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P R E F A C E 

This is a preprint of the book with the same title which has 
not yet taken its final form. Chapter 7 and the part of Chapter 6 
dealing with the continuum hypothesis are not included because I 
am still working on them. I am also planning to include much more 
exercises than can be found in this edition. 

I appreciate the discussions of the early version of parts 
of this book which I had with professors Karel Hrbacek and 
Michael Anshel of the City College of New York. I am much obliged 
to Susan Goeckel, Robert Nirenberg, and James Piccarello for 
their help in editing. 

The work on this book was partly supported by the National 
Science Foundation grant i MCS-8~~7565. 
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ALL figures are at the end of the book. Symbol v signifies 
the end of a subsection starting with a boldface specifier, like 
Proof, Example, etc. 
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in t. t*'Caduc t i c•n 

At the turn of this century there was a lot of talk about 
the crisis in the foundations of mathematics. Although no convin
cing answers have been found yet to the questions which arose 
then, the word 'crisis' is not used in that context any more. 
This is understandable: a crisis which lasts for almost one 
hundred years becomes perceived as a normal condition, not a 
crisis. A normal condition, however, is not necessarily a satis
factory one. The 'crisis' is still there. A vivid testimony to 
that is provided by the excellent picture of "the ideal mathema
tician" of the present day given by P.J.Davis and R.Hersh in 
their recent book The Mathematical Experience. The authors, well
known mathematicians themselves, call the hero of this picture 
'ideal' not because he is perfect in any sense, but because he 
ideally represents his kind, or type. He is "the most mathemati
cian-like mathematician". His imaginary field is "non-Riemannian 
hypersquares", and he pursues his studies with passionate devo
tion. He spends all his days in contemplating the non-Riemannian 
hypersquare. "His life is successful to the extent that he can 
discover new facts about it". 

There are two aspects of the crisis in mathematics, and they 
are reflected in the picture of "the ideal mathematician": one 
concerns the nature and the very existence of the things he 
studies; the other is the reason he should study them. But let us 
give the floor to the authors. 

The objects which our mathematician studies were unknown 
before the twentieth century; most likely, they were unknown even 
thirty years ago. Today they are the chief interest in life for a 
few dozen (at most, a few hundred) of his comrades. He and his 
comrades do not doubt, however, that non-Riemannian hypersquares 
have a real existence as definite and objective as that of the 
Rock of Gibraltar or Halley's comet. In fact, the proof of the 
existence of non-Riemannian hypersquares is one of their main 
achievements, whereas the existence of the Rock of Gibraltar is 
very probable, but not rigorously proved. 
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... He rests his faith on rigorous proof; he believes that 
the difference between a correct proof and an incorrect one is an 
unmistakable and decisive difference ... Yet he is able to give no 
coherent explanation of what is meant by rigour, or what is 
required to make a proof rigorous In his own work the line 
between complete and incomplete proof is always somewhat fuzzy, 
and often controversial. 

The authors summarize the discussion of the objects of 
mathematics in the following way. 

Mathematicians know that they are studying an objective 
reality. To an outsider, they seem to be engaged in an esoteric 
communion with themselves and a small clique of friends. How 
could we as mathematicians prove to a skeptical outsider that out 
theorems have meaning in the world outside our fraternity? 

If such a person accepts our discipline, and goes through 
two or three years of graduate studies in mathematics, he absorbs 
our way of thinking, and is no longer a critical outsider he once 
was. In the same way, a critic of Scientology who underwent 
several years of "study" under "recognized authorities" in Scien
tology might well emerge a believer instead of a critic. 

If the student is unable to absorb our way of thinking, we 
flunk him out, of course. If he gets through our obstacle course 
and then decides that our arguments are unclear or incorrect, we 
dismiss him as a crank, crackpot, or misfit. 

Of course, none of this proves that we are not correct in 
our self-perception that we have a reliable method for discove
ring objective truths. But we must pose to realize that, outside 
our coterie, much of what we do is incomprehensible. There is no 
way we could convince a self-confident skeptic that the things we 
are talking about make sense, let alone "exist". 

The failure to convince the skeptic is not simply a result 
of the complexity of mathematical constructs. One need not know 
in detail the construction of a machine to understand what the 
machine is doing. No computer scientist would second the mathema
tician's complaint of incomprehensibility, although the complexi
ty of big computer systems created by dozens of people leaves far 
behind the information content of the theory of "non-Riemannian 
hypersquares" or the likes of it. Also, such a complaint could 
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hardly have been made before the end of the nineteenth century. 
Should "the self-confident skeptic" say that he does not under
stand what are numbers end geometric figures, he would be simply 
sent to hell, and with good reason. 

I believe that mathematics is incomprehensible for outsiders 
because it is incomprehensible for the mathematicians themselves; 
otherwise they would be able to explain at least its base. But it 
is just in the ~ase where the trouble is. Contemporary mathe
matics is based on set theory, which deals with entities that 
defy comprehension. Yet the objects of mathematics, though built 
on the set-theoretical base, convey to everyone who is studying 
them the feeling that he is dealing with "a real thing". Paradox
ically, this feeling is shared also by those mathematicians who 
specialize in set theory itself. There can be only one explana
tion of this paradox, or at least no other can be immediately 
seen. It is that the formalism of set theory does refer to some 
reality, which is -- as a reality -- quite comprehensible, while 
the present interpretation of this formalism based on the concept 
of actual infinity is not only incomprehensible, but simply 
wrong. It is conceivable that if this really is the case, the 
mathematicians could have developed their set-theoretical intui
tion in response to the real, and not the proclaimed, objects of 
set theory. 

Now look at the set-theoretical foundation of mathematics 
from the angle of consistensy. Working with set theory, one gets 
an intuitive impression, maybe even a certainty, that it is non
contradictory, consistent. But its con~~tency has never been 
proved. This is very strange, if we come~hink about it. Axioma
tic set theory in the Zermelo-Frenkel form rests on eleven axi
oms, most of which are very far from being elementary, or primi
tive. Taken all together, they make up a still less primitive 
whole. It is inconceivable that our intuition can perceive the 
consistency of this whole without basing itself on some simple, 
primitive, intuitively consistent concepts and truths. We come to 
believe, therefore, that such primitive and intuitively unques
tionable truths must exist. To separate them and to express in 
terms of them the ZF axioms, would be to prove the consistency of 
set theory. From Goedel's theorem we know, however, that it is 
impossible to prove the consistency of set theory by means which 
can be formalized in set theory. Hence the primitive concepts and 
truths the existence of which we derived must be very unusual, 
strange, because they must be non-expressible in set theory, 
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while we habitually entertain the idea that in set theory we can 
express everything that can be subject to rigorous mathematical 
treatment. A theory based on these concepts must be equally 
'strange'. To use an expression popular among physicists and 
coined by Niels Bohr, such a theory must be 'crazy enough'. 

Such a 'crazy' theory is developed in the present book. It 
leads to a full acceptance of the formalism of set theory, but 
interprets it in the agreement with the principles of constructi
vism, using only the idea of potential, but not actual, infinity. 
Our theory of mathematics has the following features. 

(1) Mathematics is seen as a branch of science. The objects of 
mathematical knowledge are of the same nature as those of other 
sciences: the abstracted phenomena of the world we live in. As 
every branch of science, mathematics has its own type of objects, 
and this may lead to significant differences of quantitative 
character. However, there is no difference of principle with 
regard to the nature, method of acquisition and reliability of 
mathematical knowledge as compared to the knowledge of natural 
sciences. 

(2) In ageement with the contemporary philosophy of science, the 
meaning of a mathematical (as well as any other) proposition is 
defjned as our ability to use it as a generator of verifiable 
predictions about real world processes. If a proposition cannot 
be interpreted as a generator of predictions, it is meaningless 
and has no place in our theory. 

(3) 
the 

Our theory is concerned with symbolic mathematics, 
official language of all mathematicians nowadays. 

which is 
While the 

importance of three-dimensional geometric intuition is acknow
ledged, no attempt is made to analyze its role. 

(4) In addition to mechanical processes of computation and 
proof, which play so important a role in contemporary mathema
tics, we introduce metamechanical processes, which cannot be 
modeled in such devices as Turing machines, or defined through 
recursive functions. Metamechanical processes differ from mecha
nical processes not by the kind of machinery they use, but in 
that they are controled by the subject of knowledge, i.e. its 
owner and developer. In the conceptual apparatus of modern phy
sics, the inseparability of the phenomenon and the observer, i.e. 
of the object and the subjects of knowledge, is well known. Our 
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theory introduces it in mathematics. 

(5) With this conceptual toolbag we interpret the fundamental 
aspects of mathematics, in which we also include formal logic. We 
show that there are two ways to define the concept of truth in 
our formalism. One leads to intuitionist&a logic, the other to 
classical logic. Goedel's theorem is shown to be of crucial 
importance for the acceptance of the law of the excluded middle. 
Our theory stresses the positive aspect of Goedel's theorem. 

(6) Set theory is interpreted and the axioms of Zermelo-Frenkel 
are proven as theorems. No special effort is made to avoid para
doxes. They simply do not appear, which is 15 one of the results 
of our definition of the interpretable proposition. Sets are 
interpreted as processes which generate objects. Metamechanical 
processes provide for not recursively-enumerable and uncountable 
sets. 

(7) The consistency of set theory is proved. This does not 
contradict Goedel's result of the impossibility of proving the 
consistency of a theory in the theory itself, because our theory 
cannot be formalized in set theory. The continuum hypothesis is 
also proved. 

(B) The basic, all-pervading methodological principle of our 
approach is the concept of metasystem transition. The technical 
means we use to formalize this idea is the language Refal. Our 
formalism is designed so as to avoid explosive increase in volume 
when translating mathematical propositions. Refal is implemented 
on computers and used as a programming language for writing 
complicated symbol-manipulation programs. At the present time, 
the machines introduced in mathematics for the purpose of formal
ization are used only for mental experiments, as theoretical de
vices. One of our goals is to bridge the gap between mathematics 
and computer science by formalizing mathematics in such a way 
that the mechanical processes referred to in its definitions 
could be actually run on a computer. 

Let us return to "the ideal mathematician" created by Davis 
and Hersh. They give a remarkable description of the way the 
mathematician works. It deserves a long citation. 

The ideal mathematician's work is intelligible only to a 
small group of specialists. numbering a few dozen or at most a 
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few hundred. The group has existed only for a few decades, and 
there is every possibility that it may become extinct in another 
few decades ... 

He finds it difficult to establish meaningful conversation 
with that large portion of humanity that has never heard of a 
non-Riemannian hypersquare. This creates grave difficulties for 
him; there are two colleagues in his department who know some
thing about non-Riemannian hypersquares, but one of them is on 
sabbatical, and the other is much more interested in non-Eulerian 
sem1r1ngs. He goes to conferences, and on summer visits to col
leagues, to meet people who talk his language, who can appreciate 
his work and whose recognition, approval, and admiration are the 
only meaningful rewards he can ever hope for. 

At the conferences, the principal topic is usually "the 
decision problem" (or perhaps "the construction problem" or "the 
classification problem") for non-Riemannian hypersquares. This 
problem was first stated by Professor Nameless, the founder of 
the theory of non-Riemannian hypersquares. It is important be
cause Professor Nameless stated it and gave a partial solution 
which, unfortunately, no one but Professor Nameless was ever able 
to understand. Since Professor Nameless' day, all the best non
Riemannian hypersquarers have worked on the problem, obtaining 
many partial results. Thus the problem has acquired great pres
tige. 

When speaking with fellow-hypersquarers the ideal mathemati
cian uses an informal jargon, but the style of his published 
writing is different . 

. . . There he piles up formalism on top of formalism. Three 
pages of definitions are are followed by seven lemmas and,final
ly, a theorem whose hypotheses take half a page to state, while 
its proof reduces essentially to "Apply Lemmas l-7 to definitions 
A-H." 

His writing follows an unbreakable convention: to conceal 
any sign that the author or the intended reader is a human being. 
It gives the impression that, from the stated definitions, the 
desired results follow infallibly by a purely mechanical proce
dure. In fact, no computing machine has ever been built that 
could accept his definitions as inputs. To read his proofs, one 
must be privy to a whole subculture of motivations, standard 
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arguments and examples, habits of thought and agreed-upon modes 
of reasoning... If (heaven forbid) the fraternity of non-Rie
mannian hypersquarers should ever die out, our hero's writings 
would become less translatable than those of the Maya. 

A series of conversations follows between the ideal mathema
tician and people of different professions. A public information 
officer of the University asks him what possible applications his 
research may have. Here is the answer of the mathematician and a 
portion of the subsequent dialogue. 

1 .H.: I've been told that some attempts have been made to use 
non-Riemannian hypersquares as models for elementary particles in 
nuclear physics. I don't know if any progress was made. 

P.l.O.: Do you see any way that the work in your area could lead 
to anything that would be understandable to the ordinary citizen 
of this country? 
l.H.: No. 
P.l.O.: How about engineers or scientists? 
l.H.: I doubt it very much. 
P.l.O.: Among pure mathematicians, would the majority be inte
rested in or acquainted with your work? 
l.H.: No, it would be a small minority. 

It is enough. To give your life to the non-Riemannian hyper
square only because Professor Nameless defined the concept and 
proved a theorem which nobody except him could understand, this 
is not an appealing prospect to a young man. With all the beauty 
and depth of contemporary mathematics, the picture of the ideal 
mathematician is rather depressing. It seems that something is 
missing in mathematics: the top of the hierarchy of goals. There 
is no general strategy of mathematics in sight, such as we clear
ly see in physics,biology, or computer science. There is no 
approach or conception which would not simply indicate the place 
of mathematics in the contemporary world -- the place that is 
secured by the achievements of our predecessors -- but would 
indicate where and how we should go on. "The ideal mathematician" 
reminds one of a week offspring of a once strong family who is 
rich in heritage but poor in his own spirit, and completely 
absorbed by minor family affairs. 

I believe that this situation is a direct consequence of the 
crisis of foundations. Indeed, how can we hope to find a lead in 
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constructing mathematics if for one hundred years there has been 
no understanding on what mathematics is about? Conversely, we can 
hope that a new approach to the foundations will provide at least 
some new guidance to tell the important from the unimportant in 
mathematics. 

Other sciences, notably physics, are dependent on mathema
tics for the models they can use to construct their own models of 
reality. Quantum mechanics could emerge because the physicists 
discerned in some mathematical structures, which were created 
before and with a different purpose, the features they could use 
for the descripton of observed facts. This can serve as an argu
ment for "zoological mathematics", that is for the study of all 
sorts of mathematical creatures in anticipation of their possible 
use. But if one remembers the huge, potentially infinite, volume 
of this "fauna", it will become clear that we can hardly hope for 
success without any guide, without a theory which could tell us 
how to create useful structures. But such a theory presupposes a 
convincing theory of mathematics. 

According to the present formalistic philosophy, mathematics 
is a language without semantics. This philosophy reduces all 
mathematics to just the axiomatic method. You give me your axi
oms, says.the mathematician, and I shall deduce as much from them 
as I can. I do not know and do not want to know what your axioms 
mean. For me they have no meaning: just formal objects to manipu
late. 

Davis and Hersh express strong dissatisfaction with the 
formalistic philosophy of mathematics as contradicting the belief 
of the working mathematician in the objective existence of his 
objects, and downgrading, if not damaging, his perception of 
these objects. My impression is that even though some mathema
ticians may resent the portrait of their "ideal" colleague, the 
general attitude with regard to the present condition of mathema
tics expressed by Davis and H~rsh is going to be shared by more 
and more people. This is why I found it important to discuss "the 
ideal mathematician" at length. 

The axiomatic method is a great invention, but it is not 
everything; moreover, in the present situation it is, probably, 
not the most important thing. The axiomatic method is good for 
studying, from different angles, a given mathematical object. But 
the question now is: what mathematical objects do we need? The 
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most important and creative part of the job needed today by 
natural sciences, by physics for example, is left hanging in the 
air between the physicist and the mathematician. Theories we 
create are based on formalizations of our intuitive and informal 
concepts pertinent to the studied phenomenon into formal mathema
tical models. But very often we have no, or not enough, pertinent 
intuitive concepts to construct a mathematical model. It may 
happen because our concepts are too fractional, and models based 
on them become too complicated and unilluminating. This is a 
frequent case in biology and social sciences. Or we may simply 
have no valid intuitive concepts about phenomena; this happens in 
the physics of elementary particles, where our macroscopic intui
tion is more misguiding than guiding. Then who will formulate the 
axioms and, before that, create the formal objects the axioms are 
about? If the axioms are given, will the mathematician really be 
able to work with them without understanding their meaning and 
basing his effort only on the formal rules of inference? It is 
more than doubtful, especially if you consider the very limited, 
not to say miserable, successes of computer theorem proving up to 
date. 

Our approach to mathematics is semantic. We treat the lan
guage of mathematics as having a definite, precise and unique 
meaning and speaking about real observable phenomena. The concept 
of a process, on which our semantics hinges, bridges mathematics 
and natural sciences, because it is applicable both to linguistic 
processes of mathematics, and to natural phenomena. I hope, 
therefore, that this theory will help find new approaches to the 
most general and important problem of contemporary science: how 
to construct mathematical structures necessary for successful 
theories of natural phenomena? What we need is a metatheory of 
scientific theories. 

As to the internal needs of mathematics and compter science, 
a quite definite program follows from the theory; it is briefly 
outlined in Chapter 7. With our philosophical approach, mathema
tics and computer science share the same conceptual foundation. 
At present, a wide gap separates the foundations of mathematics 
and those of computer science. A theory which essentially unites 
them into one scientific discipline should be for their mutual 
benefit. 
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C H A P T £ R 1 

The Nature of Mathematics 

1. The reflection theory 

The first and very long-lived philosophy of mathematics 
known to us was elaborated, as many other firsts in philosophy, 
by Plato. Mathematics is understood by Plato in the framework of 
his theory of ideas. According to this theory, the things we see 
around us and perceive otherwise do not represent the ultimate 
rteality of the world. They are sort of reflections, or manifes
tations, or shadows of something else, namely the abstract ideas 
of things. It is these ideas that constitute the ultimate reality 
and make the observable material things possible. Material things 
are unstable and imperfect, they come and go. Ideas are unchange
able and eternal. While we know material things by means of sense 
organs, ideas are perceived by our mind through the process of 
reasoning. 

The first reaction of a modern man when exposed to this 
theory is usually: what a nonesense! How does he know about these 
ideas? Is not it a pure invention, a fantasy? The second reaction 
would be: how strange that people could take this stuff seriously 
for two thousand years. Was it a collective self-hypnosis? It 
seems incomprehensible. 

But if we care to give it a second thought, we find that far 
from being a strange aberration, Platonism is an inevitable stage 
in the development of philosophy. First of all, we should not be 
confused with the use of the word 'idea' in Plato's theory. It 
has nothing to do with 'thought'. Plato is no subjectivist or 
spiritualist. His 'idea' of a thing must be understood rather as 
the pattern, or form, to be discerned in it; or, as we would say 
in todays language, its organization. Plato's dichotomy between 
things and ideas corresponds to the dichotomy in our language 
between energy-matter and information. 
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How do we come to Platonism? We start thinking about our 
thinking. We see that to express our thoughts we use language, 
therefore thinking about our thinking we also think about lan
guage; we are dealing with a thought-language complex. The use
fulness of this complex, as everyone knows, is that it gives us a 
sort of copy, or a reflection, of reality. We say "Socrates". and 
this is only a word, but it has a meaning because it corresponds 
to the real person Socrates. Also, when I say "give me that 
apple", you will understand me if and only if you can see the 
real, material apple which corresponds to the word "apple" I have 
used. Sometimes we lie or deceive ourselves. I can say or think 
that I am holding an apple, while in fact it is a rock. In such 
cases there is no correspondence between the thing and th thought 
or language. So, the first step of philosophizing lead us to what 
is known as the theory of reflection. It says that the meaning 
and the significance of thought-language is in its possible 
correspondence with the reality. If this correspondence takes 
place, the thought is true, otherwise it is false. 

If you accept the theory of reflection, and people usually 
do, you come immediately to Platonism. Our language includes not 
only those words which are in a direct one-to-one correspondence 
with specific material objects, like "Socrates", or "the apple 1 
am·now eating", but also general or abstract concepts: "a man", 
"an apple", "a triangle". We face a dilemma now. Either we throw 
away the greater part of the language as meaningless and leave 
only proper names and concrete propositions, or we have to admit 
that there is some reality standing behind our abstract notions. 
Hardly anybody would seriously contemplate the first alternative. 
Then only the second is left, and this is Platonism. If the 
existence of the second type of reality is accepted, it immedia
tely becomes primary, and the first, empiric reality-- seconda
ry. Because you can kill Socrates and destroy a house, but you 
cannot kill the concept of a man or the idea of a house. You can 
eliminate every triangular thing you can reach, but in doing that 
you do not eliminate the triangle as such. Knowing what the 
triangle is, you can again create a lot of triangular things. At 
the same time, when you create those things you do not create the 
triangle. It has always existed and will exist forever. 

when 
have 

In the above passage, the reader could have noticed that 
I used the abstract triangle as an example of an idea to 
an independent existence, the argument became more persua-
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sive than when using the house or the apple. Mathematics has 
always played an important role in Platonism, supplying it with 
the best examples and arguments. It is impossible to simply say 
that the mathematicians deal with non-existent objects. Yet it is 
clear that the number two and the equilateral triangle do n0t 
exist in the same way as rocks, apples and houses. They eKist as 
ideas. Therefore, ideas do exist. Without a further and deeper 
analysis of thinking, Platonism is inevitable. 

Philosophers, of course, went on with their analysis. Diffi
culties and inconsistencies were discovered (mostly at the inter
face between the world of things and the world of ideas), skep
tics announced that. they were not convinced, and heated debates 
abounded. The heat, of course, came not because of mathematics, 
but because of religion. For not only numbers and triangles are 
abstract notions, but also good and evil, justice, grace, and 
God. It was, and still is, very important for people to know if 
these things really exist. 

The angle from which we look at the history of philosophy in 
this very quick review is the theory of reflection and its signi
ficance for the concept of truth in mathematics. Our next station 
will be with Immanuel Kant. We want only a brief summary of what 
happened to the theory of reflection during the two millenia 
between Plato and Kant. 

Plato's doctrine was challenged in two planes: ontological 
and epistemological. In the ontological plane the debate was 
between the realists, or Platonists, and the nominalists; the 
problem was known as the Problem of Universals: do the Univer
sals, i.e. the entities corresponding to general, abstract con
cepts, really exist? Those who contended, with Plato, that they 
really exist were called realists. Now, since the word 'realist' 
acquired later another meaning, this party in the debate is 
usually called Platonists. The other party asserted that Univer
sals were only words, names, to denote all those real things that 
qualified according to the meaning of the concept. 'The house' 
does not exist as such, it is only a name applicable to all 
specific houses. (At last I see people who sound reasonable, the 
modern man will say). But mathematics was a stumbling block for 
consistent nominalism. 'The house' may be only a name, a symbol, 
and have no existence of its own. We could replace it by another 
name, e.g. 'maison'. But what about the objects of mathematics? 
If they are only names which can be arbitrarily chosen and 
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changed, how can mathematicians discover their properties and 
prove theorems? The triangle of mathematics cannot be identified 
with the set of all material objects of triangular form, because 
we have no exact triangles in nature. Mathematics proves that the 
sum of the angles of any triangle is 180 degrees. But if we 
measusre the sum of the angles of any real triangular object, it 
will be close but never exactly 180°. 

