection
based on B. Let us denote it 8 1 . This would usually be referred
to as a computation or logical derivation, or whatever. The
search 8 1 comes, presumably, to an end, producing a certain
resulting expression Rb. Now we predict (which means that we take
it as the basis for making decisions) that the process A will
come to a selected stage, i.e. the first constituent search A1

will stop, with a result Ra which will stay in a certain relation
to Rb (e.g., will be measured by the number B). This is essenti
ally the same definition of a predicting model as given in Chap
ter 1 and illustrated in Fig.l.2.

We must now formalize the notion of a relation between
objects. It is here where the difference between natural sciences
and mathematics manifests itself. In natural sciences the sub
jects of proposition, the process A, is non-linguistic. To define
how its stages, non-linguistic objects, are related to linguistic
objects of B, we must necessarily use procedures which are not
purely linguistic. They can be referred to as procedures of
measurement. Using this term we generalize the usual concept of
measurement which results in a number. It will now
procedure which can be applied to a non-linguistic
produce a lingusitic object of a theory.

denote
object

any
and

In mathematics, the process A is linguistic; therefore the
relation between its stages and those of the model B which makes
a proposition meaningful can be defined by a linguistic machine.
Consequently, the semantics of mathematics can be completely
formalized within the linguistic sub-universe.

3-3

We assume that a relation P between linguistic objects is
defined if a testing device <ptex)ey> is constructed, which for
every pair ex,ey generates a process (a search, to be more
exact), which is finite if and only if e and e are in relation
P. By a device we mean anything that help~ to orlginate a process
when given a number of objects as input. A device is essentially
a parameterized process, and we will often use the term process
when referring to an expression with free variables, instead of
using the term device. If we cannot define such a device then we
do not know what we are speaking about; this is our fundamental
philosophical principle.

There are a lot of propositions in mathematics which express
relations between linguistic objects and are thought of as exact
ly and formally defined by mathematicians, but do not qualify
according to our definition if a testing device is understood to
be a Turing machine or its equivalent. (As an example, take a set
of numbers S which is not recursively enumerable, and consider
the property of a number n to be an element of S: n el S. There
exists no Turing machine which stops if and only if n ~ S). Our
definition of a device, however, is less restrictive. Our theory
all~ws reference to special real-time processes, which cannot be
modeled on a Turing machine. Their nature and role in our theory
will be discussed later. The general principle that the meaning
of every proposition must be expressed in terms of real
processes, and not by invoking the idea of actual infinity,
remains universally valid.

Note that we made the weakest possible assumption about the
testing process. We do not assume that it always stops and ans
wers 'yes' or 'no' to the question of whether the arguments are
in a given relation; it does not implement a total recursive
predicate. Our testing process implements what is often called a
semi-predicate: it can say 'yes'. but instead of saying 'no',
simply goes on and on without ever stopping. Using only testing
machines we can express everything that can be expressed through
total recursive predicates. Indeed, suppose we want to imitate a
machine <o(ex)ey> which always stops and produces T or F as the
answer. We can construct a testing machine:

<Pt(e)e >
<loopf T~
<loop£ F> <loop£ F>

which stops if and only if o produces T. Analogously we define a

3-4

testing machine Pf which stops if and only if o produces F.
Running the two testing machines in parallel will allow us to do
anything that can be done by running o. The converse statement,
that whatever can be done with semi-predicates can also be done
with total recursive predicates, would not be true, of course.
Mathematics knows a lot of relations which can be defined by a
semi-predicate, but not by a total recursive predicate (non
decidable but recursively enumerable sets). The semi-predicate is
a smaller semantic unit than the recursive predicate: "one half"
of it.

Return to the prediction concept. To characterize a predic
tion we must define two searches: <Fb> and <Fa>, and one relation
<p(e)e >. However, it is a certain combined usage of the three
thatxco~stitutes the meaning of the prediction. The prediction we
are speaking of is the assertion that the process

is finite. Indeed, according to the definition of the Refal
machine, when we put C into the view-field the first subexpres
sion to become active will be <FbtB>. This process will be ini
tiated, and when it stops (if it does) the other search, <FatA>,
will be initiated. When and if it comes to an end, the P process
will be run over the results of the two former processes. The
prediction as we defined it above asserts that there is a selec
ted stage to occur in process A and in process B, and that these
stages are in the relation P. This is equivalent to the statement
that process C is finite.

The statement of the finiteness of the process C still fits
our general definition of prediction, but it is a prediction of a
special kind. Here the process being modeled (grammatical sub
ject) is C; the modeling process (grammatical attribute) is any
process known for sure to be finite, e.g., simply the empty
expression []; and the testing machine (grammatical 'is') always
says yes no matter what the arguments are, e.g. as defined by:

As we have seen, every prediction can be represented as a predic
tion of this special kind: that a given process (search) is
finite. This will be our elementary semantic unit, the quantum of
semantics. When speaking of predictions further on we shall refer

3-5

to these special predictions. We introduce a notation for them.
The statement that a process A is finite will be represented by
the object expression

tA!

which is read: "A is finite".

Examples. The statement that a process <aAAA> is finite is
the prediction *(aAAA)!. If the a-machine is defined as in Chap
ter 2 by

then this is a false prediction, because this process is infi
nite. With the machine 8 defined as in Chapter 2, the process
<B***> is finite. The corresponding prediction:

* (B*V*V*V) !

is true. Note that the asterisk * turns into *V in the metacode.
Because of this it is not advisable to use the asterisk in any
context where another symbol can be used instead. The use of
asterisk should be reserved for the representation of free vari
ables and activation brackets in metacode, where the asterisk's
unique feature plays a useful role: it provides for the unique
ness of the inverse transformation.

2. Propositions

A process A' which starts with some, but not the first,
stage of a process A is a descendant of A. When we use a model,
like the one in Fig.3.1, we first obtain a prediction from it, as
described above. After the completion of the searches based on
the processes Band A we have a descendant of B (which in Fig.3.1
starts with the stage t=2) and a descendant of A (which starts
with t=l). These descendants are again in the relation of model
ling, which gives us a new prediction, and so on. We see that a
model is, essentially, a generator of predtcttons.

If a model generates only a finite set of predictions, it
can be represented by a list of these predictions. In the general
case, when the set of predictions may be infinite, we have to

3-6

represent the model by the generator itself. To become an object
eMpression the generator must be metacoded. If the simplest form
of a meaningful mathematical proposition is a prediction, a more
general kind is a generator of predictions. Recall that we repre
sent generators by processes of special kind defined in Refal. If
G is a Refal process generating only predictions, the object
eKpression tG represents a proposition whose meaning, intuitive
ly, is the set of all predictions produced by G. Syntactically,
we easily distinguish prediction-propositions from generator
propositions because the former always end with '!', while the
latter, if not empty, always end with a right parenthesis. The
ability to distinguish between object eKpressions representing
predictions and those representing generators is, of course,
absolutely essential, because their use (and therefore meaning)
is different. Predictions are, so to say, ready for use. To use a
generator we must run it and use the predictions it produces.

Our first eKample of a generator proposition is the state
ment that a given process is infinite. What is its meaning? Can
it be understood as a generator of predictions?

Yes, to state that a process A is infinite is to state
that:
(l) the initial stage A is not passive (includes at least one
pair of activation brackets);
(2) the neKt stage after the initial stage is not passive;
(3) the next stage after the neKt stage after the initial stage
is not passive;
(4) the next stage after the neKt stage after the neKt stage
after the initial ...
and so on infinitely. Every one of these statements can be forma
lized as a prediction by defining a process which checks whether
a given process expression is not passive and stating that the
process when applied to a given stage of A is finite. Thus the
infinity of a certain process is an infinite generator of predic
tions.

The infinity model for a process A is shown in Fig.3.2. The
attribute process B is a trivial process each stage of which is
the empty expression. The relation P is the property npas of a
process stage to be not passive. The necessary definitions are:

3-7

ttR <p()ex> <npas ex >

11 <npas *(ex)ey.>

tt2 <npa.§. s.e > .. (.!:!.QE__§. ex) t X
13 <npas (ex)ey> ', D..Qas ex ey>
14 <npas e) .. <npas ex> X

Let us see how these definitions work. The function P simply
discards the first argument (which is always empty) and calls
function npas, 'non-passive'. Sentence 11 is applied when the
argument starts with an activation bracket, which in the metacode
is represented by the asterisk and a left parenthesis. In this
case the npas machine stops, because the argument is non-passive.
Sentences i2 and i3 define the process of scanning the argument
from left to right until the combination recognized by il is met
(if it is). Sentence i2 is applied when either the first symbol
in the argument is not asterisk, or it is an asterisk but is not
followed by a left parenthesis. This symbol is eliminated and
function npas is applied to the remainder. Sentence i3 eliminates
those parentheses (structure brackets) which in the metacode
rep~~sent themselves, and not activation brackets. If the whole
argument gets destroyed by i2 and i3 without finding an activa
tion bracket, then sentence i4 will be applied, which results in
an infinite process <npas>. Thus <npas E> is finite if and only
if · the expression E represents in the metacode a non-passive
expression.

To create generators representing infinity models such as in
Fig.3.2, we want a machine which for any given argument tA, where
A is a search, will generate the infinite set of predictions as
discussed above. Let us see what these predictions should be. The
initial stage is A. The process checking that A is non-passive is
<npas tA>. The prediction that this process is finite is its
metacode followed by '!', i.e.

*(npas ttA)!

If we denote by A' the stage immediately following A, its meta
code tA' can be computed as <step tA>, its double metacode ttA'
is *(step ttA). The prediction that A' is passive is obtained
from the above expression by substituting ttA' for ttA. It is:

*(npas *(step ttA))!

3-8

The next prediction must be·

*(~as *(step *(step ttA)))!

etc.

We give the name inf to the machine we want. It can be
defined as follows:

Now the proposition that a given process A is infinite is the
me taco de o f the gene r at or < i n f 1 t A) , i . e . * (i n f t t t A) .

Because of the importance and frequent use of the infinity
model we introduce a special notation for it. The proposition
that a process A is infinite will be represented by the object
expression tA?, and in the following we shall treat such proposi
tions, together with predictions, as certain elementary units,
atoms. Thus, propositions tA! and tA? will be called atomic. One
should bear in mind, however, that while tA! is a prediction, tA?

is a generator of predictions, which can also be written as
*(inf ttA).

Example. The statement that the process <~AAA> is infinite is
*(~AAA)?, or *(inf *V(~AAA)).

We came close to a general definition of proposition. We
have only to make one last generalization. It is not necessary
that a generator produce only predictions ready for use. It may
also produce generators, which in their turn produce predictions
and generators, which produce predictions and ... etc. We come to
the following inductive definition:

(a) a prediction is a proposition;
(b) the metacode of a generator which generates only propositions
is a proposition.

Thus a proposition may produce a whole hierarchy of proposi
tions, but they musl be such that ultimately they produce predic
tions. A formal object has a meaning as a proposition only to the
extent we know how to make it produce predictions. If there is no
way to obtain predictions from an object, it has no meaning as a
proposition. Atomic propositions constitute the ground level of

3-9

the hierarchy of propositions. We recognize them syntactically by
the fact that they end with a symbol 1 ! I or 1 7 1 If a proposition
does not end with one of these it should be treated as the
metacode of a machine which is still to be run to produce lower
level propositions.

Examples. Consider the following proposition of the ordinary
arithmetic:

2+3 = 5

We want to represent this as a formal proposition of our theory.
We shall use the unary number system and the adding machine + as
defined in Section 2.4. We shall also need the tester (semi
predicate) of equality. We define it in the format <=(e 1)(e 2)> by
these sentences:

<=(9)(9)> ~

<=(ex1)(ey1)>
<=e > ~ <=e > X X

Proposition (1) states that the process

<=(<+(911)9111>)(911111)>

is finite. Hence we have

(=((+(911)9111))(911111))!

This is a prediction.

Consider the proposition:

(Ax)(x+0 = x)

where quantification is over all whole numbers. This is a genera
tor which produces predictions

0+0 = 9
1+0 = 1

2+0 = 2

etc. It is not difficult to define such a generator in Refa1, and

3-19

the necessary machines will be constructed in due course.

An existentially quantified formula like

(Ex)(5+x = 8)

will be interpreted in our theory as the finiteness of the pro
cess which searches for the value of x satisfying the equation.v

Our semantic definition of proposition leads to a natural
interpretation of logical implication. A proposition P implies

1

a proposition P2 if P2 is among the propositions generated by P 1 •

This definition is the most exact formalization of the intuitive
concept of logical implication, according to which if P2 is
implied by P 1 , it is already somehow contained by P 1 , included in
it. Logicians distinguish two kinds of implication: logical, or
strict, implication, and material implication. Material implica
tion, unlike logical one, can connect two arbitrary propositions
which in no way are related by their meaning. It establishes the
connection by force, so to say, announcing it as an empirical
fact, a new law of nature. Using ·~· to symbolize implication, we
can declare that

even
elude
after

(x is an apple) ~ (x is edible)

though the definition of the concept of apple may
that it is necessarily edible (there are inedible

all). Compare this with the following implication:

(x is an apple) ~ (x is a fruit)

not in
apples,

This proposition, like the preceding one, can be put foreward as
a material implication, but it is also true as a logical implica
tion, because being a fruit is a part of being an apple. In
Kant's terminology, logical implication forms an analytic judge
ment, while material implication forms a synthetic judgement.

In our theory we formalize both logical and material
implication and one can see how different these concepts are (we
shall discuss material implication in the next section). In
contrast, the conventional mathematical logic has only one impli
cation: material. The closest thing to logical implication that
mathematical logic has is the concept of deducibility: Q is
deducible from P if the (material) implication P~Q is a tautolo-

3-ll

gy. The difference between the two kinds of implications becomes
here a meta-concept referring to the way we deal with proposi
tions, not a feature of the propositions themselves, as we under
stand it intuitively. This reflects, of course, the purely syn
tactic (formal) nature of mathematical (formal) logic, and con
stitutes, in our view, its main deficiency. Formal logic has
nothing to do with the meaning of the constructs it introduces.
For instance, when the connective and is defined, it is nowhere
to be seen that (P and Q) logically implies P, so we have to
state it as a material implication. In our theory, as we shall
see later, the definition of the and connective formalizes our
intuitive understanding of it, its meaning. Accordingly, we do
not have to postulate that (P and Q) logically implies P, we
prove it.

We shall define a machine which tests that one proposition
logically implies another. But first we define a generator which
we call int, for 'interpretation'. It takes a proposition and if
it is atomic, simply gives it out. If it is non-atomic, the int
machine still gives it out but then runs it as a generator and
treats each emerging proposition in the same manner as the origi
nal proposition, i.e. outputs it and goes on running it if it is
non-atomic. Therefore, <int P> produces all atomic and non-atomic
proposit~ons which can be produced by P directly or hierarchical
ly,, i.e. through the intermediate levels of the hierarchy. Natu
rally, such a machine must run the emerging set generators in
parallel, otherwise the first infinite generator will prevent it
from running other generators. The definition of tnt follows:

<int ers(!?)i> ~ (ersi)
<int *(eg)> ~ <int <step *(eg)>>
<int (ers(!?)i)ex> ~ (<}ier>si)<int ex>

l<int <il*V(eg)>>
<int (*V(eg))ex> ~ gl

l<int ex>

If P is an atomic proposition, the int machine simply out
puts this proposition. If P is non-atomic, then <int P> is a
generator which produces all propositions that can be hierarchi
cally produced starting from P except P itself. To include P into
the set produced, we simply call <int(tP)>. Indeed, (tP) is a
proposition which does not end with '!' or '?', so it is treated
as a generator. This means that it is demetacoded and placed into

3-12

the view-field of the Refal machine. The result is (P). It is a
generator which in no steps produces proposition P. Generally, if
we have propositions

we can unite them into one proposition:

which is a generator producing exactly the list of the original
propositions.

Compare
(2) *(int (ttP))

and

(3) tP

The ultimate volume of propositions which can be produced star
ting from (2) and from (3) is the same, but (2) produces them all
at once, while (3) if simply run produces only the top level of
the hierarchy.

Using the proposition interpretation machine int we define
the implication machine imp such that the process

tests whether (i.e. end if and only if) Q is among the proposi
tions that can be hierarchically produced starting from P.(The
symbol ·~· in the format of imp is just for readability). The
definition of imp is:

It uses an auxiliary function elm, 'element-metacode', such that
<elm(ep)of eg> tests whether ep is the metacode of one of the
members of the set generated by e 9 (which should be the metacode
of a set generator):

<elm(ep)of *(e)> ~

<elm(ep)Qf (ep~ex> ~
<elm(ep)21 <step *(eg)>>

ep

3-13

<elmtep)Qi (eq)ex> ~ <~lm(ep)Qi

<elm(ep)of > ~ <elrn(ep)of >
e > X

The statement that the proposition P logically implies the
proposition Q is itself a proposition of our theory, namely:

*(imp(tP)~tQ)!

l. KnoNledqe

The cornerstone of our theory is the principle that a mathe
matical proposition has a meaning only if it can be construed as
a (hierarchical) generator of predictions. Until now we have been
able to do this easily for various types of propositions. Now we
are going to consider two examples of propositions which will
show that in order to keep to this principle we have to introduce
in our theory a new concept, which to the best of the author's
knowledge has never before become part of formal mathematics.
This is the concept of human knowledge.

The first example deals with selections. We saw that the
finiteness and the infiniteness of a search find their places in
our theory, the former being the quantum of semantics, a predic
tion, and the latter a generator of predictions. What about the
finiteness and the infiniteness of a selection?

To give specific substance to our discussion and relate it
to the matters familiar from formal logic, we shall consider
those selections which result from the natural constructive in
terpretation of quantifiers. Let P(x,y) be a total recursive
predicate with the set of natural numbers as its domain, i.e. a
linguistic machine which initiates a finite process with arbitra
ry numeric arguments x,y and produces either T or F. Let us see
how all possible quantifications of this predicate can be inter
preted in terms of processes.

Consider the universal quantification:

(1) (Ax)P(x)

To verify this proposition we construct the selection shown in
Fig.3.3. We compute P(l), P(2), ... etc. and select the end of
each computation. If it is F, we stop the process; if it is T, we

3-14

go on. Proposition (l) is equivalent to the assertion that this
selection is infinite. At the same time, (1) is an infinite
genP.rator of propositions P(x) with consecutive numbers x. Each
proposition P(x) states that a certain search is finite and
produces T, which is easy to represent as a legitimate proposi
tion of our theory.

Generalizing, we can see that the statement of the infinite
ness of a selection can always be interpreted as an infinite
generator of predictions. At any stage of the underlying process
we predict that the current search for a selected stage is fi
nite. These predictions are generated as the process goes on, as
in the case of the infiniteness of a process.

To interpret the existential quantification:

(2) (Ex)P(x)

we again put computations P(l),P(2), etc. in a row, but this time
we simply look for a stage where the result of P(x) is T. Propo
sition (2) is equivalent to the assertion that the search in
Fig.3.4 is finite. It is a prediction.

Quantifying the variables x and y by identical
does not give anything new, because we can consider
(x,y) as one object. Consider mixed quantifications.

To interpret the formula

(3) (Ax)(Ey)P(x,y)

we notice that since the predicate

P'(x) = (Ey)P(x,y)

quantifiers
the pair

represents, as we have just established, the finiteness of a
search, we can put a universal quantifier on it, as in (1). So
proposition (3) will again be the infiniteness of a selection. It
is shown in Fig.3.5.

So far so good. Let us now turn to the interpretation of the
formula

(4) (Ex)(Ay)P(x,y)

3-15

By analogy with Fig.3.~. we easily construct a selection which
represents the true-false test of this formula; it is shown in
Fig.3.6. The selected stages here are those where the computation
of the predicate terminates with the value F. We are looking for
such a value n of x that the predicate P(n,y) with any y gives
the answer T, i.e. the search for F is infinite. Formula (4) is
then interpreted as the finiteness of the selection in Fig.3.6.
Indeed, if (4) is true, then looking for the y's for which P(x,y)
is false with consecutive x's we necessarily come to a stage when
there are no such y's; thus the selection is finite.

It is here that a surprise is in store for us. We saw that
the assertion of the infiniteness of a selection is a generator
of predictions. We expect that the assertion of the finiteness of
a selection will also be a meaningful proposition in terms of our
theory, i.e. a generator of predictions, of a different kind
maybe. But it is not.

The statement that a selection is infinite bears some infor
mation about the underlying process. It says that whatever the
stage of the process is, there will be a stage later which is
recognized as selected. The statement that a selection has no
members, or exactly one, or two, or any finite number of members,
is also informative and can be interpreted as a generator of
predictions. But a statement that a selection is simply finite
bears no information which can be used to make predictions. Even
with this statement known to be true, whatever the current stage
of the underlying process is a selected stage may or may not
follow. It cannot be interpreted as a prediction, nor as a
process which can ultimately produce predictions. Therefore, we
must declare it meaningless.

Yet we cannot deny that intuitively we assign some meaning
to the finiteness of a selection and to the equivalent quantified
formulas of the conventional formal logic. This meaning, however,
includes an element which is left out in formal logic. It is
knowledge. If we think into what we actually mean when stating
that a selection is finite, we shall discover the following
mental picture. There is an underlying process, and we start
running it. We are looking for a selected stage, and we do not
know whether there is one ahead or not. One moment we may dis
cover a selected stage. Then we pass it and go on looking for the
next one. Again, we do not know whether there will be one or not,

3-16

so we run the process and check stages. But sooner or later we
come to a stage when we suddenly -- one way or another -- get the

knowledge that there will be no more selected stages, i.e. the
current search will be infinite. Without this "enlightenment",
this phenomenon of getting a knowledge, the assertion of the
finiteness of a selection is impossible to understand. It is
tmplictte in our intuitive notion of a finite selection. There
fore, in a formal theory it should appear explicitely.

In terms of quantifiers, we can interpret a proposition of
the form

(Ex)(search S(x) is finite)

by running searches son, S(l), S(2), etc. in parallel. This
process will stop if and only if there is at least one value of x
for which S(x) is finite. If, however, an existential quantifier
is put on a proposition-generator P(x) which produces an infinite
set of predictions, then to find the value of x in question we
must inevitably employ some way of establishing the truth of
P(x), which makes this way a part, though hidden, of the seman
tics of our assertion. In other words, when we say

(Ex)P(x)

we actually mean

(Ex)(we know that P(x) is true)

whether or not we are prepared to admit it in open.

The second example of a proposition where a reference to
human knowledge becomes inevitable is material implication. As
discussed above, we can impose an if-then connection on any pair
of propositions. We shall use the notation

for the material implication involving a pair P and Q, where P
will be referred to as the antecedent, and Q the consequent.
How can we formalize this concept?

Consider first the case where the antecedent of an implica
tion is a prediction: 'if the process A is finite then proposi-

3-17

tion P'. There is an obvious way to interpret this proposition as
a generator of predictions: we run the search A, and when/if it
stops, produce proposition P. We define the if machine as fol
lows:

<i!.(ea!)then ep>
<second(e 1)(ez)>

<second(<act ea>)(ep)>
(e z)

This machine activates the process ea, and when and if it
ends, produces (ep) as the result. The auxiliary function second
is needed to discard the first element of a list and output the
second element. The parentheses in the final result are necessary
because a proposition-generator, according to our
produces a list of propositions (which in this case
one member). If the process ea is infinite, the if
go on infinitely, producing no result.

convention,
consists of
machine will

So, if tA! is a prediction and Pan arbitrary proposition,
then the material implication of the latter by the former is

t<if(tA)!then P> = *(.if(ttA)!then tP)

Now let the antecedent be a prediction generator, for in
stance an infinity model. What do we mean when we say "if the
process A is infinite then proposition P"?

As in the above cases, there is a hidden reference here to a
process which establishes the infiniteness of A. What we actually
mean is "if we can know that A is infinite then P". In our
intuitive understanding of this statement there is no exact
definiton of the process through which we get this knowledge.
This is no surprise, of course; intuitive understanding is infor
mal. But the vagueness and inexactness of this element of the
intuitive picture does not mean that it does not exist or that we
should ignore it. We should acknowledge the existence of this
element and formalize it, make it exact, one way or another. The
first question we have to answer is what is knowledge? How can we
formalize this concept?