In the epistemological plane, the opposite trends of thought 
were rationalism and empiricism; the problem was: what is the 
reliable and preferable source of our knowledge? For rationalists 
this source was our reason. Empirical data are chaotic, there can 
be no necessity in them, necessity is to be found in the world of 
ideas only. We use our sensual experience as the source of sug
gestions for our reason to look in certain directions, and to 
test and try our conclusions, but a proposition can be cosidered 
as necessarily true only if it is derived by our reason 
primary, fundamental, self-evident truths perceived as 
in the world of ideas directly by the mind. Thus the 
source of true knowledge is reason. 

from some 
necessary 
ultimate 

Nothing of that kind, said empiricists. All we know is 
learnt through our sense organs. The soul of a newborn baby is a 
clean slate (Locke: tabula rasa) into which his experience writes 
down the story. Our ideas are only a reflection, usually and most 
usefully a condensed one, of our experience. The ultimate source 
of knowledge is our sensual experience. The knowledge which is 
not rooted in experience is not a knowledge but a fiction, a 
fantasy. 

By the end of the eighteenth century, a working compromise 
was established between the two camps. Natural sciences, which 
made tremendous success and compelled the old philosophy to 
retreat, became the province of nominalism and empiricism. Mathe
matics and religion were retained by Platonism and rationalism. 
The common ground for both camps, on which there was no fighting 
was the theory of reflection. It was admitted now that there are 
different types of knowledge. But no matter what the source of 
knowledge and the nature of its objects, the idea that knowledge 
is a correspondence between thought and object seemed self
evident. 

The downfall of the reflection theory started with Kant. 
Compromise is good for politicians but not for philosophers. Kant 
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looked for an organic synthesis of empiricism and rationalism 
which could explain the success of empirical science, leave place 
for mathematics, and provide a sound basis for ethics and reli
gion. 

The essence of Kant's message is this. (Let me stress the 
word message. I am not trying to expose the whole of Kant's 
philosophy in its actual terminology. It is rather a contemporary 
reading of Kant). 

Both empiricism and rationalism are in error when they think 
that they can discuss or even think about the relation between 
the thought and its ultimate object. Suppose I want to compare my 
idea of an apple and this apple as it really is. But what does it 
mean 'as it really is'? When we come to think about it, we see 
that 'the apple as it really is' is again my idea of the apple. 
Things we perceive, as Berkeley eloquently argued, are given to 
us only in our own sensations, only as objects of our thought. We 
do not know and have no means to know what are things in them
selves, independently of our perception. 

Let us analyze how the reflection theory comes into being. 
When we start to think about our thinking and our language, we 
notice, quite correctly, that our ideas reflect, or correspond 
to, or refer to, some reality. (If they do not, in an obvious 
way, a psychiatrist should be consulted). So my thought of an 
apple, represented in cell b in Fig. 1.1, reflects the real apple 
of cell a. How do I know it? Well, from my observation of other 
people and reasoning by analogy. My friend professor Nameless 
sees an apple, takes it, bites and chews. He certainly does not 
mistake it for a cigaret or a bus. Neither do I, I am sure. I 
also can analyze my thinking about my idea of an apple, which is 
represented in cell c. Again, it reflects something, namely the 
reality of cell b. I can go up and up in this hierarchy, but I 
hardly need it. Much more interesting is to go down. I note that 
if somebody looked at me -- or at us, the collective subject of 
human knowledge, humanity-- then he would see that what I accept 
for an apple 
it reflect? 
it. It seems 
by my idea 
states: our 
really are. 

in cell a, is only my perception or idea. What does 
I denote the missing cell x and start thinking about 
obvious that x is the real apple, which is reflected 

of the apple. This is what the reflection theory 
ideas of things are reflections of things as they 
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When we look closer, however, we see that 'the thing as it 
really is' is a mirage, like a spurious sun. When I look at 
myself from outside. I put in correspondence to every cell y the 
cell 'my thought of y', as shown in the second column in Fig.l. I 
say now: what I take for a is really b'; what I take for b, is 
really c', etc. It seems to me that I found the answer to the 
question what is x: it is really a'. But in fact a' is identical 
to a. Cell x is only a position in the diagram devoid of any 
contents. When we speak about x, we imply that there is some 
contents in it, but this contents is a. The reflection theory 
makes a copy of a, i.e. of our perception of a thing, and sells 
it for a new item x, the thing as it really is. Kant's thing-in
itself is the position x in the diagram, but not a meaningful 
part of speech. It should play no role in our reasoning. 

Knowledge ts not the correspondence between the thing and 
the thought, because we never compare the thought and the thing. 
We compare only one thought to another. But what is knowledge 
then? Is it simply a chaotic collection of the data of our sense 
organs? Not at all. Simplest analysis will show that our ideas 
are organized in a certain way. This organization is the work of 
reason. We can distinguish three levels in thought: sensations, 
perceptions, conceptions. 

on the first, basic level we find the raw material of the 
mind, our feelings, sensations: light flashes, coloured spots, 
the sound of somebody yelling, the warmth of the milk in the 
mouth, the touch of cold stone, etc. This is the experience of an 
infant in the first days of his life. It does not yet constitute 
knowledge. 

There must be a tremendous work done to organize the primary 
stream of sensations into our perception of distinct objects 
situated in space and changing in time. This work is done by our 
mind and it produces the second level of thought, the level of 
perceptions. Space and time, according to Kant, are not things
in-themselves, they are forms of perception. 

On the third level, the peceptions organized in space and 
time serve as the material to be processed into still higher type 
of thought, conceptions. The forms used by the mind to mold 
conceptions from perceptions are called by Kant categories. The 
idea of cause, for instance, is one of categories we use in 
forming conceptions. There is no causality in the sensations we 
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get from the eMternal world; it is our way to organize the sensa
tions. 

What is the the goal of the philosopher? What can he do and 
what he cannot? He certainly cannot know anything about "things 
as they really are", their "real nature". Knowledge is not a 
reflection in the subject of knowledge of the object of know
ledge. Knowledge is their interaction. The subject and the object 
are inseparable in knowledge. When we try to consider the object 
of knowledge in isolation from the subject, we leave no place for 
knowledge. The only task a philosopher can set to himself is the 
critical analysts of our knowledge on all three levels: sensa
tions, perceptions, conceptions. By this analysis we can distin
guish what comes from the raw material of sensations from what is 
introduced by the mind in processing this material. The empiric 
and the rational are not two opposing sources or methods of 
knowledge; they are two aspects of the same phenomenon. 

Kant divides judgements (propositions) into analytic and 
synthetic. The analytic judgements are those in which the con
tents of the judgement, the logical predicate, only expresses 
what must be there by the definition of the logical subject of 
the judgement. When you say, for instance, that the apple is a 
fruit, this is an analytcal judgement. Essentially, analytical 
judgements are definitions, which can be made a priori, without 
any reference to experience. To put it in the terms of the pre
sent time, they carry no information. Synthetic judgements carry 
information, because they link things which are not linked by 
their definition. 'Jack killed a wolf' is a synthetic judgement. 
We can state that Jack killed a wolf only after having the cor
responding experience, a posteriori. 

As in the case of Plato, mathematics plays an important role 
in Kant's philosophy. Mathematics, says Kant, contains a lot of 
synthetic judgements. For instance, the proposition that the sum 
of the angles of a triangle is 180 degrees is synthetic, because 
the triangle is defined as a figure of three sides and three 
angles, but nowhere in the definition do we find that the sum of 
the angles must be 180°. Yet this judgement is made without any 
reference to empiric facts, a priori? How can it be possible? How 
can synthetic judgements be possible a priori? 

Kant's answer is: because they have nothing to do with 
sensations, but reflect the way our mind processes sensations. 
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Mathematics is about the forms which our reason applies to sensa
tions in order to mold them into perceptions. This is why mathe
matics is so important and useful on the one hand, and does not 
depend on empiric data and our experience. on the other hand. The 
example of mathematics shows that the pure forms of our reason 
can be subject to a detailed analysis. The purpose of Kant's main 
work, The Critique of Pure Reason, was to explore the limits of 
such an analysis with respect to the traditional problems of 
metaphysics. 

The rationalist trend of thought was first to realize the 
importance of Kant's synthesis, and draw conclusions from it. The 
result is known as German idealism. If object and subject are 
inseparable in knowledge, and our knowledge is the only reality 
we have, then does it not suggest that the subjective element, 
the quality which makes it possible to be the subject of know
ledge, is at least as important a constituent of reality as the 
objective element. the quality which is common to all material 
things we perceive? This is the starting point of idealism. The 
forms which our mind applies to sense experience, in particular 
the ·' laws of logic, reflect (the reflection theory again!) the 
deepest laws of All That Exists. From the ancient Greeks the law 
of contradiction, i.e. the principle that a proposition is proved 
if its negation is shown to be contradictory, was considered the 
most fundamental logical law which allows one to discover those 
truths which are necessary, but not immediately obvious. Hegel, 
the most influential German idealist, transforms this law into 
the universal driving force of the developing world. 

During one hundred years after Kant, the empiricist trend of 
thought ignored the work of the Koenigsberg philosopher. This was 
the time of the triumph of science, especially of Newtonian 
mechanics and its applications. The scientists did not need Kant; 
the reflection theory and the compromise between empiricism and 
rationalism kept on working excellently. The only noticeable 
change was with respect to hypothesis. Newton believed that he 
managed to discover the true and absolute laws of mechanics, 
which cannot be renounced or modified any more than the laws of 
geometry. He draw a sharp distinction between a discovery and a 
hypothesis, and did not see much sense in the latter. "Hypotheses 
non f i ngo", he said: I do not feign hypotheses. Later, however, 
the scientists found it necessary to "feign" hypotheses. The 
method of science became described as hypthetico-deductive. A 
scientific theory is always created as a hypothesis, and then is 
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tested against experimental facts. However. if it is well-tested, 
then, according to the views of the 19th century scientists, the 
theory still was tt be considered as a discovery. This word shows 
that the contents of the theory "is there" as an objective reali
ty, an objective law of nature, and scientists only express it in 
terms of some -- usually mathematical -- language. We see here 
the reflection theory in its full. Not only do the nouns of the 
scientific language correspond to real material particles and 
their conglomerates, but the sentences of that language also 
reflect the objectively existing natural laws. 

This view of scientific knowledge is formally independent 
from the ontology you assume; in practice, however, it strongly 
prefers the materialistic worldview, according to which the ulti
mate reality of the world is matter. This term may be understood 
with different degrees of sophistication, but its general tenden
cy is to move the ultimate reality away from the subject of 
knowledge or action and closer to its object. 

Only in the very end of the 19th century the importance of 
Kant's message for science was recognized, and only by a few far
seeing philosophers and scientists. Probably, the single most 
important factor which led to the formation of a new trend of 
thought was the discovery of non-Euclidean geometry and the 
related tendency toward axiomatization of mathemtics. For two 
thousand years the view of geometry as the only possible and 
unshakably true theory of spatial relations was one of sustaining 
pillars for the belief in human ability to discover the truth. It 
turned out now, that one of the axioms of geometry (i.e. geometry 
as given by Euclid) can be replaced by another axiom, which is 
diametrically opposite to the original axiom, and yet this does 
not lead either to internal contradiction in the theory, or to a 
contradiction with our sense experience. What is left then of the 
necessity and the objectivity of mathematical truths? Which of 
the two geometries is true? 

Neither, answers Henri Poincare in his Science and Hypothe
sis. But not because both are false. Geometry cannot be true or 
false. It tells us nothing about real events in the world, it 
only provides us with a conceptual scheme to describe events. 
With respect to such schemes the concept of being true or false 
is simply out of place; a scheme can be more or less applicable, 
depending on the circumstances, but it can be neither 'true', nor 
'false'. Suppose we measured the sum of the angles of a gigantic 
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triangle formed by light rays._Ac~ording to the Euclidian geomet
ry it must be exactly 180°, according to the Lobachevsky geomet
ry, less than that. Suppose we tound that the sum is less than 
180°. Does it prove that Euclidian geometry is false? Not in the 
least. We could hold on to it as true but conclude that the sides 
of the triangle are not straight lines. In these conditions, we 
might say, light propagates along some curved lines, maybe arcs 
of some sphere. 

This is a Kantian approach taken one step further. Mathema
tics is still considered as dealing with forms or schemes which 
we introduce in order to organize our sense experience. But for 
Kant these forms were immanent to our reason and therefore given 
and immutable, in a sense, objective. But Poincare sees two 
geometries in front of him, and knows that he can choose between 
them, or use them both, by his own accord. Ernst Mach analyzes 
the foundations of Newton's mechanics. The parallel between me
chanics and geometry, which gave grounds for Newton to consider 
his creation as necessarily true, now works against him. If there 
are two geometries possible, then why not two or more mechanics? 
Richard Avenarius authored a philosophy known as empiriocriti
cism. Mach and Avenarius laid down the foundation of a philosophy 
of science which can be characterized as 'post-Kantian empiri
c ism' . 

Using this term, I have in mind not one definite philosophi
cal system or school, but a family of such, with the most impor
tant epistemological features in common. Like earlier empiricism, 
post-Kantian empiricism accepts only sensations for the source of 
knowledge, and rejects Kant's idea of extracting from intuition 
some pure and immutable, transcendental forms of knowledge. Toge
ther with Kant, it rejects the reflection theory as naive and 
uncritical, maintains that the subject and object are inseparable 
in knowledge, and seeks to analyse critically their relationship. 
When we perceive a material object, our perception is not a 
r e f 1 e c t i on of a ' rna t e r i a 1 o b j e c t as i t r e a 11 y i s ' , but on 1 y a 
complex of sensations. When we create a theory which is amply 
corroborated by experiments, it is not a reflection of an 'objec
tive law of nature', but a way to organize and foresee our sen
sations. The philosopher, or a thoughtful scientist, critically 
analyzes the stream of sensations we get from our sense organs 
and the way we form concepts to organize it. The meaning of these 
concepts is determined by the way they are translated into veri
fiable (in terms of sensations) facts. The concepts which cannot 
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be translated into sensations are meaningless, spurious. 

I n Am e r i c a , c h a r 1 e s P e i r c e . t he f o u n de r o f the s c h o o 1 o f 
philosophical pragmatism, associated the meaning of a concept or 
a theory with the consequences that result from the application 
of this concept or theory. In particular,a theory is true if it 
allows us to achieve our goals, if it "works in practice". This 
is close enough to the principle of verification. Pragmatism is 
also a variety of post-Kantian empiricism. In fact, we can reckon 
among the members of the same family all the most influential 
trends in the philosophy of science of the present time. To 
discuss these philosophies is not our intention.But it is impor
tant for our goals to discuss the relation between the post
Kantian empiricism and the discoveries of the physics of the 20th 
century. 

A remarkable thing happened to post-Kantian empiricism: its 
conclusions, which resulted from pure philosophical reasoning 
seemingly unrelated to the current immediate needs of science, 
turned out to be of vital importance for the further development 
of physics. Albert Einstein, who like many other physicists of 
the turn of this century was deeply impressed by Mach's analysis, 
created in 19S5 his (special) theory of relativity and produced a 
revolution in physics. He did that without writing a lot of 
formulas. The core of his theory was an analysis, in Mach's 
style, of some fundamental concepts of physics, primarily the 
concept of simultaneity. For our common sense it seems absolutely 
obvious that if two events occur at the same time, then it is "an 
objective fact", which cannot depend on whether or not you and I 
know about it, or whether we measure the times, and if we do then 
what reference system we use. It seems so obvious to our intui
tion that there is no need to check it and no possibility to 
avoid it. But Einstein discovered that the independence of the 
speed of light from the movement of the source, which had been 
firmly established as an experimental fact, can be explained if 
we abandon this postulate. He analyzed what it actually means, 
in terms of observable facts, for two events to be simultaneous. 
This analysis led him to a theory which was consistent with all 
experimental facts, but treated simultaneity as a relative pheno
menon, dependent on the system of reference. Two events as per
ceived by one observer could occur at the same time, while in the 
perception of another observer one event would occur after the 
other. Acting on the primacy of observable facts over precon
ceived ideas, even when intuitively trustworthy, Einstein accep-
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ted the constancy of the speed of light and rejected the absolute 
simultaneity. 

In quantum mechanics, the physicists went even further in 
the decomposition of the "reality" of the mechanistic worldview 
into elementary obsevable facts. Quantum mechanics deals with 
material particles. But if we see these particles the way classi
cal mechanics sees them, that is as tiny balls moving in the 
three-dimensional space along definite trajectories, then we 
immediately come to contradiction with experimental facts. A 
quantum-mechanical particle, say an electron, cannot have a defi
nite position and a definite velocity at the same time. Wait a 
minute, a naive realist will say. You probable want to say that 
one cannot measure the position and the velocity of the electron 
simultaneously. But no, it is worse than that. If we assume that 
in realtty, the electron is moving along a definite trajectory, 
then even admitting that there is no way to measure the position 
and the velocity simultaneously we still come to unresolvable 
paradoxes and contradictions with experiment. Maybe the electron 
is an amount of stuff distributed in space? No, this idea does 
not work either. Maybe the electron is a wave motion, like a 
sound or electromagnetic wave? No. We do describe the state of 
the electron by its wave (unction, but this function does not 
represent .a distribution of energy-matter over the space, it is 
rather a probability wave, which represents our knowledge of the 
electron. When our knowledge changes abruptly as a result of 
measurement, so does the wave function. 

Then what is this electron? Does it exist at all, or is it a 
-pure fiction? 

It was not easy to accept the idea that an electron is a 
material body, like an apple, but cannot be described in terms of 
the usual space-time concepts. It would be easier to think that 
'actually' it still moves in a definite way, but we simply cannot 
know its trajectory. It takes some effort to recognize that what 
we want as 'the real electron' would not be 'the real electron', 
but just another model, a conception. If it could be used to pre
dict observable facts, then it would be justified. Otherwise it 
is a fiction. In the case of the electron of modern physics, the 
picture of a small ball, if it comes with all its common sense 
details is a fiction. 

It was still more difficult to accept the absense of ulti-
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mate causality in the microworld. For centuries science held the 
view that all events have their ultimate causes, which can be in 
principle, if not in fact, discovered. This view was found wrong 
in the 20th century. 

So, does this strange electron really exist, in the sense 
apples and other macroscopic objects exist? Of course it does. If 
the apple is an objectively existing material object, whatever 
precise meaning may be assigned to this statement, then the 
electron exists too. There is an important difference between 
them, yet it is not a difference of principle. Using Kant's 
terms, a bit too freely prhaps, the apple is a perception while 
the electron is a conception. But both result from our contact 
with the world through sense organs and a very considerable 
amount of brainwork. In the case of the apple, the work is done 
mostly using inborn features of sense perception, which are 
hereditarily determined and hardly changeable. In the case of the 
electron a very important part of the job is done using language; 
this type of work is an invention of human culture, and the 
concepts thus created change from time to time. The quantitative 
differences between the two cases with respect to brainwork are 
very significant, but with respect to such aspects as existence 
or objectivity there is no qualitative difference between elec
trons and apples. 

The reason why the physicists of the 20th century had to 
reconsider radically their philosophy of nature is that they 
intruded into such spheres where their means of exploration 
became a significant part of the phenomenon. In the case of 
relativity theory, it is light, which can no longer be considered 
an instantaneous signal when the distances and the speeds became 
very great. In the case of quantum mechanics, it is collisions 
between elementary particles and their interaction with -- again 
-- light, but this time on a very small scale. European philoso
phy came to reject the reflection theory in a purely speculative 
way. Then its conclusions were confirmed by science. In retro
spect, we can see that this confirmation had to arrive sooner or 
later. The reflection theory can picture 'the things as they 
really are' only by abstracting from the means of observation. As 
long as we explore our world's most general, crude, and macrosco
pic featurs, we can always find such means of observation and 
exploration which do not appreciably change the picture, stay out 
of it for all practical purposes. Then the abstraction from the 
means of observation is valid. The light which we need to see 
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apples does not knock them down !rom the tree. But at some point 
in the refinement of scientific knowledge we must come to the 
exploration, experimental and theoretical, of our means of explo
ration. At this point the abstraction made by the reflection 
theory becomes invalid, contradicting experimental facts. One of 
the greatest discoveries of 20th century physics is the discovery 
of the impossibility of the reflection theory and the necessity 
of the critical philosophy of nature. It became a scientifically 
established fact that the subject and object of knowledge are 
inseparable. Knowledge is not a reflection of some 'objective 
reality', it is a part of reality, one of the world's processes. 
While engaged in that process, we are changing the world around 
us. 

2. Mathematical logic 

Strange enough, the development of mathematics has complete
ly ignored the revolution in the philosophy of science produced 
by the discoveries of physics. For the mathematicians, 'the 
wor~ing compromise' between empiricism and rationalism has re
mained in force. Mathematics was left, together with religion, in 
the sphere of influence of pure rationalism and Platonism. In 
mathemat~cs itself, another 'working compromise' has been estab
lished. Formalism became 'the official ideology' of mathematics, 
while 'unofficially' the mathematicians live and work as most 
straightforward Platonists (see Infinity and the Mind by Rudy 
Rucker). Although many modern philosophers, for example Bertrand 
Russel, used the ideas and even the formalism of mathematical 
logic, mathematical logic itself remained based on the pre
Kantian philosophy and the reflection theory. Brouwer initiated 
an attack on the Platonist approach to logic and set theory from 
the positions of modern philosophy. Unfortunately, the intui
tionist logic developed by Brouwer and his followers, as well as 
analogous later developments known collectively as constructi
vism, were unable to interpret a considerable part of "classical" 
mathematics, and had simply to reject it. The main body of mathe
maticians could not agree to such sacrifices, and Platonism
formalism prevailed. 

Since its very inception, mathematical logic has been taking 
the reflection theory for granted. Its method and fundamental 
concepts were most clearly formulated by Gottlob Frege (1848-
1925), who more than any other person can be considered the 
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author of this discipline. One of the most illuminating papers by 
Frege was published in 1892 under the title "Ueber Sinn and 
Bedeutung" (On Thought and Meaning). Frege considers signs, such 
as names, word combinations and expressions, and distinguishes 
the sense, or meaning, of the sign from its nomtnatum. The latter 
is what the sign denotes. If the lines a, band c intersect at 
the same point, then the nominata of the expressions 'the point 
of intersection of a and b' and 'the point of intersection of b 
and c' are the same, although their meanings are different. Also, 
the expressions 'evening star' and 'morning star' have different 
senses but the same nominatum: Venus. Frege limits his considera
tion to those signs which function as 'proper names', i.e. have 
definite nominata. 