We define a knowledge as a proposition which is believed to
be true. This definition reflects our subjective attitude towards
knowledge and the way we use it. We use propositions believed to
be true in order to make predictions, and we believe in these
predictions, i.e. plan our actions under the assumption that

3-18

actual processes of the world will conform to the predictions.
The question whether what we call our knowledge is actually true
is left to an observer (if any) who watches us from outside. The
concept of truth is inseparable from an observer, like some
fundamental concepts of modern physics. The truth of a proposi
tion is somebody's readiness to plan his actions in accordance
with the predictions implied by it. In the absence of this 'some
body', the concept of truth becomes meaningless.

Propositions can be specific or general. Specific proposi
tions concern definite processes at definite historic times. Such
a proposition can be checked only a posteriory, when it becomes
useless, because it will never be applicable any more. With
specific propositions, you are given a chance to verify them only
after the question whether you should believe in them becomes
meaningless. The question usually posed would be whether one
should have believed in the proposition before. This question has
a pragmatic meaning only if that specific proposition was derived
from a certain general proposition; the question then is trans
lated into whether one should believe in this general proposi
tion.

General propositions do not specify a historic time and
place of the processes in question, but only the general condi
tions under which they are applicable. Mathematical propositions
are general propositions concerning linguistic processes. They
can be partially checked when the question to believe or not to
believe is still meaningful. We can verify that a formal predic
tion is true by initiating the process which it is about and
checking that it is, in fact, finite. But a proposition-generator
may generate an unending sequence of predictions, and we cannot
verify them all. Our readiness to rely on a proposition as true
is based, in the last analysis, on a belief, and not on an
empirically established truth. We do not discuss at this time the
philosophical question of how this belief is arrived at: whether
through our experience, or because of the _structure of our brain,
or as a reflection of a 'higher order' reality. We are exploring
the possible ways to formalize the concept of knowledge, and we
come to the conclusion that the only thing we can say about our
knowledge is that 'we believe because we believe'. Then the only
thing we can do in our theory is simply introduce a symbol to
denote the sum total of mathematical propositions believed to be
true by humanity. We shall use the capital Greek letter r (for
'gnosis', knowledge) as such a symbol. We define the machine:

3-19

which tries to deduce its argument from the knowledge r. If <~P>,

where P is a proposition, is finite, then Pis true because it is
implied by human knowledge. If it is infinite, then we can say
nothing.

By introducing a notation for human knowledge we do not
solve all our problems, however. The symbol r is a metasymbol for
the Refal machine; it stands for some expression which we do not
(and hardly can) write out explicitely. But here is a problem:
the human knowledge does not stay the same; it is developing,
growing. Essentially, it is a process, not just an object expres
sion. Then how shall we interpret the concept of truth with
respect to this ever changing knowledge?

Two answers to this question are possible, both consistent
if kept firmly to. As we shall see later, the first answer leads
to the intuitionist logic, while the second to the classical.

Intuitionist logic. Since the meaning of propositions depends on
r, we consider the meaning definite only if a definite r is
indicated. We can think of r as the sum total of human knowledge
at the present time. Therefore, (yP> will be finite and P accep
ted as true, only if we actually performed the proof process
based on a definite r. Although r changes as the human knowledge
is growing, at any particular moment in time r should be treated
as a definite fixed expression.

Classical logic. When we speak,e.g., of existential quantifica
tion, we do not say "such an x that we can prove P(x)", we say
"such an x that P(x) is actually true", even though we may not be
able to find this x on the basis of our present knowledge. Thus
we refer not to our present knowledge, but to an imagined com
plete knowledge, which implies all the propositions that we may
find true now or at any future time. From Goedel's theorem we
know that no definite expression r can represent this complete
knowledge. We can see r only as an unreachable limit of the
expanding human knowledge, or as the expanding human knowledge
itself (a process), because its every stage includes the know
ledge which existed at all the past stages (a cumulative pro
cess) .

3-2~

It is pretty obvious that a consistent theory can be based
on the intuitionist viewpoint. Our main effort will be to show
how classical logic and set theory based on it work, and to prove
their consistency. In this chapter, however, we shall simply use
the function y as a universal way to establish the truth of a
proposition, without discussing its nature or how it could have
come into existence. This is exactly what we are doing intuitive
ly when we turn over mathematical propositions in our imagination
and believe that we understand them.

4. Logical connectives and quantifiers

Now we are going to interpret the means logic has for the
construction of composite propositions: connectives and quanti
fiers.

Let us start with conjunction. To uphold two or more propo
sitions means, obviously, to uphold all the predictions produced
by any of them. So we define the function and with the format
<and L>, where L is a list of propositions:

<and (e 1)e 2 > ~ (e 1) <and e 2 >
<and > ~

If P 1 , P 2 , .•• ,Pn are propositions, then the process

will generate all of them and only them. Its metacode

is
p

z •

our formalization of the conjunction of the propositions
,Pn.

p 1.

Consider two proposition-predictions: S 1 ! and S 2 !. (From
this notation you can see that the metasymbols S 1 and S 2 stand
here for the metacodes of the searches, not for the searches
themselves). The disjunction of these propositions is the state
ment that at least one of the two searches is finite. This is the
same as to say that the process in which S 1 and S 2 are run in
parallel is finite. So we construct the following machine 2£:

3-21

!<act e 1 >
<QL(e 1)(e 2)> ~ sl

l<act e 2 >

Now the disjunction (S 1 or S 2) is formalized as the finiteness of
the process

<or(S)(S)>
- 1 2

that is the prediction

Exercise. Define the generalization of the function or which has
as its argument an arbitrary list of searches.v

Let the operands of a disjunction be the general
tions P 1 and Pi, i.e. possibly prediction generators,
predictions. How do we then interpret the disjunction?

proposi
not just

Well, even when putting the meaning in words we cannot avoid
reference to the process of testing the truth of the constitu-a

ent
This

propositions. We say "at least one of S 1 and S 2 is true".
corresponds to the finiteness of (y P > or (y P > in our

1 z
formalism. Using the QL machine we represent the disjunction as

t<or(t<yP >)(t<yP >)>!
- 1 2

Practice. Convert this expression into strict Refal by elimina
ting metasymbols t.v

If we use the general formula for disjunction, and one of
the operands proves to be a prediction, then a testing process (y
S!>, where s is a search, is used, instead of the search s
itself. As we shall see later, both ways are completely equi-
valent.

The material implication was already discussed in Section 3.
The proposition P~Q of formal logic is represented as

t<ti(P)!then Q>

The property of implication that a false antecedent forms a true
proposition with any consequent shocks everyone who studies rna-

3-22

thematical logic for the first time as contradicting our intui
tion and common sense. Then people get used to it and accept the
usual justification, namely that taking such a proposition as
true we can derive a false p~oposition (by the Modus Ponens rule)
only if we have already derived at least one false proposition,
the antecedent; but then our theory is already false, so we do
not care. Here we clearly see the contradiction between the
purely syntactical, asemantic nature of the conventional mathe
matical logic and our unexpressed expectation that a formal logic
will pick up and codify the essence of different forms of
thought, which is their meaning. In the present theory, an impli
cation with a false premise is not true in the same sense as a
prediction, or a generator producing true predictions can be
true. Neither is it false. It is empty: a generator which pro
duces nothing. This, we believe, is in perfect agreement with our
intuitive expectation.

tion:
To formalize quantifiers we need the function of substitu-

<sub(*svsi~ex):*svsie 1 > ~ ex <sub(*svsi~ex):e 1 >
<sub(ev):s 1 e 2 > ~ s 1 <sub(ev):e 2 >
<sub(ev):(e 1)e 2 > ~ (<sub(ev):e 1 >) <sub(ev):e 2 >
<sub(e):> ~ --- v

The process

where v• is the metcode of a variable, e.g. *EX (we refer to such
expressions as first-level variables), and E and Pare expres
sions, results in the expression obtained from P by substituting
every entry of v• by E.

Using the function sub we define the universally quantifying
machine all as follows:

<all(ev)E(*{eg)):ep> ~ <all(ev)E(<step *(eg)>):ep>
<all(ev)E((em)e 1):ep>

~ <sub(ev~<Uem>):ep> <all(ev)E(e 1):ep>
<all(ev)E():ep> ~

It has the format:

3-23

where V1 is a first-level variable, G is a set generator in
metacode, and P is a propositional form depending on v' (or any
expression which may include V'). The all machine activates the
generator G step by step, substitutes the objects produced by G

for every V1 in P, and produces the resulting expression. For
instance, if <~0> is the generator of all natural numbers, and P

is a propositional form representing in our theory some predicate
P(x) of formal logic, then

is our representation of (Ax)P(x), where x runs over all natural
numbers.

To express existential quantification we define the search
ing machine sch:

<sch(ev)E(*(eg)):ep> 4 <sch(ev)E(<step *Ceg)>):ep>
<sch(ev)E((em)eg):ep>

l<if(<act<sub(e ~e):e >>)!then em> -- --- --- v m p ----
~ sl

l<sch(e)E(e)·e > -- v· g . p
<sch(ev)E() :ep> ~ <sch(ev)E() :ep>

Its format is

where V1 and G have the same meaning as above, and S is a search
in the metacode which may depend on the variable V1 . The sch
machine runs the generator G, substitutes the objects produced
for V1 inS and runs all the resulting searches S in parallel.
The moment any of these searches comes to an end, the sch machine
also stops and outputs the object e with which S is finite as

m
its result.

If a predicate P(x) of formal logic can be represented as P!
in our theory, the quantified proposition (Ex)P(x) will be repre
sented as

3-24

If P(x) corresponds to a general proposition (generator) P, then
we must use the cognitive function ~ to convert it into a search:

How can we interpret negation? One can think of a weak and a
strong interpretation. The weak negation of a proposition P would
be simply the exclusion of P from the current state of knowledge.
We state that we are not sure that all the predictions produced
by P are true, therefore we do not include it in what we call
knowledge. The strong negation of P is the assertion that at
least one of the predictions generated by P contradicts 'the
truth', by which we mean a proposition which we include, or will
some day include, in our knowledge.

The weak negation is very weak indeed. We cannot infer much,
if anything, from it. With a negation defined in this way, we can
safely negate even those propositions which are known to be
perfectly true. Clearly, it is not this interpretation that is
used in mathematics, but the strong version based on the idea of
contradiction. So we start with contradiction.

A prediction A!
infinite, i.e. A? is
truth of A? directly.

contradicts to the truth if A is actually
true. But there is no way of testing the
We conclude that, first, the concept of

human knowledge must be necessarily present in any formalization
of contradiction; second, it is impossible to avoid using the
infinity model and express contradiction in terms of predictions
only.

Atomic propositions A! and A? with the same search A will be
called opposite. A pair of opposite atomic propositions is a
contradiction. A proposition is contradictory, or inconsistent,
if it produces a contradiction. Otherwise it is consistent.

We can construct a machine which tests that a given proposi
tion is contradictory. Let its ·format be <con e >. It can be - p
defined as follows:

41. 1
42.1

t2.2
.2.3

<con *(eg)> ~ <£l()*(int<~eg>)>

<£l(ez)(*V(ep)s(!?)i)e >
~ <c2<elf(*V~ep)<QRQ si>)E(ez)>(ez)eg>

<£!(ez)(eh)eg> ~ <cl(e 1)eg>
<£l<e 1)*(eg)> ~ <cl(e 1)<step *(eg)>>

3-25

*2 4
I 3. 1

13.2
14.1
14.2
i5.1
i5.2
t5.3

Comments.

<£1Ce 1)> ... <£.1CezP
<c2 T(ess(!?)i)ez> ... e:s!?
<c2 F(ep)(ez)eg> -+ <£l(ez(ep))eg>
<Q.lU! '> ... ?

<Q.lU! ?> ...
<~(ep)e:(ep)ez> ...
<~(ep)e:(eq)ez> ...
<fli(ep)€> ... F(ep)

T(ep)
<elf(ep)e:e 1>

The idea of the con machine is to run the process <int ep>,
where ep is replaced by the original proposition, and maintain
the full list of atomic propositions produced up to date. Recall
that the int machine produces directly every proposition which
its input proposition can produce hierarchically. Whenever a new
atomic proposition is produced it is converted to its opposite
and the list of accumulated propositions is scanned in order to
determine whether it contains such a proposition.

11.1 Function £Qn transfers control to the function cl which
implements the main recursion of the program. Its first argument
is the accumulated list of atomic propositions, which is initial
ly empty. The second argument is the metacode of the int machine.
Function con assumes that its argument is a non-atomic proposi
tion (a generator). If it is atomic, no sentence is applicable,
which leads to an infinite search (undefined process situation).

12.1 An atomic proposition generated by *(eg) is found.
c2 in the right side calls function elf, 'element of a
set', to check for contradiction.

12.2 A non-atomic proposition eh is discarded.

12.3 Go on running the generator

Function
finite

12.4 If the generator turns out to be finite and no contradiction
is found, con runs forever.

i3.1 A contradiction is found. The end.

13.2 The current proposition does not contradict the accumulated
list. It is added to the list, and the process continues. v

3-26

If P is a proposition then we interpret its negation as the
statement that the conjunction of P and the human knowledge r is
contradictory:

t<£Qn t<and(f)(P)>>!

Introducing the function ~ defined by

we represent the negation of P as the prediction:

t<~P>!

We have now two 'cognitive' functions: <yP> establishes the
truth of proposition P, <~P> establishes its falseness.

5. Prefix notation and free format

Our formal representation of processes and propositions is
good for a machine, but a shorter though semi-formal represen
tation based on the usual functional notation will be more con
venient for a human being. Further on we shall use such a repre
sentation, which in this section is referred to as 'the free
format'. In this representation the process initiated by a ma
chine P with an input xis denoted as P(x), the corresponding
atomic propositions are P(x)! and P(x)?. A process or a proposi
tion will be used as an argument (input) for a machine without
explicit reference to the metacode transformation. Thus y(P(x)?)
is the process of proving P(x)?. The machines we have introduced
and corresponding processes will be represented in a more read
able form, e.g.

all(xES:P(x))

Similar notation will be used for the machines to be defined
later.

Our 'free format' notation is semi-formal only in the sense
that the translation from this notation into strict Refal is
defined (in this section) in natural language and not by a pro
gram for a machine, so one cannot immediately use a text in the
free format as a machine input. Otherwise it is quite formal:

3-27

every
unique

linguistic object in the free format notation can be in a
way translated into the strict notation. It should be

emphasized that this translation does not lead to a significant
growth in volume: our strict notation is designed for actual use
with computers, and not as a theoretical device only.

The reader who is not interested in knowing how the free
format is translated into strict notation can skip the remaining
part of this section without detracting from the understanding of
our interpretation of mathematics. But the prefix notation has a
value -- and, it is believed, a future of its own when it comes
to mutual fertilization of mathematics and computer science.

Consider a machine, or function, <Fex>. (As mentioned be
fore, a Refal function and a machine are synonymous concepts). To
represent machines as objects of work we have introduced the
metacode transformation. In the metacode this machine becomes
*(FEx) (see shorthand notation in Section 2.3 for the explanation
of symbols such as Ex). Compare this representation with the
usual representation of a function where the function name serves
as the prefix of the linguistic object: F(x). We shall make our
notation easier to review and closer to habitual standards by
introducing the prefix notation for Refal objects. We agree that
if a machine is defined with a name F and a format which includes
variables V 1 , V 2 , ••• , then its format will be represented in the
prefix notation as

0 F (tV 1 ,tV 2 , •••)

For instance, the format <F(e)e > will become F0 (Ex,Ey) in the
prefix notation. The superscri~t ~t a functional symbol 1ndicates
the metasystem level of the object, i.e. the number of times the
metacode transformation has been applied to the original Refal
object. The superscript 9 shows that we are dealing with an
active Refal expression. When a superscript is absent, 1 is
implied, as in algebra. Since propositions are produced by meta
coding active Refal processes, the ground level for propositions
is 1.

In the prefix notation, we also reserve the right to use
separators different from commas -- in particular, those borrowed
from the Refal format -- in order to make representation more
readable. Thus the format

3-28

~all(e)E(e): e > -- v g p

may be represented, by our choice. as

or

0 .
all (e e:e :e) -- v g p

etc., provided that the conversion of this notation into the
strict Refal is unambiguous.

We agree, furthermore, that when it does not lead to ambi
guitiy we may represent free variables by just their italicized
indexes (which must be letters) with metasystem level super
scripts, i.e. use x 0 for ex or sx, x for Ex or Sx• etc. The
syntax type of the variable is supposed to be known from some
where. With this convention the metacode of the format above,
which represents a propositional form, will be written as

all(ve:g:p)

The substitution of a function format for a free variable in
another function format produces a composition of functions. The
whole diversity of Refal expressions can be produced by substitu
ting object expressions for free variables in function formats
and their compositions. However, we have an additional degree of
freedom in Refal as compared with the usual functional notation,
namely we can apply or not apply the metacode transformation in
the process of substitution. Thus we come to two different types
of composition, which we refer to as a call as value and a call
as process (a distinction very close to that between a call by
value and a call by name in computer programming).

Call as value is the familiar functional composition taught
in school. When we write F(G(x)) we mean that the value of the
function G with the given x must be computed first, and then the
result must be substituted for the argument of function F. In our
prefix notation, as in the habitual notation, this type of compo
sition is correctly represented by a simple substitution of a
function call for an argument. Indeed, according to our agree
ment, when we write F0 (G 0 (ex)) it stands for <F<Gex>>. This
machine operate5 exactly as is required by call-as-value composi-

3-29

tion.

Call as process has already been used extensively in this
book. The function~. for example, (see Section 2.6) takes
both of its arguments as the metacode of a process, specifically
a generator, and instead of just running this process until it
ends (in fact, in a typical case it will never end), it inter
prets the metacode step by step and runs it in parallel with the
process represented by the second argument. Here the process
itself is important, not only its result in case it stops.

Call as process is the substitution of the metacode of the
machine
calling.
F 1+ 1 (tA).

being called for an argument of the machine which is
If Fi(A) is a function call, then its metacode is
When using metasymbols for Refal expressions we shall

denote by vn a variable of level n, and by En an object expres
sion of level n.

Consider two machines F0 (ex) and G0 (ex), and let the machine
G call the machine F as a process. We have here a three-level
hierarchy of control, where the machine G (level 3) controls the
operation of the

~
machine F (level 2), which in its turn controls

the processing of its argument (level 1). There are the following
three cases of interaction between level 3 and level 1.

(l)Value substitution. The argument of the controlled F machine
can be given a definite fixed value, say E. Then the G machine
controls a definite process F(E). In the prefix notation we
write:

which stands for <G*(FtE)>

in strict Refal. This is one definite process.

(2)Variable binding. The argument of the F machine can be left
indefinite, being represented by the free variable e of the

X
format. In the metacode ex becomes a definite object expression,
namely Ex. The controlling machine G determines how to treat this
object. This is a situation where the G machine deals not with a
definite process, but with a whole machine. We have:

which stands for <G*(F*EX)>

As in case (1), this is still one definite process.

3-3S

A good example of this situation is given by the quanti
fiers all and sch. Consider the expression

where N is the generator of all numbers. The all machine controls
two machines here: N, which happens to be just a process (no free
variables), and P, which happens to be a parameterized object (no
activation brackets but a free variable). The free variable
involved is in the metacode; it is an object expression *EX which
is used by the all machine as a placeholder showing where to
insert the objects produced by running N. Consider the search
machine

where S is a parameterized search: a machine which includes both
activation brackets and a free variable. The sch machine substi
tutes the objects generated by N for *EX in the (metacoded) S

machine and runs the resulting searches in parallel. It is one
single process, but the S machine with different arguments is
forced to take part in it by sch.

(3)Metasystem reduction. In this situation a new machine emerges.
It is defined in the following way. Give a definite argument E

l

to the F machine and substitute it as a process into the G
machine. The result is a definite process. Now give another
argument E 2 to the F machine, substitute it into G, observe
another process, etc. For every argument of the F machine, the G
machine produces a process, thus we have a new machine. What is
its formal representation?

With arbitrary object expression E, the process initiated by
G is

which stands for <G*(FE')>

where E' is tE, the metacode of E. Therefore the machine in
question is:

which stands for <G*F(<lle,x>)>

Note that u has the same metasystem level as G (namely, zero), so

3-31

it is called by Gas value. The function F is in metacode, so it

is called as process.

For an example of this situation consider the activation
machine act in the role of the calling machine G. We have:

i.e.

This machine takes an arbitrary argument, translates it into the
metacode, forms the metacode of machine F with this argument, and
activates this metacode, i.e. emulates process F with the given
argument. The overall result is that this machine emulates F. If
F stops with a certain argument and produces a certain result R,

then this machine also stops and produces tR.

The three situations we considered can be distinguished by
precise syntactical signs. If there are no free variables or
their metacodes in the machine called as process, it is situation
l. A first-level variable E1 or s1 , is a bound variable: this is
situation 2. A combination ~ 0 (V), where Vis a free variable,
points to situation 3.

When we are dealing with propositions all metasystem levels
increase by one. The free variable of a machine becomes a first
level va~iable in the proposition based on that machine, be it
atomic or non-atomic. So, the statement that a machine A0 (ex)
generates a finite process is A1 (Ex)!, or simply A(x)!. This is,
strictly speaking, not a proposition but a propositional form,

dependent on a free variable x (we shall call first level vari
ables free variables in the context of propositions). A bound
variable, which in the machine has the superscript 1, is super
scripted by 2 in the derived proposition. Quantifying A(x)! over
all numbers x, we have:

Different variables in function formats can be treated dif
ferently both in the calling function and in the function being
called. To produce all possible results of the composition of the
call-as-process type, we first produce all possible combinations
of formats and notice that all free variables in the functions
being called turn into their metacodes (first level variables).
To every of these variables one of the following three substitu
tions can be applied, which corresponds to the three situations

3-32

considered:

in a machine in a proposition

Value substitution:

No substitution: bound variable V 1 bound variable V2

Metasystem reduction:

When a composite machine F is called as process by another
machine, all the superscripts in the prefix notation of F get
increased by one. For instance, let the machine S 0 (x 0 ,y 0) call
P(x,y) for y 0 (as process) with the variable x of P bound and y

reduced to z 0 . (We use letters for variables). The result is:

(1)

Here
1 et (l)

Metacoding

(2)

0 0 0 0
S (x ,P(x.~ (z)))

x 0 and z 0 are free, and x (i.e. x 1) is bound inS. Now
0 be called as process by yet another machine, Q (x).

and substituting, we have:

This is a process, not a machine, for it has no free variables.
The variables x 1 and z 1 are bound in Q0 . Still they are free in
5 1 , as they were in (l); x is bound in 5 1 , but free in P 2 .

Generally, in a function Fn of a metasystem level n, variables vn
of the same level are free, while variables vn+ 1 of the next
level are bound. Note that variables of different metasystem
levels can be denoted by the same letters without any risk of
confusion; on this account our formalism compares favorably with
the conventional formalism of logic with its necessity of re
naming bound variables to avoid conflict. For one who writes a
computer program this is a tremendous relief. It is also pleasing
aesthetically; renaming variables does not attest to the elegance
of a formalism, rather it shows that the details of the machine
do not fit perfectly together but require an artificial device to
bridge a gap. Suppose we want the Q machine to control machine
(1) with variable Z 0 in it taking arbitrary values, thus defining
a new machine. We can chose any letter to serve as the free

3-33

(I

variable for this machine, f0t Jnstdnre, x again We perform the
metasystem reduction Z 0 ~U 0 (x 0) in (2), which results in

(3)
0 2 l 0 0 Q (S(x,P (x ,U(U (x)))))

Consider examples of propositions in prefix notation. The
set generator No£ all natural (unary) numbers will be used, as
well as the tester = and the adding machine +.

Example l.
Usual notation:

Strict Refal:

X = y

is finite with some (unspecified) values of free variables.
Prefix notation:

Example 2.
Usual notation:

=(x,y)!

(Ex)(Ay)(y+x = y)

First construct the propositional form:

(4) =(+(y,x) ,y)!

Note that function= calls function+ as value: they are at the
same metasystem level. Variables x andy are free here (level 1
in a proposition). Quantifying over y we construct the all ma
chine, a generator which produces (4) with all possible y!s:

(5) all 0 (y£N: =(+(y,x),y)!)

Its metacode is the corresponding proposition:

(6)

Here y 2 is bound by the universal quantifier all. But what about

3-34

2?
X • Syntactically, it is also a bound variable (level 2). What is
its meaning?

It has none at the moment. If we do not make a special
provision, it will be a semantic error. the case where a machine

is given something it does not expect as input. Return to the
machine level (5) to see this. Here y is a bound variable, which
is replaced, as the all machine works, by specific numbers in
the propositional form (4) entering (5). But the free variable x

remains as it was. As a result, the all machine will produce
predictional forms, not predictions:

(6')

=(+(0,x),0)!
=(+(llll,x),llll)!

... etc.

If we try to ignore this difference, i.e. do not notice that a
free variable is enetring predictions, we face an error in inter
pretation. Indeed, the first of the prediction says that the
process

(7)

is finite. But in fact this is not a process, it is a machine. We
cannot put an expression which contains free variables in the
view-field of the Refal machine; first they must be replaced by
some values. On the first metasystem level, if we give an argu
ment which includes first level variables to function step, there
will be an error, because this function does not expect first
level variables; it cannot, generally, make a step uniquely if
the contents of the view-field are not fully defined. One can see
this comparing (7) with the definition of function +. In order to
make a step we must know the value which is to replace ex·

The general solution of this problem is only to watch that
machines get objects of the type they expect as their inputs.
With respect to interpretation, we accept the principle that
whenever we have an object with free variables, it stands for the
whole infinite set of objects obtained from it by substituting
every permissible value for every free variable. In the context
of propositions this is equivalent to the convention, usual in
formal logic, that a free variable is implicitly universally
quantified. Then

3-35

=(+(0,x),0)

is equivalent to a certain generator, namely

all 0 (xEN:=(+(0,x),0))

and so are other propositional forms in (6'). The proposition (6)
acquires the same meaning as if thP bound variable x 2 were quan
tified universally. (Of course, there is one more hidden conven
tion here: quantification over all possible expressions for x is
replaced by quantification over all numbers only).

In order to be on the safe side, we can also avoid
terpreting propositional forms as propositions and consider

in
them

as a different species: a machine, not a pr~cess. Then a genera
tor of propositional forms like (6) is not a legitimate proposi
tion. But we can convert it into a legitimate propositional form,
which instead of producing predictional forms (6') produces pre
dictions by replacing x in (6') by a value given to it as an
argument. The metasystem reduction of x 2 to level 1:

will perform that conversion. Generally, if we are using a propo
sitional form in a call-as-process substitution, every free va
riable must be either bound by the calling machine or reduced to
a free variable in the resulting propositional form. In our case
we convert (6) to

(8)

To finish the example,
(8) is a generator,
using function Y:

we must quantify x existentially. Since
we first convert it into a prediction by

(9) y (a 11 2 (y lEN l : = l (+ l (y l , ll 2 (ll (x))) , y 3) !)) !

Here we again had to perform a metasystem reduction in order to
keep x as a free variable. Now we simply substitute (9) into the
sch machine and take the metacode. This is our result:

3-36

Now we make our last step t0ward a greater freedom in the
representation of propositions. We note that if we know about
each machine which of its arguments are called as value and which
as process, and in each call as process we know which variables
become bound and which free, then we can drop all the super
scripts, because they can be restored in a unique way. We can
also drop all the calls of the functions ~ and U because they can
be uniquely restored too. This is provided that we do not use
identical variables at different metasystem levels. (Incidental
ly, this last restriction shows the location of the gap in the
conventional notation. One could retort that if superscripts were
added to conventional notation to reflect the syntax structure of
the proposition then there would be no conflict of variables
either. This, however, would again be an artificial device. In
contrast, we do not add our superscripts. The prefix notation is
only a shorter representation of the strict Refal notation, where
all objects are constructed by two basic operations: substitution
and metacoding. Metacoding has its semantics; it is not just a
device to keep track of syntax structure).

Using this agreement, proposition (19) becomes:

(11) sch(x~N: y(all(y~N: =(+(y,x),y)!)))!

Further on we shall use this free format notation. We shall
also allow some further syntactic simplifications, understandable
from the context. In all cases when we use a free format it can
be uniquely converted into the prefix notation, and then into
strict Refal.

3-37

C H A P T £ R 4

l.Real-time and model-time

Mathematics is the art of constructing the most fundamental
models of reality. We formalize mathematics using the concept of
the Refal machine. To create models of reality by means of the
Refal machine we: (1) put into its program field some defini
tions, (2) put into its view field some 'processes' (which are in
fact certain expressions representing initial stages of proces
ses) and start the machine. The processes going on in the view
field of the Refal machine are modelling real world processes.

We can distinguish two time scales here; two 'times' as it
were. We write definitions and put them into the memory of the
Refal machine as living human beings, in real time. When we run
the Refal machine, the sequence of its steps represents another
time: the time of the mechanical process we initialized. Although
the process to be modeled occurs, presumably, in real time again,
the Refal machine runs in a different time, which we shall refer
to as model time. We can compress or expand model time unlimi
tedly -- in imagination if not in reality. We can run the Refal
machine at a speed of one step, or one thousand steps, or one
million steps per second. No matter what the actual speed is, we
still can imagine a speed that is twice as high. Moreover, we can
examine the stages of a mechanical process in the inverse order,
that is we can reverse model time. Model time, unlike real time,
is completely subject to our will. Model time is a feature of the
machines we run on hardware or in the imagination.

Knowledge is the existence in a cybernetic system of a model
of some part of reality. Knowledge is both objective and subjec
tive because it results from the interaction of the subject and
the object of knowledge. We know that knowledge is never com
plete.But if the information flow between the subject and the
object is only in one direction -- from the object to the sub
ject, we can imagine a complete knowledge (i.e. a complete per
fect model) of the object; this idea is not contradictory. If
there is a flow of information from the subject to the object

4-1

too, the notion of a complele model may become contradictory. Let
s, be a system-object, and S 2 a system-subject. Suppose S 2 in
cludes a complete model of S 1 . Then it can run this model c~m

pressing model time with respect to real time, and predict the
behaviour of s, for all times in advance. This prediction can be
sent to S 1 • which can change its behaviour so as to falsify the
prediction. This contradicts the assumption of a complete model.
In particular, the notion of complete self-knowledge (the case
when S 2 = S 1) is contradictory.

It follows from this reasoning that when we are dealing with
the processes of self-knowledge we must clearly distinguish be
tween real-time processes and model-time processes. If we allow
the difference to be blurred we endanger the consistency of our
theory. For example, when we say "imagine a real-time process A"
we already are in a danger zone, because what we actually ima
gine is a model-time process, not a real-time process. It will
cause no trouble if process A is detached from ourselves (we is
the subject of knowledge), so that it cannot be influenced by
what we are doing; otherwise, we can only say "imagine a model of
a real-time process A , which, of course, is only partial".

Our theory is a formalization of the self-knowledge of
mathematics. Therefore the distinction between real-time proces
ses and model-time processes is for us an absolute necessity. The
processes that take place in the view field of the Refal machine
as the result of the application of sentences are model-time
processes. Should the program field be fixed once and for ever,
there would be only model-time processes in existence, and no
change in real time. But in fact it is not fixed at all. The
program field of the Refal machine which represents mathematics
is changing in real time as we create more and more mathematics,
which means that we define new processes and expand our knowledge
of the processes already defined.

It would be exceedingly inconvenient if we had to consider
every part of the memory (program field) of the Refal machine as
potentially variable in real time. We could hardly come to any
definite conclusions in such circumstances. But we can define a
certain number of real-time processes and give them a place in
our formal system. Air temperature in the City of New York could
be such a process. Or the mathematical knowledge of mankind.

We shall represent real-time processes as follows. Like

4-2

model-time processes, a real-time process is distinguished from
an object by a pair of activation brackets which delimit its
representation. The contents of the brackets may be anything
which identifies the process, e.g. a symbol. However, the work of
the Refal machine on the representation of a real-time process
does not reproduce all its stages, as in the case of a model-time
process (we do not know them all in advance), but in one step
produces the current stage of the process. Thus real time remains
real time and no attempt (not even a concealed one) is made to
substitute a model-time process for a real-time process. The
notation <R> of a real-time process is a device which allows
the Refal machine tc have access to the process; which means to
its current stage. We can describe this situation as the presence
in the program field of a sentence:

<R> ~ e

where e is an object expression which represents the current
stage of the process <R> and changes in real time. For instance,
we can use <tempNYC> in a Refal program and declare that this
term will be replaced, as the Refal machine works, by the current
temperature in New York expressed in agreed units with an agreed
precision. The results may be different if we run such a program
today and tomorrow.

The Refal machine is a mathematical model of the cognitive
apparatus of the human being. We can compare this apparatus with
a complex computer system. In computer systems we distinguish
subsystems which work off-line and those which work on-line, in
real time. Running off-line subsystems is analogous to those
processes in human brain which we describe as imagination. Usual
ly we see mathematics as dealing with our imagination. This is
generally true, but with a notable exception: when developing
metamathematics, i.e. mathematical self-knowledge, we cannot, as
disussed above, limit ourselves to model-time processes only,
because human knowledge is a real-time process which has no
complete model. Thus the model of human cognition which we are
constructing must recognize the fact that our brains do not exist
in our imagination only, but are real cybernetic systems which
exist in real time and have subsystems which work on-line, in
real time.

Access functions to real-time processes ih the Refal machine
imitate links between our cognitive apparatus and the real world;

4-3

they are sort of 'sense organs' of the Refal machine. The real
world, it must be noted, includes not only things external to us
but also the current state of our cognition. We can create models
of external processes, and then models of our models of external
processes, and models of models of models, etc., but the whole
hierarchy will invariably exist in the real world and will be
open to change in real time.

The knowledge r which shows up in the semantics of mathema
tical propositions is a real-time process. To connect the Refal
machine with this process we use the access function <gns>
('gnosis'). The symbol gns is a regular Refal symbol. The
activation of ~gives (in one step) a proposition which sums up
all the knowledge we (the subject of mathematical knowledge, an
idealized humanity) have at the present time.

We shall use the subscripted symbols r,, f 2 , r 1 , etc. to
denote specific stages of the human knowledge process. Since the
result of the activation of <gns> may be different at different
times, the process <~> is undefined in Refal, or, equiva
len~ly, defined by a sentence

the right side of which is unknown to the Refal machine. The
functions y and Y represent the concepts of truth and false
hood. As we mentioned before (see Section 3.3), our formalism
allows two interpretations of the concept of truth. One interpre
tation treats r as a definite expression and leads, as we shall
show soon, to intuitionist logic. This interpretation is static
with respect to the real-time process of human knowledge. It does
not exclude the possibbility of r changing in real time, but
during one run of the function y (or y) the stage of r is taken
to be fixed, unchanging. The following sentences define the
cognitive functions in static interpretation:

<imR(<gns>)~ ep>
<con(<~ <gns> >)(<~ ep>)>

These functions are not machines; they depend on real time.
But once the concretization of <~> is done, the further opera
tion of Y/Y in static interpretation is mechanical. Essentially,
we deal here not with one concept of truth but with as many
concepts as many stages of r 1 or r are there. When put it in

4-4

words, the definition of truth which leads to intuitionist logic
is as follows:

Static interpretation of truth

~prediction A! is true relative to r 1 (or in r 1)
if the search A with r := r 1 is finite.
~proposition generator is true relative to r 1
if with r := ri it produces only propositions
true relative to ri .

The other interpretation corresponds to our intuition of
objective truth and leads to the usual, classic logic. In terms
of our theory it is dynamic because it takes the real-time pro-
cess r as a
ses y and v.
the searches

whole and involves all stages r 1 of r in the proces
The ~~rocess results from running in parallel

with each new stage ri as it appears in real time, and y is
defined analogously:

<v e > p

i<imQ(<gns>~e > p
~sl

i<Y ep>

i<con(<~ <gns> >)(~ ep>)>
~sl

i<Y e > p

In dynamic interpretation, y(P) and v(P) are genuine real
time processes in which the operation of the Refal machine is
intertwined with the process of human knowledge. They depend on
the time interval 6t that it takes for the Refal machine to make
one step, but those features of the cognitive functions which are
essential for our theory do not depend on 6t. Let ri be the state
of human knowledge at the moment when the Refal machine is making
its i-th step. Then the function y(P) will run in parallel the
searches:

4-5

<imp(r 3) ... P>

etc., each next process one step behind the preceding. Human
knowledge, as we defined it, is a cumulative process, thus the
loss of r 1 (as well as of any stage except the last in real time)
is of no consequence. If ever a stage r 1 appears in human know
ledge such that <imQ(r 1)~P> is finite, and only in this case, the
search y(P) will be finite. The search y(P) will be finite if and
only if P contradicts some stage r 1 .

The corresponding definition of truth is:

Dynamic interpretation of -f'h.u.'t A.

A prediction A! is true if there is such a (true) knowledge r 1
that.with r := ri the search A is finite.
A proposition generator is true if with any (true) knowledge r 1
it produces only true propositions.

The possibility of representing processes by objects through
the use of the metacode and activating them through the use of
the functions step and act, when necessary, has been an essential
part of our formalism. When we allow real-time processes like
<tempNYC> and <gns> , functions step and act become partially
undefined. We extend the definition of these functions by expres
sing their result through the access functions for real-time
processes. Let <R> be a real-time process (we shall often iden
tify a real-time process with the corresponding .access function
in order not to encumber our terminology). The result of the
concretization of <step *(R)> should be the metacode of the
result of one step of the concretization of <R>. Since we postu
late that access functions are concretized in one step, we define
the step machine when applied to a real-time process <R> by the
sentence

<~ *(R)> ... <~ <R> >

The function act gets defined thereby, but we can also add one
more sentence for the reader's convenience:

4-6

<~ *(R)> ~ <~ <R> >

These sentences are presumed to be found in the memory field for
every real-time process.

Metacoded expressions representing processes fall now in two
categories:

(1) Those which never call real-time processes. We shall call
such processes mechanical. They are generated by an autonomous,
or closed machine and are completely defined and deterministic.

(2) Those which at one stage or another call a real-time process.
The machine which generates such processes is not autonomous, it
is open to the world, and first of all, to us -- the subject of
knowledge. We assume from now on that the Refal machine can have
no direct contact with physical processes in the world bypassing
our consciousness; whatever is changed in the memory field is
changed by our decision. Processes generated by such interaction
between the subject of knowledge and the machine will be called
metamechanical. In terms of computer science, the machine here
works in the tnteracttve mode, and the subject of knowledge is
the user of this machine. The 2Sth century's physics has dis
covered that we cannot eliminate the subject of knowledge from
our picture of the physical world. Our theory reflects an analo
gous situation in mathematics. Mathematical knowledge is the
construction of machines to model reality, but these machines do
not always work autonomously: some are used in the interactive
mode.

The process <y P>, which we denote simply by y(P) in the
free format notation, is an example of a metamechanical process.
So is y(P). Let us trace how real-time access functions are
called when we deal with metamechanical processes represented in
metacode. Suppose we activate y(P), that is place

<act *(yP)>

in the view field of the Refal machine. The first branch will
become:

4-7

then

and then

which requires an access to human knowledge for further concreti
zation.

2. Formal systems and theories.

The formal systems we are going to consider will be con
structed in the framework of a metasystem common to all of them.
This metasystem is the Refal machine, together with a number of
functions (machines) defined in its program field. All logical
machines defined above are in that number, plus a few more which
we shall define later.

A formal system is defined if:

(l) a Refal representation for a number of parametrized processes
are rlefined; and

(2) a proposition is given which is believed to be true, and is
referred to as the knowledge of the formal system.

Some of the parametrized processes of the formal system may
be defined by a group of sentences in the program field, i.e. as
Refal functions. Others may be left undefined, or defined par
tially. Even if not defined, a process can be an object of study
and knowledge. We may not be able to reproduce all the stages of
a process, but still know that it is finite or infinite, or that
if it is finite then a certain proposition must be true, etc.

The knowledge of a formal sytem F 1 contains in a condensed
form all the propositions that can be proven true in F1 . We
shall denote the knowledge of a specific formal system F. by

l
ri, and the corresponding cognitive functions by ~i and v1 . Thus
a proposition Pis provably true in F1 if and only if ~i(P) is
finite. It is provably false if and only if yi(P) is finite. The
set generator int(r 1) produces all propositions provable in F1 .

4-8

Our concept of a formal system differs in two ways from the
usual concept. First, we do not ~istinguish between axioms and
inference rules, they are united in the concept of a generator.
The knowledge rt of our formal system is analogous to the axioms
of a usual formal system, but because of the nature of our propo-
sitions, no additional rules of inference are necessary.
proposition P is among those produced by int(ri), it
ponds to the derivability of P from ri in the usual
system. When P added to ri produces a contradiction, it
ponds to the derivability of ~P, the negation of P.

When a
cor res

formal
cor res-

Second, our concept of a formal system is, starting from the
basic definitions, semanttcal, in contrast to the usual purely
syntactical concept. Intuitively, every prediction A! is either
true or false: true if A is finite and false otherwise. Every
proposition is also either true or false: it is true if and only
if it hierarchically produces only true predictions. This intui
tion, which includes the idea of potential infinity, is the basis
for proofs in our metasystem. Once a formal system is created,
its further use is, as in the case of usual syntactic systems,
purely mechanical. Intuitive proofs we construct in the metasys
tems serve to justify the formal systems we create.

We argue that this co-existence of a metasystem which has
formal objects and intuitive proofs, with formal systems in which
proofs
systems

are mechanical is not only natural but necessary. Formal
are created in order to express and produce knowledge.

But how do we know that all the propositions that can be mechani
cally produced in a certain formal system F 1 are true? As we
already discussed, we have no way to know it for sure; we can
only trust to our intuition that a given system can be relied
upon. Moreover, we shall be reluctant to use Fi if our intuition
does not suggest that Fi is correct, i.e. produces only true
propositions. And we shall never use Fi if we feel intuitively
that it is not correct. Of course, our intuition is not infal
lible, and it may happen that a formal system we have constructed
yields a false prediction. Then we make a change to eliminate the
error; the experience of an error and its correction leaves an
imprint on our intuition. Still intuition remains the supreme
judge in the construction of formal systems.

A formal system is, essentially, a machine which encapsu
lates only a certain amount of knowledge. You cannot expect more

4-9

output from a generator, than you have put into it through its
definition. Goedel's result that no formal system can produce all
the true statements about a machine, which is sophisticated
enough, is intuitively taken as natural with our concept of a
formal system, while it comes as a surprise with the usual con
cept.

We shall distinguish between a formal system and a theory.
While a formal system can be fully represented by an object (the
metacode of the machine), a theory is a real-time process resul
ting from human effort to gain new knowledge. Formal systems we
create are stages of theories. Sometimes we say 'a theory' mean
ing, in fact, the formal system which is the latest stage of a
theory. Some theories may be completed by creating a formal
system which gives answers to all possible questions meaningful
in the theory. But this is rather an exception. The most impor
tant theories are infinite real-time processes.

Among the objects and processes of a theory we distinguish
primary objects and processes: those which we treat as a given
real4ty and wish to explore. Other objects and processes are
created as exploration tools. The primary objects of a theory may
be defined either by listing them when their number is finite, or
by defining a machine which generates all of them. Primary pro
cesses may be defined either directly and completely by Refal
sentences, in which case we call the theory cybernetic, or indi
rectly by propositions believed to be true and called axioms, in
which case the theory is axiomatic. Hybrides of these two kinds
of theories are also possible.

We can illustrate the difference between cybernetic and
axiomatic theories by taking arithmetic as example.

In cybernetic arithmetic (known also as recursive arithme
tic) the numbers are strings:

0, 01, 011, 0111, ... etc .•

or their equivalents. Operations on numbers are machines: the
adding machine, the multiplying machine, and possibly others. All
these machines are defined. The adding machine, for instance, is
defined by the sentences:

4-10

When we add numbers we run this machine or one of its more
sophisticated equivalents, like a pocket calculator.

In axiomatic arithmetic there is one number constant ~ and
an unde(tned function <s e > which produces the 'next' number

- X
after ex. Repeated application of the function ~ produces all
possible numbers. The functions of addition and multiplication
are also undefined, but they comply with a number of axioms. The
axioms relating functions ~ and + are:

X + ~ = X

X + ~(y) = ~(X + y)

They resemble the sentences defining addition in cybernetic
arithmetic, but conceptually they are different: they are a
part of the knowledge, not the machinery, of the theory. The
function of equality which is used in the axioms is not defined
either; its well-known properties, stated as axioms, is all we
know about it.

The only way to satisfy our intuition that a given non
trivial formal system is trustworthy is to construct it starting
from scratch and proceeding by steps in such a way that it is
intuitively convincing that if our formal system was correct
before such a step, it will be also correct after the step. The
most obvious way to make a step is to add a new proposition to
the current knowledge. This proposition may be the formalization
of a prediction proven intuitively. Or it may be a generator of
predictions; then an intuitive proof should be given that it
generates only true predictions. In both cases we must be sure
that after adding a true proposition to a correct system we
receive a correct system: an assumption which, as we shall see
soon, is not automatically true.

The act of adding a proposition to the knowledge of a
formal system is a statement . Using a notation fashioned after
the programming language ALGOL, the statement P is:

(1) r := and(r,P)

A correct statement is such that the resulting formal system is
correct if the original system is correct.

4-ll

We must now find a firm ground on which to construct intui
tively safe proofs that a given proposition is true or false.
Since the definitions of truth are different in intuitionistic
and classical logics, we examine the grounds for these two cases
separately. Nevertheless, we shall come to the same restrictions
on the use of cognitive functions in both logics. In this section
we take up the static, intuitionist, definition of truth.

With the static definition, the searches Y and Y become
mechanical after the second step. For a mechanical search it is
intuitively safe to believe that it is either finite or infinite.
If the current human knowledge ri is consistent, and we always
assume that it is, then y(P) and y(P) cannot be finite simulta
neously. Therefore, three situations are possible:

y(P)! and v(P)?
y(P)? and y(P)!
y(P)? and v(P)?

P is true
P is false
P is neither true nor false

This can serve as the basis for assigning truth-values to propo
sitions. There is a snag here, however. When ri changes, the
functions y and v change too, and a proposition which was marked
true before can now become false. We certainly do not want that.
Specifically, when we construct a formal system by steps of the
form (1), our knowledge may grow, and this will change the cur
rent human knowledge ri. Therefore, we must examine in greater
detail the relationship and interaction between the human know-
ledge referred to by propositions and the knowledge of the formal
system. In the most important case the two coincide. This will
take place if we consider the real-time construction of a formal
system which fixates our real knowledge in some field of mathema
tics. Then we simply have no pertinent knowledge other than the
one put in ri at every moment in time. So, the same sequence r 1 ,

r 1 , r 3 , ... etc. represents both the steps of the construction of
the formal system, and the stages of pertinent human knowledge.

Let the knowledge of the current system be r 1 . There are
two ways of understanding (1). We can understand it as a sort of
'evaluation' of knowledge, meaning by the 'value' of a knowledge
its meaning, i.e. the hierarchical set of predictions it pro
duces. Then to produce ri+l we must first 'evaluate' P, using
r 1 , i.e. substitute r 1 for human knowledge in P,and then add the
resulting knowledge to ri. Suppose P is

4-12

and remember that y(P) is by definition

Then

(2)

Using this approach systematically we have to keep track of
all the previous formal systems in our current formal system.
Moreover, it contradicts our intuitive understanding of condi
tional propositions. When we say "if P is true" we mean "true
according to the sum total of our knowledge", therefore the use
of rj with } less than the index of the current formal system in
the ~ clause is not justified. It can be shown that if we accept
this approach to statements, some fundamental formulas of logic
common to both classical and intuitionist logic (specifically,
the contraposition law) will not hold.

Therefore we adopt the other understanding of (1), accor
ding to which the operation and in (1) includes no 'evaluation'
of knowledge, but is performed over the formal representation of
propositions, not over their meanings. In each formal system
resulting from consecutive statemants we use the same symbols ~

and Y, which refer to the knowledge r of the formal system it
self. According to the definition of functions imQ and con, this
means that y and Y may call themselves recursively. For the
example above, this approach gives

where ri and ri+l are now formulas which may include (in fact,
almost certainly do) reference to r through the functions ~

and ~- The moment we execute (l), the cognitive functions in
both P and r start referring to the new knowledge ri+J·

This recursive nature of formal systems, however, leads to
certain paradoxes. When we make a statement we change the formal
system. Since the proposition we are adding may refer to cogni
tive functions, and they depend on the knowledge of the current
system ri, which changes in the process of addition, the meaning

4-13

of the proposition when it becomes a part of system may be diffe
rent from what it was before. A proposition P could be true, but
the statement P incorrect.