Concerning the sense of signs, Frege writes: "The sense of a 
proper name is grasped by everyone who knows the language or the 
totality of designations of which the proper name is a part; 
this, however, illuminates the nominatum, if there is any, in a 
very one-sided fashion. A complete knowledge of the nominatum 
would require that we could tell immediately in the case of any 
given sense whether it belongs to the nominatum. This we shall 
never be able to do". 
only primary reality; 

So, nominata are treated by Frege as the 
the sense we put into words is needed only 

in order to indicate a specific nominatum, which is there anyway. 
The sense is always partial and often vague. Without a complete 
knowledge of the nominata, which of course we never have, we are 
unable to guarantee the establishment of a correct link between 
every possible sense and the corresponding nominatum. Moreover, 
there can be a sense which has no nominatum at all. Frege's 
example: "The words 'the heavenly body which has the greatest 
distance from the earth' have a sense; but it is very doubtful as 
to whether they have a nominatum". Frege concludes:"Therefore the 
grasping of a sense does not with certainty warrant a correspond
ing nominatum". He also notices that "when words are used in the 
customary manner then what is talked about are their nominata". 

This is the conceptual basis for the predicate calculus, and 
it certainly is the reflection theory. For post-Kantian empiri
cism, it is exactly the meaning of words that is valuable because 
it relates the words to the corresponding observable facts and 
constitutes the only true reality. The nominata separated from 
the meaning are nothing more than fruits of fantasy. Yet it is 
exactly the meaning of words that is thrown away in the abstrac
tion of an object in mathematical logic, which is its first 
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fundamental concept. 

we proceed now to sum up the formalism of mathematical logic 
in its relation to the unde1 lying philosophy and methodology. The 
objects of mathematical logic are supposed to exist and form a 
set called a domain. In different applications of logic, i.e. in 
different mathematical theories using its formalism, the domains 
may be different. A domain may be finite or infinite,but must not 
be empty. The language of mathematical logic includes variables: 
x 1 , x 2 .•. , etc., which can take objects from the domain as their 
values. An n-place predicate is denoted as a function of n 
variables: P(X 1 , •.. , xn). When some values are substituted for 
the variables in a predicate, the result is a proposition, or 
sentence. Some predicates are primary, that is not decomposable 
into more elementary units. They generate primary propositions. 

If the object of mathematical logic is a formalization of 
the proper name of language, the proposition is a formalization 
of the declarative sentence. Gottlob Frege, in the paper quoted 
above, treats propositions from the same standpoint as he treats 
objects. Like a proper name, a declarative sentence has a sense 
and a nominatum. The sense, again, is uderstood only informally. 
It depends on the sense of the names used in it. If we replace 
one name in a sentence by another name with the same 
but a different sense, then the sense of the sentence 
changed. But if the sentence has a nominatum, then it 

nominatum 
will be 

certainly 
must not be changed by such a replacement. So, can a sentence 
have a nominatum? (The presumption here is, of course, that the 
sense of the sentence is no good for mathematical logic). 

It can, answers Frege. It is its truth value. He writes: 
"By the truth-value of a sentence I mean the circumstance of its 
being true or false. There are no other truth-values. For 
brevity's sake I shall call the one the True and the other the 
False. Every declarative sentence, in which what matters are 
the nominata of the words, is therefore to be considered as a 
proper name; and its nominatum, if there is any, is either the 
True or the False. These two objects are recognized, even if only 
tacitly, by everyone who at all makes judgements, holds anything 
as true, thus even by the skeptic." 

Like the objects, the propositions are stripped of all 
meaning when thay are admitted into the kingdom of mathematical 
logic. A propositions is something that can be, and must be, 
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either true or false. That is all. 

This is not to say that mathematical logic has no sense or 
is useless. Frege's was a tremendous intellectual achievement. 
The very abstract nature of formal logic allows one to apply it 
to a wide range of phenomena, and the brilliant record of mathe
matical logic shows this only too clearly. But gaining in the 
range of a conceptual scheme, we lose in its contents. It is my 
impression that the failure to tackle the problem of meaning has 
almost always and almost universally been recognized as the 
fundamental weakness of formal logic. 

The concept of a predicate can be better grasped using the 
following representation of it, which we are tempted to accept as 
a sort of "interpretation", although it is not associated with 
any semantics or interpretation of propositions. This "interpre
tation" is based on the following idea. Consider a theory with 
the domain D. Consider some predicate P(x 1 , ... ,xn). For every n
tuple of objects from D, our predicate becomes a proposition 
which must be either true or false. Therefore, we are dealing 
with a function, which takes an n-tuple of objects from D as its 
argument and produces a truth-value as its value. We shall call 
such functions logical. Two predicates which for every n-tuple 
produce identical truth-values are essentially the same. 
predicate is interpreted as a logical function of n 
from D. There are as many predicates as there are 
logical functions possible. 

Thus, a 
variables 
different 

I put quotes on "interpretation" because it is no interpre
tation at all. An interpretation of a theory is something that 
makes you closer to comparing the predictions of the theory with 
some facts, be they from observations of natural phenomena or 
from another theory. Nothing like that happens here. We simply 
unite a great mass of separate uninterpreted propositions into 
one big array, which is called 'function', but does not become 
less uninterpreted. It is the same as to say: 'I know who the 
intruders are; they are members of the intruding band'. 

[The contents of the rest of Section 1.2 

Logical connectives. 
Quantifiers. Bound and free variables. 
Two approaches to truth: deductive and quasi-semantic. 
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Formal systems. Axioms and rules Af inference. 
Quasi-semantic approach. Truth-evaluation procedure. 
Universally valid formulas. 
Deduction theorem.] 

3. Naive set theory 

[Cantor's concept of set. 
Again the reflection theory in background. 
Russel's paradox. 
Operations on sets. 
Relations and functions. 
Cardinality. Uncountable sets. 
The static character of math. logic and set theory.] 

4. The cybernetic approach 

I call my own approach to philosophy of science cybernetic. 

Essentially, it is a variety of postkantian empiricism which uses 
the ideas of cybernetics and our recent experience in modeling 
intelligent behaviour. Such an approach is as natural in the 
second half of the 20th century as was the use of mathematical 
logic by philosophers in the first half of this century. Kant 
started thinking in terms of how our brain processes the stream 
of sensations. Now, there is not less than a branch of computer 
science, referred to as 'Artificial Intelligence', which is en
gaged in modeling brain processes. Even though we are still very 
far from a reasonably complete understanding of the work of the 
human brain, we have acquired insights into this subject which 
should not be ignored by philosophy. 

Norbert Wiener introduced the term 'cybernetics' in 1947 for 
the science of ·"control and communication in the animal and the 
machine". It is not my intention here to review either Wiener's 
ideas or their further development. I understand 'cybernetics' in 
a very wide sense as a science which is, so to say, complementary 
to physics. If physics studies the most fundamental aspects of 
the world which can be expressed in terms of energy-matter, 
cybernetics takes up the aspect of structure, organization, and 
information. More specifically, cybernetics is the exploration 
and construction of highly organized systems, by which I mean 
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systems with a multilevel hierarchical structure of 
and control. Computer science and technology is 
branch of cybernetics. 

communication 
an important 

The philosophy of mathematics on which the theory exposed in 
the present book rests is based on the philosophy of science 
exposed in my previous book The Phenomenon of Science: a Cyberne
tic Approach to Human Evolution (Columbia University Press, 
1977). In this section, I am summing up those essentials of my 
approach which I need here, but I realize that this summary can 
hardly be convincing without reading and discussing the book 
itself. 

My approach is centered around the idea of metasystem tran
sition, by which I mean a transition from a cybernetic system to 
a metasystem, which includes a set of systems of the initial type 
integrated and controlled in some manner. Each metasystem transi
tion creates a new level in the hierarchy of control inherent in 
the system. Metasystem transition is the quantum of evolution; 
through the accumulation of these quanta, more and more highly 
organized cybernetic systems evolve. 

Seen in the functional aspect, metasystem transition is the 
emergence of a new type of activity which can be described as 
control of the most sophisticated activity of the preceding 
hierarchical level. Let A be the top-level activity of a cyberne
tic systemS, i.e. the functioning of the highest level of cont
rol in the system. For the system so formed by a metasystem 
transition from S, the top-level activity A0 can be defined by 
the formula: 

A0 = control of(A) 

We can observe changes in the types of activities and conclude 
about metasystem transitions even without knowing the exact 
structure of cybernetic systems. In the evolution of life we can 
discern the following seven stages resulting form consecutive 
large-scale metasystem transitions: 

1. 

2. 

chemical foundation of life; clusters of 
macromolecules positioned at random 

control of position = movement 
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3. 

4. 

5. 

6. 

7. 

control of movement = irritability 
(simple reflex) 

control of irritability = complex reflex 
(nerve net, pattern recognition) 

control of reflex = associating 
(conditioned reflex) 

control of associating = human thinking 

control of thinking = culture 

The processing of sensory data in higher animals is orga
nized hierarchically. The elements of the processing machinery 
are classifiers, their states make up representations of the 
environment. The lowest-level classifiers are receptors of the 
sense organs; the corresponding representation is the flow of 
sensations. Other classifiers recognize stable complexes of sen
sations, .thereby creating different representations and providing 
inputs for classifiers of the next level. They translate repre
sentations from one language to another, retaining information 
essential for the survival of the animal and leaving out the 
unessential information. Classifiers of higher levels receive 
information from below in the hierarchy and send it further up. 
Comparing this scheme with Kant's picture of the work of mind, we 
can loosely identify perceptions with representations created by 
relatively low-level space-time classifiers which are mostly 
common to humans and higher animals, and conceptions with the 
representations of higher-level classifiers. 

Knowledge is the existence in a cybernetic system of a model 
of some part of reality as it is perceived by the system. The 
concept of a model is illustrated in Fig. 1.2. The system B 
models the system ~ if some correspondence can be established 
between the states of ~ and B such that if a state A 1 of ~ after 
some time ta goes over into a state A 2 , then the state B 1 of B 
corresponding to A 1 goes over, after some time tb, into the state 
B 2 corresponding to A2 . To one state of B more than one state of 
~ may correspond, while one definite state of ~must correspond 
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to not more than one state of 8. 

Having a model may allow making predictions. The time tb may 
a be less than t . Then observing A 1 , translating it into 8 1 and 

transforming into 8 2 , the system can predict that a state of ~ 

will occur which corresponds to 8 2 , like A2 . 

A cybernetic animal of stage 4 in our table (complex reflex 
determined hereditarily) can be said to have a knowledge of the 
world "implemented in hardware". If the environment of such an 
animal is the system~ on Fig. 1.2, its instinctive responces to 
changes in the evironment put it in the position of the system 8. 
Further metasystem transitions make knowledge more and more cont
rolable, variable, transferable. On stage 5, animals become cap
able of learning, i.e. acquiring new models of reality during 
their lifetime. On stage 6, animals, who are now respectfully 
called humans, become capable of manipulating their images of the 
reality at will: the ability known as imagination. They also 
create languages by arbitrarily associating with the world's 
objects and processes certain objects of special kind: words. On 
stage 7, human society accumulates tremendous amounts of know
ledge which is passed from generation to generation. 

Language can be thought of as a continuation of the indivi
dual human brain, as the super-brain of the social super-being. 
Language is used to exchange knowledge between individual brains 
and to create new knowledge for the human society as a whole. 
Linguistic objects play the same role as classifiers in the 
brain, they implement some functional units of sensation proces
sing which we identify as concepts. A concept is a symbol (a 
linguistic object), plus the activity in which this symbol is 
used. Low level concepts of natural languages simply denote 
certain patterns of recognition implemented in the nerve net of 
our brain. Other concepts are new, not existing in the brain 
independently of language. For example, the concept of spatial 
relation would be impossible if there were no words expressing 
spatial relations, like 'lower', 'to the left', 'bigger', etc. 
The words 'spatial relation' depend for their meaning on the 
existence of words which denote specific partial relations. We 
can see logical, i.e. implemented in language, concepts as clas
sifiers of the social super-brain. Such classifiers as 'apple', 
'lower', 'to the left', etc. make up the interface between the 
super-brain and the individual brain, they are based on the 
ability of our brain to recognize certain patterns. All the 
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inputs these first-level classif:~rs require exist independently 
of language. The classifier 'spatial relation' requires other 
logical classifiers, such as 'lower' and 'to the left' as inputs. 
More precisely, the activity associated with 'spatial relation' 
and described as understanding and using this concept, includes 
activities associated with other linguistic objects. 

Like the individual brain, the linguistic super-brain has a 
hierarchical structure. Concepts which are high in the hierarchy 
do not allow direct translation into sense perceptions. Still 
they may be used in some linguistic activity which will ultimate
ly lead to verifiable or refutable models of reality. Then they 
have 
a ted 
with 

meaning. If we see no way for linguistic activities associ
with a symbol to lead outside the language to the interface 
the brain and the sense organs, then this symbol has no 

meaning. 

Linguistic activity may be either separable or inseparable 
from the meaning of linguistic symbols. In the former case the 
language is formal. If the system 8 in Fig. 1.2 is a model of 
reat1ty implemented in a formal language, then transformation of 
the state B 1 into B 2 does not ~ely on human brain, and can be 
performed by a machine. A model created by the brain becomes 
independent of the brain and can be, in a metasystem transition, 
studied as an independent reality. This transition can be re
peated again and again, and this is what we actually see in the 
history of eMact science. 

The concept of number and the science of arithmetic illus
trate these ideas well. Small numbers are concepts implemented in 
the nerve net of our brain, they are built-in. We distinguish a 
collection of two objects from a collection of one or three 
objects as immediately as we distinguish an apple from a rabbit. 
The concept 'two' in human language could be seen as an "inter
face" concept. The concept 'one hundred and seventy' cannot be 
seen as an interface concept. We do not distinguish a collection 
of that many objects from collections referred to by neighboring 
numbers. Big numbers make sense only through the procedure of 
counting, which necessarily involves certain linguistic objects. 
The meaning of 170 includes the meaning of 169, 168, etc. The 
necessary linguistic objects, which we call numbers, can be of 
different kind, (pebbles, notches, marks of paint), but they must 
be there, physically, materially. They are cogwheels of the 
machinery of language. The process of counting is the functioning 
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of that machinery resulting in recognition of concepts like 179, 
much as the functioning of certain classifiers in the brain 
results in recognition of the concept 'rabbit'. 

Numbers, like other concepts, are used to model reality and 
make predictions. The statement 5+7=12 is a model with which we 
predict that if we have a collection of objects which was recog
nized as 5 by the process of counting, and another collection, 
which was recognized as 7, then merging these two will produce a 
collection which will be recognized as 12. This model is applied 
in the non-linguistic world: to such objects as apples, rabbits, 
or whatever we care to count. Numbers, and operations on them, 
can be completely formalized; then we deal with material objects 
and processes as definite and objective as celestial bodies and 
their movements. We call them linguistic objects, linguistic 
processes, and linguistic machines. 

If specific numbers are first-level linguistic concepts 
applied directly to the non-linguistic world, such concepts as 
'number' or 'arithmetic operation' belong to the next level of 
the hierarchy. They are not applied -- directly -- to apples and 
rabbits; we use them to construct models of linguistic processes. 
Example of such a model: the sum of two numbers does not depend 
on the order of the items. As we introduce the linguistic object 
5 to correspond to five apples, five rabbits, etc., we introduce 
the linguistic object x to correspond to 5, 7, etc., which gives 
rise to algebra. Having created primary linguistic models of 
world's processes, we create models of these models, then models 
of models of models, etc. It is by metasystem transitions of this 
kind that the infrastructure of mathematics has been created. 

Science creates linguistic models of reality. When we deal 
with concepts and models of the first level, which relate direct
ly to observable facts, we are engaged in natural sciences. 
Equations of arithmetic, such as 5+7=12, belong to natural sci
ence to no less an extent than Newton's equations. So do proposi
tions expressing properties of geometric figures. When we deal 
with concepts and models which pertain to a special kind of 
reality, namely formal linguistic objects and machines, we work 
in mathematics proper. Proving that geometric figures have cer
tain properties belongs to mathematics, as well as proving theo
rems about any formal objects, of course. 

One can see from the preceding that our approach to the 
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foundations of mathematics is inherently dynamic, that is the 
idea of time is one of its explicite conceptual constituents. 
This stands in a sh~rp contrast with set theory, which is in
herently static. The difference stems from the different philos0-
phical backgrounds of the two approaches. Set theory is based on 
the reflection theory, according to which our thought is a re
flection of reality. Both reality and thought are seen as instan
taneous still pictures. Time is allowed here to change reality, 
but it is not allowed into reality, nor into the relation between 
reality and language. Actual infinity of set theory is an attempt 
to represent the concept of potential infinity (which includes 
the idea of time) in a static theory. 

our theory is based on the cybernetic view of the human 
being according to which our thought is the processing of our 
sensations. The idea of time enters from the very beginning 
through the concepts of a process and a model. The concept of 
process is our first ontological primitive. 

Processes may be infinite, and this is he only infinity we 
allow. in our theory. In fact, a process is always infinite, 
because this concept is a formalization of our intuitive notion 
of time, and we find no end of time in our intuition. What we 
call a 'finite' process is a finite search, that is such a pro
cess. which at some time achieves a certain stage, after which we 
are not interested in the process any more. Objects we consider 
are always finite, although this does not mean that we put some 
restraints on their size. Any collection, or set, of objects 
which we treat as an object in our theory must be finite. The 
following diagram summarizes the formalization of the intuitive 
notions of one, many, and infinite in set theory and in our 
theory: 

set theory intuitive notion this theory 

element one 

} object 

z many 
set 

infinite process 
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C H A P T £ R 2 

Objects, Processes, Machines 

1. The Turing machine 

An important step towards putting mathematics on the emplrl
cist track was made by Alan M. Turing. In 1936, he introduced in 
mathematics an abstract device, or rather a class of devices, 
which became known as Turing machines. The idea was to make 
mathematical computations an object of mathematical study. Compu
tation is understood in the widest sense: arithmetic calcula
tions, manipulation of algebraic expressions, formal logical 
deductions, etc. The common feature of these operations is that 
they are conducted according to some rules, which the mathemati
cian can formulate in such a precise and exhaustive manner that 
the operations could be performed by a machine. Turing wanted a 
type of machine so general that any conceivable computation could 
be described as the work of one of the machines of that type. 

[The definition and examples of Turing machines.] 

2. Refal,informally 

The Refal machine will be formally defined in the next 
section. In this section we discuss informally, by way of intro
duction, the main features of Refal, so that the reader can 
easier see the origin and the purpose of every article of the 
formal definition. 

'Refal' is the acronym for REcursive Functions Algorithmic 
Language, a computer programming language which was developed by 
the author and co-workers in 1966-1970 (see bibliography in 
Turchin, 1980) and is implemented on several computer systems, 
including the IBM/370. Refal as an algorithmic language is con-
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ceived to be simple enough to allow mathematical treatment but 
-

still successful as a practical programming language for such 
fields as artificial intelligence and word processing. A guide 
for programming in Refal can be found in Turchin, 1980. 

We shall discuss three types of applications, or purposes of 
Refal, in the order of increasing generality. 

Refal can be seen as a language of semantic descriptions. 
Consider a linguistic object which has some meaning. What does it 
mean to understand its meaning? It is to know how to relate it to 
some primary reality. Well-developed languages usually include a 
hierarchy of concepts, so that to relate a linguistic object to 
reality you have to go through a sequence of concretizations, 
that is steps which express the meaning of this object in terms 
of concepts that take lower positions in the hierarchy. With a 
natural language, the process of concretization comes to an end 
when relations are established between the linguistic object and 
the world of sensations. In the case of a formal language, con
cretizations lead to the concepts defined as the primitives. 

The following line: 

( 1) <ACM> ~ Association for Computing Machinery 

is a sentence of Refal. The angular brackets are concretization 
brackets. They enclose a linguistic object which must be concre
tized, that is replaced by linguistic objects which in some sense 
are closer to the ultimate reality. The sentence (1) expresses 
the expansion of the acronym ACM. It consists of the left side 
and the right side separated by the arrow~. The Refal machine, 
i.e. the device that "understands" Refal, takes this sentence as 
the instruction to replace <ACM> by Association for Computing 
Machinery. The letters A,C,M,A,s,s,o, ... etc. will be referred to 
as symbols. Angular brackets are special signs of Refal, not 
symbols. 

Consider another sentence: 

( 2) 

It defines what the first symbol of an expression is, and can be 
translated as: the first symbol of an expression which consists 
of a symbol s 1 after which an expression e 2 immediately follows, 
is s 1 . Here s 1 and e 2 are free variables. The first is a symbol 

2-2 



variable (s-variable, 
able (e-variable). 

for short), the second an expression vari
This sentence is used in the following way. 

Suppose we observe the expression 

( 3 ) <the first symbol of APPLE> 

To see whether the sentence (2) is applicable, compare its left 
side with (3). If it is possible to give such values to the free 
variables that the left side of (2) becomes identical to (3), 

then the sentence (2) is applicable to the concretization of (3). 

In assigning values to variables we must remember that an s
variable must take as its value exactly one symbol, while an e
variable can take any expression. Clearly, (2) is applicable if 
s 1 takes the value A, and e 2 the value PPLE. To apply a sentence 
means to replace the expression (3) by the right side in which 
the values of the free variables are substituted. The result is 
A. We have performed one step of the Refal machine. 

Now let us look at Refal from another angle, namely as the 
language of recursive functions. Let us replace the string 'the 
first symbol of' by the single symbol F: 

(4) 

We can see the replacemnt of <F APPLE> by A as the evaluation of 
a function call. Then (4) defines the function F whose value is 
the first symbol of its argument. The angular brackets should be 
called evaluation brackets. They enclose the expressions which 
must be understood as function calls and evaluated. <FA> corres
ponds to F(A) in the usual notation. Besides angular brackets, 
which indicate evaluation, we use in Refal usual round brackets 
(parentheses). They serve a different purpose: to give a struc
ture to expressions. Any sequence of symbols and parentheses in 
which the parentheses are properly paired is a legitimate expres
sion in Refal. Parentheses, like concretization/evaluation brac
kets, are not symbols, but special signs. Here are examples of 
Refal expressions: 

A 
ABC 
A+B() 
(bbb+(**))(())+-

An empty expression (just nothing) is also a legitimate expres-
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sion. The argument of a Refal function can always be considered 
as one expression. If we want to define a function of several 
arguments, we use parentheses to combine them into one expression 
so that when necessary, it could be uniquely broken down into the 
original constituents. For instance, the function which concate
nates its two arguments can be defined as 

Here cone is the name of the function. Syntactically, £Qn£ is one 
symbol; composite symbols, like this one, are formed by under
lining a group of letters and digits. 

Consider the following group of sentences: 

(5.1) <chpm + ex> .. -<chpm ex> 
(5.2) <chpm saex> ... sa <chpm ex> 
(5.3) <chpm (ea)ex> ... (ea)< chpm ex> 
(5.4) <chpm> ... 

I t de f i n e s the fun c t i on c h pm , ' change p 1 us to m i nus ' . I f t h i s 
function is applied to an expression, its value will be the 
result of the replacement of every sign + on the top level of the 
bracket structure in the argument by the sign - Consider this 
fun.ction call 

(6.1) <chpm c+(a+bx)> 

The Refal machine will evaluate this call by steps, each step 
being the application of one sentence. It will try to apply 
sentences in the order they are listed. When a sentence is found 
applicable, it is applied, and this is the end of the step; on 
the next evaluation step, the Refal machine will try to apply 
sentences starting with the first one again. The expression to be 
evaluated is said to be in the view-fteld of the Refal machine. 
The expression (6.1) in our example is the initial state of the 
view-field. 

Making the first step, the Refal machine tries to apply the 
sentence (5.1), but of course fails, because the argumant does 
not start with +. Then it tries to apply (5.2) and this time 
succeeds. The view-field becomes: 

(6.2) C<chpm +(A+BX)> 

2-4 



The symbol C is in the view-field outside of any evaluation 
brackets. It means that it will never be changed into anything 
else, and will be there till the end of the work. The Refal 
machine alters only those expressions which are bounded by evalu
ation brackets. 

The results of the consecutive steps after (6.2) are as 
follows: 

( 6. 3) 
(6.4) 

(6.5) 

c-<chpm (A+BX)> 
C-(A+BX)<chpm> 
C-(A+BX) 

by (5.1) 
by (5.3) 
by(5.4) 

In the state (6.5) of the view-field there are no evaluation 
brackets; the Refal machine comes to a normal stop, and the 
contents of the view-field is the result of evaluation. Note that 
in order to compute the initial call (6.1), the function chpm 
called itself (with a different argument) in (6.2). The sentences 
(5.1), (5.2) and (5.3) define the value of a function call 
through the call of the same function. Functions defined in this 
way are called ecurstve. 

Now we are going to discuss the third, and the most general 
view of the language Refal and the Refal machine. The Refal 
machine is a framework for the linguistic representation of the 
world. 

We see the world as the interplay of various processes, 
which involve various objects. We can change objects ourselves, 
thereby giving rise to processes. We also can create and start 
machines, which maintain processes autonomously. The concepts of 
object, process, and machine will be considered primary and given 
to us intuitively. We can only define them informally for clari
fication, and characterize their relationship. 

By an object in this book we mean a stable complex of sensa
tions devoid of the dimension of time. A process is thought of as 
a time sequence of objects, while an object is a time section, or 
a momentary picture, or a stage of a process. A machine is some-
thing that gives rise to a process when given an object or a 
number of objects (the input). An object can also be seen as a 
special case of process: such that all its stages are the same. 
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Among all the objects we deal with we choose some to serve 
the purposes of communication and cognition. This is the phenome
non of language. The objects so used are referred to as linguis
tic objects. In this book we confine ourselves to one-dimensional 
discrete languages, in which linguistic objects are strings of 
distinct characters. A process the stages of which are linguistic 
objects is a linguistic process. A machine which gives rise to a 
linguistic process and takes linguistic objects as its input is a 
linguistic machine. The Refal machine is a linguistic machine 
which can also be called a metamachine, because it is used not 
only to define linguistic processes, but also linguistic ma
chines. 

Semantic definitions in the theory of languages and computa
tions in mathematics emerged and acquired significance because 
they are part of a system of linguistic representation of the 
world's processes. Thus, linguistic representation of the world 
and the managing of the processes in this representation is the 
most 
Refal 

general kind of activity we are engaged in 
will be used here as the language of this 

as scientists. 
representation. 

This gives us one more name for the angular brackets in 
Refal: activation brackets. They distinguish a process from an 
object .. A character string enclosed in activation brackets, e.g. 
<~Be>, represents the current stage of a process, and will be 
referred to simply as a process. Later in time <ABC> may turn (be 
turned by the Refal machine) into something else, say <ABCD>, as 
the process develops. A character string which does not include 
activation brackets represents an object that does not change in 
time. Change comes only from activation brackets. 

3. Formal definition of Refal 

We present here a formal definition of the version of the 
language known as strict Re(al. 

The elementary syntax units of Refal are of two kinds: 
special signs and object symbols (or just symbols). 

Special signs of Refal include 
• structure brackets'(' and')'; 
• act tva t ion brackets '<' and '>' ; 
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• free variables, which are represented by a subscripted 's' (a 
symbol variable) or 'e' (an expression variable), e.g. s 1 , sx, 
e 5 ; a specifier (see below) may appear between the letter sand 
its subscript, e.g. s(ABC) 1 , s(+-)a. 

Object symbols used in Refal are supposed to belong to a 
finite alphabet, which is not, however, fixed once and forever. 
We shall use as object symbols: 
• characters distinct from special signs, 
• superscripted characters like F 1 , 

• strings of characters underlined to form one (composite) sym
bol, e.g. , then. 

We shall use capital italic letters A, B •... etc. as metasym-
bols to denote Refal objects and processes. 

Refal's composite syntax units are as follows. 

• An expression is an object which can be identified as one of: 
(a) the empty string, which we may represent just by nothing, or 
by the metasymbol []; 
(b) a symbol (i.e. an object symbol, not a special sign); 
(c) a variable; 
(d) £ 1 £ 2 , or (£ 1 ), or <£ 1 >, where £ 1 and E 2 are expressions. 

• A term is either a symbol, or a variable, or (£). or<£>, where 
£ is an expression. 

• A pattern expression is an expression which does not include 
activation brackets (but generally includes variables). A process 
expression is an expression which does not include variables (but 
generally includes activation brackets). An object expression is 
an expression which includes neither variables nor activation 
brackets. An L-expression is a pattern expression which: 
(a) contains no more than one entry of every e-variable, 
(b) contains no more than one e-variable on every level of brac
ket structure, i.e. can not be represented as 

£ 1 e 1 £ 2 eJ E 3 , 

where subscripted £'s are expressions. Examples of L-expressions: 
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Examples of pattern expressions which are not L-expressions: 

• A Refal sentence is an object of the form: 

<L> = R 

where L is a pattern expression and R is an arbitrary (general) 
expression of Refal. The equality sign is just a symbol (not a 
special sign) which is used for visual convenience. L is referred 
to as the left side, and R as the right side of the sentence. The 
right side can include only such variables which appear also in 
the left side. 

• A list of expressions £ 1 , £ 2 , ... , En is the expression 

• A Refal program is a list of sentences. 

The Refal machine has two information storages: the program
field and the vtew-field. The program-field contains a program, 
which is loaded into the machine before the run and does not 
ch~nge during the run. The view-field contains a process expres
sion which changes in time as the machine works. The process 
expression in the view-field may be, in particular, an object 
expression, i.e. may not contain activation brackets. Then the 
Refal machine stops-- or, one might say, reproduces the same 
object expression indefinitely -- until a new run is initiated. 
Change, as we said above, comes only from activation brackets. 
This is our way of representing the abstraction of invariability, 
which lies at the root of the notion of an object. Our object 
expressions are linguistic representations of natural objects, 
which are supposed not to change with time. Concatenation and the 
use ·of structure brackets (parentheses) allow us to render the 
hierarchical structure of natural objects as they are built of 
certain elementary objects, which we represent by object symbols. 
To represent a change in time, i.e., a process, we enclose an 
object expression in activation brackets, and then the Refal 
machine will transform such expressions step by step, thus gene
rating a linguistic process. If at some stage this process (i.e., 
the process expression in the view-field) becomes an object 
expression, we say that the process is finite. 
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Activation brackets may be nested; then they will be activated 
in a unique order using the principle 'inside-out, from left to 
right'. More formally, we define the range of an activation brac
ket as the subexpression limited by this bracket and the one 
paired with it. We define the leading activation bracket in a 
given expression as the leftmost sign < of those signs < which 
have no other signs < in their range. The Refal machine works by 
steps, each step being an application of one of the sentences 
from the program-field to the term in the view-field which starts 
with the leading activation sign; we call this term the active 
term of the process. 

We say that an object expression £ 0 can be syntactically 
recognized as a pattern expression £ if the variables in £P can 
be replaced, observing the rules liseed below, by object expres
sions called their values such that EP becomes identical to £0 . 

The rules are as follows. 

(a) An s-variable s 1 , where I is any index, can take as its value 
any symbol. 
(b) A specified s-variable s(P) 1 , where Pis a string of symbols, 
can take as its value any of the symbols entering P; string P is 
called a spect(ter. 
(c) An e-variable e 1 can take any expression as its value. 
(d) All entries of the same variable in E~, i.e. variables with 
the same sign 's' or 'e' and the same index, must be replaced 
with the same value. 

It can be shown that if EP is an L-expression, then there is 
no more than one set of values for the variables in EP such that 
their substitutiopn transforms EP into E0 , and there is an effi
cient algorithm which establishes whether E0 can be syntactically 
recognized as Ep• and in the case of a positive answer determines 
the values of the variables (see Turchin, 1980). 

Now we can describe the operation of the Refal machine. Each 
step starts with locating the active term in the view-field. If 
there is none, the Refal machine comes to a normal stop. Having 
found the active term, the Refal machine compares it with the 
consecutive sentences in the program-field starting with the 
first one in search of an applicable sentence. A sentence is 
applicable for an active term if the term can be (syntactically) 
recognized as the left side of the sentence. On finding the first 

2-9 



applicable sentence the Refa~ machine copies its right side and 
replaces the variables there by the values they have taken in the 
process of recognition. The process expression thus formed is 
then substituted for the active term in the view-field. This ends 
the current step, and the machine proceeds to execute the next 
step. If there is no applicable sentence in the program, the 
Refal machine replaces the active term by the term<?>, which at 
each next step is replaced by itself again, thus generating an 
infinite process, which will be called undefined. This is a 
special process with the question mark symbolizing (in this 
context only) that if our linguistic process is intended as a 
representation of a non-linguistic "real world" process then the 
former carries no information about the latter. It is important 
for the future to note that an indefinite process is infinite. 

4. Examples of processes and machines 

Suppose we want to define the process of the growth of a 
string of characters A , i.e. a process whose first stage is 
empty, then A , then AA , then AM , etc. How can we do that 
using the Refal machine? 

We ·know that the representaion of a process in the Refal 
machine must be enclosed in activation brackets. One possibility 
is to represent the consecutive stages of our process simply by 
<> <A> , <AA> , etc. But it is a better practice to put a tag 
(a name) on every process, so as to be able to have definitions 
of different processes without unintended interference between 
them. Any object expression may serve as a tag, and in the sim
plest case it will be one symbol. Let us agree that the tag will 
always be placed at the left end of the process expression, 
immediately after the opening activation bracket. Let symbol ~ be 
the tag for our process. Then <~> will be the initial stage, <~A> 

will be the next stage, etc. One sentence: 

in the program field of the Refal machine will define the pro
cess. To initiate it, we put <~> in the view-field and start the 
machine. After the first step the view-field will be <~A> , then 
<~AA> , then <~AAA> , and so on infinitely. 

Now let us add to the program the following two sentences: 
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<8e *> .... <8e > 
X X 

<8> .... end 

If we put <8***> into the view-field, the consecutive stages of 
the process will be: 

<8***> 
<8**> 
<8*> 
<8> 

end 

This is a finite process with the object symbol end as its final 
stage. 

Because different programs can be loaded into the program 
field, we can use the Refal machine as a metamachine through 
which to define various specific machines. Our concept of a 
linguistic machine is related but not identical to the concept of 
a recursive function on the set of object expressions. A recur
sive function is considered undefined if the process of computa
tion for a given argument is infinite; and if the process is 
finite then it is only its result that matters, not the process. 
When we are speaking of a machine it is exactly the process we 
are interested in, and it may be either finite or infinite. 

A machine is defined by specifying: (1) a general Refal 
expression F called the format of the machine, and (2) a Refal 
program, which is its definition. Substituting some values for 
the variables in F, we receive a process expression which is then 
put into the view-field of the Refal machine which is loaded with 
program P. 

For instance, with the above sentences , the format <Be > 
X 

defines a machine which for every string of asterisks as its 
input ex generates a finite process. If we substitute a different 
kind of value for ex the resulting process will be undefined. The 
machine <~ex> generates an infinite process for every input 
expression substituted for ex (it infinitely adds characters A on 
the right). 

Let us consider less trivial examples. In the unary number 
system, where zero is represented by 0, one by 01, two by 011, 
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etc .. the adding machine w1th thP format 

<+(e )e > 
X y 

can be defined by the program 

<+(ex)0> ~ ex 
<+(ex)eyl> ~ <+(ex)ey>l 

With the input values 01 for ex and 011 for ey this machine will 
generate a finite computation process: 

<+(01)011> 
<+(01)01> 1 
<+(01)0> 11 
0111 

We could define an equivalent machine choosing a different for
mat, e.g., <+(ex)(ey)>, or <addex,ey>, etc. 

As an example of the use of nested activation brackets in 
the right side, we define an adding machine for binary numbers: 

<ad?<ex0)eys 1> ~ <add(ex)ey>s 1 
<add(exl)ey0> ~ <add(ex)ey>l 
<add(ex1)eyl> ~ <add(<add(ex)1>)ey>0 
<_a_d_d(ex)ey> ~ exey 

The format is <add(e 1)e 2>. (Note that the variables we choose to 
represent formats are not related in any way to the variables 
used in programs; neither are variables in different sentences of 
the program. But we usually keep to the same variables as a 
matter of convenience). The last sentence of the program for add 
may not be understood immediately. It will work correctly because 
it will be used only in the situation when at least on of the two 
arguments ex and e is empty. The program would be more under
standable if insteaa of that sentence we used these two: 

<add(ex)> 
<add()ey> 

Exercise. Trace the process <add(l0010)101> using the formal 
definition of the Refal machine in all its detail. 

2-12 



5. Metacode and Self-Simulation 

ln the Refal machine, symbols and structure brackets (paren
theses) serve to create object expressions, which represent ob
jects of the external world. Variables and activation brackets 
can be seen as functional details of the machine itself, which 
help to perform operations on objects. Therefore, if we are (and 
we ~) to define in Refal processes and machines dealing with 
parts of the Refal machine, namely the contents of the memory 
field and the view-field, we need a representation of these parts 
in the form of object expressions. Such a representation will be 
called a metacode. The metacode we are going to use is defined in 
the following table: 

In the Refal machine 

* 
s 

In the metacode 

*SI 
*S(P)I 
*EI 
*( 
) 
*V 
s 

Here S stands for any object symbol different from the 
asterisk * it is represented in the metacode by itself. One can 
see that our metacode transformation has a unique inverse trans
formation. Speaking about linguistic objects and their metacode 
representations we shall denote by tX the metacode of X. The 
inverse transformation will be denoted by + so that t+X is X. 
The range of the signs t and + is the Refal term that follows. 
Thus, t(e 1+e 2 ) is (*El+*E2), while te 1+e 2 is *El+e 2 . 

A program consisting of sentences z1 ,z2 , ... ,Zn will become 

in the metacode. To give an example of metacode transformation, 
the program for the + machine above will be transformed into 

(*(+(*EX)0) ~ *EX) (*(+(*EX)*EYl) ~ *(+(*EX)*EY)l) 

We shall also use a shorthand notation for metacoded vari-
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ables, by which E~ stands fo~ *EX, E~ stands for 1Exn-I, and the 
analogous convention holds for s-variables. The superscript 1 can 
be omitted. Examples follow: 

Shorthand Strict notation meaning 

EI *El 'tel 

Et 
a *VEA ttea 

sx *SX tex 

S4(?!)3 *VVVS(?!)3 tttts(?!) 3 

The asterisk * is singled out to represent 
signs in metacode, so it must undergo change in 
transformation for the inverse transformation to be 

special Refal 
the metacode 

unique. An 
transformed object expression which may contain asterisks can be 

into metacode by using the function <~ex> defined by: 

<~ *el> ... 
<~ sael> .. 
<~ (el)e2> 
<~ > .. 

*V <~ e 1> 
sa <~el> 

.. (<~ el>) 

The inverse function <0 ex> is defined correspondingly: 

<ll*Ve 1> .. 
<ilsae 1> .. 
<ace 1)e2> 
<il> .. 

* <Ue 1> 
sa <Ue 1> 

.. (<Ue 1 >) <Ue 2 > 

We introduce now a machine <stepu(ep)ea> ("step-universal"), 
which simulates one step of the Refal machine. If P is a process 
loaded into the program field of the Refal machine, and A is a 
process expression put into its view-field, then the process 
<stepu(tX)tA> is always finite and its result is the metacode of 
the expression to be found in the view-field after the Refal 
machine has made exactly one step. Using the stepu machine we can 
define the actu machine ("activate-universal"), which simulates 
fully the operation of the Refal machine, as if activating the 
metacode representation tA of a process A into the process it
self. Using repeatedly the stepu machine, the actu machine passes 
over from the current state of the view-field to the next. If a 
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Refal machine loaded as above generates a finite process then the 
process <actu(tP)tAl 1s also f1nite and produces the same result 
but in the metacode; otherwise it is infinite. Machines stepu and 
2ctu can be defined in Refal; we shall not list theit defini

tions, though. 

Whenever we run the Refal machine, there is a certain prog
ram P in its memory (program field). The machines we actually 
need and shall use in the following simulate the Refal machine 
loaded with a specific program P, namely the one that includes 
all the definitions we have done up to date, and only them. These 
machines are step and act: 

Thus 
the 
and 

<step ex> 
<act ex> 

~ <stepu(tP)ex> 
~ <actu(tP)ex> 

<step tA> will produce the metacode of the next stage 
view-field after A under the current cumulative program 

<acttA> will activate A under the same program. 

6.Searches and generators 

of 
P, 

We shall deal with processes of two kinds: searches, and 
generators. 

An expression is passive if it includes no activation brac
kets. A search is a process each stage of which is either of the 
form <£> or passive. The latter case takes place, obviously, at 
the end of a finite search. The terminal stage of a search will 
be referred to as its result. An infinite search produces no 
result. Processes <~A> and <B***> with~ and 8 defined as above 
are searches, although these are not very edifying examples. A 
search, as the name suggests, is a process which you would typic
ally initiate in order to find (construct) a certain object: the 
result of the search. 

A generator is a process each stage of which is either L<£> 

or L, where Lis a list of object expressions. Recall that a list 
is an expression of the form 

where n can be any number, including zero (an empty list). The 

2-15 



subexpressions £ 1 etc. which appear in the view-field at any 
stage of a process-generator G are said to be generated by G. A 
trivial example of a generator is simply a list of object expres
sions, e.g. (A)(B)(C), which generates symbols A, B, and C, and 
stops the Refal machine before it has a chance to make a single 
step. We create generators in order to generate sets. A finite 
set can be represented by an object: the list of its members. An 
infinite set can be defined only through an actual process. For 
example, we can construct a generator of all natural numbers 
represented in the unary form as above by defining the DQID ma
chine as follows: 

The process <DYID 9> is a generator of all natural numbers. The 
process <nYID N> generates the set of all numbers that are greater 
then, or equal toN. 

The process <+(91)911> is neither a search, nor a generator. 
Machines like + , which gradually build up the result in the 
view~field, are very convenient when programming in Refal, but in 
the part of our theory that interprets logic and axiomatic mathe
matics it is easier to manipulate processes if we restrict our
selves to.searches and generators. This does not lead to any loss 
of . expressive power of the language. Every machine which is 
constructed to compute something can be slightly modified so that 
it initiates a search for the desired result. To achieve that, it 
is sufficient to replace in the program every right side R which 
does not start and end with an activation bracket and is not 
passive, by <out R>, where the function out is defined by: 

Thus the definition of the addition of unary numbers will become: 

<+(e 1 )9> 
<+(e 1)e 21> 

ez 
<out<+(e 1)e 2>1> 

Now the process of computing 91+911 is a search: 

<+(91)911> 
<out<+(91)91>1> 
<out<out<+(91)9>1>1> 
<out<out 911>1> 
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<out 0111> 
0111 

Parallel execution of processes plays an important role in 
engineering and in our mental pictures of the world. It takes a 
prominent place in our theory. We can simulate parallel execution 
of processes in our sequential Refal machine, and we shall define 
the necessary machines below. However, definitions in Refal will 
be much more readable if we have the simulation "on the hardware 
level" so to say, i.e. if we somewhat expand the abilities of the 
Refal machine. Therefore, in addition to the familiar form of a 
Refal sentence: 

L ~ R 

we allow the following two sentential forms: 

Rt 

(s) L ~ sl 
I Rz 

and 

Rt 

(g) L ~ gl 
I Rz 

When a sentence of the form (s) is applied, the Refal ma
chine creates two auxilliary view-fields. It puts R 1 into one of 
them, and R2 into the other (after the substitution of values for 
variables as usual). Then it runs processes R1 and R2 in paral
lel. The moment any of them comes to an end, the Refal machine 
takes its result, substitutes it for the expression under concre
tization (recognized as L) in the original view-field, and re
sumes the running of the process in it. 

When a sentence of the form (g) is applied, ·the Refal 
chine, again, creates two auxiliary view-fields and runs 
simultaneously. The interaction between branches, however, 
organized differently in this case. Each time that any of 

rna
them 

is 
the 

branches produces a list of members, this list is extracted from 
the branch and placed at the left edge of the projection of L in 
the main process. The execution of the branch processes goes on 
as far as at least one of the branches is active. The effect is 
that every member produced by R1 or R2 will be produced by the 
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generator which used sentence (g). 

The Refal machine endowed with the described abilities may 
be called "parallelistic". It can execute searches and set gene
rations in parallel. Since each of the branches R 1 and R 2 can 
again use a sentence of the form (s) or (g) the parallelistic 
Refal machine can generate a potentially infinite tree of paral
lel branches. 

As mentioned before, the parallelistic Refal machine can be 
easily simulated on the regular (sequential) Refal machine. For 
that, every sentence of the form (s) must be replaced by 

and every sentence of the form (g) must be replaced by 

The machines pars (parallel searches) and ~ (parallel genera
tor~) are defined as follows: 

<pars(*(e 1))(e 2 ) 
<pars(ep)(e 2 )> 

~ <pars(e 2 )(<step*(e 1)>)> 
<iiep> 

<~((em)el)(e2) ~ 

<~(*(el))(e2)> ~ 

<~()(e2 )> ~ <act 

(<iiem>) <~(e 1 )(e 2 )> 

<~(e2 )(<step*(e 1 )>)> 

e2> 

We can think of all our models as taking place in the se
quential Refal machine and see (s) and (g) as a convenient repre
sentation of (s') and (g'). 
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C H A P T e R 3 

Propositons 

1. Models,Selections,Predictions 

We proceed now to examine the intuitive notion of a model. 
Acccording to the philosophy outlined in Chapter l, a mathema
tical proposition has a meaning to the extent it produces some 
models of reality. Now we want to formalize the notion of a model 
and find something like minimal units of semantics, some elemen
tary propositions, combining which we could construct every mean
ingful proposition. 

Informally, we say that the process B models the process A 
if there is some relation or similarity between the stages of B 
and A. It is not necessary that every stage of A or B be related 
to some stage of the other process; generally, we select some 
stages in B which should be somehow put into correspondence with 
some stages selected from A. The notion of a relation or a cor
respondence between the stages of two processes will be discussed 
and formalized a bit later. First, let us deal with the general 
structure of a model. 

Marking some of the stages of a process as selected for a 
certain purpose creates what we shall call a selection. In 
Fig.3.1, the stages of process Bat moments of time t= 2,3,6,8, 
etc. make up a selection; so do stages t=l.~,6.ll, etc. of A. The 
selected stages will be called the members of the selection; the 
process whose stages are selected will be referred to as the 
underlying process. 