We can show it in this simple example. Let A be an infi
nite process and suppose that the current formal system is such
that it cannot establish the infiniteness of A, i.e. the process
of proving A? is infinite: Y(A?)? . Then the proposiiton

(4) P = and(A?,y(A?)?)

is true. However, the moment we add P to the formal system, the
knowledge r is changed and includes now P; the proposition A?
becomes provable, and y(A?)? false . The new r is, therefore,
false.

One might think that this paradox occurs because of the
inner contradiction in the proposition (4). It is true that (4)
will create an incorrect system when added to any, even an empty,
formal system. But consider a formal system r 1 which includes
y(A?)? and nothing more. It is correct. Proposition A? is safely
true. Still when we add the two we again have an incorrect sys
tem.

To be able to construct correct formal systems by adding
true propositions, we must put forward certain additional requi
rements to the propositions used in statements. The current human
knowledge in static interpretation can be called the context in
which a proposition acquires an exact meaning and a truth value.
The paradoxes we have just seen arose because the proposition
y(A?)? which had been true in the original context, became false
when A? (true in itself) was added to the context. Therefore,
what we need in propositions can be called the context safety .A
proposition P is context safe if once found true (false) in a
true context ri, it will also be found true (false) in the con
text of the conjunction ri&rj with any true rj.

3. Strong Interpretability

Propositions of our theory should deal with context-safe
processes only. This is a necessary condition. But we want some
thing else. According to our naive intuitive interpretation of
mathematical propositions they do not refer to any human know-

4-14

ledge at all, but express "objective" properties of processes. We
take issue with this view and offer a more formal interpretation
which makes an explicit reference to human knowledge and its
subject in the philosophical sense, i.e. the possessor and deve
loper of that knowledge -- the human race. But we do not want to
throw away our intuition of objectivity, rather we want to rein
terpret it in our terms. We shall limit ourselves to such propo
sitions only that allow an intuitively objective interpretation,
or rather, evaluation, which assigns to it one of two truth
values: T (true) and F (false). We call these propositions inter
pretable. The definition of interpretability which we are going
to give does not depend on the definition of the functions v and
v; it is equally good for intuitionist and classical logic. But
it is derived from the classical, not intuitionistic, logic. The
interpretation which stands behind the concept of interpretabili
ty is dynamic, classical. The definition of interpretability will
make an interpretablP. proposition automatically context-safe.

Interpretability is defined inductively. The base of induc
tion involves only those processes that do not call cognitive
processes and are deterministic. If A is such a search then A!
and A? are interpretable. If U is such a generator, and none of
the propositions it produces refers to cognitive processes, then
U is interpretable.

The role of the cognitive processes v and y in our theory is
to establish that a given proposition is intuitively true or
false. Implementations of v and Y which are different but always
have the same effect (i.e. stop or do not stop) for any given
argument should be considered equivalent. Specific stages through
which a cognitive process passes should be of no consequence.
This is a necessary condition for context-safety. Indeed, as new
knowledge is added to r, every stage of the processes v and y
changes; still we expect that v(P) will stop only if P is true,
while y(P) will stop only if P is false. We create cognitive
processes in order to predict the behavior of some underlying
"objective'' processes, and for our theory to reflect "objective"
reality we must be able to interpret every proposition in terms
of objective processes only, without reference to any particular
stage of the process of cognition.

The concept of interpretability can be compared with the
concept of invariance in physics. When we write equations of
theoretical physics, we use some reference system, thus it be-

4-15

comes ingrained in the meaning of the equations. Yet the most
important physical quantities are those which are invariant with
regard to transformations of the reference system. We ascribe to
them more objectivity, because they do not depend on our choice
of the system of reference. Thus we choose a reference system and
use it to create models of reality, but then look for those
features of these models which are independent of the reference
system. This is the only way to give a precise meaning to the
concept of objectivity: not to ignore the fact that our knowledge
always has a subjective component, but to construct invariants
which are independent of at least some part of our arbitrary
choices.

Cognitive functions are sort of reference systems of mathe
matcal knowledge. The analysis we made in Chapter 3 showed that
they are present in the meaning of mathematical propositions,
like reference systems are present in the meaning of the equa
tions of physics. Conversely, reference systems of physics can be
called cognitive functions, or devices.

Our choice of logical machines is arbitrary (although very
understandable), and so is the choice of the generators ri repre
senting our knowledge. Moreover, we are not limited only to those
cognitive. functions which are expressed through the machines imp
and· con; nor are we limited to just two cognitive functions. A
general theory of knowledge, the metatheory of scientific theo
ries, can consider an arbitrary number of cognitive functions and
look for invariants independent of them. In our theory we have
two cognitive functions v and Y, which 'measure' the truth-values
of propositions. Interpretable propositions are analogous to
invariants of physics: their truth-values do not depend on the
choice of cognitive devices.

Consider the proposition v(P)!, where Pis a proposition
from the inductive base, i.e. not referring to cognitive proces
ses. Its meaning is: using certain means we have been able to
prove that P is true. If we do not say anything about the means
used, this meaning is the same as if we simply stated the propo
sition P. The proposition v(P)! has the same objective interpre
tation as P.

Consider the proposition v(P)?. It means: using certain
means we are not able to prove P. Unlike the case of v(P)!, this
proposition loses its content if we do not specify the means

4-16

used. It does not tell us anything about the truth or falsehood
of P, it has no objective interpretation. Moreover, the proposi
tion y(P)? directly violates the requirement of context-safety
a! formulated above. It stands for the generator 1nf(y(P)), which

every
of the

stage
form

is a generator of predictions explicitely involving
of the process y(P). Therefore we ban propositions
y(P)? from our theory, while allowing y(P)!. By the
ing we allow v(P)! but ban v(P)?.

same reason-

Generalizing this argument, consider a process A which at
some stage initiates a cognitive process y(P) or v(P). If the
results of A depend only on the fact that the cognitive process
with P as the argument ultimately stops, then such a process A
can be interpreted in objective terms, specifically, the results
will be conditional on the truth (the case of y) or falsehood
(the case of y) of the proposition P. Generalizing further we
can understand by P any proposition whose interpretability has
already been proved. Thus we come to the concept which will be
referred to as strong interpretability, to distinguish it from a
version which will be introduced below as weak interpretability.

The definition of atrong interpretability

I.l If A is a deterministic model-time process
with no access to real-time processes,
then A! and A? are interpretable (atomic) propositions.

I.2 If A is such a process that whenever it initiat~es _ ..
a cognitive process of the form y(P) or y(P),~)
(1) Pis an interpretable proposition, and · --~

(2) the results of A i.e.
- in case when A is a search, the fact that it is finite,

and if it is finite its final stage, and
- in case when A is a generator, the set it generates,
do not depend on any stage of the cognitive process
but merely on the fact that it is finite or infinite,

then the process A is interpretable.
I.3 If A is an interpretable search,

then A! is an interpretable proposition.
I.4 If G is an interpretable generator

which produces only interpretable propositions,
then G is an interpretable proposition.

1.5 A proposition is inte~pretable
only if it can be proved interpretable
by definitions (1.1) to (I.4).t.)

4-17

We proceed now to analyze our intuitive belief that a mean
ingful proposition is either true or false-- objectively, i.e.
independently of whether we exist or not. We do not accept this
notion literally for the reasons discussed in Chapter 1 and above
in this section. We want to interpret it in terms of our theory.

The fundamental role in this interpretation is played by the
principle of the excluded middle in the form: Every mechanical
search A is either finite or infinite:

QL(A, y(A?))!

Our intuition accepts this principle without hesitation; it
seems impossible to deny it. But its formulation (EM 1) in our
theory may seem questionable, which, in turn, may put in question
our main thesis. One might ask:

(a) How do we know that the human race will accumulate knowledge
infinitely? Is it not possible, or even certain, that at some
time humanity will cease to exist? Then r will stop changing in
real time, and the proposition A? for some infinite A may never
be proved.

(b) Even 1£ we assume that the process r is infinite, is it not
possible that such a process A exists that, though it is actually
infinite, we shall never be able to prove it?

The answer to the first question is: of course, we do not
know whether humanity will accumulate knowledge infinitely. But
it has nothing to do with our theory. We are engaged in meta
mathematics, not futurology. Humanity is the subject, not the
object of our study, as it is in futurology. Its role, or mode,
is different. The modality of model-time processes is necessity.
We say 'this process is finite' meaning that it will necessarily
stop. The future of such processe~ is predetermined, definite.
The modality of real-time processes is always possibility, never
necessity. Even when we say about a real-time process, R, which
is the object of our ~tudy that it is finite, the concept 'fi
nite' is actually applied to the model time. To state that R is
finite is to create some model M of it, a mechanical linguistic
process which is finite, and then use this model in decision
making as a substitute for R.

4-18

The real-time process of human knowledge in our theory is
not an object of study: our object of study is the linguistic
processes we create in mathematics. The human knowledge process
is completely in the mode of possibility. We do not create its
models, we participate in it, we make it up. The correct reading
of y(P)! is not that this process is finite, or will come to an
end, but that it can come to an end. According to our defintion
of dynamic interpretation of truth, the statement y(P)! means
that such a stage ri of human knowledge is possible which implies
P. If I can indicate such a r 1 (which is accepted as true by my
intuition, this is always a necessary condition), then 1 consider
the matter decided. But 1 can have no convincing rt to prove P
and still discuss the question whether such a ri exists or not.
Then y(P) becomes a part of my theory without my knowing whether
it is finite (r 1 exists) or infinite (it does not exist). The
meaning of 'exists or not' with respect to the cognitive func
tions is, again, subjective, not objective. It is essentially a
mtndset. Since the process of cognition is not given objectively,
its future depends on what decisions we are taking now. To state
that the r 1 in question exists, without actually presenting and
justifying it, means to set the goal of finding it. It may happen
that such a statement will become a self-fulfilling prophecy. If
we were trying to be objective, such occurencies should have
bothered us. But we are not after an objective study of r; it is
impossible. A statement which refers to cognitive functions is,
before it is proved or disproved, a plan of cognitive action, a
proposal to act, a proposition. It is we ourselves who define our
cognitive process. We are not completely free to define it,
because the propositions we declare as knowledge must not contra
dict our experience and must satisfy our intuition as true. But
within these limits we are free. If we decide to set an addi
tional limit to our knowledge, this limit becomes a reality, a
self-fulfilling prophecy. To expand our knowledge in the maximal
possible way, we should accept as true any proposition which does
not lead to contradiction. Who asks more, gets more. We must
accept as poossible everything that is not proved impossible.

The answer to the question (b) is that the way it is asked
contains a contradiction. As we discussed more than once, the
statement 'the process A is actually infinite' is true if and
only if y(A?) is finite. There is no way to verify this state
ment other than to refer to the process of human knowledge. This
gives us a hint that (EM 1) can never be proved false. Indeed, to
prove that the process or in (EM 1) is infinite we must prove that

4-19

A is infinite. The moment we do it, we prove that y(A?) is
finite. Then the Q£ process is finite. So, (EM 1) cannot be false.
This proposition expresses a mindset, namely, our determination
to explore the process A until we either discover its end or
prove that it is endless. There is no third possibility, because
we do not want it: thi5 is the origin of the principle-- or the
law-- of the excluded third (middle). The intuiitionists reject
the law of the excluded middle. They are free to do it. But one
must uderstand the nature of this decision. It is putting a
roadblock on the path of knowledge without any compelling reason
for it.

What we have ju~t proved can be formulated as

Lemma. The assumption of (EM 1) cannot lead to contradiction.

Our intuitive conviction that every search is either finite
or infinite is based on the acceptance of (EM 1). Although on the
surface of it no process is evoked when we say 'P is actually
either finite or infinite', the meaning of this expression in
clud~s a cognitive process, as every statement does: knowledge is
interaction of the subject and the object.

We shall prove now that for every interpretable proposition
we can construct a process of objective evaluation which will
lead to marking the proposition as either true or false.

(a)Baae. Consider an atomic proposition A!, or A?, where A is a
mechanical search. We believe that such a proposition "actually
is" either true or false. But what does it mean? That there is a
process which results in marking the proposition as true or
false. This process can be constructed using (EM 1). It consists
in running the searches A and y(A?) in parallel and marking the
proposition Tor F depending on which branch ends. We call this
process the objective evaluation of a proposition:

l<true<act ea>>
<obj ea!> ~ sl

l<false<y ea?>>

l<false<act ea>>
<obi ea?> ~ sl

l<true<y e ?>> ----- a

<true ex> ~ T
<fal§e ex> • F

All we said above concerning the disjunction in (EM) is
l

applicable also to the process obj. In particular, the Lemma
guarantees that the assumption of the finiteness of obi will not
lead to a contradiction.

(b)Induction on generation. Consider a proposition-generator
which calls no cognitive functions; let it be P. We can assume
that as a process it is infinite. If it is finite, we modify it
so that instead of stopping it goes on infinitely without pro
ducing new members. All the propositions produced by Pare inter
pretable and, by the inductive hypothesis, have a definite objec
tive evaluation. Intuitively, P is true if it produces only true
propositions. We can construct a process which tests this. Every
time that a proposition is produced by P we apply the process of
objective evaluation to it. By the induction hypothesis, it is
always finite. If the result is F, we stop and mark the proposi
tion-genrator as F. If it is T, we go on running the generator.
This defines a certain process; let us denote it as A. Although A
is not mechanical, the reasoning which led us to accept (EM 1) is
still applicable to it. Again, the assumption of (EM 1) cannot
lead to a contradiction. Therefore we construct the finite pro
cess of objective evaluation which runs the process A and the
proof of its infiniteness in parallel. This process assigns toP
a definite truth-value.

(c)lnduction on cognitive function calls. Consider an interpre
table search, say A. Whenever y(P) or y(P) is called, the propo
sition P is interpretable and, by the induction hypothesis, has
an objective evaluation. Modify A as follows. When y(P) is met,
initiate the process of objective evaluation of P. It is always
finite. If the result is T, replace y(P) by any object expression
(according to point 1.2 in the definition of interpretability,
the further development of A will not depend on it). If the
result is F, replace it by any infinite process. Let the process
modified in this way be A'. It is either finite or infinite. In
the first case we intuitively take the proposition A! as true, in
the second case as false. Reasoning as in case (b), we can apply
(EM 1) to A'. The process QQj(A' !) must be finite. It is the
objective evaluation of A!. It results in the assignment of a
definite truth-value to it.

4-21

Consider an interpretable proposition-generator, say G.
Replace ~/y-calls as above. The resulting generator can be
treated as in point (b). Thus we again are able to construct a
process, the objective interprtetation of G, which is finite,
produces Tor F, and corresponds to our intuitive understanding
of objective truth-values of propositions.

A process, say A, is semantically dependent on another
process, say B, if one of the future stages of A includes
<ytB!>, or <vtB?>, or <vtB!>, or <vtB?> as a subexpression. For
the process A to be interpretable all processes on which A
semantically depends must be interpretable, and their interpreta
bility must have been established prior to the consideration of
the interpretability of A. The relation of semantic dependence is
obviously transitive. If a process semantically depends on itself
we refer to this situation as a semantic recursion. For a para
metrized process, semantic recursion, like the usual recursion,
may be finite or infinite. A process which generates infinite
semantic recursion, e.g., the process <A> defined by the sen
tence:

(1) <A> • (y*(A)?>

is not interpretable. Compare it with the usual infinite recur
sion:

(2) <A> • <A>

The process <A> defined by (2) is perfectly interpretable and
infinite. The question whether <A> defined by (1) is finite or
infinite has no meaning. We understand what finiteness/infinite
ness is when we speak of deterministic, mechanical processes.
With real-time processes, as we discussed above, the modality of
necessity gives place to the modality of possibility. The concept
of finiteness/infiniteness loses its meaning unless it is somehow
defined. For interpretable processes we can construct such a
definition through the objective evaluation. For uninterpretable
processes we have no definition.

If we assume that the process defined by (1) can be judged
in terms of finiteness/infiniteness, we immediately come to a
contradiction. Indeed, if <A> is finite then the right side of
(1) is also finite, which means that <A> is infinite. If <A> is
infinite then <~*(A)?> should be finite, which makes <A> finite.

4-22

Uninterpretable propositions stand behind all paradoxes of mathe
matics. Note that if we change (l) in this way:

(3) <A> ~ <v*(A)!>

we will not be able to come to a contradiction -- not immediately
at least -- but <A> defined by (3) is etill uninterpretable.
v

Objectve interpretation has double importance. First, it
gives an instrument to decide which proposition is true and which
is not. According to the general definition of truth in the
dynamic interpretation of cognitive function, in order to add
some proposition, say P, to human knowledge, we must prove to the
judge of intuition that P will hierarchically produce only true
predictions in the context of any knowledge. How can we prove it
in a convincing way? The definition of objective interpretation
reduces this problem to a series of problems of one special type:
a proof that a given search is infinite. If we know how to solve
this problem -- and to the extent we are able to solve such
problems -- we can solve any mathematical problem.

Second, objective interpretation divides all interpretable
propositions into two categories: true and false. This is a
tremendous help in analyzing complex propositions. The concept of
falsehood becomes defined on its own, independently of the con
cept of contradiction. Yet, as we shall establish in the next
section, contradiction and falsehood go together, so we still
need only one function ~ to recognize them.

4. Weak interpretability.Correctness theorem

The requirement of strong interpretability can be weakened.
If a generator produces at least one interpretable and false
proposition, it can be labeled as false even though some of its
other branches are uninterpretable processes. In contrast, for a
generator to be true all of its branches must be interpretable
and true. Also, a search can be labeled as finite if at least one
of its branches is interpretable and finite, even though other
branches may be uninterpretable. A search is interpretable and
infinite only if all its branches are interpretable and infinite.
We can make this extension of the concept of interpretability
because we examine parallel branches of processes in parallel.

4-23

When examining an uninterpretable branch, the function QQj will
work infinitely in a futile attempt to get to the bottom of
semantic recursion; meanwhile, another branch may lead to a
definite result.

For a better insight into the structure of propositions, we
shall use their semantic maps. The function obj will be defined
as the process of labeling the semantic map of a proposition.

maps.

•

' •

The following is the definition of the elements of semantic

)

A proposition-generator which starts producing
something. A semantic map is a directed graph with
nodes (dots) representing propositions and arcs
(lines) representing processes. Unless the direc
tion of an arc is indicated explicitly, it is from
left to right and from top down. If a line peters
out, it means that the map does not show what will
happen later.

A proposition-generator which branches into three
parallel processes.

A proposition-prediction that a search is finite;
and the beginning of that search.

A search branches into two parallel searches.

A branch of a generator produces a prediction.

A branch of a search ends.

A process becomes infinite. The part to the right
of the cross never materializes.

A process calls y(P) and goes on. P is represented

4-24

C)

by a dot, i.e. as a proposition-generator.

A process calls ~(A!) and goes on. We do not dis
tinguish between a proposition-generator which
generates one prediction, and that prediction.

A process calls ::Y(P)! and goes on.

A y-call is known to be finite. Analogously for ~-

A y-call is known to be infinite. Analogously for

~-

A process has more branches than shown in the map.

An infinite loop in the process.

Examples of semantic maps

Fig.l. Proposition (A! and B!) where A is finite and B infinite.
Fig.2. Proposition if y(B?)! then or(y(A!),y(A?))!

with A finite and B infinite.
Fig.3. Proposition if ::Y(P)! then ::Y(P and Q)!,

where P and Q are propositions whose truth-values are as
yet unknown.

Fig.4. Proposition isr! where isr is defined by:

<isr> ~ <~ *(isr)?>

There are a number of simple transformations that can be
done over a semantic map without changing it in a significant
manner. An infinite recursion loop can be replaced by a cross;
two consecutive stages of a process can be merged into one; an
infinite branch of a generator can be eliminated.

4-25

A semantic map can be labeled. This is a process which
results in the marking of every ~/y-call as either finite or
infinite and the assignment to every proposition in the map of
one of the following truth-values: T for true, F for false, and U
for uninterpretable. Labeling the map of a proposition P is the
same as giving it objective interpretation. There is no algorithm
that could label the semantic map for every proposition; the
process of labeling is metamechanical. We have no general method
to determine the labeling; we only de(tne it.

The rules of labeling are as follows.

Labeling rules

LRl. A call v(P) with P labeled T is marked finite.

LR2. A call v(P) with P labeled F is marked in
finite.

LR3. A call y(P) with P labeled T is marked in
finite.

LR4. A call y(P) with P labeled F is marked finite.

LR5. A call v(P) or y(P) with P labeled U is left
unmarked.

LR6. If every branch starting from a proposition
generator either leads to a proposition labeled T,
or is infinite, this proposition-generator is la
beled T.

4-26

.v

)

LR7. If at least one branch starting from a propo
sition-generator leads to a proposition labeled F,
then this proposition-generator is labeled F.

LRB. If at least one search starting from a pre
diction node is finite, then this prediction i~

labeled T.

LR9.
node
F.

If every branch starting from a prediction
is infinite, then this prediction is labeled

LRll. A proposition which cannot be labeled by the
rules above is labeled U.

LRll. A branch is finite if it ends,
calls on it are marked finite.

and all Y/'Y-

LR12. A branch is infinite if one of these cases
takes place:

(a) there is an infinite Y/v-call such that all
Y/'Y-calls before it are finite;

(b) there is an infinite recursion loop with all
the Y/'Y-calls on the branch marked finite.

Examples of labeling. Fig.5 shows the map of Fig.2 after labe
ling. Fig.Ga and Fig.Gb show the labeling of the semantic map of
Fig.3 with P true and P false. In both cases the root proposition
is labeled true, no matter what the labeling of Q is. The predic
tion in Fig.4 must be labeled U. Infinite semantic recursion is
not necessarily the result of a situation when a stage of the
process exactly repeats itself. We can define function isr this
way:

4-27

<isr e > ~ <~ *(isr <~e >)?>
--- X --- X

Then for 1§£()! we shall have the semantic map shown in Fig.7.

Rules LR7 and LRB do not require that all branches are
labeled definitely (i.e. Tor F): some branches may call uninter
pretable processes. Thus a proposition-generator or a prediction
may be interpretable even though the processes it involves are
only partially interpretable. A proposition which generates at
least one false proposition is false no matter how we interpret
-- or fail to interpret -- all other propositions generated by
it. A search is finite if we know that at least one branch has
led to a stop, no matter what happens to all the other branches.
We shall see later that weakly interpretable processes play an
important role in set theory.

Consider the paths in the semantic map of a proposition P,
which start at node P. When such a path passes over from a call
~(Q) or y(Q) to Q we have a metasystem transition. The number of
metasystem transitions on a path is its semantic length. A path
is semantically finite if its semantic length is finite, and
semantically infinite otherwise. A path is unavoidably semanti
cally tnf~nite if it is semantically infinite, and (l)whenever it
passes through a proposition-generator there is no other branch
starting from the same generator such that none of the paths
taking this branch is unavoidably semantically infinite, and the
branch produces a proposition labeled F; (2)whenever it passes
through a prediction ,there is no other branch such that none of
the paths taking this branch is unavoidably semantically infi
nite, and this branch comes to a halt (is finite). A proposition
is strongly interpretable if its map allows no semantically
infinite paths. A proposition is weakly interpretable if no path
in its map is unavoidably semantically infinite. It is possible
that a given map contains finite paths of arbitrarily large
semantic length.

Note an essential difference between true and false proposi
tions when we allow weak (partial) interpretability: a false
proposition-generator can produce uninterpretable propositions,
while a true one cannot.

When we create a formal system we take a proposition ri as
its knowledge and define the access function <gns> as

4-28

Now the function y(P) called by proposition-generators, which was
undefined before, becomes a completely defined recursive function
which we denote as Yi(P); and y(P) becomes yi(P). Note that the
replacement of Y/Y by Y·/Y· takes place only for the purpose of

t t
generation. The ultimate product of proposition-generators, the
predictions, can still include y/y-calls; there is no need to
replace them. (The replacement would signify a change in inter
pretation from the dynamic to a static one).