The concept of a selection is a better approximation to our 
perception of the world than the concept of a discrete process. 
Non-linguistic processes may be continuous; representing them as 
discrete with a certain choice of time interval includes a good 
deal of arbitrariness. But speaking of a selection we must not 
necessarily specify how many stages of the underlying process are 
left between its neighboring members. The criterion for selecting 
a stage can use the current configuration of the process and not 
the sequential number of that stage in a discrete representation 
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ot the process. Suppose, tor lll!.tance, that we write down the 
readings of a measuring instrument at certain moments of time. 
This is a selection, and it is the same no matter what t1me 
interval is chosen to represent the underlying process as dis
crete. 

Unlike processes, which are essentially infinite because 
time never stops, selections may be genuinely finite. If after a 
certain stage of a process all the subsequent stages do not 
satisfy the criterion of a selection, there will be no more 
members of this selection: it is finite. The notion of finiteness 
when applied to a selection is very different from when it is 
applied to a search. The finiteness of a search can be directly 
verified, while the finiteness of a selection cannot. Verifying 
that a search is finite, we discover a stage which satisfies the 
search (is selected), and do not care what happens to the process 
afterwards. To establish that a selection is finite, we have to 
prove that after a certain stage, no selected stage will ever 
appear. Speaking about finite searches and processes defined in 
Refal, we identify the end with the appearance of a passive 
stage. From the definition of the Refal machine it follows that 
once a passive stage appears in the view-field, it will never 
change. But we cannot verify this directly, of course. So, the 
finiteness of a Refal process can be seen both as the finiteness 
of a search for a passive stage, and as the finiteness of a 
selection with active stages selected. In the first case it is 
directly verifiable; in the second case we must add a little bit 
of belief. 

A selection can be seen as a sequence of searches, which 
lead to the consecutive selected stages of the underlying pro
cess. One of them may be infinite, in which case it is the last 
one. A selection is finite if and only if the number of 
constituent searches is finite and the last search is infinite. 

The assertion that the process Bin Fig.3.1 models the 
process A means that on each of the processes a selection is 
defined and the members of these selections with the same sequen
tial numbers are in a certain relation, which is shown by dashes 
in Fig.3.1. (It is not necessary, though, that the relation is 
the same for all pairs). This assertion can be split into as many 
constituent parts as there are pairs of selected stages. 

Consider the first part of this assertion, namely that the 
first members of the two selections are in a certain relation. We 
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shall call such an assertion a prediction. In a typical case, one 
of the processes, say A, will be the subject of the assertion, 
while the other, i.e. B, will be created (defined) to formulate 
the assertion (to serve as a model of A). Process B is always 
linguistic, by the definition of language. Process A may be 
either natural, like planet movement, chemical reaction in blood, 
etc., or linguistic, like multiplication of numbers; in the 
former case the assertion belongs to the natural sciences, in the 
latter -- to mathematics. 

The meaning of an assertion is the way we use it as a model 
of reality. It is as follows. We first activate linguistic pro
cess B and run it until the first selected stage is reached; in 
other words we run the first constituent search of the selection 
based on B. Let us denote it 8 1 . This would usually be referred 
to as a computation or logical derivation, or whatever. The 
search 8 1 comes, presumably, to an end, producing a certain 
resulting expression Rb. Now we predict (which means that we take 
it as the basis for making decisions) that the process A will 
come to a selected stage, i.e. the first constituent search A1 

will stop, with a result Ra which will stay in a certain relation 
to Rb (e.g., will be measured by the number B). This is essenti
ally the same definition of a predicting model as given in Chap
ter 1 and illustrated in Fig.l.2. 

We must now formalize the notion of a relation between 
objects. It is here where the difference between natural sciences 
and mathematics manifests itself. In natural sciences the sub
jects of proposition, the process A, is non-linguistic. To define 
how its stages, non-linguistic objects, are related to linguistic 
objects of B, we must necessarily use procedures which are not 
purely linguistic. They can be referred to as procedures of 
measurement. Using this term we generalize the usual concept of 
measurement which results in a number. It will now 
procedure which can be applied to a non-linguistic 
produce a lingusitic object of a theory. 

denote 
object 

any 
and 

In mathematics, the process A is linguistic; therefore the 
relation between its stages and those of the model B which makes 
a proposition meaningful can be defined by a linguistic machine. 
Consequently, the semantics of mathematics can be completely 
formalized within the linguistic sub-universe. 
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We assume that a relation P between linguistic objects is 
defined if a testing device <ptex)ey> is constructed, which for 
every pair ex,ey generates a process (a search, to be more 
exact), which is finite if and only if e and e are in relation 
P. By a device we mean anything that help~ to orlginate a process 
when given a number of objects as input. A device is essentially 
a parameterized process, and we will often use the term process 
when referring to an expression with free variables, instead of 
using the term device. If we cannot define such a device then we 
do not know what we are speaking about; this is our fundamental 
philosophical principle. 

There are a lot of propositions in mathematics which express 
relations between linguistic objects and are thought of as exact
ly and formally defined by mathematicians, but do not qualify 
according to our definition if a testing device is understood to 
be a Turing machine or its equivalent. (As an example, take a set 
of numbers S which is not recursively enumerable, and consider 
the property of a number n to be an element of S: n el S. There 
exists no Turing machine which stops if and only if n ~ S). Our 
definition of a device, however, is less restrictive. Our theory 
all~ws reference to special real-time processes, which cannot be 
modeled on a Turing machine. Their nature and role in our theory 
will be discussed later. The general principle that the meaning 
of every proposition must be expressed in terms of real 
processes, and not by invoking the idea of actual infinity, 
remains universally valid. 

Note that we made the weakest possible assumption about the 
testing process. We do not assume that it always stops and ans
wers 'yes' or 'no' to the question of whether the arguments are 
in a given relation; it does not implement a total recursive 
predicate. Our testing process implements what is often called a 
semi-predicate: it can say 'yes'. but instead of saying 'no', 
simply goes on and on without ever stopping. Using only testing 
machines we can express everything that can be expressed through 
total recursive predicates. Indeed, suppose we want to imitate a 
machine <o(ex)ey> which always stops and produces T or F as the 
answer. We can construct a testing machine: 

<Pt(e )e > 
<loopf T~ 
<loop£ F> <loop£ F> 

which stops if and only if o produces T. Analogously we define a 
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testing machine Pf which stops if and only if o produces F. 
Running the two testing machines in parallel will allow us to do 
anything that can be done by running o. The converse statement, 
that whatever can be done with semi-predicates can also be done 
with total recursive predicates, would not be true, of course. 
Mathematics knows a lot of relations which can be defined by a 
semi-predicate, but not by a total recursive predicate (non
decidable but recursively enumerable sets). The semi-predicate is 
a smaller semantic unit than the recursive predicate: "one half" 
of it. 

Return to the prediction concept. To characterize a predic
tion we must define two searches: <Fb> and <Fa>, and one relation 
<p(e )e >. However, it is a certain combined usage of the three 
thatxco~stitutes the meaning of the prediction. The prediction we 
are speaking of is the assertion that the process 

is finite. Indeed, according to the definition of the Refal 
machine, when we put C into the view-field the first subexpres
sion to become active will be <FbtB>. This process will be ini
tiated, and when it stops (if it does) the other search, <FatA>, 
will be initiated. When and if it comes to an end, the P process 
will be run over the results of the two former processes. The 
prediction as we defined it above asserts that there is a selec
ted stage to occur in process A and in process B, and that these 
stages are in the relation P. This is equivalent to the statement 
that process C is finite. 

The statement of the finiteness of the process C still fits 
our general definition of prediction, but it is a prediction of a 
special kind. Here the process being modeled (grammatical sub
ject) is C; the modeling process (grammatical attribute) is any 
process known for sure to be finite, e.g., simply the empty 
expression []; and the testing machine (grammatical 'is') always 
says yes no matter what the arguments are, e.g. as defined by: 

As we have seen, every prediction can be represented as a predic
tion of this special kind: that a given process (search) is 
finite. This will be our elementary semantic unit, the quantum of 
semantics. When speaking of predictions further on we shall refer 
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to these special predictions. We introduce a notation for them. 
The statement that a process A is finite will be represented by 
the object expression 

tA! 

which is read: "A is finite". 

Examples. The statement that a process <aAAA> is finite is 
the prediction *(aAAA)!. If the a-machine is defined as in Chap
ter 2 by 

then this is a false prediction, because this process is infi
nite. With the machine 8 defined as in Chapter 2, the process 
<B***> is finite. The corresponding prediction: 

* ( B*V*V*V) ! 

is true. Note that the asterisk * turns into *V in the metacode. 
Because of this it is not advisable to use the asterisk in any 
context where another symbol can be used instead. The use of 
asterisk should be reserved for the representation of free vari
ables and activation brackets in metacode, where the asterisk's 
unique feature plays a useful role: it provides for the unique
ness of the inverse transformation. 

2. Propositions 

A process A' which starts with some, but not the first, 
stage of a process A is a descendant of A. When we use a model, 
like the one in Fig.3.1, we first obtain a prediction from it, as 
described above. After the completion of the searches based on 
the processes Band A we have a descendant of B (which in Fig.3.1 
starts with the stage t=2) and a descendant of A (which starts 
with t=l). These descendants are again in the relation of model
ling, which gives us a new prediction, and so on. We see that a 
model is, essentially, a generator of predtcttons. 

If a model generates only a finite set of predictions, it 
can be represented by a list of these predictions. In the general 
case, when the set of predictions may be infinite, we have to 
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represent the model by the generator itself. To become an object 
eMpression the generator must be metacoded. If the simplest form 
of a meaningful mathematical proposition is a prediction, a more 
general kind is a generator of predictions. Recall that we repre
sent generators by processes of special kind defined in Refal. If 
G is a Refal process generating only predictions, the object 
eKpression tG represents a proposition whose meaning, intuitive
ly, is the set of all predictions produced by G. Syntactically, 
we easily distinguish prediction-propositions from generator
propositions because the former always end with '!', while the 
latter, if not empty, always end with a right parenthesis. The 
ability to distinguish between object eKpressions representing 
predictions and those representing generators is, of course, 
absolutely essential, because their use (and therefore meaning) 
is different. Predictions are, so to say, ready for use. To use a 
generator we must run it and use the predictions it produces. 

Our first eKample of a generator proposition is the state
ment that a given process is infinite. What is its meaning? Can 
it be understood as a generator of predictions? 

Yes, to state that a process A is infinite is to state 
that: 
(l) the initial stage A is not passive (includes at least one 
pair of activation brackets); 
(2) the neKt stage after the initial stage is not passive; 
(3) the next stage after the neKt stage after the initial stage 
is not passive; 
(4) the next stage after the neKt stage after the neKt stage 
after the initial ... 
and so on infinitely. Every one of these statements can be forma
lized as a prediction by defining a process which checks whether 
a given process expression is not passive and stating that the 
process when applied to a given stage of A is finite. Thus the 
infinity of a certain process is an infinite generator of predic
tions. 

The infinity model for a process A is shown in Fig.3.2. The 
attribute process B is a trivial process each stage of which is 
the empty expression. The relation P is the property npas of a 
process stage to be not passive. The necessary definitions are: 
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ttR <p( )ex> .... <npas ex > 

11 <npas *(ex)ey.> .... 

tt2 <npa.§. s.e > .. (.!:!.QE__§. ex ) t X 
13 <npas (ex)ey> .... ', D..Qas ex ey> 
14 <npas e ) .. <npas ex> X 

Let us see how these definitions work. The function P simply 
discards the first argument (which is always empty) and calls 
function npas, 'non-passive'. Sentence 11 is applied when the 
argument starts with an activation bracket, which in the metacode 
is represented by the asterisk and a left parenthesis. In this 
case the npas machine stops, because the argument is non-passive. 
Sentences i2 and i3 define the process of scanning the argument 
from left to right until the combination recognized by il is met 
(if it is). Sentence i2 is applied when either the first symbol 
in the argument is not asterisk, or it is an asterisk but is not 
followed by a left parenthesis. This symbol is eliminated and 
function npas is applied to the remainder. Sentence i3 eliminates 
those parentheses (structure brackets) which in the metacode 
rep~~sent themselves, and not activation brackets. If the whole 
argument gets destroyed by i2 and i3 without finding an activa
tion bracket, then sentence i4 will be applied, which results in 
an infinite process <npas>. Thus <npas E> is finite if and only 
if · the expression E represents in the metacode a non-passive 
expression. 

To create generators representing infinity models such as in 
Fig.3.2, we want a machine which for any given argument tA, where 
A is a search, will generate the infinite set of predictions as 
discussed above. Let us see what these predictions should be. The 
initial stage is A. The process checking that A is non-passive is 
<npas tA>. The prediction that this process is finite is its 
metacode followed by '!', i.e. 

*(npas ttA)! 

If we denote by A' the stage immediately following A, its meta
code tA' can be computed as <step tA>, its double metacode ttA' 
is *(step ttA). The prediction that A' is passive is obtained 
from the above expression by substituting ttA' for ttA. It is: 

*(npas *(step ttA))! 
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The next prediction must be· 

*(~as *(step *(step ttA)))! 

etc. 

We give the name inf to the machine we want. It can be 
defined as follows: 

Now the proposition that a given process A is infinite is the 
me taco de o f the gene r at or < i n f 1 t A) , i . e . * ( i n f t t t A) . 

Because of the importance and frequent use of the infinity 
model we introduce a special notation for it. The proposition 
that a process A is infinite will be represented by the object 
expression tA?, and in the following we shall treat such proposi
tions, together with predictions, as certain elementary units, 
atoms. Thus, propositions tA! and tA? will be called atomic. One 
should bear in mind, however, that while tA! is a prediction, tA? 

is a generator of predictions, which can also be written as 
*(inf ttA). 

Example. The statement that the process <~AAA> is infinite is 
*(~AAA)?, or *(inf *V(~AAA)). 

We came close to a general definition of proposition. We 
have only to make one last generalization. It is not necessary 
that a generator produce only predictions ready for use. It may 
also produce generators, which in their turn produce predictions 
and generators, which produce predictions and ... etc. We come to 
the following inductive definition: 

(a) a prediction is a proposition; 
(b) the metacode of a generator which generates only propositions 
is a proposition. 

Thus a proposition may produce a whole hierarchy of proposi
tions, but they musl be such that ultimately they produce predic
tions. A formal object has a meaning as a proposition only to the 
extent we know how to make it produce predictions. If there is no 
way to obtain predictions from an object, it has no meaning as a 
proposition. Atomic propositions constitute the ground level of 

3-9 



the hierarchy of propositions. We recognize them syntactically by 
the fact that they end with a symbol 1 ! I or 1 7 1 If a proposition 
does not end with one of these it should be treated as the 
metacode of a machine which is still to be run to produce lower
level propositions. 

Examples. Consider the following proposition of the ordinary 
arithmetic: 

2+3 = 5 

We want to represent this as a formal proposition of our theory. 
We shall use the unary number system and the adding machine + as 
defined in Section 2.4. We shall also need the tester (semi
predicate) of equality. We define it in the format <=(e 1 )(e 2 )> by 
these sentences: 

<=(9)(9)> ~ 

<=(ex1)(ey1)> 
<=e > ~ <=e > X X 

Proposition (1) states that the process 

<=(<+(911)9111>)(911111)> 

is finite. Hence we have 

*(=(*(+(911)9111))(911111))! 

This is a prediction. 

Consider the proposition: 

(Ax)(x+0 = x) 

where quantification is over all whole numbers. This is a genera
tor which produces predictions 

0+0 = 9 
1+0 = 1 

2+0 = 2 

etc. It is not difficult to define such a generator in Refa1, and 
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the necessary machines will be constructed in due course. 

An existentially quantified formula like 

(Ex)(5+x = 8) 

will be interpreted in our theory as the finiteness of the pro
cess which searches for the value of x satisfying the equation.v 

Our semantic definition of proposition leads to a natural 
interpretation of logical implication. A proposition P implies 

1 

a proposition P2 if P2 is among the propositions generated by P 1 • 

This definition is the most exact formalization of the intuitive 
concept of logical implication, according to which if P2 is 
implied by P 1 , it is already somehow contained by P 1 , included in 
it. Logicians distinguish two kinds of implication: logical, or 
strict, implication, and material implication. Material implica
tion, unlike logical one, can connect two arbitrary propositions 
which in no way are related by their meaning. It establishes the 
connection by force, so to say, announcing it as an empirical 
fact, a new law of nature. Using ·~· to symbolize implication, we 
can declare that 

even 
elude 
after 

(x is an apple) ~ (x is edible) 

though the definition of the concept of apple may 
that it is necessarily edible (there are inedible 

all). Compare this with the following implication: 

(x is an apple) ~ (x is a fruit) 

not in
apples, 

This proposition, like the preceding one, can be put foreward as 
a material implication, but it is also true as a logical implica
tion, because being a fruit is a part of being an apple. In 
Kant's terminology, logical implication forms an analytic judge
ment, while material implication forms a synthetic judgement. 

In our theory we formalize both logical and material 
implication and one can see how different these concepts are (we 
shall discuss material implication in the next section). In 
contrast, the conventional mathematical logic has only one impli
cation: material. The closest thing to logical implication that 
mathematical logic has is the concept of deducibility: Q is 
deducible from P if the (material) implication P~Q is a tautolo-
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gy. The difference between the two kinds of implications becomes 
here a meta-concept referring to the way we deal with proposi
tions, not a feature of the propositions themselves, as we under
stand it intuitively. This reflects, of course, the purely syn
tactic (formal) nature of mathematical (formal) logic, and con
stitutes, in our view, its main deficiency. Formal logic has 
nothing to do with the meaning of the constructs it introduces. 
For instance, when the connective and is defined, it is nowhere 
to be seen that (P and Q) logically implies P, so we have to 
state it as a material implication. In our theory, as we shall 
see later, the definition of the and connective formalizes our 
intuitive understanding of it, its meaning. Accordingly, we do 
not have to postulate that (P and Q) logically implies P, we 
prove it. 

We shall define a machine which tests that one proposition 
logically implies another. But first we define a generator which 
we call int, for 'interpretation'. It takes a proposition and if 
it is atomic, simply gives it out. If it is non-atomic, the int 
machine still gives it out but then runs it as a generator and 
treats each emerging proposition in the same manner as the origi
nal proposition, i.e. outputs it and goes on running it if it is 
non-atomic. Therefore, <int P> produces all atomic and non-atomic 
proposit~ons which can be produced by P directly or hierarchical
ly,, i.e. through the intermediate levels of the hierarchy. Natu
rally, such a machine must run the emerging set generators in 
parallel, otherwise the first infinite generator will prevent it 
from running other generators. The definition of tnt follows: 

<int ers(!?)i> ~ (ersi) 
<int *(eg)> ~ <int <step *(eg)>> 
<int (ers(!?)i)ex> ~ (<}ier>si)<int ex> 

l<int <il*V(eg)>> 
<int (*V(eg))ex> ~ gl 

l<int ex> 

If P is an atomic proposition, the int machine simply out
puts this proposition. If P is non-atomic, then <int P> is a 
generator which produces all propositions that can be hierarchi
cally produced starting from P except P itself. To include P into 
the set produced, we simply call <int(tP)>. Indeed, (tP) is a 
proposition which does not end with '!' or '?', so it is treated 
as a generator. This means that it is demetacoded and placed into 

3-12 



the view-field of the Refal machine. The result is (P). It is a 
generator which in no steps produces proposition P. Generally, if 
we have propositions 

we can unite them into one proposition: 

which is a generator producing exactly the list of the original 
propositions. 

Compare 
(2) *(int (ttP)) 

and 

( 3 ) tP 

The ultimate volume of propositions which can be produced star
ting from (2) and from (3) is the same, but (2) produces them all 
at once, while (3) if simply run produces only the top level of 
the hierarchy. 

Using the proposition interpretation machine int we define 
the implication machine imp such that the process 

tests whether (i.e. end if and only if) Q is among the proposi
tions that can be hierarchically produced starting from P.(The 
symbol ·~· in the format of imp is just for readability). The 
definition of imp is: 

It uses an auxiliary function elm, 'element-metacode', such that 
<elm(ep)of eg> tests whether ep is the metacode of one of the 
members of the set generated by e 9 (which should be the metacode 
of a set generator): 

<elm(ep)of *(e )> ~ 

<elm(ep)Qf (ep~ex> ~ 
<elm(ep)21 <step *(eg)>> 

ep 
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<elmtep)Qi (eq)ex> ~ <~lm(ep)Qi 

<elm(ep)of > ~ <elrn(ep)of > 
e > X 

The statement that the proposition P logically implies the 
proposition Q is itself a proposition of our theory, namely: 

*(imp(tP)~tQ)! 

l. KnoNledqe 

The cornerstone of our theory is the principle that a mathe
matical proposition has a meaning only if it can be construed as 
a (hierarchical) generator of predictions. Until now we have been 
able to do this easily for various types of propositions. Now we 
are going to consider two examples of propositions which will 
show that in order to keep to this principle we have to introduce 
in our theory a new concept, which to the best of the author's 
knowledge has never before become part of formal mathematics. 
This is the concept of human knowledge. 

The first example deals with selections. We saw that the 
finiteness and the infiniteness of a search find their places in 
our theory, the former being the quantum of semantics, a predic
tion, and the latter a generator of predictions. What about the 
finiteness and the infiniteness of a selection? 

To give specific substance to our discussion and relate it 
to the matters familiar from formal logic, we shall consider 
those selections which result from the natural constructive in
terpretation of quantifiers. Let P(x,y) be a total recursive 
predicate with the set of natural numbers as its domain, i.e. a 
linguistic machine which initiates a finite process with arbitra
ry numeric arguments x,y and produces either T or F. Let us see 
how all possible quantifications of this predicate can be inter
preted in terms of processes. 

Consider the universal quantification: 

( 1 ) (Ax)P(x) 

To verify this proposition we construct the selection shown in 
Fig.3.3. We compute P(l), P(2), ... etc. and select the end of 
each computation. If it is F, we stop the process; if it is T, we 
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go on. Proposition (l) is equivalent to the assertion that this 
selection is infinite. At the same time, (1) is an infinite 
genP.rator of propositions P(x) with consecutive numbers x. Each 
proposition P(x) states that a certain search is finite and 
produces T, which is easy to represent as a legitimate proposi
tion of our theory. 

Generalizing, we can see that the statement of the infinite
ness of a selection can always be interpreted as an infinite 
generator of predictions. At any stage of the underlying process 
we predict that the current search for a selected stage is fi
nite. These predictions are generated as the process goes on, as 
in the case of the infiniteness of a process. 

To interpret the existential quantification: 

(2) (Ex)P(x) 

we again put computations P(l),P(2), etc. in a row, but this time 
we simply look for a stage where the result of P(x) is T. Propo
sition (2) is equivalent to the assertion that the search in 
Fig.3.4 is finite. It is a prediction. 

Quantifying the variables x and y by identical 
does not give anything new, because we can consider 
(x,y) as one object. Consider mixed quantifications. 