We should now explore the relation between the
function y(P) and its 'approximation' Yi(P). What we
course, is that the formal system be correct, i.e.
finite only when y(P) is finite (P objectively true).
lationship is established in the following theorem,
crucial for the whole theory we are developing.

'precise'
want, of
Yi(P) be
This re
which is

Correctness theorem. If ri is true then yi(P) for any interpre
table Pis finite only if Pis true, i.e. a formal system with
the knowledge ri is correct.

Proof. Let Yi(P) be finite and suppose that P is false. The
process Yi(P) is the running of the generator ri until it pro
duces P. Consider the branch Bi of ri which has produced P (to be
referred to as the dertvatton branch for P), and compare it with
the corresponding branch Bin the semantic map of ri. They are
different only in that every call y(Q) in B is replaced by Yi(P)
in Bi(P), and every y(Q) is replaced by yi(P). The branch Bi has
no more than a finite number of Yi/Yi calls. Let them be:

We can take every Qr and find a derivation branch in ri which
produces Qr. And we can take every Q; and find two derivation
branches in (rt and Qs) which produce a contradictory pair of
atomic propositions, A! and A?. Since each of these branches is
finite, we can again construct derivation branches for the Yt/Yi
calls they involve (if any). Since the process of producing P
from ri is finite, we shall ultimately come to a finite deriva
tion tree for P (see Fig. 8).

Consider the Yt/Yt calls (*). The corresponding Y/Y calls in

4-29

the semantic map of ri cannot all be finite because it would mean
that rt produces a false proposition P and is,therefore, false.
Hence either there is a false Qr for which ~t<Qr) is finite, or
there is a true Q~ for which yi(Q~) is finite, (or both). In the
first case we again face a situation where a true rt produces a
fals~ proposition, this time it is Q . In the second case a true r
proposition (ri and Q~) produces a pair A!, A? of atomic proposi-
tions from which one is false: the same situation again. In both
cases the new derivation tree is a subgraph of the original tree.
Since it is finite, this situation cannot repeat unlimitedly.
Sooner or later we must come to a true proposition which gene
rates a false proposition. This contradictio~ proves the theorem.
v

Corollary 1. If ri is true then yi(P) for any interpretable Pis
finite only if P is false.

Indeed, should P be true, we would have a situation where a
true proposition (ri and P) produces a false atomic proposition.

Corollary 2. Every interpretable proposition is context-safe.

Corollary 3. If ri is true, the formal system which takes ri as
its knowledge is consistent.

(Because, if both ~i(P) and yi(P) are finite then it vio
lates either Correctness theorem or Corollary 1).

Theorem. If P is a false proposition then y(P)!.

Proof. We use induction on the structure of the interpretable
proposition P.

Base. If P is A! with a mechanical A, and it is false, then A? is
true. We can add A? to the current knowledge, thereby making P
contradictory and y(P) finite. Thus there exists such a (true)
knowledge ri that Yt(P) is finite. By the definition of dynamic
interpretation, this means that y(P) is finite. If P is A?, we
add A! to human knowledge.

Induction on generation. If Pis a false generator, it produces
at least one false proposition; let it be Q. By the induction
hypothesis, y(Q) is finite. Therefore, y(t) is finite.

~
4-3S

Induction on co9nitive function calls. Let P be A! and false.
Suppose first that the search A has only one branch. Since A! is
false, at least one of the following three situations must take
place:
(a) The search A' produced from A by 'short-circuiting' (that is
replacing by the empty expression) all cognitive function calls
is infinite.
(b) A' is finite, and y(Q)! with some false Q appears in A.
(c) A' is finite, and y(Q')! with some true Q' appears in A.

Upon examination, case (c) is impossible.
then its addition to human knowledge cannot lead
tion.

If Q' is true,
to contradic-

In case (a) we add to human knowledge the proposition

if A! then A'!

which is, obviously, true. Then we add A'?, which also is true.
Now A! produces a contradiction, namely A'! and A'?.

In case (b) we add to human knowledge:

if A! then Q

By the induction hypothesis, the addition of Q leads to a contra
diction. Therefore, the addition of A! also leads to a contradic
tion.

If the search A has more than one branch and is finite, then
there must be at least one branch that is finite. Applying the
reasoning above to this branch we can prove that A! leads to a
contradiction. Since the statement that A is finite (which, in
addition, is false) does not give us any indication which of the
branches is thought to be finite, we cannot indicate specifically
what true statements must be added to human knowledge to ensure
the derivation of a contradiction from A!. But the reasoning that
if A is finite then there must be a finite branch, with the
subsequent invoking of the above proof that the existence of such
a branch is contradictory -- is intuitively beyond doubt and a
part of classical logic. Therefore, it can be formalized as part
of human knowledge in our theory; then a contradiction can be
formally derived from A!, that is y(P) is, in dynamic interpreta
tion, finite.

4-31

So, if Pis false then y(P)! is true. On the other hand, if
y(P)! is true then P must be false: if it were true it could not
produce a contradiction. The statements 'P is false' and 'P leads
to a contradiction' are equivalent. A pair of the form P and v
(P)! will be considered now as a formal contradiction, like A!
and A?. Indeed, if the addition of a proposition, say Q, produces
both P and y(P)!, then one of the two is false, which means Q is
false.

Objective interpretation is based on our intuition of the
separability of the object and the subject of knowledge. When we
deal with quantum-mechanical phenomena this intuition deceives
us. The object and the subject of knowledge are not completely
separable in the quantum-mechanical measurement. Our functions v
and y can be seen as measurement procedures, of a kind. We took
pains to separate the results of these 'measurements' i.e.
truth values of propositions, from our state of knowledge. Our
theory allows 'interpretable' propositions only; this leads to
the usual two-valued logic. It is possible that a more general
theory can be built, which would not limit itself to those propo
sitions we call interpretable, thus overstepping the boundaries
of traditional logic. This possibility occurred to the author
under the influence of the ideas of the wave logic developed by
Yuri Orlov. Orlov's ideas can probably be used in trying to
expand the present theory aiming at description of subatomic
phenomena.

4-32

C H A P T £ R 5

I no i •'"' -- J--

1. First-order theories

Let us sum up where we are. We defined mathematical proposi
tions as generators of predictions. We found that in order to
explicate in this way the most usual logical constructs, such as
existential quantification and material implication, it is neces
sary to introduce into the theory a formalization of the process
of getting the knowledge that a given proposition P is true. We
denoted this process by y(P) and defined it as a logical infer
ence of P from a proposition r, which represents the sum total of
the knowledge accumulated up to date by humanity. We denoted the
process of establishing that Pis false by y(P); it is the pro
cess of finding a contradiction in the logical conjunction of r
and P. We translated the language of mathematical logic in terms
of our theory.

Naturally, r is not a fixed expression, but it changes as
time passes. Unlike mechanical processes, which we define using
the Refal machine or any other linguistic machine, human know
ledge is a real-time process; we cannot reproduce all of its
stages in their sequence, as we can do with mechanical model-time
processes; we can only know what its present stage is.

We defined the concept of truth as follows: a prediction A!
is true if the process A is finite; a general proposition P is
true if all the predictions it hierarchically produces are true.
We recognized then the following fact, which is of the utmost
importance: since human knowledge enters the meaning of proposi
tions (the set of predictions produced and the processes referred
to by predicttions), we cannot assume automatically that a propo
sition that is true today will be true tomorrow. We gave an
example where adding a true proposition to a true knowledge
results in a false knowledge; it happenes because by adding a new
proposition to r we change the meaning of r and other proposi
tions, and some of them may become false. We found a way out in
exploiting the intuitive idea of objectivity, according to which

5-1

the cognitive processes v and Y only register the truth values of
propositions, which 'are there' anyway. We defined a procedure of
objective interpretation of a proposition, and agreed to accept
as meaningful only those propositions for which this procedure
leads to a definite truth value. However, the naive notion that
some 'real' truth values 'are there' attached somehow to proces
ses is not acceptable for us as part of our formalism; we have
shown that the dynamtc interpretation of references to r is
equivalent to the intuitive objective interpretation.

The procedure for establishing the interpretability of a
proposition is by no means an algorithm with a guaranteed end.
Interpretable propositions form a hierarchy which is constructed
step by step, starting with the propositions that never refer to
cognitive functions. At each step proofs are required, which rely
on our current knowledge. To be valid, this knowledge must use
only interpretable proposition; their interpretability, there
fore, must have been established prior to their use for estab
lishing interpretability of other propositions. The hierarchy of
interpretable propositions which must be constructed in order to
validate a given proposition as interpretable Pn includes not
only those propositions P7- 1 • P~- 1 • etc., in terms of which Pn is
interpreted, but also the propositions which are necessary to
prove that Pn really is interpretable if P7- 1 , P~- 1 • etc. are
interpretable. Interpretability and knowledge are inseparable.

We proceed now to examine in greater detail the structure of
a mathematical theory. First of all, every theory has certain
objects to deal with, and certain primary predicates applicable
to objects. Then there are certain logical forms to make compo
site predicates from primary ones: connectives and quantifiers.
All these are usually defined purely syntactically, without any
indication as to what the meaning of the predicates and logical
forms is. It is entirely left to the stage of application. In our
approach, the logical forms and the primitive predicates of a
mathematical theory are parametrized processes. The logical forms
are machines defined in Refal, namely: imp, £2n, if, and, or,
all, sch. The primitive predicates may be defined by machines, or
left undefined (see Section 3.2 about cybernetic and axiomatic
theories); in the latter case their definition is left for appli
cations. All propositions in our approach have a definite meaning
expressed in terms of processes, as we have just summed up above.

There are two possible situations with regard to what can be

5-2

treated in the theory as an object. (l) The objects of the theory
may be predefined at the outset of that theory. If their number
is finite, they can be simply listed. If their number is poten
tially infinite, a machine can be defined which generates all of
them. This situation is traditionally known as a first-order
theo-y. The objects of such a theory are completely separated
from the propositions about the objects. (2) The set of the
objects of the theory may not be predefined, and the propositions
of the theory may, in their turn, become new objects. This situa
tion is referred as a higher order theory. The origin of the
terms is this. When you have some objects, you can create a lan
guage and a theory to treat these objects. It is a theory of the
first order. Then you take the propositions of this theory as the
objects for a new theory, which is thereby a theory of the second
order, etc. In practice, mathematics uses only one theory, but it
is of the infinite order. It is set theory. Indeed, the concept
of a set is essentially identical to the concept of a proposi
tion: when we define a set we define a predicate of being an
element of this set, and vice versa. In set theory we define
sets, which then become legitimate new objects. This conversion
of a proposition into an object can be repeated indefinitely.

In this chapter we consider the common features of the
first-order theories, which amounts to considering logic. First
order logic, they often say.

A first-order theory is a real-time process each stage of
which is a formal system as defined in Chapter 4. According to
that definition, a formal system consists of two parts: a number
of machines, and a knowledge r. The mechanical part of any first
order theory includes all the logical machines listed above. Now
we are about to create the knowledge part.

In accordance with the strategy formulated in Chapter 4, we
go ahead by steps, starting with an empty knowledge and adding
propositions which we have proved to be true in some way which
our intuition accepts without doubt. Our purpose is to reconsti
tute all the usual apparatus of formal logic, thereby proving
that logic is true and consistent. As we go on, we shall consider
one or another proposition P with an aim to justify its use in
logic, if possible. We have two ways to do it. First, we can show
that with the knowledge r we have proved true up to the moment, P

is deducible in our formal system, i.e. implied by r. We shall
represent this proposition by the formula

5-3

r ~ P

An equivalent form of it would be Y(P)!. Second, if P is not
implied by r we can prove intuitively that it is true and include
P into r, i.e. change the current r to and(r,P). This iS not
merely a proposition, but an act in real time, which we called a
statement in Chapter 4. We shall represent this statement by the
formula

r • P

We shall refer to the set of all propositions produced
hierarchically by r as its scope. If a proposition Pis implied
by r, directly or hierarchiclly, its scope is, of course, a
subset of the scope of r (see Fig. 5.1). If r is true then every
P implied by it is also true, which is a trivial case. But a
proposition, such asP' in Fig.5.1, may have a scope which is a
subset of the scope of r without being ever produced (implied
directly or hierarchically) by r. We say that P' is justified by
r. It is true if r is true. Instead of proving P' intuitively, we
can prove that it is justified by r and add it by the correspon
ding statement. It should be noted that the addition of a propo
sition P' justified by r may expand the scope of and(r,P') beyond
the union of the scopes of r and P'. This situation is shown
schematically in Fig. 5.1. An example when it takes place fol
lows:

r = and(A! ,and(B?,ify(and(A! ,B?))! thenC!)
P' = and(A! ,B?)

The scope of r consists here of the following five propositions:

(1) r itself
(2) A!
(3) and(B?,ify(and(A! ,8?))! thenC!)
(4) B?
(5) ify(and(A! ,B?))!thenC!

The proposition and(A! ,B?) is not among them, therefore the if
proposition (5) produces nothing. The proposition P' produces two
atomic propositions A! and B?, which are also produced by r.
Therefore, it is justified by r. When we add P' to r, the resul
ting system produces and(A!,B?), and as an additional result

5-4

produce& the atomic proposition C!

Let <obj> (just obj in the free format) be the generator of
all objects of a first-order theory. Then all quantifications
will take place over this set, and we can omit references to it
the way it is usually done in formal logic. Thus instead of

all(xEobi:P(x))

we shall write

all(x:P(x))

and the same for sch.

When constructing a theory we want to be sure that all
propositions of it are interpretable. With first-order theories
this problem is solved very easily. One can verify that all the
logical machines we defined are such that when their arguments
are interpretable, the resulting processes are also interpret
able. When primitive predicates are defined by machines, they
would not include references to cognitive functions, and there
fore initiate interpretable processes. Since the whole set of

possible propositions is produced by substitutions, there is no
way an uninterpretable proposition can appear in a cybernetic
theory. The same will be true for an axiomatic theory if the
axioms are all interpretable. It would be strange if they were
not, because axioms are created as a formalization of the proper
ties of natural processes, which are thought of in objective
terms and leave no place for cognitive processes.

It follows from the preceding that not only the set of all
objects but also the set of all processes and propositions in a
first-order theory is produced by mechanical generators (are
recursively enumerable). Let~ be the generator of all proces
ses-searches, ~ the generator of all processes-generators, and
~ the generator of all propositions. This allows us to quanti
fy variables over these sets in order to express very general
propositions of logic. Suppose we have a propositional form P(p)
which depends on the propositional variable p. Then we can form,
and possibly add to r, a single proposition

5-5

which will be equivalent to the set of propositions P(P) where P

stands for an arbitrary proposition, i.e. is used as a metasym
bol. Since this second form is more readily understandable, we
are going to prefer it to the quantified form, but one should be

aware that such propositional forms stand for single quantified
propositions, and there is no need in our theory to introduce
anything like axiom schemata of mathematical logic. Even most
general logical laws are expressed in our theory by single lin
guistic objects.

To finish up with the preliminaries we only have to sum up
the results of Chapter 3 in the form of a table translating the
usual logical notation into the corresponding propositions of our
theory. The translation of a conventional logical proposition P
will be denoted by [P]. Primitive predicates are translated
according to their meaning if we construct a cybernetic theory,
or as undefined parametrized processes, for which only the name
must be chosen, if we construct an axiomatic theory. For compo
site propositions the translation rules are:

[.,.P) = :Y([P])!
[P&Q] = and([P], [Q))
(PvQ] = or(v([P],v([Q]))!
[P ... Q] = if-v([P])!then[Q]
[(Ax)P(x)] = all(x:[P(x)])
[(E"x)P(x)] = sch(x:-v([P(x)]))!

2. Definition and verification

One of the mosl ccrlain parts of our knowledge is what we
know by definition, because we set it to be that way. The ma
chines we use are defined by sentences in the program field of
the Refal machine. Let us see how the knowledge contained in
these definitions can be formalized.

Consider the first sentence of a function definition, and
suppose its left side L, and therefore also its right side R,

includes no free variables. Then one step of the Refal machine
will transform L into R. This can be expressed as the proposi
tion:

(1) t<=(<steptL>)(tR)>!

5-6

which encapsulates the whole knowledge contained in the original
sentence. We shall say that the expression Ex immediately entails

Ey if one step of the Refal machine transforms Ex into EY. The
proposition (1) states that L immediately entails EY.

The predictions of mathematics state the finiteness of pro
cesses without indicating how many steps it takes for a process
to stop. Pure mathematics, unlike computer science, does not
count computation steps. Therefore, the transitive closure of
immediate entailment will be more useful for mathematical pur
poses. We say that Ex entails EY if Ex is transformed by the
Refal machine into EY in any number, but at least one, steps. It
is easy to define the function which tests this relation:

The process <ent(tEx)~tEy> ends if and only if Ex entails EY.
Instead of (1) we can now use this proposition:

(2)

If L includes free variables, they can be universally quan
tified in the propositions (1) and (2); if they are left free,
the quantification is assumed when we deal with such propo
sitions. If the sentence L ~ R is not the first in the group of
sentences defining a function, then we cannot simply transform it
into (l) or (2), because this sentence will be used only if all
the preceding sentences of the definition are unapplicable. This
means that the free variables in L cannot be universally quanti
fied, but exceptions must be made for those possible cases when
this sentence will not be really used. For instance, if the
function fun is defined by two sentences

<fun Aez>
<fun sxez>

B

then in the proposition representing the second sentence sx must
be quantified over all symbols except A.

It is possible to represent all the information contained in
the definitions of a theory in the form of propositions of en-

5-7

tailment. Also, as we shall see in a moment, all individual
propositions about entailment can be produced in a simpler way,
using only one very powerful statement, to the discussion of
which we now proceed.

This statement is the verification principle:

In the form with metavariables:

r .. ilA!thenA!

where A is an arbitrary search.

If we try to translate this principle into the language of
formal logic, we come to the trivial axiom

finite(A) ~ finite(A)

whic'h is of little, if any, use. In our system, however, the
verification principle is far from being trivial, and not an
axiom but a theorem. Let us see what is the full scope of propo
sitions it hierarchically produces. We add to our knowledge r a
proposition which produces the propositions

(3) ifA!thenA!

with all possible searches A! expressible in the theory. When r
starts working, every proposition (3) starts working, and if the
search A in it is defined and finite, it produces the prediction
A!. If the search is undefined or infinite, it produces nothing.
Thus all those and only those predictions A! for which A is
defined and finite will be produced by r. The verification prin
ciple formalizes the fact that the finiteness of a search which
is defined mechanically can be directly verified, at least in
principle. The generator (3) produces all propositions that can
be proved true through verification. It is an intuitive theorem
of our metatheory, which we have just proven by establishing that
the verification principle produces only true propositions.

Let Ex entail £Y. Then the search ent(£x,Ey) is defined and
finite, therefore ent(Ex,E)! is produced by the verification
principle. Thus the verification principle alone provides for all

5-8

individual relationships of entailment which can be derived from
the definitions in the memory field. (But it does not provide for
quantified propositions of entailment like (1). They are justi
fied by the verification principle, but not produced by it).

Definition. Two parametrized searches S 1 and S 2 are functionally
equivalent: s,:S 2 , if one of the following two situations takes
place with any values of free variables: (l) both searches are
infinite, or (2) both searches are finite and their results
(finite stages) are identical.v

The following general statements can be made, which are ob
viously true:

r ... if
r -+ if
r -+ if

ent(S 1 -+S 2)!then S 1 :S 2

ent(S -+S)'then S :S
-- 2 1 ·-- 1 z
v(S 1 :S 2)!then S 2 :S 1

Here S 1 and S 2 are arbitrary parametrized searches.

If the machinery of a formal system includes the functions
stepu and actu, then the introduction of new machines by adding
their definitions to the memory field adds really nothing to the
power of the existing machinery. Indeed, suppose we define a
certain function, F, by the list of sentences S. The expression

<~<actu(and(D,tS)) *(F<uex>>>

where D is the list of definitions currently in the memory, is
functionally equivalent to <Fex>· Since we do not care in mathe
matics how long it takes to compute something, we can use the
former wherever we use the latter. The definition of new func
tions by adding new text to the memory field becomes just a
matter of convenience, a notation. Whenever we say 'define a
function by such and such sentences', we also could say 'consider
the function actu with such and such first argument'. Since we
introduce the functions stepu and actu at the early stages of
our theory, we shall assume that all the definitions made later
become automatically known to the formal system.

3. Basic logical principles.Intuitionism

In this section we construct that part of logic which does
not depend on how we treat human knowledge r when determining the

5-9

truth values of propositions. As mentioned before, it can be done
in two ways. r can be considered as fixed: a definite, though
perhaps very big, expression. It is not required that r is actu
ally written down; for practical purposes of making proofs we
draw, as always, on our intuition, and when we prove something we
consider it as included in r. When reasoning theoretically in
this approach, we do not use any specific features of r, but only
the fact that it is definite. This is not to deny that r changes
in real time. We simply refuse to speculate on what can happen to
r in the future, and identify the truth of any proposition with
its deducibility from the r of today. This is the static inter
pretation of r. The alternative dynamic interpretation claims
that even those propositions that can neither be proved nor
refuted today must be true or false; it does speculate on future,
boldly tying up the concept of truth with the future of the
process r. A major part of logic does not depend on the interpre
tation we keep to. It is common to the intuitionist and the
classical logic.

So we start constructing logic from scratch. First we create
the necessary machinery: put in the memory of the Refal machine
the definitions of all logical machines discusses above. At this
stage the knowledge r of out theory is still empty. Let us take
the verification principle as our first statement (see the pre
ceding section). Now r produces all propositions of the form:

(1) ifA!.tJlMA!

where A is a search.

For an arbitrary P, substitute y(P) for A in (1):

(2)

All possible propositions (2) are produced in r as a subset of
the scope of the verification principle. If P is produced by r,
then y(P) is finite. Then (2) produces y(P)!. We can now substi
tute y(P)! for P in (2), and so on. We conclude that if P is
produced in a formal system r (this is for short instead of 'a
formal system with the knowledge r'), then the propositions
y(P)!, 'Y(Y(P)!)!, etc. are also produced in it. In words: If r
knows P, then it also knows that it knows P, and it knows that it
knows that it knows P, etc.

5-lliJ

Suppose now that r~~(P)!. Since r is true, the fact that
-v(P)! is produced by r means that it is actually true, i.e. that
-v(P) is finite. But its finiteness means that r~P. Combining this
result with the preceding one yields the following

Theorem. Propositions P and ~(P)! are equivalent in r,

P:.~ (P)!

meaning that whenever one is produced by r the other is produced
too.

We can now easily prove theorems corresponding to well-known
logical identities. For instance,

Theorem. Implication is transitive:

r+- if-v(li~(P)!then Q)!then
if-v(if-v(Q)!then R)!then
li-v(P)! then R

It can be made easier to review in the form of a derivation rule:

r .. li-v(P)!thenQ
r .. if-v(Q)! thenR

f-+ if~(P)!thenR

Proof. The proposition in (i3) produces R whenever r produces P.
But if r produces P then, according to (il) it also produces Q,

and if it produces Q then, according to (i2), it produces also R.

Therefore (13) produces R only in the case when r already pro
duces it anyway. The proposition in (i3) is justified by r,
therefore the statement C*3) is correct. Note that although the
proposition in (i3) is justified, it is not produced by r, this
is why (i3) is a statement' r .. , not a proposition r~. After this
statement our implication becomes transitive, but not before it.
The proof of the theorem is the proof that the statement leaves
the current knowledge true if it was true before. As we mentioned
before, the theorems we prove while constructing a formal system
PithP.r ~how that a desired feature is there already, or justify
the next construction step, which is made in order to have this
feature. This theorem is of the latter type.v

5-11

To show the equvalency of our construction to a formal
system already known we must interpret in our terms the axioms
and the derivation rules of that formal system. We shall do it
for the part of mathematical logic which is common to classical
and intuitionistic logic, and this part is coextentional with
intuitionist logic, because every proposition provable in intui
tionist logic is also provable in classical logic. The inverse is
not true; classical logic can be constructed from intuitionist
logic by adding one more axiom: the law of the excluded middle or
its equivalent.

The intuitionist propositional calculus can be based, accor
ding to Heyting (1966), on eleven axioms (Hl-Hll),which we prove
below as theorems in our system.

Theorem Hl: P -i> P&P

From the definition of the and machine it is obvious that
and(P,P) generates only P (though twice). The statement

r ~ ify(P)then and(P,P)

produces P only it is already produced by r. Thus it is justi
fied.

Theorem H2: P&Q .. Q&P

If and(P,Q) is produced, then P and Q are also produced, and
therefore and(Q,P) is justified:

r ~ if and(P,Q)!then and(Q,P)

Theorem H3: (P .. Q) -i> (P&R -i> Q&R)

Let

(1) r ..

and

(2) Arui(P,R)

From (2) we see that r produces P, therefore (1) will produce Q.
It also produces R, because of (2). This proves that H3 is justi-

5-12

fied.

Theorem H4:

This theorem follows readily from the definition of the and
machine and the transitivity of implication which we proved
above.

Theorem H5:

The statement

does nothing more than add if~(P)!thenQ to r if Q is produced by
r. Since this non-atomic statement can produce only Q again, it
is justified.

Theorem H6: P& (P-+Q) -+ Q

The statement

produces Q only if P and if~(P)!thenQ are produced. But in that
case Q is produced anyway.

Theorem H7: P ..,. PvQ

Consider the statement:

r .. ifA!then or(A,B)!

where A and B are any processes. If A is finite it produces the
prediction that or(A,B) is finite. This is a true prediction, as
one can immediately see from the definition of the QI machine,
which runs A and B in parallel until either of them stop.

Theorem H8: PvQ -+ QvP

This theorem also immediately follows from the definition of
the QI. machine.

Theorem H9: (P-+R)&(Q-+R) ~ (P&Q -+ R)

5-13

Suppose that the antecedent of this implication is true,
i.e.

r ~ ify(P)!~R

r ~ lly(Q) !ihJnR
Then the statement

is justified because it produces R only if at least one of the
processes y(P) and y(Q) is finite, but in that case R is already
produced by r.

Theorem 811:

which
nite.
(P)!

This corresponds to the statement:

will produce something only if both y(P) and v(P) are fi
But this is possible only if r is contradictory. Indeed, v

means QQQ(r&P)!. Since y(P)!, the proposition Pis produced
by r, therefore the £Qn machine will find a contradiction with r
alone on the input: QQQ(r)!. But this is imposiible because our
system was consistent in the beginning, when it was empty, and
has remained consistent after every statement. Therefore Hll
represents an empty proposition, and as such is justified.

Theorem Hll:

Suppose that the antecedent is true. Then

r ~ ify(P)!thenQ
r ~ ilY(P)! then:Y(Q)!

Form r• as ~(r,P). Both y(Q)! and :Y(Q)! are produced in r•,
which means that it is contradictory: con(and(r,P))!. We denote
this as y(P)!, so Hll is justified.

When all the statements referred to in the proofs of Hl to
Hll are made, we have a formal system in which every axiom of the
intuitionist propositional calculus is produced. We want to prove
now that every theorem of that calculus is produced also. To

5-14

achieve this goal it suffices to show that if a proposition of
logic, say P, can be obtained by applying one of the tn(erence
rules of the logic to some propositions already proven (inclu
ding, of course, the axioms in that number), then Pis also
produced in our formal system r. There are two inference rules in
the propositional calculus. The Substitution rule allows one to
substitute any proposition for a propositional variable. In our
sytem it is taken care of by the definition of universal quanti
fication. The all machine will produce all those propositions
which can be proved in logic by applying the substitution rule.
The Modus Ponens rule of logic declares that if P and P~Q are
proved then Q becomes proved. It is taken care of by the defini
tion of the if machine in our system. Indeed,

if
and
then

p

ify(P) !thenQ
Q

To construct the predicate calculus, we must add to
axioms of the propositional calculus two axioms: APl and AP2,
two rules of inference: IPl and IP2. They are also sufficient
the predicate calculus in classical logic. We prove them
theorems.

Theorem APl: (Ax)P(x) ~ P(r)

the
and
for
as

where P(x) is a proposition depending on the free variable x, and
r is an object.

This axiom, like the substitution axiom, is taken care of by
our definition of universal quantification, the difference being
that the quantification is over the set of all legitimate terms,
not propositions.

Theorem AP2: P(r) (Ex)P(x)

To cover this axiom, we make the statement:

r ~ ifA(R)!then sch(x:A(x))!

where A(x) is a metavariable for any process parametrized on x,
and R a rnetavariable for an object. It is justified by the defi
nition of the sch machine. If there is such an object R that A(R)
is finite, then the sch, which executes all the processes A(x) in

5-15

parallel, is bound to find R, if nothing else, and stop. The
substitution of v(P) for A proves the theorem.

Now;~ the inference rules.

~heorem IPl: If Q ~ P(x) is true, and x does not appear freely in
Q, then Q ~ (Ax)P(x) is also true.

This rule of inference, as well as the next one, deals with
propositions which include free variables (propositional forms).
A free e-variable in a Refal expression stands for an arbitrary
object expression. It may happen that when we are (or rather the
Refal machine is) processing an expression, some subexpressions
of that expression are not actually analyzed or changed: they are
manipulated as some unknown wholes. Such subexpressions could be
replaced by free variables during the processing, and the Refal
machine would not notice that they were free variables and not
regular (object) expressions. For instance, with the function

the expression <cdr AB(l234)> is concretized as 8(1234). We also
can say that <cdr Aex> is concretized as ex, and <cdr AB(ex)> is
concretized as B(ex), etc. But we can say nothing about <cdr ex>
or <cdr ex AB>. Whatever the contents of the memory of the Refal
machine, if an expression inr.lnning free variables, say£, passed
a certain processing successfully, then any expression resulting
from the substitution of arbitrary object expressions of corres
ponding syntax types in place of free variables in E, will also
successfuly go through the same processing. In other words, free
variables in propositions must be interpreted as universally
quantified.

If the premise of the rule is true, i.e.

(l) ify(Q)!thenP(x)

is produced by r, then every proposition resulting from substitu
tion of any object for x into (1) is true. Since Q does not
depend on x, we can first, and only once, check that y(Q) is
finite, and then produce all the propositions P(x). This justi
fies adding (1) to Q.

~heorem IP2: If P(x) ~ Q is true, and Q does not contain x

5-16

freely, then (£x)P(x) ~ Q is also true.

If the premise is true, then every proposition

(2)

with an arbitrary object X is true. Note that Q is the same in
all these propositions because it does not depend on x. Suppose
now that (£x)P(x) is true. This means that there is at least one
object X0 for which y(P(X 0)) is finite. Substituting X0 for X in
(2), we get a true proposition which produces Q. Therefore, Q is
true. Thus, if (Ex)P(x) is true then Q is true. This proves the
consequence of the theorem, and we can make the corresponding
statement.

This completes the construction of a formal system known as
intuitionist logic. That it is intuitionist can be seen not from
what is included, but from what is left out. The different con
cepts of mathematical truth embraced by intuitionist logic and
classical logic manifest themselves in the way these theories
treat negation. For classical logic, the truth values of proposi
tions are sort of tags, 'objectively' attached to them, and there
are exactly two truth values: true and false. To state a proposi
tion is equivalent to stating that it is true. To negate it means
to state that it is false. To negate the negation of a proposi
tion is to state that it is true. This is the double negation
law:

Every statement is either true or false. There can be no third
possibility. This principle is known as the law of the excluded
third (or middle):

Pv~P

Intuitionism regards a proposition as the expression of some
mathematical reasoning, or proof, which is trusted by our intui
tion. To state a proposition is to state that you have a proof of
it. To negate a proposition is to state that you have a proof
that it leads to contradiction. If this view is taken, then there
are no immediate reasons to believe in the law of the excluded
third. It is possible that you can neither prove nor disprove a
proposition -- this is the third logical possibility. Also, the

5-17

law of double negation loses its grounding: if there is no proof
that P is contradictory, it does not yet follow that P is true.

Our theory provides a convenient means to understand intui
tionism and its relation to classical logic.

In our formalism, the double negation of a proposition P is

It reads:
to r. It
r(P)!. The

:YCv(P)!)!

it is contradictory to r that P is found contradictory
is obviously not the same as to say that P is true:

disjunction in the law of the excluded middle is:

or(y(P) ,:Y(P))!

It states that every proposition P is either implied by r or
contradicts to it. It is far from being obvious. In fact, if we
accept the static interpretation of r, i.e. assume that r is a
definite expression, then it becomes definitely false. For we
know from Goedel's theorem that for every formal system there is
a proposition which can be neither proved nor refuted in it.
Therefore, if we accept the static interpretation of r we come
inevitably to intuitionist logic.

5-18

4. Goedel'8 theorem.

Of the two types of atomic propositions, on which, in the
last analysis, the whole edifice of mathematics is built, the
first type, the prediction A! is directly verifiable, at least in
principle. The second type, the infinity model A?, is not; in
order to establish that A is infinite, we have to rely on some
proof based on some knowledge, i.e. a conjunction of truths. Is
it possible to find a knowledge such that it would enable us to
prove the infinity of any mechanincal process A, if it in fact is
infinite? Note that to discover such a knowledge would mean, in a
sense, to outsmart nature. For the impossibility of reducing the
infinite to the finite is deep in the nature of things. By defi
nition, you cannot examine all the stages of an infinite process
and come to an end. And if you cannot examine all its stages how
can you know that a final stage will never be reached? One, and
probably the only, way is to analyze the conctruction of the
machine that originates the process, and demonstrate that none of
the stages which could terminate the process can actually occur.
The simplest example would be a process where an active stage
reproduces itself and only itself at each next step. Yes, you can
construct a lot of processes of this kind, a big library of
prototypes or patterns which originate infinite processes, more
and more complex. If somebody gives you a definition of a pro
cess, you may be able to discern in it some patterns familiar
from your library, like the simple circularity. Then you will
know that the process is infinite. This is exactly what the
mathematicians are doing. But it should be clear that the number
of possible patterns of infinity is infinite. We build the libra
ry starting from the end of the finite, and no matter how big the
library is, it will never reach the end of the infinite. The
general problem demands that we start from the other end: an
arbitrary infinite process is given, and one must check that it
is really infinite. Our library of patterns does not bring us
closer to the solution of this problem. Looking at the problem
from this angle, we start to realize that it would be a miracle
should a device be found which allowed us to solve it, because it
would have been a device which 'outsmarts' infinity, essentially
liquidates it. The famous Goedel's theorem of incompleteness
tells us that there will be no such miracle.

The idea behind Goedel's theorem, when put in terms of our
theory, is this. Suppose we can construct a process G which is

5-19

proving
Then the
that the

(trying to prove) in a certain theory its own infinity.
following two statements must be true in the assumption
theory is true:

(1) The process G is infinite. Indeed, if it is finite, then its
infinity in out theory is proven, and since the theory is true, G
must be infinite, which is contradictory and,therefore, impos
sible.

(2) It is impossible in our theory to prove that G is infinite.
Indeed, if the proof of the infiniteness of G is finite then G,

which is exactly the process of proving that, is finite, which,
as we have just established in (1), is impossible.

Therefore, G? is a proposition which is true but not prov
able in the theory. If the process of proving its own infinite
ness is expressible in a theory, and the theory is true, it is
incomplete.

To apply this idea to formal arithmetic, Goedel had to map
proofs on numbers, a procedure that became known as Goedeliza
tion. In our theory, the very general nature of objects and
processes we deal with, plus the transformation of metacoding,
makes unnecessary any additional Goedelization. In fact, our
metacode transformation is a generalization of Goedelization: it
transforms processes, in particular the processes of proving,
into objects, in particular, the objects of discourse. Our gene
ral term for this is: metasystem transition. The important fea
ture of our formalism is that it is designed not for theoretical
purposes only, like showing the non-existence of this or that
algorithm, but for the actual creation of intelligent computer
systems. The Goedelization procedure actually used by its author
is completely unfit for practical purposes.

The most straightforward definition of the Goedel process G
is:

(1) <G> ~ <y*(G)?>

It is a legitimate definition of a process in Refal. Should *(G)?
also be a legitimate proposition in our theory, the theory would
be ruined. Indeed, we saw that in our main, dynamic interpreta
tion of r, which we expect to yield the explanation of classical
logic and set theory, y(P) must be finite for every true P, i.e.

5-29

the theory -- by which we now mean not any formal system, but the
metatheory, i.e. our whole theory of mathematics --must be
complete. But this contradicts the impossibility of proving the
proposition G? (which is *(G)? in the strict notation), which
has been established earlier. To repeat the reasoning with regard
to (1), if (y*(G)?> is finite, then by (1), <G> is also finite;
but then the theory is false because *(G)? is validated by Y.

Therefore, <y*(G)> is infinite and <G> is infinite; but then the
metatheory is not complete because y fails to validate the true
statement *(G)?.

This disaster does not happen to our theory because the
process <G> as defined by (1) is uninterpretable, and so are all
the propositions using it. According to the definition of inter
pretability, for the proposition A? to be interpretable A must
not refer to cognitive processes. But G does. We can eliminate
the question mark by redefining G so that it proves not its
infinitness, but the falseness of its own finiteness:

(2) <G> ~ <~*(G)!>

This definition is equivalent to (1) and leads to all the same
contradictions. But it is not interpretable either. To prove that
<G> is interpretable we must first prove that the argument of ~.

i.e. *(G)! is interpretable; but to prove this we must first
prove that <G> is interpretable. Since we cannot do it, the
process is, according to point I.5 of the definition of interpre
tability, uninterpretable. It is not interpretable in the weak
sense either, as one can check constructing its semantic map (see
Fig 4.7). It is a typical example of infinite semantic recursion.

The concept of completeness, as it is currently used, is
applied to theories which are identified with formal systems. We
draw a difference between these two terms, so we must see what it
changes with regard to the concept of completeness. Recall that
by A formAl system we mean, as usual, a purely mechanical device
to produce true propo~itions. A theory is a real-time process
each stage of which is a formal system. By the scope of a theory
we mean the set of all processes which can be used in proposi
tions of the theory. It may or may not depend on real time. The
knowledge of a theory is the part of human knowledge pertaining
to the scope of the theory. Total human knowledge is the sum

5-21

of the knowledges r 1 of different theories. In a particular case,
a theory may atop in real time and reduce to a mechanical theory,
a formal system. Finally, by the metatheory we mean our general
theory of creating, justifying, and further developing theories

A theory is complete if for every proposition P of this
theory either v(P) or v(P) is finite:

(3) QL(v(P),y(P))!

It is taken for granted that the theory is true (and therefore
consistent). Then for every true P the process v(P) is finite and
v(P) infinite, and for every false P the process v(P) is finite
and v(P) infinite. There can be no third, or middle. Our state
ment of the completeness of a theory is identical to the state
ment that the law of the excluded middle holds for all legitimate
propositions of the theory. It differs from the usual notion of
completeness (i.e. that of a formal system) because of the in
volvement o real time; it deals not with the current state of a
theory, but with its theore~ical limit; the cognitive functions
are metamechanical, not mechanical devices.

I f ,
system
to some
becomes:

(4)

however, we consider a stopped theory, i.e. a formal
then the cognitive functions y and v reduce themselves

mechanical functions vi and Yi, and proposition (3)

This corresponds exactly to completeness in the usual sense: for
every legitimate proposition P, the theory gives a mechanical
means to decide whether it is true or false.

Our general metatheory allows any processes that can be
defined in Refal, and any propositions about these processes. To
state the completeness of this theory is to state the law of the
excluded middle.

But we can consider less general theories. The set of legi
timate processes of the theory can be limited in one way or
another, and all other processes declared undefined, i.e non
existent as far as the theory is concerned. In such theories the
criterion of completeness will be easier to meet.

5-22

Take, for example, the theory T in which only one process A
is defined, and it is finite; and let the knowledge of the theory
consist of one prediction A!, with the cognitive functions de
fined as in the general theory. Then the only propositions in
the theory are A! and A?. This theory is true and complete.
Goedel's proposition is not expressible in it.

Consider a mechanical theory, a formal system. A natural
restriction on it would be the requirement to use only a certain
number of machines defined beforehand. If the machines step and
act are in that number, this is no significant restriction at
all, because using them we can emulate any Refal definition.
Since our general theory includes the definitions of these func
tions we do not care if we are limited to the predefined machines
only. As we saw, if arbitrary Refal definitions are allowed in a
theory, the Goedel statement is expressible through the defini
tions (1) or (2), where y and~ are now mechanical functions. But
the possibility of arbitrary Refal definitions is a rather strong
requirement. We are going to abandon it and explore what kind of
machinery is sufficient for the Goedel proposition to be expres
sible in a theory.

To include in consideration less powerful systems, we gene
ralize the definition of what a formal system is. We do not
require that any of the functions we introduced before are de
fined. There are only two functions which must be necessarily
defined in every formal system, namely those which do the job of
y and y in the general theory. We shall denote them g and ~.

respectively, and call them the proving machines of the theory in
order to stress their mechanical nature and not to confuse them
with the cognitive functions of our general theory. The way g and
g are defined is left open. But we still use Refal as the meta
language to define processes, and we understand propositions as
before.

To take an example, the simple system we discusses above can
be completely defined by these sentences:

and have no other processes defined at all. We left out even the
definition of A, making our theory axiomatic. If a theory allows
propositions about undefined processes known only through axioms,

5-23

the set of such processes must be additionally defined. In this
case it consists of one process A which is known to be finite.

We shall now make two assumptions about the formal system,
which we shall show to be sufficient for the proof of incomplete
ness.

(1) The proving machines of the theory are defined as specializa
tions of a certain class of machines:

<u(D)e >
- D P <u(')ep>

where u and u are certain universal functions with the formats
<u(ed)ep> and <u(ed)ep> characterizing a class of formal systems,
and D is an expression which specifically defines the formal
system in question.

This assumption is commonly justified. In the case of our
general theory, u and a are imp and con (the latter slightly
modified by including and), and the definition Dis the knowledge
of a specific formal system rt. In usual formal logic, the ma
chines u and a implement the inference rules to prove or refute a
proposition e taking ed for axioms. In word problems, u and u
are the machfnes which apply the rewrite rules ed to the initial
word ep.

(2) The universal machines u and a are defined in the system; the
metaccode transformation " is defined; and every machine and
process which can be produced by substitution from the machines
already defined is also defined. Atomic propositions about de
fined processes are legitimate propositions of the theory.

Coedel's incompleteness theorem. Under the assumptions (1) and
(2) the formal system is incomplete if it is true.

(In the original Goedel's theorem the condition for the formal
system was consistency, not truth).

Proof. Consider the machine G . 1 .

It is defined in the theory because it is constructed as per-

5-24

mit ted by the assumption (2). Substitute D for the argument in
G1 : the resulting process <G 1 D> is again defined,
proposition t<G 1 D>? is legitimate in the theory.

therefore the

We shall say that the process A is functionally equivalent
to the process 8 and denote this A:B if either both A and 8 are
infinite, or both are finite and produce the same results (have
the same final stage). From the definition of <G 1 D>,

which can be rewritten as

<G D>
l

From the deifinition of g, the right side can be replaced by a
call of g:

(3) <G D>
1

We see that <G 1 D> is the familiar
proves in the theory its own infiniteness.
a true and legitimate proposition which,
in the theory.v

Goedel process which
Therefore, t<G 1 D>? is

however, is not proved

Goedel's theorem can also be proved using the other form of
the Goedel process: a process which refutes its own finiteness.
We define:

Then <G 2 D'> is this process.

Practice. Give a full proof of Goedel's theorem using the G2

machine.

The requirement of the interpretability of propositions in
our theory makes it invulnerable to Goedel's argument and allows
it to remain both complete and true. It is interesting that
Goedel's theorem does not work on the two extremes of the power
of a theory. On one extreme, a theory can be so weak that
Goedel's process (or proposition) is impossible to express in it.
In between we have all formal systems strong enough for Goedel's
theorem. On the other extreme we have our theory, which forma-

5-25

lizes not one formal system, but an infinite sequence of formal
systems. Since the functions y and y are changing in real time,
we have to introduce the restriction of interpretability, which
again makes the Goedel proposition unexpressible.

5. Metasystem transition

While Goedel's theorem is not applicable to our metatheory,
it is, of course, applicable to every formal system we construct,
if we replace the real-time human knowledge r by its definite
stage ri, i.e. a definite proposition, and make this change
throughout the whole system. As a result of this operation, a
theory of our metatheory, i.e. a real-time metamechanical pro-
cess, will
system in
ledge. We
theory.

be converted into a purely mechanical device, a formal
the usual sense, which can become an object of know
shall call this operation the objectification of the

A simple way to objectify a theory is to cut off the access
fun.ction gns from the world and define it by the sentence

(1)

where ri stands for the knowledge of the present stage of the
theory. This, however, makes it impossible to use the objectified
theory in the context of our general theory which goes on deve
loping in real time, because we changed the definition of the
function gns and, thereby, of all those functions which directly
or indirectly call gns, including Y and Y. Therefore, we have to
make a copy of the theory and change in it the names of all, or
at least some, functions to avoid confusion with the original
functions of the general theory.

We come to the following procedure of objectification. Make
a copy of the Refal machine implementing a theory. Redefine gns
as in (1). Rename every Refal function in the copy, i.e. put in
correspondence to every function symbol F a symbol r' never used
before, and replace every entry of F when it immediately follows
after an activation bracket <by r'. In particular, rename y as g

and Y as ~; these new functions will be referred to as the prov
ing machines of the objectified theory. Put all the new defini
tions into the program field of the Refal machine implementing
the metatheory. This is, literally, a formalization of the an-

5-26

cient dictum: "Know thyself".

The formal system thus created is fully defined and repre
sented by its two proving machines; now we can freely use them in
our general theory. It is important to note that the renaming of
functions in the process of objectification does not affect those
function names which are used only as symbols in expressions; it
is only when a function name F immediately follows an activation
bracket that the effect of objectification becomes visible. Sup
pose a metacoded function call *(Fe) is part of an expression
processed by the functions of an objectified theory. It is pro
cessed in exactly the same way as it would be processed without
objectification, until the time comes to demetacode the call
through the use of functions step or act. At that time the
modified versions step' and act' will be in action instead of the
regular functions. They will operate as if *(Fe) were demetacoded
into <F'E>, not <FE>, without actually substituting F' for F.

To see it in more detail, remember the definition of the
function .§ll.Q:

<step *(gns)> ~ <~ <gns>>
<~ es> ~ <stepu(P)es>

The function stepu never calls gns,
same name in the objectified theory.
is defined by:

so we can leave it with the
The modified function step'

<step' *(gns)> ~ <~ <gns'>>
<step' es> ~ <step(P)es>

Here P, the current program, is an object expression,
therefore, the same in the modified definition as in the
nal. We see that ifF is not gns the step is performed
there was no modification. Nowhere is F replaced by F'.
only gns which is modified because it is in the active
(follows an activation bracket) iry the program.

and is,
origi
as if
It is

position

The function act calls step repeatedly. The modified act'
will call the modified step'. At each step of the emulated Refal
machine, the function names in the metacoded function calls will
remain unmodified; it is only when *(gns) is to be activated that
the difference between the original theory and its objectified
version manifests itself: instead of the current knowledge r, one

5-27

of the past stages of knowledge ri is invoked. Since that time,
human knowledge may have developed dramatically, but the objecti
fied theory still operates as the general theory operated at that
stage. And it "does not know" that it is objectified; in the
metacode, the objectified theory uses the same language it used
before, when it represented the present of the general theory. In
particular, it refers to the cognitive functions as~ and ~.

although when they are activated they are executed with the fixed
ri, i.e. as g and g. But it is only the metasystem, our general
theory, that knows that things change in real time and has a
different notation for the true cognitive functions on the one
hand, and objectified cognitive functions, i.e. proving machines
of various formal systems, on the other.

Looking through the list of the functions we defined we see
that the following three functions refer directly to gns: step, ~

and Y. Those functions which call step, call gns indirectly, and
so do the functions which call these functions, etc. The func
tions y and y , renamed into g and g, will be accessed from the
general theory, but they are not recursive and never called from
inside of the objectified theory.

This last detail may seem strange. We know that the process
of proof in logic is recursive. So is the process of hierarchical
generation of propositions in our theory. How is it possible that
the proving machines of the objectified theory, i.e. a formal
system, are not recursive?