To interpret the formula 

( 3 ) (Ax)(Ey)P(x,y) 

we notice that since the predicate 

P'(x) = (Ey)P(x,y) 

quantifiers 
the pair 

represents, as we have just established, the finiteness of a 
search, we can put a universal quantifier on it, as in (1). So 
proposition (3) will again be the infiniteness of a selection. It 
is shown in Fig.3.5. 

So far so good. Let us now turn to the interpretation of the 
formula 

(4) (Ex)(Ay)P(x,y) 
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By analogy with Fig.3.~. we easily construct a selection which 
represents the true-false test of this formula; it is shown in 
Fig.3.6. The selected stages here are those where the computation 
of the predicate terminates with the value F. We are looking for 
such a value n of x that the predicate P(n,y) with any y gives 
the answer T, i.e. the search for F is infinite. Formula (4) is 
then interpreted as the finiteness of the selection in Fig.3.6. 
Indeed, if (4) is true, then looking for the y's for which P(x,y) 
is false with consecutive x's we necessarily come to a stage when 
there are no such y's; thus the selection is finite. 

It is here that a surprise is in store for us. We saw that 
the assertion of the infiniteness of a selection is a generator 
of predictions. We expect that the assertion of the finiteness of 
a selection will also be a meaningful proposition in terms of our 
theory, i.e. a generator of predictions, of a different kind 
maybe. But it is not. 

The statement that a selection is infinite bears some infor
mation about the underlying process. It says that whatever the 
stage of the process is, there will be a stage later which is 
recognized as selected. The statement that a selection has no 
members, or exactly one, or two, or any finite number of members, 
is also informative and can be interpreted as a generator of 
predictions. But a statement that a selection is simply finite 
bears no information which can be used to make predictions. Even 
with this statement known to be true, whatever the current stage 
of the underlying process is a selected stage may or may not 
follow. It cannot be interpreted as a prediction, nor as a 
process which can ultimately produce predictions. Therefore, we 
must declare it meaningless. 

Yet we cannot deny that intuitively we assign some meaning 
to the finiteness of a selection and to the equivalent quantified 
formulas of the conventional formal logic. This meaning, however, 
includes an element which is left out in formal logic. It is 
knowledge. If we think into what we actually mean when stating 
that a selection is finite, we shall discover the following 
mental picture. There is an underlying process, and we start 
running it. We are looking for a selected stage, and we do not 
know whether there is one ahead or not. One moment we may dis
cover a selected stage. Then we pass it and go on looking for the 
next one. Again, we do not know whether there will be one or not, 
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so we run the process and check stages. But sooner or later we 
come to a stage when we suddenly -- one way or another -- get the 

knowledge that there will be no more selected stages, i.e. the 
current search will be infinite. Without this "enlightenment", 
this phenomenon of getting a knowledge, the assertion of the 
finiteness of a selection is impossible to understand. It is 
tmplictte in our intuitive notion of a finite selection. There
fore, in a formal theory it should appear explicitely. 

In terms of quantifiers, we can interpret a proposition of 
the form 

(Ex)(search S(x) is finite) 

by running searches son, S(l), S( 2), etc. in parallel. This 
process will stop if and only if there is at least one value of x 
for which S(x) is finite. If, however, an existential quantifier 
is put on a proposition-generator P(x) which produces an infinite 
set of predictions, then to find the value of x in question we 
must inevitably employ some way of establishing the truth of 
P(x), which makes this way a part, though hidden, of the seman
tics of our assertion. In other words, when we say 

(Ex)P(x) 

we actually mean 

(Ex)(we know that P(x) is true) 

whether or not we are prepared to admit it in open. 

The second example of a proposition where a reference to 
human knowledge becomes inevitable is material implication. As 
discussed above, we can impose an if-then connection on any pair 
of propositions. We shall use the notation 

for the material implication involving a pair P and Q, where P 
will be referred to as the antecedent, and Q the consequent. 
How can we formalize this concept? 

Consider first the case where the antecedent of an implica
tion is a prediction: 'if the process A is finite then proposi-
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tion P'. There is an obvious way to interpret this proposition as 
a generator of predictions: we run the search A, and when/if it 
stops, produce proposition P. We define the if machine as fol
lows: 

<i!.(ea!)then ep> 
<second(e 1 )(ez )> 

<second(<act ea>)(ep)> 
( e z ) 

This machine activates the process ea, and when and if it 
ends, produces (ep) as the result. The auxiliary function second 
is needed to discard the first element of a list and output the 
second element. The parentheses in the final result are necessary 
because a proposition-generator, according to our 
produces a list of propositions (which in this case 
one member). If the process ea is infinite, the if 
go on infinitely, producing no result. 

convention, 
consists of 
machine will 

So, if tA! is a prediction and Pan arbitrary proposition, 
then the material implication of the latter by the former is 

t<if(tA)!then P> = *(.if(ttA)!then tP) 

Now let the antecedent be a prediction generator, for in
stance an infinity model. What do we mean when we say "if the 
process A is infinite then proposition P"? 

As in the above cases, there is a hidden reference here to a 
process which establishes the infiniteness of A. What we actually 
mean is "if we can know that A is infinite then P". In our 
intuitive understanding of this statement there is no exact 
definiton of the process through which we get this knowledge. 
This is no surprise, of course; intuitive understanding is infor
mal. But the vagueness and inexactness of this element of the 
intuitive picture does not mean that it does not exist or that we 
should ignore it. We should acknowledge the existence of this 
element and formalize it, make it exact, one way or another. The 
first question we have to answer is what is knowledge? How can we 
formalize this concept? 

We define a knowledge as a proposition which is believed to 
be true. This definition reflects our subjective attitude towards 
knowledge and the way we use it. We use propositions believed to 
be true in order to make predictions, and we believe in these 
predictions, i.e. plan our actions under the assumption that 
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actual processes of the world will conform to the predictions. 
The question whether what we call our knowledge is actually true 
is left to an observer (if any) who watches us from outside. The 
concept of truth is inseparable from an observer, like some 
fundamental concepts of modern physics. The truth of a proposi
tion is somebody's readiness to plan his actions in accordance 
with the predictions implied by it. In the absence of this 'some
body', the concept of truth becomes meaningless. 

Propositions can be specific or general. Specific proposi
tions concern definite processes at definite historic times. Such 
a proposition can be checked only a posteriory, when it becomes 
useless, because it will never be applicable any more. With 
specific propositions, you are given a chance to verify them only 
after the question whether you should believe in them becomes 
meaningless. The question usually posed would be whether one 
should have believed in the proposition before. This question has 
a pragmatic meaning only if that specific proposition was derived 
from a certain general proposition; the question then is trans
lated into whether one should believe in this general proposi
tion. 

General propositions do not specify a historic time and 
place of the processes in question, but only the general condi
tions under which they are applicable. Mathematical propositions 
are general propositions concerning linguistic processes. They 
can be partially checked when the question to believe or not to 
believe is still meaningful. We can verify that a formal predic
tion is true by initiating the process which it is about and 
checking that it is, in fact, finite. But a proposition-generator 
may generate an unending sequence of predictions, and we cannot 
verify them all. Our readiness to rely on a proposition as true 
is based, in the last analysis, on a belief, and not on an 
empirically established truth. We do not discuss at this time the 
philosophical question of how this belief is arrived at: whether 
through our experience, or because of the _structure of our brain, 
or as a reflection of a 'higher order' reality. We are exploring 
the possible ways to formalize the concept of knowledge, and we 
come to the conclusion that the only thing we can say about our 
knowledge is that 'we believe because we believe'. Then the only 
thing we can do in our theory is simply introduce a symbol to 
denote the sum total of mathematical propositions believed to be 
true by humanity. We shall use the capital Greek letter r (for 
'gnosis', knowledge) as such a symbol. We define the machine: 
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which tries to deduce its argument from the knowledge r. If <~P>, 

where P is a proposition, is finite, then Pis true because it is 
implied by human knowledge. If it is infinite, then we can say 
nothing. 

By introducing a notation for human knowledge we do not 
solve all our problems, however. The symbol r is a metasymbol for 
the Refal machine; it stands for some expression which we do not 
(and hardly can) write out explicitely. But here is a problem: 
the human knowledge does not stay the same; it is developing, 
growing. Essentially, it is a process, not just an object expres
sion. Then how shall we interpret the concept of truth with 
respect to this ever changing knowledge? 

Two answers to this question are possible, both consistent 
if kept firmly to. As we shall see later, the first answer leads 
to the intuitionist logic, while the second to the classical. 

Intuitionist logic. Since the meaning of propositions depends on 
r, we consider the meaning definite only if a definite r is 
indicated. We can think of r as the sum total of human knowledge 
at the present time. Therefore, (yP> will be finite and P accep
ted as true, only if we actually performed the proof process 
based on a definite r. Although r changes as the human knowledge 
is growing, at any particular moment in time r should be treated 
as a definite fixed expression. 

Classical logic. When we speak,e.g., of existential quantifica
tion, we do not say "such an x that we can prove P(x)", we say 
"such an x that P(x) is actually true", even though we may not be 
able to find this x on the basis of our present knowledge. Thus 
we refer not to our present knowledge, but to an imagined com
plete knowledge, which implies all the propositions that we may 
find true now or at any future time. From Goedel's theorem we 
know that no definite expression r can represent this complete 
knowledge. We can see r only as an unreachable limit of the 
expanding human knowledge, or as the expanding human knowledge 
itself (a process), because its every stage includes the know
ledge which existed at all the past stages (a cumulative pro
cess) . 
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It is pretty obvious that a consistent theory can be based 
on the intuitionist viewpoint. Our main effort will be to show 
how classical logic and set theory based on it work, and to prove 
their consistency. In this chapter, however, we shall simply use 
the function y as a universal way to establish the truth of a 
proposition, without discussing its nature or how it could have 
come into existence. This is exactly what we are doing intuitive
ly when we turn over mathematical propositions in our imagination 
and believe that we understand them. 

4. Logical connectives and quantifiers 

Now we are going to interpret the means logic has for the 
construction of composite propositions: connectives and quanti
fiers. 

Let us start with conjunction. To uphold two or more propo
sitions means, obviously, to uphold all the predictions produced 
by any of them. So we define the function and with the format 
<and L>, where L is a list of propositions: 

<and (e 1 )e 2 > ~ (e 1 ) <and e 2 > 
<and > ~ 

If P 1 , P 2 , .•• ,Pn are propositions, then the process 

will generate all of them and only them. Its metacode 

is 
p 

z • 

our formalization of the conjunction of the propositions 
,Pn. 

p 1. 

Consider two proposition-predictions: S 1 ! and S 2 !. (From 
this notation you can see that the metasymbols S 1 and S 2 stand 
here for the metacodes of the searches, not for the searches 
themselves). The disjunction of these propositions is the state
ment that at least one of the two searches is finite. This is the 
same as to say that the process in which S 1 and S 2 are run in 
parallel is finite. So we construct the following machine 2£: 
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!<act e 1 > 
<QL(e 1 )(e 2 )> ~ sl 

l<act e 2 > 

Now the disjunction (S 1 or S 2 ) is formalized as the finiteness of 
the process 

<or(S )(S )> 
- 1 2 

that is the prediction 

Exercise. Define the generalization of the function or which has 
as its argument an arbitrary list of searches.v 

Let the operands of a disjunction be the general 
tions P 1 and Pi, i.e. possibly prediction generators, 
predictions. How do we then interpret the disjunction? 

proposi
not just 

Well, even when putting the meaning in words we cannot avoid 
reference to the process of testing the truth of the constitu-a 

ent 
This 

propositions. We say "at least one of S 1 and S 2 is true". 
corresponds to the finiteness of (y P > or (y P > in our 

1 z 
formalism. Using the QL machine we represent the disjunction as 

t<or(t<yP >)(t<yP >)>! 
- 1 2 

Practice. Convert this expression into strict Refal by elimina
ting metasymbols t.v 

If we use the general formula for disjunction, and one of 
the operands proves to be a prediction, then a testing process (y 
S!>, where s is a search, is used, instead of the search s 
itself. As we shall see later, both ways are completely equi-
valent. 

The material implication was already discussed in Section 3. 
The proposition P~Q of formal logic is represented as 

t<ti(P)!then Q> 

The property of implication that a false antecedent forms a true 
proposition with any consequent shocks everyone who studies rna-
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thematical logic for the first time as contradicting our intui
tion and common sense. Then people get used to it and accept the 
usual justification, namely that taking such a proposition as 
true we can derive a false p~oposition (by the Modus Ponens rule) 
only if we have already derived at least one false proposition, 
the antecedent; but then our theory is already false, so we do 
not care. Here we clearly see the contradiction between the 
purely syntactical, asemantic nature of the conventional mathe
matical logic and our unexpressed expectation that a formal logic 
will pick up and codify the essence of different forms of 
thought, which is their meaning. In the present theory, an impli
cation with a false premise is not true in the same sense as a 
prediction, or a generator producing true predictions can be 
true. Neither is it false. It is empty: a generator which pro
duces nothing. This, we believe, is in perfect agreement with our 
intuitive expectation. 

tion: 
To formalize quantifiers we need the function of substitu-

<sub(*svsi~ex):*svsie 1 > ~ ex <sub(*svsi~ex):e 1 > 
<sub(ev):s 1 e 2 > ~ s 1 <sub(ev):e 2 > 
<sub(ev):(e 1 )e 2 > ~ (<sub(ev):e 1 >) <sub(ev):e 2 > 
<sub(e ):> ~ --- v 

The process 

where v• is the metcode of a variable, e.g. *EX (we refer to such 
expressions as first-level variables), and E and Pare expres
sions, results in the expression obtained from P by substituting 
every entry of v• by E. 

Using the function sub we define the universally quantifying 
machine all as follows: 

<all(ev)E(*{eg)):ep> ~ <all(ev)E(<step *(eg)>):ep> 
<all(ev)E((em)e 1):ep> 

~ <sub(ev~<Uem>):ep> <all(ev)E(e 1 ):ep> 
<all(ev)E():ep> ~ 

It has the format: 
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where V1 is a first-level variable, G is a set generator in 
metacode, and P is a propositional form depending on v' (or any 
expression which may include V'). The all machine activates the 
generator G step by step, substitutes the objects produced by G 

for every V1 in P, and produces the resulting expression. For 
instance, if <~0> is the generator of all natural numbers, and P 

is a propositional form representing in our theory some predicate 
P(x) of formal logic, then 

is our representation of (Ax)P(x), where x runs over all natural 
numbers. 

To express existential quantification we define the search
ing machine sch: 

<sch(ev)E(*(eg)):ep> 4 <sch(ev)E(<step *Ceg)>):ep> 
<sch(ev)E((em)eg):ep> 

l<if(<act<sub(e ~e ):e >>)!then em> -- --- --- v m p ----
~ sl 

l<sch(e )E(e )·e > -- v· g . p 
<sch(ev)E() :ep> ~ <sch(ev)E() :ep> 

Its format is 

where V1 and G have the same meaning as above, and S is a search 
in the metacode which may depend on the variable V1 . The sch 
machine runs the generator G, substitutes the objects produced 
for V1 inS and runs all the resulting searches S in parallel. 
The moment any of these searches comes to an end, the sch machine 
also stops and outputs the object e with which S is finite as 

m 
its result. 

If a predicate P(x) of formal logic can be represented as P! 
in our theory, the quantified proposition (Ex)P(x) will be repre
sented as 
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If P(x) corresponds to a general proposition (generator) P, then 
we must use the cognitive function ~ to convert it into a search: 

How can we interpret negation? One can think of a weak and a 
strong interpretation. The weak negation of a proposition P would 
be simply the exclusion of P from the current state of knowledge. 
We state that we are not sure that all the predictions produced 
by P are true, therefore we do not include it in what we call 
knowledge. The strong negation of P is the assertion that at 
least one of the predictions generated by P contradicts 'the 
truth', by which we mean a proposition which we include, or will 
some day include, in our knowledge. 

The weak negation is very weak indeed. We cannot infer much, 
if anything, from it. With a negation defined in this way, we can 
safely negate even those propositions which are known to be 
perfectly true. Clearly, it is not this interpretation that is 
used in mathematics, but the strong version based on the idea of 
contradiction. So we start with contradiction. 

A prediction A! 
infinite, i.e. A? is 
truth of A? directly. 

contradicts to the truth if A is actually 
true. But there is no way of testing the 
We conclude that, first, the concept of 

human knowledge must be necessarily present in any formalization 
of contradiction; second, it is impossible to avoid using the 
infinity model and express contradiction in terms of predictions 
only. 

Atomic propositions A! and A? with the same search A will be 
called opposite. A pair of opposite atomic propositions is a 
contradiction. A proposition is contradictory, or inconsistent, 
if it produces a contradiction. Otherwise it is consistent. 

We can construct a machine which tests that a given proposi
tion is contradictory. Let its ·format be <con e >. It can be - p 
defined as follows: 

41. 1 
42.1 

t2.2 
.2.3 

<con *(eg)> ~ <£l()*(int<~eg>)> 

<£l(ez)(*V(ep)s(!?)i)e > 
~ <c2<elf(*V~ep)<QRQ si>)E(ez)>(ez)eg> 

<£!(ez)(eh)eg> ~ <cl(e 1)eg> 
<£l<e 1 )*(eg)> ~ <cl(e 1)<step *(eg)>> 
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*2 4 
I 3. 1 

13.2 
14.1 
14.2 
i5.1 
i5.2 
t5.3 

Comments. 

<£1Ce 1 )> ... <£.1CezP 
<c2 T(ess(!?)i)ez> ... e:s!? 
<c2 F(ep)(ez)eg> -+ <£l(ez(ep))eg> 
<Q.lU! '> ... ? 

<Q.lU! ?> ... 
<~(ep)e:(ep)ez> ... 
<~(ep)e:(eq)ez> ... 
<fli(ep)€> ... F(ep) 

T(ep) 
<elf(ep)e:e 1> 

The idea of the con machine is to run the process <int ep>, 
where ep is replaced by the original proposition, and maintain 
the full list of atomic propositions produced up to date. Recall 
that the int machine produces directly every proposition which 
its input proposition can produce hierarchically. Whenever a new 
atomic proposition is produced it is converted to its opposite 
and the list of accumulated propositions is scanned in order to 
determine whether it contains such a proposition. 

11.1 Function £Qn transfers control to the function cl which 
implements the main recursion of the program. Its first argument 
is the accumulated list of atomic propositions, which is initial
ly empty. The second argument is the metacode of the int machine. 
Function con assumes that its argument is a non-atomic proposi
tion (a generator). If it is atomic, no sentence is applicable, 
which leads to an infinite search (undefined process situation). 

12.1 An atomic proposition generated by *(eg) is found. 
c2 in the right side calls function elf, 'element of a 
set', to check for contradiction. 

12.2 A non-atomic proposition eh is discarded. 

12.3 Go on running the generator 

Function 
finite 

12.4 If the generator turns out to be finite and no contradiction 
is found, con runs forever. 

i3.1 A contradiction is found. The end. 

13.2 The current proposition does not contradict the accumulated 
list. It is added to the list, and the process continues. v 
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If P is a proposition then we interpret its negation as the 
statement that the conjunction of P and the human knowledge r is 
contradictory: 

t<£Qn t<and(f)(P)>>! 

Introducing the function ~ defined by 

we represent the negation of P as the prediction: 

t<~P>! 

We have now two 'cognitive' functions: <yP> establishes the 
truth of proposition P, <~P> establishes its falseness. 

5. Prefix notation and free format 

Our formal representation of processes and propositions is 
good for a machine, but a shorter though semi-formal represen
tation based on the usual functional notation will be more con
venient for a human being. Further on we shall use such a repre
sentation, which in this section is referred to as 'the free 
format'. In this representation the process initiated by a ma
chine P with an input xis denoted as P(x), the corresponding 
atomic propositions are P(x)! and P(x)?. A process or a proposi
tion will be used as an argument (input) for a machine without 
explicit reference to the metacode transformation. Thus y(P(x)?) 
is the process of proving P(x)?. The machines we have introduced 
and corresponding processes will be represented in a more read
able form, e.g. 

all(xES:P(x)) 

Similar notation will be used for the machines to be defined 
later. 

Our 'free format' notation is semi-formal only in the sense 
that the translation from this notation into strict Refal is 
defined (in this section) in natural language and not by a pro
gram for a machine, so one cannot immediately use a text in the 
free format as a machine input. Otherwise it is quite formal: 
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every 
unique 

linguistic object in the free format notation can be in a 
way translated into the strict notation. It should be 

emphasized that this translation does not lead to a significant 
growth in volume: our strict notation is designed for actual use 
with computers, and not as a theoretical device only. 

The reader who is not interested in knowing how the free 
format is translated into strict notation can skip the remaining 
part of this section without detracting from the understanding of 
our interpretation of mathematics. But the prefix notation has a 
value -- and, it is believed, a future of its own when it comes 
to mutual fertilization of mathematics and computer science. 

Consider a machine, or function, <Fex>. (As mentioned be
fore, a Refal function and a machine are synonymous concepts). To 
represent machines as objects of work we have introduced the 
metacode transformation. In the metacode this machine becomes 
*(FEx) (see shorthand notation in Section 2.3 for the explanation 
of symbols such as Ex). Compare this representation with the 
usual representation of a function where the function name serves 
as the prefix of the linguistic object: F(x). We shall make our 
notation easier to review and closer to habitual standards by 
introducing the prefix notation for Refal objects. We agree that 
if a machine is defined with a name F and a format which includes 
variables V 1 , V 2 , ••• , then its format will be represented in the 
prefix notation as 

0 F (tV 1 ,tV 2 , ••• ) 

For instance, the format <F(e )e > will become F0 (Ex,Ey) in the 
prefix notation. The superscri~t ~t a functional symbol 1ndicates 
the metasystem level of the object, i.e. the number of times the 
metacode transformation has been applied to the original Refal 
object. The superscript 9 shows that we are dealing with an 
active Refal expression. When a superscript is absent, 1 is 
implied, as in algebra. Since propositions are produced by meta
coding active Refal processes, the ground level for propositions 
is 1. 

In the prefix notation, we also reserve the right to use 
separators different from commas -- in particular, those borrowed 
from the Refal format -- in order to make representation more 
readable. Thus the format 
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~all(e )E(e ): e > -- v g p 

may be represented, by our choice. as 

or 

0 . 
all (e e:e :e ) -- v g p 

etc., provided that the conversion of this notation into the 
strict Refal is unambiguous. 

We agree, furthermore, that when it does not lead to ambi
guitiy we may represent free variables by just their italicized 
indexes (which must be letters) with metasystem level super
scripts, i.e. use x 0 for ex or sx, x for Ex or Sx• etc. The 
syntax type of the variable is supposed to be known from some
where. With this convention the metacode of the format above, 
which represents a propositional form, will be written as 

all(ve:g:p) 

The substitution of a function format for a free variable in 
another function format produces a composition of functions. The 
whole diversity of Refal expressions can be produced by substitu
ting object expressions for free variables in function formats 
and their compositions. However, we have an additional degree of 
freedom in Refal as compared with the usual functional notation, 
namely we can apply or not apply the metacode transformation in 
the process of substitution. Thus we come to two different types 
of composition, which we refer to as a call as value and a call 
as process (a distinction very close to that between a call by 
value and a call by name in computer programming). 