The functions ~and y in our theory may call themselves, but
not directly (call as value) but through the metacode (call as
process). The recursive configurations are not <~ex> and <~ex>,

but <step *(yex)> and <step *(~ex)>. When we rename cognitive
functions into proving machines, their active entries are changed
-- and they appear only once, at the time of definition -- where
as the metacoded entries are left unaffected. The new recursive
configurations are <~' *(yex)> and <step' *(~ex)>. Essen
tially, it is the function step' (since it depends on r. it l •

should be denoted as stept) which defines the operation of an
objectified theory, and other functions are redefined in order to
call ~· instead of step. But when we are using the objectified
theory as a formal system without going into the mechanics of it,
we need only the proving machines g and ~.

5-28

Now that our general theory has the means to deal with its
objectivized self, we can make a step in real time and expand our
knowledge. Take the Goedel proposition for the objectified ri in
any of the forms discussed above; let us denote it G1 . Make the
statement:

r •

It is true because,
not provable before
trivially provable,

as we proved above, Gt is true. But it was
we made this statement. Now, of course, it is
because the current state of knowledge is

=

But it is a new formal system; these two propositions are true:
gt(Gi)? and gt+l(Gi)!. The new system ri+l can again be objecti
fied and the proposition Gi+l added, etc.

We assume that the theories we are dealing with have a
certain mimnimum of means (machinery and knowledge), which will
be concretized as we go on. In particular, the conditions of
Goedel's incompleteness theorem are met. We now have the fol
lowing, somewhat schizophrenic, situation. There is the formal
system F 1 with the knowledge r 1 . Among the machines defined in Fi
there are gi and gi, which mimic the operation of the cognitive
functions of F 1 . Also, there are the machines G1 and G2 defined,
such that G1 (ri)? and G2 (ri)! are Goedel's propositions for the
objectivized ri (they will be denoted summarily as Gi):

g(Gl(ri)?)
g(Gz(ri)!)

We want to know what can and what cannot be proved in our theory
at the present time, that is to say, in Fi. I call this situation
schizophrenic because when we freeze the time and consider only
the present moment, the difference between the formal system F.

t
and its objectified copy is only potential, not actual; the
functions Y andY on one hand, and g and g on the other, operate
in exactly the same manner.

We proved that g.(G.) cannot be finite Therefore y(G·) is t t . l
not finite either: the Goedel propositions are not provable in
Fi, though true. This much we knew before. Our aim now is to
analyze in greater detail why the intuitive proof that G. is true

l

5-29

cannot be formalized in Fi itself. This proof is short and
simple. If there are no means at the present stage of r to
formalize this proof, why cannot we add the necessary means to r
once and forever?

Let us examine the proof of Goedel's theorem. First, we used
the definitions of gi and G1 to prove (3). The definitional
knowledge, as we discussed in Sec.5.2, can be always assumed to
be present in the current formal system if it is mechanically
universal. To be able to combine definitions as necessary for the
proof, a formal system must use the transitivity of entailment
and know how to make substitution. We suppose that the system ri
has this minimum of knowledge. Then:

(4)

After this had been established, we reasoned as follows.
From (4), if G1 (r 1)! is true then G1 (ri)? is proven in the objec
tified version of ri. Since it is a true formal system, G1 (ri)?
must be true. The first step is simply the equivalence (4) read
in one direction, therefore it is producible in r 1 :

(5)

The second step uses the assumption that the objectivized version
of ri is true. It can be formalized by the proposition:

(6)

where P is an arbitrary proposition (metavariable). It states
that if P is proved by gi then P is true. This is, of course, a
true proposition, but we do not know whether it is produced in ri
or not. Let us suppose that it is produced and see what happens
if we go on with the proof. From (6) with G1 (ri)? substituted for
P:

(7)

From (5) and (7) by transitivity of implication:

(8)

came
Now we can come to a contradiction in the same way that

to a contradiction in Goedel's proof. If we add G1 (r 1)

5-3~

we
to

ri, then by (8), G1 (r 1)? will also be produced. This means that
c,cr 1)! is contradictory in r 1 , i.e.

Since G,(ri) is a mechanical process:

This, however, contradicts the unprovability of G1 (r 1)? in ri,
which we have already firmly established. We conclude that (6) is
not produced in ri. Using the proposition Gz(ri)! instead of
G1 (ri)?, we come to the analogous conclusion regarding §: the
proposition

(9)

with an arbitrary proposition P, is true but unprovable in ri· We
shall refer to the conjunction of the propositions (6) and (9) as
the correctness statement for r. t .

When we discover a new knowledge which is not currently
produced by r, we add it to r. We can do this, of course, with
(6) and (9), which would result in a new formal system ri+l· But
these statements depend on the specific proving machines g and ~.

so to add to knowledge in this fashion we have to consider every
formal system individually. Our wish was to introduce a general
principle which would be applicable at any stage and add it once
and forever. We see now that we cannot do it. If we try to
generalize (6) and (9) by substituting the general cognitive
functions ~ and ~ for the proving machines g and g, we come to
the trivial propositions:

il ~(P)!then P
il :Y(P)!then :Y(P)!

which add nothing to the knowledge.

It may seem strange that a proposition so obviously true as
the conjunction of (6) and (9) should never be provable in the
current system. This happens because we look at the current
system Fi and its objectified copy Fi from the metasystem, and we
see that they are essentially identical. But for Fi its objecti
fied copy Fi is just a machinery, and in order to predict any-

5-31

thing about its workings, Ft must analyze the definition of Fi as
such, without comparing Fi with itself, because there is no
itself to compare with, other than the objectified copy Fj. This
is not the question of machinery, of course, but the question of
knowledge. We can compare ri and r from the vantage point of our
human metasystem, as creators of all theories. But r is a meta
symbol. It does not appear in the formalism: it is only the
access function gns that is to be found there. And it is used in
such a manner that the result of its concretization cannot be
subject to analysis, but only used in the functions v and Y
(where it works, being hierarchically activated, so even there it
is not treated as object).

We now turn to the second theorem proven by Goedel, which
states that the consistency of a strong enough theory cannot be
proven in the theory itself. How should this statement be forma
lized in our theory? First, let us try the following way. Take
any proposition P; its provability is y(P)!. Take its negation y
(P)!; the provability of the negation is y(y(P)!)!. It seems that
the negation of the conjunction of these two provabilities:

y(y(P)! & y(y(P)!)!)!

should be the adequate expression of the idea. But this proposi
tion is easily provable (producible) in any rt which includes the
basic logic principles! It corresponds to the propositon

"'(P & .,.p)

in usual notation.

The fallacy of this interpretation is that v in our theory
refers not to a specific formal system, but to any formal system
we are ready to trust. This corresponds to the concept of being
true in the usual approach, not to the concept of being provable.
To formulate Goedel's second theorem we again have to make dis
tinction between a formal system and its objectivized copy.

Goedel's
enough,
sit ion

consistency theorem. If the formal system ri is strong
the consistency of its objectified copy, i.e. the propo-

5-32

cannot be proven 1n rt·

Proof. In addition to the conditions of the incompleteness theo
rem, we shall assume a certain minimum of knowledge in ri. First
of all, it is the verification principle. If ri includes it, then

(10) r.
1

R & il A!then A!

with some R and an arbitrary A. The second assumption is:

(11) ri if A!then imp([R & if A!then Q]-+ Q)!

with arbitrary A, R, and Q. If this assumption does not hold, we
can make the corresponding statement, which will be true. The
proposition in (ll) follows directly from the definition of the
function imp, which runs the first argument until it produces the
second (if it does). The running of the if generator in the
square brackets in (11) must produce Q if A is finite.

Substituting A! for Q in (11) and using (10) we get:

The call of imp here is a call of gi• by the definition of the
latter. Abbreviate G~(ri) to G2 , and substitute it for A:

(12)

As we saw earlier,

Combining it with (12) we have:

Suppose that the consistency of (the objectified copy of) ri
can bP. proven in ri:

Substituting G2 ! for P we get:

5-33

If we add G2 ! tori, (13) and (15) will immediately produce
opposite propositions. Therefore Y(G 2 !)! will be provable in ri.
But this, as we know, leads to a contradiction. Therefore, (14)
is false, which proves the theorem.Q

We found three propositions which are true but unprovable in

r i :
(1) Goedel's proposition in two equivalent forms: G1 (ri)? and

G~(ri)!.
(2) The consistency statement for ri.
(3) The correctness statement for ri.
While the first two give us only individual propositions, the
third is a general principle, which yields infinitely many indi
vidual propositions. One divines a great power in it. We saw
earlier that when we add the correctness statement to r. the ' ,
resulting system ri+l proves Goedel's proposition. We show now
that the consistency statement also follows from the correctness
statement (which intuitively should have been expected).

From rt+l by adding the correctness statement:

Then

(16)

(17)
r. l ... '+ r. l ...

1 +

if gi(P)!then P

if gi(P)!then :Y(P)!

Consider the proposition gi(P)! & gi(P)!. It follows immediately
from (16) and (17) that

Hence by the contradiction principle:

for any P.Q

Thus the correctness statement alone is sufficient to cover
all known propositions of that kind. The objectification of the
current knowledge and the statement of its correctness is a
metasystem transition with respect to the current system; it
allows us to expand our knowledge. The results of this section

5-34

concerning this method of expanding knowledge can be summed up in
the following important theorem:

Metasystem transition theorem. We can expand the knowledge of the
current formal system rt by making an objectified copy of it and
adding to ri the correctness statement

In the resulting formal system ri+l the Goedel proposition for ri
and the consistency of ri are proved.v

6. Classical logic

We saw that the static interpretation of r leads to intui
tionist logic. With the dynamic interpretation, we can add to
human knowledge the law of the excluded middle in its general
form:

(EM 2) all(p E ~: Q£(y(p),y(p))!)

Then we get classical logic in full. The law of double negation
is deduced immediately. Conversly, we could postulate the double
negation law and deduce (EM 2).

The strength of classical logic as compared to intuitionist
logic comes from the more permissive treatement of the cognitive
functions. Intuitionistic logic fixes the human knowledge r into
ri, at least for the time of discourse. Classical logic bases its
proofs on the concept of the growing r; it allows the index i in
ri to go into infinity. This invokes the type of reasoning fami
liar from the calculus: "for every x there exists such a y

that ... " etc. The relation between Goede 1 's theorem and the law
of the excluded middle becomes very clear when seen in this
light. Goedel's theorem establishes that:

(a) For every formal system ri there exists such a proposition Gi
that

(l)

(b) For that very proposition Gi there exists another formal
system ri+l' such that

5-35

(2)

If we simply take the limit of (1) and (2) for i~~. we get
two contradictory propositions. This is a situation familiar from
the calculus, when the correct answer depends on the order in
which two interrelated variables are treated in the jump to the
limit. In intuitionist logic we first fix the index t of the
formal system and let the generator of propositions in (EM 2) run
infinitely. Then it will generate at least one proposition,
namely Gi, such that the disjunction in (EM 2) is false, and hence
(EM 2) is false. In classical logic we use ~ and ~ to denote the
limit of g 1 and gi as i~~. The generator (EM 2) produces

(3) or(~(P),:Y(P))!

for every proposition P. Thus P comes first, and now we interpret
(3) by seeing r and :Y as the corresponding limits. Then for every
P there is an t for which (3) is true, and (EM 2) becomes true.

Negative results in mathematics exert a hypnotizing action
on mathematicians. When it is proven that something that had been
considered very desirable does not really exist, people convince
themselves that they did not really want it, and go after some
thing else. The most famous case of this kind is the discovery of
inconmensurability by the ancient Greeks, which prevented them
from developing the algebra of real quantities. The Greeks could
not overcome the threshold of introducing a notation like '2; for
them it would have been a contradiction in itself because it was
proven that no number becomes 2 when squared.

After a while, however, it is discovered that we still can
introduce a notation for "non-existing entities" and interpret it
as ideal objects to which we can strive and which can be approxi
mated by entities which undoubtedly exist. It was Descartes (see
Turchin 1977) who did it for inconmensurable quantities: a disco
very that transformed mathematics.

We can draw a parallel between Goedel's theorem and the
inconmensurability theorem. Universal resolving procedures have
been as desirable in this century, and as much in the spirit of
the time, as numerical representation of geometric quantities was
in the time of the Pythagoreans. Goedel's theorem and the sub
sequent results of the non-existence of the most important uni
versal algorithms undermined the effort to ground mathematics on

5-36

the concept of the algorithm (ditto the resolving procedure,
ditto the machine). Ever since, such trends of thought as intui
tionism and constructivism have remained on the margins of mathe
matics. The work on the foundation of mathematics lost its elan
vital.

Goedel's theorem became widely known, and its popular inter
pretation is purely negative. It is thought of as showing our
inability to do something. But in fact the balance of the message
of Goedel's theorem is strongly positive. In its negative part it
shows that we cannot construct certain universal procedures be
cause the idea of such a procedure is, after a closer exami
nation, self-contradictory. This is not what we intuitively un
derstand by inability. It should not discourage us any more than
our "inability" to create a number which is greater than itslef.
On the positive ~ide, Goedel's theorem gives a constructive
procedure to find a proposition which is unprovable in a given
formal system, but is true and is proven to be true. It shows
that using metasystem transition we can prove propositions which
we could not prove before. This is an ability, not an inability.
It is this positive aspect of Goedel's method that is capitalized
on in our theory.

It is only the form, the appearance of Goedel's theorem that
looks negative. One and the same result can be presented both as
a negative and as a positive statement. You can say: "there
exists no maximal whole number", which looks like a negative
statement. But you can also say: "whatever is a whole number N, I
can construct a greater number N+l", and this is a positive
statement. It makes a better sense, because it goes deeper into
the matter and better reflects the proof.

There is an analogy between our theory and the geometric
algebra introduced by Descartes, and it is not superficial at
all. Mechanical procedures in our theory correspond to rational
numbers at the time of Descartes. They "really exist". The func
tions y and Y, and the whole lot of functions that can be defined
using them, correspond to irrational (note the word!) numbers;
they "cannot be understood by reason", and "do not really exist".
The law of the excluded middle, in both its forms, is a sort of
equation for the non-existent Y, like x 2 =1 is the equasion for
the non-existent v2. We approximate Y by g 1 , g 2 ... , etc., as v2
is approximated by 1, 1. 4, 1. 41 ... , etc. The act of metasystem
transition corresponds to taking the next term in infinite series

5-37

of infinitesimal analysis. By this analogy, our method may be
called metasystem analysis. The parallel notions and entities are
summed up in the following table.

metaayatem analysis

Mechanical processes

Goedel's theorem

Incomputability

(*) -v(P)! v :Y(P)!

"There is no recursive
function -v such that (*)
is true for all P"

Set theory. Zermelo

"Set theory is richer
than automata theory"

Symbolic notation for
all decision processes

The solution of (*) is:
gl, g2, g3, ... • etc.

Metamechanical processes

All processes

5-38

algebra and calculus

Rational numbers

The Pythagoras theorem

lnconmensurability

(*) X/2 = 1/X

"There is no x

such that (*) is true"

Geometry. Euclid

"Geometry is richer
than arithmetic"

Descartes's Geometry:
symbolic notation for
all geometric quantities

The solution of (*) is:
l, 1. 4, 1. 41, ... , etc.

Irrational numbers

All real numbers

C H A P T f R 6

a::· t ._.e Thec·r- y

1. Extensionality and regularity

There are two possibilities with regard to the set of all
objects of a theory: it may be defined by a mechanical generator
at the outset, or it may be generated by a real-time process as
the theory develops. Theories with a mechanical generator of all
objects are known as first-order theories; they have been dis
cussed in the preceding chapter. Set theory is a theory of the
second kind. Its objects are processes themselves; more precise
ly, they are interpretable set generators. At an early stage of
the development of set theory it becomes clear that there exists
no mechanical process which could generate all objects of set
theory. So, the set of all objects of set theory keeps expanding
as we keep developing the theory. We shall denote the current
stage of this real-time process by the metasymbol ~. and the
Refal function which provides access to it by <~> (from the
Greek 'Logos'). Thus ~ is a mechanical generator of all the
objects of set theory introduced up to now.

The machines of a theory are normally defined in such a way
that if their inputs are legitimate objects of the theory and
interpretable propositions, then the resulting process is inter
pretable. This is certainly true for the machines we have defined
up to now and shall define below. Since the primary machines of a
theory must be defined explicilely, their number can be only
finite. With a given mechanical generator of all legitimate
objects, the set of all interpretable propositions of a theory
can be generated by substituting enumerably many entities for the
inputs of the primary machines (including, of course, the substi
tution of entities which themselves result from previous substi
tutions). If G is the generator of all objects of a theory,
then the generator of all possible propositions will be referred
to as ~(G). In a first-order theory, the set of all inter
pretable propositions is enumerable, i.e. generated by a mecha
nical process. (The set of all true propositions of a first-order

6-1

theory is still a real-time process). In set theory we can use
the mechanical generator ~ of interpretable propositions for
every stage ~i of the real-time process ~- Thus the set of all
interpretable propositions in set theory becomes a real-time
process QLQR(~). which develops together with~- There are
two essentially independent real-time processes in set theory:
~ with its derivative QLQQ(lg§), which yields the language of
the theory, and~. which yields its knowledge. The only connec
tion between them is that at any stage gns must be a subset of
llQ:2 (lg§J .

Passing on to a formal exposition of set theory, we identify
the concept of a set with the concept of a generator, and contend
that any interpretation of an infinite set which cannot be re
duced to a generating process is intuitively meaningless. Since
we allow the use of real-time cognitive processes v and v, we
limit set generators to interpretable processes, otherwise we
shall not be able to interpret the membership of an object in a
set.

When an object and a set are given, we must be able to
establish whether the object is an element of the set. A
straightforward solution to this problem would be given by the
function elm, which we have already used before (Sec.3.3). The
process

<elm(tE)of G>

stops if and only if the expression E is among the expressions
generated by G.

This staightforward concept of being an element is not the
one adopted in set theory. It is applicable only when the expres
sion E represents one of the primary objects, or ur-elements of
the theory, by which we mean those objects (if any) which are not
sets, so that their 'physical' identity as expressions is the
necessary and sufficient condition of being identical as objects
of theory. But most important objects of set theory are, of
course, sets. Set theory uses the extensionality principle to
define the identity of sets. According to this principle, two
sets are declared identical, or equal, if and only if every
element of one set is also an element of the other. Consequently,
the identity, or equality of sets is not the same as the identity
of the Refal expressions which represent them. Indeed, it is easy

6-2

to define two different processes in Refal which will generate
the same objects.

To comply with the extensionality principle, we must distin
guish between ur-elements and sets, and use the concept of set
equality when deciding whether a given set is among the objects
produced by a given generator.

The set of all ur-elements may be different in different
versions of set theory (it may be, in particular, empty). The
only requirement on this set is that we should be able to distin
guish an ur-element from a set. We define an ur-element as any
Refal expression which includes no asterisks * . This immediately
makes ur-elements distinguishable from set representations be
cause the latter have the form *(E).

In the case of infinite sets, the equality of expressions as
set representatives, unlike their physical identity, cannot be
directly established. A reference to some proof, i.e. to a know
ledge, once again becomes an implicit part of semantics. Let us
denote by E=E' the proposition that the sets represented by the
expressions E and e' are equal; we shall write out this proposi
tion in a moment. Then

(y £=£'>

is the process of proving that set E is equal to set e' . Using
this notation we define function el as follows:

=

=

Here the auxiliary function ~. the equality of set-theoretical
objects, is defined as:

<~(ex)(ex)> = T
<~(*(ex))(*(ey)) =

The process <el(E) E G>, (which is~(£ E G) in free format
notation) stops if and only if E is an element of G.

Equality of sets is the double inclusion:

6-3

(1) (S=T) : ([S in T] & [T inS])

The relation of inclusion (being a subset) is defined by

(2) (Sin T) : all(x E S: ~(x £ T)!)

We see recursion here: function el is defined using the
relation of equality, which in its turn calls function~- Fur
thermore, this is a semantic recursion because it crosses the
boundaries of cognitive function calls. Therefore, we must ensure
somehow that using function ~ we get interpretable propositions
only.

From the definition of function el we see that el(X e S) may
call y(X=Y) where Y is any element of S. Thus el(X e S) is seman
tically dependent on all the propositions X=Y with a Y from S.
Using symbol >> to denote semantic dependence, we can represent
this by the formula:

(3) el(X E S) >> X=Y , Y E S

(The usual notation X E Y stands for el(X e Y)!).

From (l) and (2) we derive two time sequences:

(4a) X=Y ~ ~(Z E Y) , Z E X

(4b) X=Y ~ ~(Z E X) , Z £ Y

Combining (3) with (4a) and (4b) we have two semantic dependen
cies:

(Sa) el(X E S) >> el(Z E Y) , Y E S, Z EX

(5b) el(X € S) >> el(Z EX) , Y E S, Z E Y

A process which is semantically dependent on itself (infi
nite semantic recursion) is uninterpretable. From (Sa) we see
that we are immediately in trouble when X=Z and S=Y. Since Z is
an element of S, the~ process will be uninterpretable unless

(6a) never: s £ S

6-4

From (~b), our process becomes uninterpretable 1f X=Z and S=X,
therefore X=Z=S. Since Y is an element of Sand Z=S is an element
of Y, such situations are prevented only if

(6b) never: S E Y & YES

We call an !l-sequence a sequence of sets

such that for every i>l

y. l € y.
l + l

It is easy to see that (6a) and (6b) can be generalized into

(6c) never: there is such an el-sequence of sets
Y,, Yt, ... , yn
that S = Y = Y

1 n

This condition is necessary for interpretability, but not
sufficient. The sufficient condition for the interpretability of
the el function is:

(7) an el-sequence of sets which starts with S can only be
finite

Sets S satisfying (7) are known as regular. Condition (7) is the
criterion of regularity.

Regularity Theorem. The process ~(xES),
element or a regular set and S is a regular
table.

where x is an ur
set, is interpre-

Proof. According to the definition of the function~. the only
source of possible non-interpretability is the semantic recursion
in function~ itself. Consider a pair (X,S) which is the argu
ment of an ~call. Denote by Z' any element of the set Z.
According to (5), the semantic recursion in function el can be
schematically presented by two formulas:

(X,S) >> (X',S')
(X,S) >> (S",X)

6-5

If X and S are regular sets or ur-elements, then any possible
sequence of the calls of function el can only be finite. There
fore all of them have a definite objective interpretation which
can be established starting from the last call.v

Since the repetition of an argument pair in an ~-sequence

creates an infinite ~-sequence, requirement (6c) is satisfied if
setS is regular.

If a set is regular, all its elements are regular. Indeed,
should an element T of setS not be regular, an infinite el
sequence starting with T would exist. Then we have only to addS
to it to prove that S is not regular either. Conversely, if all
elements of S are regular, S is also regular. This is proved by
noticing that should we have an infinite el-sequence for S, we
could delete S and get an infinite el-sequence for one of its
elements. So, for a set to be regular it is sufficient and neces
sary that all its elements are regular. Therefore, all regular
sets can be constructed inductively starting with sets which
include only ur-elements.

Now we limit the objects of our theory to ur-elements and
regular sets only, which guarantees the interpretability of the
~ processes. It should be stressed that regularity becomes
necessary only because function el is defined according to the
extensionality principle. The concept of a set which has itself
as one of its elements is not contradictory in itself. For
instance, this generator:

(7) <self> = (*(self))

is interpretable as a process. It generates exactly one element
which happens to be the metacode of this very process. If we
based the concept of being an element of a set on the literal
identity of expressions, as in function elm, it would be true
that

But we would not be able to use function~ with such sets. The
necessity of regularity arises from extensionality.

It follows immediately from the definition of regularity
that there is no (regular) set generator that could produce all

6-6

regular sets. Indeed. 1f such a generator ~ existed, then ~

itself would be a regular set; but th~n it mu&t produce 1tselt,
wtllch 1s 1mpossiblt•. Therefore, lhe qeneratot uf all sets 1n SE>t

theory lt. not ~ m~:'Chduiccll but a metamechanical treal-l1me1

process, which develops as we define new sets.

We access the generator of all legitimate objects of set
theory, i.e. ur-elements and sets, through the function ls2. At
every moment in real-time the process <~> yields a specific
mechanical generator ~i, which produces all those sets that are
already known to be legitimate, i.e. interpretable and regular.
Note that in the free format notation, where we ignore metacode
transformation, the symbol ~can be understood both as standing
for the process <lg§> which produces ~. and as the process of
generation represented by ~- We shall understand 'the process
~·, or 'the set ~· in the second sense (the first process is
trivial). The metasymbol ~has no place in the formalism of our
theory, we only use it to speak about the theory. The symbol ~.
however, is part of the formalism, and we must make its inter
pretation and possible uses clear. First of all: does it repre
sent a legitimate object of the theory? It is a set generator,
and as a process it must be, by definition, interpretable. But is
it a regular set?