Call as value is the familiar functional composition taught 
in school. When we write F(G(x)) we mean that the value of the 
function G with the given x must be computed first, and then the 
result must be substituted for the argument of function F. In our 
prefix notation, as in the habitual notation, this type of compo
sition is correctly represented by a simple substitution of a 
function call for an argument. Indeed, according to our agree
ment, when we write F0 (G 0 (ex)) it stands for <F<Gex>>. This 
machine operate5 exactly as is required by call-as-value composi-
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tion. 

Call as process has already been used extensively in this 
book. The function~. for example, (see Section 2.6) takes 
both of its arguments as the metacode of a process, specifically 
a generator, and instead of just running this process until it 
ends (in fact, in a typical case it will never end), it inter
prets the metacode step by step and runs it in parallel with the 
process represented by the second argument. Here the process 
itself is important, not only its result in case it stops. 

Call as process is the substitution of the metacode of the 
machine 
calling. 
F 1+ 1 (tA). 

being called for an argument of the machine which is 
If Fi(A) is a function call, then its metacode is 
When using metasymbols for Refal expressions we shall 

denote by vn a variable of level n, and by En an object expres
sion of level n. 

Consider two machines F0 (ex) and G0 (ex), and let the machine 
G call the machine F as a process. We have here a three-level 
hierarchy of control, where the machine G (level 3) controls the 
operation of the 

~ 
machine F (level 2), which in its turn controls 

the processing of its argument (level 1). There are the following 
three cases of interaction between level 3 and level 1. 

(l)Value substitution. The argument of the controlled F machine 
can be given a definite fixed value, say E. Then the G machine 
controls a definite process F(E). In the prefix notation we 
write: 

which stands for <G*(FtE)> 

in strict Refal. This is one definite process. 

(2)Variable binding. The argument of the F machine can be left 
indefinite, being represented by the free variable e of the 

X 
format. In the metacode ex becomes a definite object expression, 
namely Ex. The controlling machine G determines how to treat this 
object. This is a situation where the G machine deals not with a 
definite process, but with a whole machine. We have: 

which stands for <G*(F*EX)> 

As in case (1), this is still one definite process. 
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A good example of this situation is given by the quanti
fiers all and sch. Consider the expression 

where N is the generator of all numbers. The all machine controls 
two machines here: N, which happens to be just a process (no free 
variables), and P, which happens to be a parameterized object (no 
activation brackets but a free variable). The free variable 
involved is in the metacode; it is an object expression *EX which 
is used by the all machine as a placeholder showing where to 
insert the objects produced by running N. Consider the search 
machine 

where S is a parameterized search: a machine which includes both 
activation brackets and a free variable. The sch machine substi
tutes the objects generated by N for *EX in the (metacoded) S 

machine and runs the resulting searches in parallel. It is one 
single process, but the S machine with different arguments is 
forced to take part in it by sch. 

(3)Metasystem reduction. In this situation a new machine emerges. 
It is defined in the following way. Give a definite argument E 

l 

to the F machine and substitute it as a process into the G 
machine. The result is a definite process. Now give another 
argument E 2 to the F machine, substitute it into G, observe 
another process, etc. For every argument of the F machine, the G 
machine produces a process, thus we have a new machine. What is 
its formal representation? 

With arbitrary object expression E, the process initiated by 
G is 

which stands for <G*(FE' )> 

where E' is tE, the metacode of E. Therefore the machine in 
question is: 

which stands for <G*F(<lle,x>)> 

Note that u has the same metasystem level as G (namely, zero), so 
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it is called by Gas value. The function F is in metacode, so it 

is called as process. 

For an example of this situation consider the activation 
machine act in the role of the calling machine G. We have: 

i.e. 

This machine takes an arbitrary argument, translates it into the 
metacode, forms the metacode of machine F with this argument, and 
activates this metacode, i.e. emulates process F with the given 
argument. The overall result is that this machine emulates F. If 
F stops with a certain argument and produces a certain result R, 

then this machine also stops and produces tR. 

The three situations we considered can be distinguished by 
precise syntactical signs. If there are no free variables or 
their metacodes in the machine called as process, it is situation 
l. A first-level variable E1 or s1 , is a bound variable: this is 
situation 2. A combination ~ 0 (V), where Vis a free variable, 
points to situation 3. 

When we are dealing with propositions all metasystem levels 
increase by one. The free variable of a machine becomes a first 
level va~iable in the proposition based on that machine, be it 
atomic or non-atomic. So, the statement that a machine A0 (ex) 
generates a finite process is A1 (Ex)!, or simply A(x)!. This is, 
strictly speaking, not a proposition but a propositional form, 

dependent on a free variable x (we shall call first level vari
ables free variables in the context of propositions). A bound 
variable, which in the machine has the superscript 1, is super
scripted by 2 in the derived proposition. Quantifying A(x)! over 
all numbers x, we have: 

Different variables in function formats can be treated dif
ferently both in the calling function and in the function being 
called. To produce all possible results of the composition of the 
call-as-process type, we first produce all possible combinations 
of formats and notice that all free variables in the functions 
being called turn into their metacodes (first level variables). 
To every of these variables one of the following three substitu
tions can be applied, which corresponds to the three situations 
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considered: 

in a machine in a proposition 

Value substitution: 

No substitution: bound variable V 1 bound variable V2 

Metasystem reduction: 

When a composite machine F is called as process by another 
machine, all the superscripts in the prefix notation of F get 
increased by one. For instance, let the machine S 0 (x 0 ,y 0 ) call 
P(x,y) for y 0 (as process) with the variable x of P bound and y 

reduced to z 0 . (We use letters for variables). The result is: 

( 1) 

Here 
1 et (l) 

Metacoding 

(2) 

0 0 0 0 
S (x ,P(x.~ (z ))) 

x 0 and z 0 are free, and x (i.e. x 1 ) is bound inS. Now 
0 be called as process by yet another machine, Q (x). 

and substituting, we have: 

This is a process, not a machine, for it has no free variables. 
The variables x 1 and z 1 are bound in Q0 . Still they are free in 
5 1 , as they were in (l); x is bound in 5 1 , but free in P 2 . 

Generally, in a function Fn of a metasystem level n, variables vn 
of the same level are free, while variables vn+ 1 of the next 
level are bound. Note that variables of different metasystem 
levels can be denoted by the same letters without any risk of 
confusion; on this account our formalism compares favorably with 
the conventional formalism of logic with its necessity of re
naming bound variables to avoid conflict. For one who writes a 
computer program this is a tremendous relief. It is also pleasing 
aesthetically; renaming variables does not attest to the elegance 
of a formalism, rather it shows that the details of the machine 
do not fit perfectly together but require an artificial device to 
bridge a gap. Suppose we want the Q machine to control machine 
(1) with variable Z 0 in it taking arbitrary values, thus defining 
a new machine. We can chose any letter to serve as the free 
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(I 

variable for this machine, f0t Jnstdnre, x again We perform the 
metasystem reduction Z 0 ~U 0 (x 0 ) in (2), which results in 

(3) 
0 2 l 0 0 Q (S(x,P (x ,U(U (x ))))) 

Consider examples of propositions in prefix notation. The 
set generator No£ all natural (unary) numbers will be used, as 
well as the tester = and the adding machine +. 

Example l. 
Usual notation: 

Strict Refal: 

X = y 

is finite with some (unspecified) values of free variables. 
Prefix notation: 

Example 2. 
Usual notation: 

=(x,y)! 

(Ex)(Ay)(y+x = y) 

First construct the propositional form: 

( 4) =(+(y,x) ,y)! 

Note that function= calls function+ as value: they are at the 
same metasystem level. Variables x andy are free here (level 1 
in a proposition). Quantifying over y we construct the all ma
chine, a generator which produces (4) with all possible y!s: 

(5) all 0 (y£N: =(+(y,x),y)!) 

Its metacode is the corresponding proposition: 

(6) 

Here y 2 is bound by the universal quantifier all. But what about 
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2? 
X • Syntactically, it is also a bound variable (level 2). What is 
its meaning? 

It has none at the moment. If we do not make a special 
provision, it will be a semantic error. the case where a machine 

is given something it does not expect as input. Return to the 
machine level (5) to see this. Here y is a bound variable, which 
is replaced, as the all machine works, by specific numbers in 
the propositional form (4) entering (5). But the free variable x 

remains as it was. As a result, the all machine will produce 
predictional forms, not predictions: 

( 6' ) 

=(+(0,x),0)! 
=(+(llll,x),llll)! 

... etc. 

If we try to ignore this difference, i.e. do not notice that a 
free variable is enetring predictions, we face an error in inter
pretation. Indeed, the first of the prediction says that the 
process 

( 7) 

is finite. But in fact this is not a process, it is a machine. We 
cannot put an expression which contains free variables in the 
view-field of the Refal machine; first they must be replaced by 
some values. On the first metasystem level, if we give an argu
ment which includes first level variables to function step, there 
will be an error, because this function does not expect first 
level variables; it cannot, generally, make a step uniquely if 
the contents of the view-field are not fully defined. One can see 
this comparing (7) with the definition of function +. In order to 
make a step we must know the value which is to replace ex· 

The general solution of this problem is only to watch that 
machines get objects of the type they expect as their inputs. 
With respect to interpretation, we accept the principle that 
whenever we have an object with free variables, it stands for the 
whole infinite set of objects obtained from it by substituting 
every permissible value for every free variable. In the context 
of propositions this is equivalent to the convention, usual in 
formal logic, that a free variable is implicitly universally 
quantified. Then 
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=(+(0,x),0) 

is equivalent to a certain generator, namely 

all 0 (xEN:=(+(0,x),0)) 

and so are other propositional forms in (6'). The proposition (6) 
acquires the same meaning as if thP bound variable x 2 were quan
tified universally. (Of course, there is one more hidden conven
tion here: quantification over all possible expressions for x is 
replaced by quantification over all numbers only). 

In order to be on the safe side, we can also avoid 
terpreting propositional forms as propositions and consider 

in
them 

as a different species: a machine, not a pr~cess. Then a genera
tor of propositional forms like (6) is not a legitimate proposi
tion. But we can convert it into a legitimate propositional form, 
which instead of producing predictional forms (6') produces pre
dictions by replacing x in (6') by a value given to it as an 
argument. The metasystem reduction of x 2 to level 1: 

will perform that conversion. Generally, if we are using a propo
sitional form in a call-as-process substitution, every free va
riable must be either bound by the calling machine or reduced to 
a free variable in the resulting propositional form. In our case 
we convert (6) to 

(8) 

To finish the example, 
(8) is a generator, 
using function Y: 

we must quantify x existentially. Since 
we first convert it into a prediction by 

( 9) y (a 11 2 ( y lEN l : = l ( + l ( y l , ll 2 ( ll ( x) ) ) , y 3 ) ! ) ) ! 

Here we again had to perform a metasystem reduction in order to 
keep x as a free variable. Now we simply substitute (9) into the 
sch machine and take the metacode. This is our result: 
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Now we make our last step t0ward a greater freedom in the 
representation of propositions. We note that if we know about 
each machine which of its arguments are called as value and which 
as process, and in each call as process we know which variables 
become bound and which free, then we can drop all the super
scripts, because they can be restored in a unique way. We can 
also drop all the calls of the functions ~ and U because they can 
be uniquely restored too. This is provided that we do not use 
identical variables at different metasystem levels. (Incidental
ly, this last restriction shows the location of the gap in the 
conventional notation. One could retort that if superscripts were 
added to conventional notation to reflect the syntax structure of 
the proposition then there would be no conflict of variables 
either. This, however, would again be an artificial device. In 
contrast, we do not add our superscripts. The prefix notation is 
only a shorter representation of the strict Refal notation, where 
all objects are constructed by two basic operations: substitution 
and metacoding. Metacoding has its semantics; it is not just a 
device to keep track of syntax structure). 

Using this agreement, proposition (19) becomes: 

(11) sch(x~N: y(all(y~N: =(+(y,x),y)!)))! 

Further on we shall use this free format notation. We shall 
also allow some further syntactic simplifications, understandable 
from the context. In all cases when we use a free format it can 
be uniquely converted into the prefix notation, and then into 
strict Refal. 
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C H A P T £ R 4 

l.Real-time and model-time 

Mathematics is the art of constructing the most fundamental 
models of reality. We formalize mathematics using the concept of 
the Refal machine. To create models of reality by means of the 
Refal machine we: (1) put into its program field some defini
tions, (2) put into its view field some 'processes' (which are in 
fact certain expressions representing initial stages of proces
ses) and start the machine. The processes going on in the view 
field of the Refal machine are modelling real world processes. 

We can distinguish two time scales here; two 'times' as it 
were. We write definitions and put them into the memory of the 
Refal machine as living human beings, in real time. When we run 
the Refal machine, the sequence of its steps represents another 
time: the time of the mechanical process we initialized. Although 
the process to be modeled occurs, presumably, in real time again, 
the Refal machine runs in a different time, which we shall refer 
to as model time. We can compress or expand model time unlimi
tedly -- in imagination if not in reality. We can run the Refal 
machine at a speed of one step, or one thousand steps, or one 
million steps per second. No matter what the actual speed is, we 
still can imagine a speed that is twice as high. Moreover, we can 
examine the stages of a mechanical process in the inverse order, 
that is we can reverse model time. Model time, unlike real time, 
is completely subject to our will. Model time is a feature of the 
machines we run on hardware or in the imagination. 

Knowledge is the existence in a cybernetic system of a model 
of some part of reality. Knowledge is both objective and subjec
tive because it results from the interaction of the subject and 
the object of knowledge. We know that knowledge is never com
plete.But if the information flow between the subject and the 
object is only in one direction -- from the object to the sub
ject, we can imagine a complete knowledge (i.e. a complete per
fect model) of the object; this idea is not contradictory. If 
there is a flow of information from the subject to the object 
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too, the notion of a complele model may become contradictory. Let 
s, be a system-object, and S 2 a system-subject. Suppose S 2 in
cludes a complete model of S 1 . Then it can run this model c~m

pressing model time with respect to real time, and predict the 
behaviour of s, for all times in advance. This prediction can be 
sent to S 1 • which can change its behaviour so as to falsify the 
prediction. This contradicts the assumption of a complete model. 
In particular, the notion of complete self-knowledge (the case 
when S 2 = S 1 ) is contradictory. 

It follows from this reasoning that when we are dealing with 
the processes of self-knowledge we must clearly distinguish be
tween real-time processes and model-time processes. If we allow 
the difference to be blurred we endanger the consistency of our 
theory. For example, when we say "imagine a real-time process A" 
we already are in a danger zone, because what we actually ima
gine is a model-time process, not a real-time process. It will 
cause no trouble if process A is detached from ourselves (we is 
the subject of knowledge), so that it cannot be influenced by 
what we are doing; otherwise, we can only say "imagine a model of 
a real-time process A , which, of course, is only partial". 

Our theory is a formalization of the self-knowledge of 
mathematics. Therefore the distinction between real-time proces
ses and model-time processes is for us an absolute necessity. The 
processes that take place in the view field of the Refal machine 
as the result of the application of sentences are model-time 
processes. Should the program field be fixed once and for ever, 
there would be only model-time processes in existence, and no 
change in real time. But in fact it is not fixed at all. The 
program field of the Refal machine which represents mathematics 
is changing in real time as we create more and more mathematics, 
which means that we define new processes and expand our knowledge 
of the processes already defined. 

It would be exceedingly inconvenient if we had to consider 
every part of the memory (program field) of the Refal machine as 
potentially variable in real time. We could hardly come to any 
definite conclusions in such circumstances. But we can define a 
certain number of real-time processes and give them a place in 
our formal system. Air temperature in the City of New York could 
be such a process. Or the mathematical knowledge of mankind. 

We shall represent real-time processes as follows. Like 
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model-time processes, a real-time process is distinguished from 
an object by a pair of activation brackets which delimit its 
representation. The contents of the brackets may be anything 
which identifies the process, e.g. a symbol. However, the work of 
the Refal machine on the representation of a real-time process 
does not reproduce all its stages, as in the case of a model-time 
process (we do not know them all in advance), but in one step 
produces the current stage of the process. Thus real time remains 
real time and no attempt (not even a concealed one) is made to 
substitute a model-time process for a real-time process. The 
notation <R> of a real-time process is a device which allows 
the Refal machine tc have access to the process; which means to 
its current stage. We can describe this situation as the presence 
in the program field of a sentence: 

<R> ~ e 

where e is an object expression which represents the current 
stage of the process <R> and changes in real time. For instance, 
we can use <tempNYC> in a Refal program and declare that this 
term will be replaced, as the Refal machine works, by the current 
temperature in New York expressed in agreed units with an agreed 
precision. The results may be different if we run such a program 
today and tomorrow. 

The Refal machine is a mathematical model of the cognitive 
apparatus of the human being. We can compare this apparatus with 
a complex computer system. In computer systems we distinguish 
subsystems which work off-line and those which work on-line, in 
real time. Running off-line subsystems is analogous to those 
processes in human brain which we describe as imagination. Usual
ly we see mathematics as dealing with our imagination. This is 
generally true, but with a notable exception: when developing 
metamathematics, i.e. mathematical self-knowledge, we cannot, as 
disussed above, limit ourselves to model-time processes only, 
because human knowledge is a real-time process which has no 
complete model. Thus the model of human cognition which we are 
constructing must recognize the fact that our brains do not exist 
in our imagination only, but are real cybernetic systems which 
exist in real time and have subsystems which work on-line, in 
real time. 

Access functions to real-time processes ih the Refal machine 
imitate links between our cognitive apparatus and the real world; 
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they are sort of 'sense organs' of the Refal machine. The real 
world, it must be noted, includes not only things external to us 
but also the current state of our cognition. We can create models 
of external processes, and then models of our models of external 
processes, and models of models of models, etc., but the whole 
hierarchy will invariably exist in the real world and will be 
open to change in real time. 

The knowledge r which shows up in the semantics of mathema
tical propositions is a real-time process. To connect the Refal 
machine with this process we use the access function <gns> 
('gnosis'). The symbol gns is a regular Refal symbol. The 
activation of ~gives (in one step) a proposition which sums up 
all the knowledge we (the subject of mathematical knowledge, an 
idealized humanity) have at the present time. 

We shall use the subscripted symbols r,, f 2 , r 1 , etc. to 
denote specific stages of the human knowledge process. Since the 
result of the activation of <gns> may be different at different 
times, the process <~> is undefined in Refal, or, equiva
len~ly, defined by a sentence 

the right side of which is unknown to the Refal machine. The 
functions y and Y represent the concepts of truth and false
hood. As we mentioned before (see Section 3.3), our formalism 
allows two interpretations of the concept of truth. One interpre
tation treats r as a definite expression and leads, as we shall 
show soon, to intuitionist logic. This interpretation is static 
with respect to the real-time process of human knowledge. It does 
not exclude the possibbility of r changing in real time, but 
during one run of the function y (or y) the stage of r is taken 
to be fixed, unchanging. The following sentences define the 
cognitive functions in static interpretation: 

<imR(<gns>)~ ep> 
<con(<~ <gns> >)(<~ ep>)> 

These functions are not machines; they depend on real time. 
But once the concretization of <~> is done, the further opera
tion of Y/Y in static interpretation is mechanical. Essentially, 
we deal here not with one concept of truth but with as many 
concepts as many stages of r 1 or r are there. When put it in 
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words, the definition of truth which leads to intuitionist logic 
is as follows: 

Static interpretation of truth 

~prediction A! is true relative to r 1 (or in r 1) 
if the search A with r := r 1 is finite. 
~proposition generator is true relative to r 1 
if with r := ri it produces only propositions 
true relative to ri . 

The other interpretation corresponds to our intuition of 
objective truth and leads to the usual, classic logic. In terms 
of our theory it is dynamic because it takes the real-time pro-
cess r as a 
ses y and v. 
the searches 

whole and involves all stages r 1 of r in the proces
The ~~rocess results from running in parallel 

with each new stage ri as it appears in real time, and y is 
defined analogously: 

<v e > p 

i<imQ(<gns>~e > p 
~sl 

i<Y ep> 

i<con(<~ <gns> >)(~ ep>)> 
~sl 

i<Y e > p 

In dynamic interpretation, y(P) and v(P) are genuine real
time processes in which the operation of the Refal machine is 
intertwined with the process of human knowledge. They depend on 
the time interval 6t that it takes for the Refal machine to make 
one step, but those features of the cognitive functions which are 
essential for our theory do not depend on 6t. Let ri be the state 
of human knowledge at the moment when the Refal machine is making 
its i-th step. Then the function y(P) will run in parallel the 
searches: 
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<imp(r 3 ) ... P> 

etc., each next process one step behind the preceding. Human 
knowledge, as we defined it, is a cumulative process, thus the 
loss of r 1 (as well as of any stage except the last in real time) 
is of no consequence. If ever a stage r 1 appears in human know
ledge such that <imQ(r 1 )~P> is finite, and only in this case, the 
search y(P) will be finite. The search y(P) will be finite if and 
only if P contradicts some stage r 1 . 

The corresponding definition of truth is: 

Dynamic interpretation of -f'h.u.'t A. 

A prediction A! is true if there is such a (true) knowledge r 1 
that.with r := ri the search A is finite. 
A proposition generator is true if with any (true) knowledge r 1 
it produces only true propositions. 

The possibility of representing processes by objects through 
the use of the metacode and activating them through the use of 
the functions step and act, when necessary, has been an essential 
part of our formalism. When we allow real-time processes like 
<tempNYC> and <gns> , functions step and act become partially 
undefined. We extend the definition of these functions by expres
sing their result through the access functions for real-time 
processes. Let <R> be a real-time process (we shall often iden
tify a real-time process with the corresponding .access function 
in order not to encumber our terminology). The result of the 
concretization of <step *(R)> should be the metacode of the 
result of one step of the concretization of <R>. Since we postu
late that access functions are concretized in one step, we define 
the step machine when applied to a real-time process <R> by the 
sentence 

<~ *(R)> ... <~ <R> > 

The function act gets defined thereby, but we can also add one 
more sentence for the reader's convenience: 
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<~ *(R)> ~ <~ <R> > 

These sentences are presumed to be found in the memory field for 
every real-time process. 

Metacoded expressions representing processes fall now in two 
categories: 

(1) Those which never call real-time processes. We shall call 
such processes mechanical. They are generated by an autonomous, 
or closed machine and are completely defined and deterministic. 

(2) Those which at one stage or another call a real-time process. 
The machine which generates such processes is not autonomous, it 
is open to the world, and first of all, to us -- the subject of 
knowledge. We assume from now on that the Refal machine can have 
no direct contact with physical processes in the world bypassing 
our consciousness; whatever is changed in the memory field is 
changed by our decision. Processes generated by such interaction 
between the subject of knowledge and the machine will be called 
metamechanical. In terms of computer science, the machine here 
works in the tnteracttve mode, and the subject of knowledge is 
the user of this machine. The 2Sth century's physics has dis
covered that we cannot eliminate the subject of knowledge from 
our picture of the physical world. Our theory reflects an analo
gous situation in mathematics. Mathematical knowledge is the 
construction of machines to model reality, but these machines do 
not always work autonomously: some are used in the interactive 
mode. 