A set is regular if at some stage of the development of
theory it becomes producible by ~- Symbol lg§ stands for the
current ~- At no moment in real time is ~ producing ~. and since
only those sets produced at some time by~ are regular, we come
to the conclusion that lg§ itself is not regular. This seems
paradoxical, because we know that at any moment in time~ is a
regular set. The resolution of this paradox is in remembering
that the generator represented by ~ changes each time that we
establish the legitimacy of a new generator as a set, for we
immediately include this new generator in ~- This is also true
with regard to ~- We can use every stage ~i of ~ in our theory,
but ·the moment we use it we include it in lg§, thus turning ~

into ~i+l· Before we made this step, ~i did not qualify as a set.
After we did it, ~i qualifies, but it does not represent lg§ any
more. The new value of lg§ is ~i+l' and it again does not qualify
as a set.

Viewing
selves: does
sion: *(lg§)

this problem from the formal side we must ask our
some of the generators ~ produce this Refal expres
? It depends on how we define <~>. The preceding

6-7

discussion suggests that we should define it so that this expres
sion is never produced and~ is not regular. In fact, we have
no choice. Suppose we define every stage ~ as producing *(~) in
addition to all other set representations. Since *(~) is
immediately replaced by A, this amounts to A generating itself.
Therefore ~ becomes not regular. We can still try to use it,
taking care to separate *(~) from all other products which
constitute the universe of regular sets available at the time.
But now at every stage of the development of set theory, ~will
produce a A which is not regular. and therefore lga is not regu
lar again.

In terms of Von Neumann's axiomatization, ls2 represents a
class, not a set of objects. The difference between a set gene
rator and a class generator is not in what they ultimately pro
duce: both produce the same regular sets -- but in the role they
play at the current (and every) stage of theory, i.e. in the
current formal system. The class of all sets is an ever-nascent
creature which produces all legitimate sets, but is not yet
itself legitimized as a set.

2. Basic set constructors.Paradoxes

The language of set theory is, in its essence, a programming

language. Like other programming languages, such as FORTRAN or
REFAL, the set-theoretical language gives us the means to create
linguistic processes (set generators in the case of set theory)
which we use to model natural phenomena. Unlike computer program
ming languages, the language of set theory includes the means to
communicate with the real-time processes of language creation and
knowledge: A and r.

The role of basic operations of computer languages is played
in set theory by set constructors. These are machines defined in
the Refal metasystem and used to create new set generators. A set
constructor must be such that when its arguments satisfy certain
stated requirements, the generating process is interpretable and
the set produced -- regular. In the following we define and
discuss the basic set constructors necessary to arrive at the
present-time set theory.

We need, first of all, the means to create arbitrary finite
sets out of objects which are already in existence. Since a

6-8

finite set can be represented_simply by the list of its elements,
we can define a trivial function fs (for 'finite set') which
produces the whole list in one step:

<fs e >
-- 1

The argument e 1 is eHpected here to be a list, e.g., (A)(B).
If e 1 is not a list, the result of fs will not have the structure
required of a set generator; therefore, the fs so defined is not,
generally, a set generator. This would not scare a pure mathema
tician who naivelly assumes that functions always get only such
arguments for which they are meant. But it does not seem right to
a computer scientist; we would prefer to add what is known as a
syntaH check, so as to be safe with regard to the format of the
result. Therefore we redefine function fs as follows:

<fs(e 1)e 2 > ~

<fs> ~

(e)<fs e >
1 -- 2

Now <fs e 1 > is always a generator no matter what its argu
ment e 1 •

Examples. A set generator for a set of two elements A and B is
<fs(A)(B~>. hence what is {A,B} in the usual set-theoretical
notation will be *(fs(A)(B)) in the strict notation of our theo
ry.

The empty set is *(fs). The set

{A,{A,B}}

is in our theory

*(fs(A)(*V(fs(A)(B))))

Having fs-constructor alone, we can demonstrate how set
theory is continuously developed. To start, we must define the
set of ur-elements. Let it consist of three symbols: A,B, and c.
At this initial stage our language generator is

<~> ~ (A)(B)(C)

Suppose we want to consider a set which has eHactly two

6-9

elements: A and B, i.e. {A,B} in the usual notation. We can do
this. We write

(1) *(fs(A)(B))

and simultaneously modify ~· It is now

<lg§> ~ (A)(B)(C)(*(fs(A)(B)))

Suppose we want to consider the set

(2) {A,B,{B,C}}

We cannot do that immediately, because one of the intended ele
ments, namely {B,C}, is not in~- So we must first consider

(3) {B,C} = *(fs(B)(C))

and prove that it is a legitimate set. If we succeed in this, as
we do of course, we add (3) to the list defining~- Only after
that do we legitimize (2) as a set and add it to the list. Now
the definition of lga is:

<lg§> ~ (A)(B)(C)(*(fs(A)(B)))(*(fs(B)(C)))
(*(fs(A)(B)(*V(fs(B)(C)))))

In these examples lga was modified by adding one object at a
time. We also can expand lg£ including in one step an infinite
number of objects. For instance, it is possible to write a gene
rator *(G) which will produce all finite sets that can be formed
using three ur-elements A,B,C, and the fs constructor. We can
then include *(G) into lga. To do this conveniently we must
change the format of the lga definition, using not a list of
objects but a list of generators. The new format is:

<lg§> ~ <uni [defining list] >

where [defining list] is a list of generators, and uni (for
'union') is the machine which produces all those elements produ
cible by any of the generators in the list. It is defined as fol
lows:

< un i (e) e > ...
-- I Z

l<act e 1 >
gl

l<uni ez>

Assuming that a definition of *(G) exists and that it is proven
to be regular, we can redefine~ as

<~> ~ <uni(*(fa(A)(B)(C)))(*(G))>

We can now use any finite set constructible as defined above
without changing ~·

The general procedure for using an expression E as a set
theoretical object is as follows.

l. See if E is generated by~· If it is, use it.
2. If E is not produced by~

prove that e represents an interpretable generator
and that whenever it produces a setS,
every element T of S either was in ~from the beginning,
or has already been produced by E
at an earlier stage in model time.

3. If yo~ succeed, add a generator which produces E
to the defining list of ~· You can use it now.

Set theory requires the existence of at least one infinite
set, namely, the set which contains the empty set ¢as its ele
ment, and together with any element x contains also the element
formed as the union xU{x} . Thus the elements of this set are:

(4) ¢, <¢>, <¢,<¢>>, <¢,<¢>, <¢,<¢>>>, ... etc.

The union of two sets A and B in the strict notation is

*(uni(tA)(tB))

The set {X} consisting of the single element X is

*(fs(tX))

To construct a generator producing (4), we want a machine inf(X)
which in every step produces an X and calls itself with XU{X} as

6-11

the next argument:

inf(X) ~ (X) inf(*(uni(tX)(t*(fs(tX)))

To translate this semi-formal recursion equation into
definition we replace metacoding symbols t by actual
transformations:

a Refal
meta code

It is easy to see that with any interpretable argument ex
the process <inf ex> is interpretable, and if ex is a regular
set, then it produces only regular sets. Hence t<inf ¢>,i.e.

(5) *(inf *V(fs))

is the desired infinite set. This is a constructor without para
meters which gives us exactly one set.

Our next constructor will produce sets with elements selec
ted for a certain property. In the free format notation it is:

(6) ~(XES: H(x)!)

which is read: the set of all those elements x of the set S for
which the process (search) H depending on x as a parameter is
finite. The search H(x) will mostly consist in proving a certain
property P of x:

(7a) ~(xES: y(P(x))!)

or its negation:

(7b) set(x E S: y(P(x))!)

The definition of the set function is:

<.set *EsxE (e 1)e 2 (ep)!> -+

l<if<act<sub(*Es ~e)e >>then(<~e >)> ----- Xlp--.,.1
gl

l<set *EsxE ez(ep)!>

6-12

The format of the set function ir1 strict Refal is:

<set E G (H)!>

where Vis a free e-variable in metacode, G is a generator, and H
a search. It works as follows. The generator G is run step by
step. Each time it produces an object x, this object is substi
tuted into the search H and this search is run in parallel with
the continued running of G. Those branches for which H(x) stops
produce the corresponding object x.

The construct

(8) T = set(x E S: H(x)!)

is an interpretable and regular set if and only if the following
three conditions are satisfied: (a) the generator S is interpre
table, (b) the process H(x) is interpretable for every element x
produced by S, and (c) all elements x of S for which H(x) is
finite represent ur-elements or regular sets.

If. the set S is regular (and interpretable -- this
without saying) then the necessary and sufficient condition
(8) to represent a legitimate set is that the process H(x)
interpretable for every possible element of S.

goes
for
is

Can we use ~ in the role of S in the set constructor?
Consider

(9) T = set(x E lg§: H(x)!)

Although ~is not regular, it is interpretable, because at
every stage in real time it is represented by an interpretable
mechanical generator. So, condition (a) is satisfied. But (b) is
not. Indeed, consider the case when the search H(x) is y(P(x))
or ~(P(x)). As mentioned before, this is the most typical use of
the set constructor. In particular, the set used by Russell to
come to his famous paradox, namely

(10) R = set(x E 19§: v(P(x))!)

with

6-13

(18') P(x) = x E x

is of that type. For R to be interpretable, the property P(x)
must be interpretable for every x E ~. and since P(x) is within
a v-call this interpretability must be proven before and indepen
dently of the interpretability of R. That is, R is semantically
dependednt on P(x), and on x, for every x E ~·

At first glance it may seem that we could prove the legiti
macy of R by the following reasoning. ~produces only regular
sets; therefore P(x) and v(P(x)) are interpretable for every x.

Then R is interpretable and regular. This reasoning, however, is
faulty. It assumes unconditionally that ~ produces only legiti
mate objects. But this can be taken for granted only before we
start considering formula (18). The moment we defineR, it be
comes part of our language, which means that the generator ~
undergoes a change tn the process of proving: it now produces R.
We cannot assume that this new ~ produces only interpretable
and regular sets: not before we prove it. But R is not interpre
table because it is among the x's produced by ~and therefore
semantically depends on itself. The set construct cannot be used
with the universal generator ~· We can collectivize objects by
an arbitrary property only if they belong to a definite regular
set.

Without coming into detail at the present time, we declare
that all paradoxes of set theory are resolved in our theory in
the same way we resolved Russell's paradox: by showing that they
use uninterpretable propositions. When set theory is defined
axiomatically, the axioms are chosen in order to avoid paradoxes.
This is hardly a satisfactory way to found a theory. We start our
theory from a certain conception of what the meaning of mathema
tical propositions is. We do not have to do anything to avoid
paradoxes. As far as we use only meaningful propositions the
paradoxes simply do not appear. The paradoxes as they are known
are built on the propositions which we have shown to be mean
ingless.

We saw that the set constructor with the universal generator
~ cannot be used to collectivize objects by an arbitrary pro
perty. However, if we specify the collectivizing property in a
certain way, namely by putting:

6-14

P(x) = x in S

where S is a definite regular set, then we can still form a
universal set. This set, i.e. the set of all subsets of S, known
as the powerset of S, plays a most important role in Cantor's set
theory. It deserves a special constructor pow:

pow(S) ~ set(x E ~: y(x inS)!)

The process pow(S) is weakly interpretable. Its semantic map
is presented in Fig 5.1. It includes a semantically infinite
path, but it does not prevent us from labeling all the proposi
tions involved. X 1 , x 2 , and other elements of pow(S) may or may
not be elements of S, butS itself certainly is not an element of
S, being regular. Thus

pow(S) in S

is interpretable and false; pow(S) is not produced by pow(S),
while all other x's produced by it are regular because they have
been in~ before the introduction of pow(S). This proves the
interpretability and regularity of pow(S) for any interpretable
and regular s.

The pow constructor stands alone from all the other con
structors we have defined. It calls the function ~which pro
vides access to the real-time process ~ representing our develo
ping mathematical language. If S is infinite then there exists no
mechanical generator which produces all the objects which can be
produced by pow(s). This was first proven by Cantor, who inter
preted it in the Platonist spirit as the evidence that pow(S) has
"more" elements than S.

The notion that "some infinities are more infinite than
others" is counterintuitive. Cantor's set theory introduced into
mathematics a host of unimaginable entities, which later became
being passed for the only "real" objects of mathematics. Yet in
no reasonable sense do these entities exist, for we find them
neither in reality nor in our intuition. The philosophical un
soundness of Cantor's theory has been recognized by many outstan
ding philosophers of mathematics starting with Henri Poincare who
considered it as a perverse pathological condition that would one
day be cured. No wonder that the only way to reconcile such a
philosophical foundation with mathematical practice, in which

6-15

set theory turned out to be extremely useful, has been to accept
pure and dogmatic formalism. The formalistic philosophy is, of
course, no philosophy at all. It simply refuses to discuss what
mathematical propositions mean; still worse, it discourages the
fresh minds coming into mathematics from thinking about it.

We contend that the mathematical formalism of set theory can
be completely interpreted in terms of intuitively clear and
unambiguous concepts. We should simply look better into how we
are using mathematics, how we create its objects and satisfy
ourselves about its proofs. When Cantor proves that pow(S) has
"more" elements than S, he only proves that whatever machine is
offered to us as a generator or enumerator of the elements of
pow(S), we always can construct a new element, not yet accounted
for. These pronouns 'us' and 'we' are absolutely essential for
the meaning of the proof, even if they are avoided by using a
different grammatical form. It is impossible to understand Can
tor's proof without 'we always can'. It shows that the construct
pow(S) cannot be interpreted in terms of model-time processes
only, but involves inextricably the idea of real time in which we
live and in which 'we always can' create one more element. ~e

subject of mathematical knowledge is inseparable from the con
cepts that are used here.

3. The axioms of set theory

Using the set constructors we defined above and adding a few
more we can prove all the axioms of the ZF system as theorems in
the Refal metasystem. Note that there are no ur-elements in the
ZF system.

I. Extensionality axiom. Sets
equal:

having the same elements are

(EXT) (Ax)[x E a = x E b) ~ a = b

This is one part of our definition of equality between sets.
Using the reversed implication one can easily prove that the
equality so defined is, as required, reflexive, symmetric, a~d

transitive.

II. Axiom of the empty set. There is a set which has no element$:

6-16

(EMP) (£x)(Ay)[~(y € x))

This set is * (!E,).

III. Separation axiom For every set a and evety property Plx' 0f

sets there exists a set whose elements are those and only those
elements of a which have the property P:

(SEP) (£b)(Ax)[x e: b : x e: a & P(x)]

This set is

b = set(x e: a: P(x))

IV. Pairing axiom. Given any sets a and b, there exists a set c

whose elements are exactly a and b:

(PAIR) (Ec)(Ax)[x e: c = (x=a v x=b)]

This set is

c = *(fs(a)(b))

V. Sum.aet axiom. For every set a there exists a set
elements are exactly those objects occurring in at
element of a:

(SUM) (£b)(Ax)[x e: b = (ey)(y e: a & x e: y]]

b, whose
least one

We have to introduce a new constructor to satisfy this
axiom:

<sum *(ex)> <sum <step *(ex)>>
I <act *(<ile 1 >)>

<sum (*V(e 1))e 2 > gl
I <sum ez>

(.§J!!!!)

Now the desired set b is * (.§.Y!!! a) .

VI. PoNeraet axiom. For every set a there exists a set b the
elements of which are exactly the subsets of a:

(POW) (Eb)(Ax)[x e: b : x in a]

6-17

The set b is pow(a).

VII. Axiom of infinity. There exists a set which includes the
empty set and with every set x includes xU {x}:

(INF) (Ea)[~ E a & (x E a ~ (xU tx}) E a)]

The set a is *(inf*V(fs)).

The idea of a function,
by a formula F(x,y) which has

or operation, is expressed in logic
this property:

(Ax)(Ey)(Az)[F(x.z) = y=z]

It states that for every x there is exactly one y such that
F(x,y) holds. As a set-theoretical object, the function is the
subset of the Cartesian product a x b which includes exactly
those pairs {x,y} for which F(x,y) holds. Set a is called the
domain of the function, and set b its codomain.

In our theory the concept of function is even more fundamen
tal than in set theory, because we can identify the function with
the parametrized search. The parameter of the search is the
argument x of the function, and the result of the search y is its
value. Thus we identify the concept of function with the process
which computes this function. The computation, of course, may
include references to real-time processes r and ~. in which case
we have to replace them by their best approximations currently
known in order to actually make computations. A function defined
in this way is, generally,partial, i.e. for some arguments the
search for the value may be infinite. A function is computable if
there are no real-time calls in the defining process.

Given an interpretable functional dependence F(x,y),
build the corresponding computational process using the
function fYn defined as follows:

we can
Refal

<fun(ex)X~Y: ef> ~

<§ch *Ey E ~: y(<sub(<~ex>~*Ex)e,>)>

Here ex is to be replaced by the argument of
by the proposition F(x,y). The string x~Y
functional argument enters F(x,y) as *EX,
value as *EY. Function fun substitutes the

6-18

the function, and ef
indicates that the
and the functional
(metacoded) value of

ex for *EX in F(x,y) and searches among all legitimate objects up
to date for such a replacement of *EY that F(*EX,*EY) can be
proven.

We may also need a Refal generator which computes a function
and outputs its value as its single element. For this end we
define a trivial function 'generator from search':

The desired generator is now:

If a function is defined as a set-theoretical object, we can
construct the corresponding search analogously. This search will
need no references to the access function <~>. because it will
be sufficient to look through the codomain of the function.

VIII. Axiom of replacement. The image of a set under an operation
(functional dependence) is again a set. More precisely, if a is a
set and F(x,y) is a formula such that for every x from a there is
exactly one y such that F(x,y), then there exists a set the
elements of which are exactly those y's for which an x E a exists
such that F(x,y):

(REP) (Ax}(Ey)(Az)[F(x,z) : y=z] ~

(Eb)(Ay)(y E b : (Ex)[x E a & F(x,y)]]

To provide for such a set we introduce a new set constructor
ima ('image'), which runs through the set a, and for every x
generates the corresponding y:

<im~(<step*(ea))er>

l<g~<fun(<Ue 1 >)X~Y: er>>
~ gl

l<irn~(ea)er>

The generator im~(a,F) is only weakly interpretable, because
ima(a,F) will be immediately added to~ and tried by function
fun which has it inside a y-call. However, the use of this gene
rator in propositions, which occurs always through the mediation
of function el (extensionality principle), will not lead to

6-19

uninterpretability. The proof that for every x from a there is
exactly one y such that F(x,y) is done before we construct
jma(a,F), hence for no xis y identical with im~(a,F). When this
new set is added to lg§ and tried by fun, it will never lead to a
successful result (i.e. a halt), because for every x there is no
more than one corresponding y.Therefore ima(a,F) cannot produce
itself. All other branches in this process are interpretable and
the sets produced -- regular.

IX. Axiom of regularity (or foundation). Every non-empty set is
disjoint from at least one of its elements:

(REG) a 1 ¢ ~ (Eb)[b E a & (Ax)[x E a ~ ~(x E b)])

If every element of a has another element of a as its ele
ment, then there is an infinite (cyclic or acyclic) sequence of
sets such that each next set is an element of the preceding one,
which starts with a. Since a is regular this is impossible.

X. Axiom of choice. If a is a set the elements of which are
non-empty sets, then there exists a function f with domain a such
that for every member b of a it is true that f(b) E b.

Such a function is referred to as a choice function. We can
try to construct a choice function as a machine which runs a
generator (an element of a) and stops the moment the first ele
ment is produced. This element becomes the value of the function:

<cho *(eb)>
<cho (e 1)eb>

~ <cho <step *(eb)>>
~ <U e ~

1

Since no element of a is an empty set, this function is
defined on the whole set a.

Function cho, however, cannot be legitimately used in set
theory. The interpretability of cho(b) can be guaranteed only
when b is countable; for this case, however, the axiom of choice
has little significance because it can be proved as a theorem:
one only needs to map the set b on natural numbers and pick up
the element which is corresponds to number 1. If b is uncountable
it calls ~. which changes in real time. Let the element of b
picked up by the function cho at a certain moment be b 1 . We
cannot guarantee that later in real time cho will pick up b 1
again. The belonging to b is objectively interpretable, but the

6-20

order in which the element6 of bare generated is not.
tion cho is not objectively interpretable. (A more
discussion of functional interpretability will be given
next section).

So, tunc
detailed

in the

The axiom of choice stands apart from the other axioms of
set theory. While all other axioms can be proven by defining
simple and natural conctructors, the axiom of choice requires
some more sophisticated, and perhaps artiicial, construction. At
the present time we leave the interpretation of the axiom of
choice an open question. Probably, it can be achieved using the
following idea. Modify the definition of lga so that this genera
tor does not only produce regular sets, but with every non-empty
set produces also one of its elements. Then the choice function
will pick up exactly this element as the representative of the
set. By this trick we fix the real time when we pick up the first
produced element of a set as the time when this set gets its
legitimacy. Later, instead of running the function cho each time
that we want a representative, we always pick up the one produced
at the outset.

For one of the most important problems of set theory, the
problem of its consistency, the interpretation of the axiom of
choice is unimportant. As proven in Goedel 1940, if set theory
without the axiom of choice is consistent, then adding the axiom
of choice will still leave it consistent. (Goedel proved it for
von Neumann's axiomatization, but the equivalence of this axioma
tization to that by Zermelo-Fraenkel has been established). We
have proved that every axiom of the ZF set theory, with the
exception of the axiom of choice. is true in our interpretation.
By Correctness theorem it follows that set theory without the
axiom of choice is correct. By Corollary 3 of Correctness theo
rem, it is consistent. According to the above, it follows that
the full set theory is consistent. This result remains valid even
if we regard set theory as a purely axiomatic theory: the exis
tence of a non-contradictory model is enough to prove its consis
tency.

The fact that we are able to prove the consistency of set
theory does not contradict Goedel's proof that the consistency of
a theory cannot be proved in itself, because the crucial aspect
of our theory, the distinction between real-time and model-time
processes, cannot be formalized in set theory.

6-21

my thought
c of my thought

of apple

t
b my thought my thought

of apple C I of my thought
of apple

t t
!apple ---] b' thought a my

of a le

f 1

I [apple ? a'

Fig. 1.1

Al 2
-------·-----------------~------ ~

Fig. 1. 2

13 • • e e ,
\

I
\

I \
I

I

A ·~ •

• • qJ
I
I

I

'
I
I

b • ~

• €(•
'

' ' '

• •

' '\ • , . 'e ..

~--------~------~--~----------------~ tJ I .1. ~ 'f \"" () 1 g f (0 It

6" ~ '
e <;' ~
I I

t
I I I

ft fl r: r: f: ,,
I I
I I I I I

A-~ e e ~ <b cb •c:t•

F,~· 3.l. IL lM~~~ M.Od~\

' ' £(1)

• • ...
l

' 2(1)

F
..,_, ...
' T

.J

P(t,t)

""I T T
~ • ... ~ • . .• --@ .--. -- -~ ...
./ '------.r-"'

P(:J.) f(~)

r, ~ (3. -,:; (,4){)f(J/)

I= F F - • I•• -..,_ ··~

1\. --~-...J' v----'

"C2) P(?.>) •••

f:~.3.'1 (f'")PC~)

F f I F
II I ----- II I • .--...-If I --€)...-..-. fl •

... _, L--y---' 1..---y--'

f(l, ') f(1) n.,·) rc~. •>

4=- T
__,.._ .•. --€) ___,. .

~

f(h)

f "T
'. f • • ,,, -®--

l ... -
r (.2 > "..2_)

. ..

T T 1 F "T T F T
....._ ... • •. ,. __.._ ,,, -e--.-,,, _ ,., .._.....,_,,. ~------.... ., 4

._,.J' .. .J ~'·J L-~

f(IJI) f(t,2) ... P(l>n.) PC-2,•) r(..t,nl)

flq. i

T P

"T
j'

:r J • F-ftt 7
p

h~ b(Gl

~ (Q I) ~ t (Q1/)

G.---------o~------------~
t Gl- (G;; o--r.cl. CQ;)

h-~. b. i