The process <y P>, which we denote simply by y(P) in the 
free format notation, is an example of a metamechanical process. 
So is y(P). Let us trace how real-time access functions are 
called when we deal with metamechanical processes represented in 
metacode. Suppose we activate y(P), that is place 

<act *(yP)> 

in the view field of the Refal machine. The first branch will 
become: 
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then 

and then 

which requires an access to human knowledge for further concreti
zation. 

2. Formal systems and theories. 

The formal systems we are going to consider will be con
structed in the framework of a metasystem common to all of them. 
This metasystem is the Refal machine, together with a number of 
functions (machines) defined in its program field. All logical 
machines defined above are in that number, plus a few more which 
we shall define later. 

A formal system is defined if: 

(l) a Refal representation for a number of parametrized processes 
are rlefined; and 

(2) a proposition is given which is believed to be true, and is 
referred to as the knowledge of the formal system. 

Some of the parametrized processes of the formal system may 
be defined by a group of sentences in the program field, i.e. as 
Refal functions. Others may be left undefined, or defined par
tially. Even if not defined, a process can be an object of study 
and knowledge. We may not be able to reproduce all the stages of 
a process, but still know that it is finite or infinite, or that 
if it is finite then a certain proposition must be true, etc. 

The knowledge of a formal sytem F 1 contains in a condensed 
form all the propositions that can be proven true in F1 . We 
shall denote the knowledge of a specific formal system F. by 

l 
ri, and the corresponding cognitive functions by ~i and v1 . Thus 
a proposition Pis provably true in F1 if and only if ~i(P) is 
finite. It is provably false if and only if yi(P) is finite. The 
set generator int(r 1) produces all propositions provable in F1 . 
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Our concept of a formal system differs in two ways from the 
usual concept. First, we do not ~istinguish between axioms and 
inference rules, they are united in the concept of a generator. 
The knowledge rt of our formal system is analogous to the axioms 
of a usual formal system, but because of the nature of our propo-
sitions, no additional rules of inference are necessary. 
proposition P is among those produced by int(ri), it 
ponds to the derivability of P from ri in the usual 
system. When P added to ri produces a contradiction, it 
ponds to the derivability of ~P, the negation of P. 

When a 
cor res

formal 
cor res-

Second, our concept of a formal system is, starting from the 
basic definitions, semanttcal, in contrast to the usual purely 
syntactical concept. Intuitively, every prediction A! is either 
true or false: true if A is finite and false otherwise. Every 
proposition is also either true or false: it is true if and only 
if it hierarchically produces only true predictions. This intui
tion, which includes the idea of potential infinity, is the basis 
for proofs in our metasystem. Once a formal system is created, 
its further use is, as in the case of usual syntactic systems, 
purely mechanical. Intuitive proofs we construct in the metasys
tems serve to justify the formal systems we create. 

We argue that this co-existence of a metasystem which has 
formal objects and intuitive proofs, with formal systems in which 
proofs 
systems 

are mechanical is not only natural but necessary. Formal 
are created in order to express and produce knowledge. 

But how do we know that all the propositions that can be mechani
cally produced in a certain formal system F 1 are true? As we 
already discussed, we have no way to know it for sure; we can 
only trust to our intuition that a given system can be relied 
upon. Moreover, we shall be reluctant to use Fi if our intuition 
does not suggest that Fi is correct, i.e. produces only true 
propositions. And we shall never use Fi if we feel intuitively 
that it is not correct. Of course, our intuition is not infal
lible, and it may happen that a formal system we have constructed 
yields a false prediction. Then we make a change to eliminate the 
error; the experience of an error and its correction leaves an 
imprint on our intuition. Still intuition remains the supreme 
judge in the construction of formal systems. 

A formal system is, essentially, a machine which encapsu
lates only a certain amount of knowledge. You cannot expect more 
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output from a generator, than you have put into it through its 
definition. Goedel's result that no formal system can produce all 
the true statements about a machine, which is sophisticated 
enough, is intuitively taken as natural with our concept of a 
formal system, while it comes as a surprise with the usual con
cept. 

We shall distinguish between a formal system and a theory. 
While a formal system can be fully represented by an object (the 
metacode of the machine), a theory is a real-time process resul
ting from human effort to gain new knowledge. Formal systems we 
create are stages of theories. Sometimes we say 'a theory' mean
ing, in fact, the formal system which is the latest stage of a 
theory. Some theories may be completed by creating a formal 
system which gives answers to all possible questions meaningful 
in the theory. But this is rather an exception. The most impor
tant theories are infinite real-time processes. 

Among the objects and processes of a theory we distinguish 
primary objects and processes: those which we treat as a given 
real4ty and wish to explore. Other objects and processes are 
created as exploration tools. The primary objects of a theory may 
be defined either by listing them when their number is finite, or 
by defining a machine which generates all of them. Primary pro
cesses may be defined either directly and completely by Refal 
sentences, in which case we call the theory cybernetic, or indi
rectly by propositions believed to be true and called axioms, in 
which case the theory is axiomatic. Hybrides of these two kinds 
of theories are also possible. 

We can illustrate the difference between cybernetic and 
axiomatic theories by taking arithmetic as example. 

In cybernetic arithmetic (known also as recursive arithme
tic) the numbers are strings: 

0, 01, 011, 0111, ... etc .• 

or their equivalents. Operations on numbers are machines: the 
adding machine, the multiplying machine, and possibly others. All 
these machines are defined. The adding machine, for instance, is 
defined by the sentences: 
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When we add numbers we run this machine or one of its more 
sophisticated equivalents, like a pocket calculator. 

In axiomatic arithmetic there is one number constant ~ and 
an unde(tned function <s e > which produces the 'next' number 

- X 
after ex. Repeated application of the function ~ produces all 
possible numbers. The functions of addition and multiplication 
are also undefined, but they comply with a number of axioms. The 
axioms relating functions ~ and + are: 

X + ~ = X 

X + ~(y) = ~(X + y) 

They resemble the sentences defining addition in cybernetic 
arithmetic, but conceptually they are different: they are a 
part of the knowledge, not the machinery, of the theory. The 
function of equality which is used in the axioms is not defined 
either; its well-known properties, stated as axioms, is all we 
know about it. 

The only way to satisfy our intuition that a given non
trivial formal system is trustworthy is to construct it starting 
from scratch and proceeding by steps in such a way that it is 
intuitively convincing that if our formal system was correct 
before such a step, it will be also correct after the step. The 
most obvious way to make a step is to add a new proposition to 
the current knowledge. This proposition may be the formalization 
of a prediction proven intuitively. Or it may be a generator of 
predictions; then an intuitive proof should be given that it 
generates only true predictions. In both cases we must be sure 
that after adding a true proposition to a correct system we 
receive a correct system: an assumption which, as we shall see 
soon, is not automatically true. 

The act of adding a proposition to the knowledge of a 
formal system is a statement . Using a notation fashioned after 
the programming language ALGOL, the statement P is: 

(1) r := and(r,P) 

A correct statement is such that the resulting formal system is 
correct if the original system is correct. 
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We must now find a firm ground on which to construct intui
tively safe proofs that a given proposition is true or false. 
Since the definitions of truth are different in intuitionistic 
and classical logics, we examine the grounds for these two cases 
separately. Nevertheless, we shall come to the same restrictions 
on the use of cognitive functions in both logics. In this section 
we take up the static, intuitionist, definition of truth. 

With the static definition, the searches Y and Y become 
mechanical after the second step. For a mechanical search it is 
intuitively safe to believe that it is either finite or infinite. 
If the current human knowledge ri is consistent, and we always 
assume that it is, then y(P) and y(P) cannot be finite simulta
neously. Therefore, three situations are possible: 

y(P)! and v(P)? 
y(P)? and y(P)! 
y(P)? and v(P)? 

P is true 
P is false 
P is neither true nor false 

This can serve as the basis for assigning truth-values to propo
sitions. There is a snag here, however. When ri changes, the 
functions y and v change too, and a proposition which was marked 
true before can now become false. We certainly do not want that. 
Specifically, when we construct a formal system by steps of the 
form (1), our knowledge may grow, and this will change the cur
rent human knowledge ri. Therefore, we must examine in greater 
detail the relationship and interaction between the human know-
ledge referred to by propositions and the knowledge of the formal 
system. In the most important case the two coincide. This will 
take place if we consider the real-time construction of a formal 
system which fixates our real knowledge in some field of mathema
tics. Then we simply have no pertinent knowledge other than the 
one put in ri at every moment in time. So, the same sequence r 1 , 

r 1 , r 3 , ... etc. represents both the steps of the construction of 
the formal system, and the stages of pertinent human knowledge. 

Let the knowledge of the current system be r 1 . There are 
two ways of understanding (1). We can understand it as a sort of 
'evaluation' of knowledge, meaning by the 'value' of a knowledge 
its meaning, i.e. the hierarchical set of predictions it pro
duces. Then to produce ri+l we must first 'evaluate' P, using 
r 1 , i.e. substitute r 1 for human knowledge in P,and then add the 
resulting knowledge to ri. Suppose P is 
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and remember that y(P) is by definition 

Then 

(2) 

Using this approach systematically we have to keep track of 
all the previous formal systems in our current formal system. 
Moreover, it contradicts our intuitive understanding of condi
tional propositions. When we say "if P is true" we mean "true 
according to the sum total of our knowledge", therefore the use 
of rj with } less than the index of the current formal system in 
the ~ clause is not justified. It can be shown that if we accept 
this approach to statements, some fundamental formulas of logic 
common to both classical and intuitionist logic (specifically, 
the contraposition law) will not hold. 

Therefore we adopt the other understanding of (1), accor
ding to which the operation and in (1) includes no 'evaluation' 
of knowledge, but is performed over the formal representation of 
propositions, not over their meanings. In each formal system 
resulting from consecutive statemants we use the same symbols ~ 

and Y, which refer to the knowledge r of the formal system it
self. According to the definition of functions imQ and con, this 
means that y and Y may call themselves recursively. For the 
example above, this approach gives 

where ri and ri+l are now formulas which may include (in fact, 
almost certainly do) reference to r through the functions ~ 

and ~- The moment we execute (l), the cognitive functions in 
both P and r start referring to the new knowledge ri+J· 

This recursive nature of formal systems, however, leads to 
certain paradoxes. When we make a statement we change the formal 
system. Since the proposition we are adding may refer to cogni
tive functions, and they depend on the knowledge of the current 
system ri, which changes in the process of addition, the meaning 
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of the proposition when it becomes a part of system may be diffe
rent from what it was before. A proposition P could be true, but 
the statement P incorrect. 

We can show it in this simple example. Let A be an infi
nite process and suppose that the current formal system is such 
that it cannot establish the infiniteness of A, i.e. the process 
of proving A? is infinite: Y(A?)? . Then the proposiiton 

(4) P = and(A?,y(A?)?) 

is true. However, the moment we add P to the formal system, the 
knowledge r is changed and includes now P; the proposition A? 
becomes provable, and y(A?)? false . The new r is, therefore, 
false. 

One might think that this paradox occurs because of the 
inner contradiction in the proposition (4). It is true that (4) 
will create an incorrect system when added to any, even an empty, 
formal system. But consider a formal system r 1 which includes 
y(A?)? and nothing more. It is correct. Proposition A? is safely 
true. Still when we add the two we again have an incorrect sys
tem. 

To be able to construct correct formal systems by adding 
true propositions, we must put forward certain additional requi
rements to the propositions used in statements. The current human 
knowledge in static interpretation can be called the context in 
which a proposition acquires an exact meaning and a truth value. 
The paradoxes we have just seen arose because the proposition 
y(A?)? which had been true in the original context, became false 
when A? (true in itself) was added to the context. Therefore, 
what we need in propositions can be called the context safety .A 
proposition P is context safe if once found true (false) in a 
true context ri, it will also be found true (false) in the con
text of the conjunction ri&rj with any true rj. 

3. Strong Interpretability 

Propositions of our theory should deal with context-safe 
processes only. This is a necessary condition. But we want some
thing else. According to our naive intuitive interpretation of 
mathematical propositions they do not refer to any human know-
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ledge at all, but express "objective" properties of processes. We 
take issue with this view and offer a more formal interpretation 
which makes an explicit reference to human knowledge and its 
subject in the philosophical sense, i.e. the possessor and deve
loper of that knowledge -- the human race. But we do not want to 
throw away our intuition of objectivity, rather we want to rein
terpret it in our terms. We shall limit ourselves to such propo
sitions only that allow an intuitively objective interpretation, 
or rather, evaluation, which assigns to it one of two truth
values: T (true) and F (false). We call these propositions inter
pretable. The definition of interpretability which we are going 
to give does not depend on the definition of the functions v and 
v; it is equally good for intuitionist and classical logic. But 
it is derived from the classical, not intuitionistic, logic. The 
interpretation which stands behind the concept of interpretabili
ty is dynamic, classical. The definition of interpretability will 
make an interpretablP. proposition automatically context-safe. 

Interpretability is defined inductively. The base of induc
tion involves only those processes that do not call cognitive 
processes and are deterministic. If A is such a search then A! 
and A? are interpretable. If U is such a generator, and none of 
the propositions it produces refers to cognitive processes, then 
U is interpretable. 

The role of the cognitive processes v and y in our theory is 
to establish that a given proposition is intuitively true or 
false. Implementations of v and Y which are different but always 
have the same effect (i.e. stop or do not stop) for any given 
argument should be considered equivalent. Specific stages through 
which a cognitive process passes should be of no consequence. 
This is a necessary condition for context-safety. Indeed, as new 
knowledge is added to r, every stage of the processes v and y 
changes; still we expect that v(P) will stop only if P is true, 
while y(P) will stop only if P is false. We create cognitive 
processes in order to predict the behavior of some underlying 
"objective'' processes, and for our theory to reflect "objective" 
reality we must be able to interpret every proposition in terms 
of objective processes only, without reference to any particular 
stage of the process of cognition. 

The concept of interpretability can be compared with the 
concept of invariance in physics. When we write equations of 
theoretical physics, we use some reference system, thus it be-
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comes ingrained in the meaning of the equations. Yet the most 
important physical quantities are those which are invariant with 
regard to transformations of the reference system. We ascribe to 
them more objectivity, because they do not depend on our choice 
of the system of reference. Thus we choose a reference system and 
use it to create models of reality, but then look for those 
features of these models which are independent of the reference 
system. This is the only way to give a precise meaning to the 
concept of objectivity: not to ignore the fact that our knowledge 
always has a subjective component, but to construct invariants 
which are independent of at least some part of our arbitrary 
choices. 

Cognitive functions are sort of reference systems of mathe
matcal knowledge. The analysis we made in Chapter 3 showed that 
they are present in the meaning of mathematical propositions, 
like reference systems are present in the meaning of the equa
tions of physics. Conversely, reference systems of physics can be 
called cognitive functions, or devices. 

Our choice of logical machines is arbitrary (although very 
understandable), and so is the choice of the generators ri repre
senting our knowledge. Moreover, we are not limited only to those 
cognitive. functions which are expressed through the machines imp 
and· con; nor are we limited to just two cognitive functions. A 
general theory of knowledge, the metatheory of scientific theo
ries, can consider an arbitrary number of cognitive functions and 
look for invariants independent of them. In our theory we have 
two cognitive functions v and Y, which 'measure' the truth-values 
of propositions. Interpretable propositions are analogous to 
invariants of physics: their truth-values do not depend on the 
choice of cognitive devices. 

Consider the proposition v(P)!, where Pis a proposition 
from the inductive base, i.e. not referring to cognitive proces
ses. Its meaning is: using certain means we have been able to 
prove that P is true. If we do not say anything about the means 
used, this meaning is the same as if we simply stated the propo
sition P. The proposition v(P)! has the same objective interpre
tation as P. 

Consider the proposition v(P)?. It means: using certain 
means we are not able to prove P. Unlike the case of v(P)!, this 
proposition loses its content if we do not specify the means 
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used. It does not tell us anything about the truth or falsehood 
of P, it has no objective interpretation. Moreover, the proposi
tion y(P)? directly violates the requirement of context-safety 
a! formulated above. It stands for the generator 1nf(y(P)), which 

every 
of the 

stage 
form 

is a generator of predictions explicitely involving 
of the process y(P). Therefore we ban propositions 
y(P)? from our theory, while allowing y(P)!. By the 
ing we allow v(P)! but ban v(P)?. 

same reason-

Generalizing this argument, consider a process A which at 
some stage initiates a cognitive process y(P) or v(P). If the 
results of A depend only on the fact that the cognitive process 
with P as the argument ultimately stops, then such a process A 
can be interpreted in objective terms, specifically, the results 
will be conditional on the truth (the case of y) or falsehood 
(the case of y) of the proposition P. Generalizing further we 
can understand by P any proposition whose interpretability has 
already been proved. Thus we come to the concept which will be 
referred to as strong interpretability, to distinguish it from a 
version which will be introduced below as weak interpretability. 

The definition of atrong interpretability 

I.l If A is a deterministic model-time process 
with no access to real-time processes, 
then A! and A? are interpretable (atomic) propositions. 

I.2 If A is such a process that whenever it initiat~es _ .. 
a cognitive process of the form y(P) or y(P),~ ) 
(1) Pis an interpretable proposition, and · --~ 

(2) the results of A i.e. 
- in case when A is a search, the fact that it is finite, 

and if it is finite its final stage, and 
- in case when A is a generator, the set it generates, 
do not depend on any stage of the cognitive process 
but merely on the fact that it is finite or infinite, 

then the process A is interpretable. 
I.3 If A is an interpretable search, 

then A! is an interpretable proposition. 
I.4 If G is an interpretable generator 

which produces only interpretable propositions, 
then G is an interpretable proposition. 

1.5 A proposition is inte~pretable 
only if it can be proved interpretable 
by definitions (1.1) to (I.4).t.) 
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We proceed now to analyze our intuitive belief that a mean
ingful proposition is either true or false-- objectively, i.e. 
independently of whether we exist or not. We do not accept this 
notion literally for the reasons discussed in Chapter 1 and above 
in this section. We want to interpret it in terms of our theory. 

The fundamental role in this interpretation is played by the 
principle of the excluded middle in the form: Every mechanical 
search A is either finite or infinite: 

QL(A, y(A?))! 

Our intuition accepts this principle without hesitation; it 
seems impossible to deny it. But its formulation (EM 1 ) in our 
theory may seem questionable, which, in turn, may put in question 
our main thesis. One might ask: 

(a) How do we know that the human race will accumulate knowledge 
infinitely? Is it not possible, or even certain, that at some 
time humanity will cease to exist? Then r will stop changing in 
real time, and the proposition A? for some infinite A may never 
be proved. 

(b) Even 1£ we assume that the process r is infinite, is it not 
possible that such a process A exists that, though it is actually 
infinite, we shall never be able to prove it? 

The answer to the first question is: of course, we do not 
know whether humanity will accumulate knowledge infinitely. But 
it has nothing to do with our theory. We are engaged in meta
mathematics, not futurology. Humanity is the subject, not the 
object of our study, as it is in futurology. Its role, or mode, 
is different. The modality of model-time processes is necessity. 
We say 'this process is finite' meaning that it will necessarily 
stop. The future of such processe~ is predetermined, definite. 
The modality of real-time processes is always possibility, never 
necessity. Even when we say about a real-time process, R, which 
is the object of our ~tudy that it is finite, the concept 'fi
nite' is actually applied to the model time. To state that R is 
finite is to create some model M of it, a mechanical linguistic 
process which is finite, and then use this model in decision 
making as a substitute for R. 
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The real-time process of human knowledge in our theory is 
not an object of study: our object of study is the linguistic 
processes we create in mathematics. The human knowledge process 
is completely in the mode of possibility. We do not create its 
models, we participate in it, we make it up. The correct reading 
of y(P)! is not that this process is finite, or will come to an 
end, but that it can come to an end. According to our defintion 
of dynamic interpretation of truth, the statement y(P)! means 
that such a stage ri of human knowledge is possible which implies 
P. If I can indicate such a r 1 (which is accepted as true by my 
intuition, this is always a necessary condition), then 1 consider 
the matter decided. But 1 can have no convincing rt to prove P 
and still discuss the question whether such a ri exists or not. 
Then y(P) becomes a part of my theory without my knowing whether 
it is finite (r 1 exists) or infinite (it does not exist). The 
meaning of 'exists or not' with respect to the cognitive func
tions is, again, subjective, not objective. It is essentially a 
mtndset. Since the process of cognition is not given objectively, 
its future depends on what decisions we are taking now. To state 
that the r 1 in question exists, without actually presenting and 
justifying it, means to set the goal of finding it. It may happen 
that such a statement will become a self-fulfilling prophecy. If 
we were trying to be objective, such occurencies should have 
bothered us. But we are not after an objective study of r; it is 
impossible. A statement which refers to cognitive functions is, 
before it is proved or disproved, a plan of cognitive action, a 
proposal to act, a proposition. It is we ourselves who define our 
cognitive process. We are not completely free to define it, 
because the propositions we declare as knowledge must not contra
dict our experience and must satisfy our intuition as true. But 
within these limits we are free. If we decide to set an addi
tional limit to our knowledge, this limit becomes a reality, a 
self-fulfilling prophecy. To expand our knowledge in the maximal 
possible way, we should accept as true any proposition which does 
not lead to contradiction. Who asks more, gets more. We must 
accept as poossible everything that is not proved impossible. 

The answer to the question (b) is that the way it is asked 
contains a contradiction. As we discussed more than once, the 
statement 'the process A is actually infinite' is true if and 
only if y(A?) is finite. There is no way to verify this state
ment other than to refer to the process of human knowledge. This 
gives us a hint that (EM 1 ) can never be proved false. Indeed, to 
prove that the process or in (EM 1 ) is infinite we must prove that 
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A is infinite. The moment we do it, we prove that y(A?) is 
finite. Then the Q£ process is finite. So, (EM 1 ) cannot be false. 
This proposition expresses a mindset, namely, our determination 
to explore the process A until we either discover its end or 
prove that it is endless. There is no third possibility, because 
we do not want it: thi5 is the origin of the principle-- or the 
law-- of the excluded third (middle). The intuiitionists reject 
the law of the excluded middle. They are free to do it. But one 
must uderstand the nature of this decision. It is putting a 
roadblock on the path of knowledge without any compelling reason 
for it. 

What we have ju~t proved can be formulated as 

Lemma. The assumption of (EM 1 ) cannot lead to contradiction. 

Our intuitive conviction that every search is either finite 
or infinite is based on the acceptance of (EM 1 ). Although on the 
surface of it no process is evoked when we say 'P is actually 
either finite or infinite', the meaning of this expression in
clud~s a cognitive process, as every statement does: knowledge is 
interaction of the subject and the object. 

We shall prove now that for every interpretable proposition 
we can construct a process of objective evaluation which will 
lead to marking the proposition as either true or false. 

(a)Baae. Consider an atomic proposition A!, or A?, where A is a 
mechanical search. We believe that such a proposition "actually 
is" either true or false. But what does it mean? That there is a 
process which results in marking the proposition as true or 
false. This process can be constructed using (EM 1 ). It consists 
in running the searches A and y(A?) in parallel and marking the 
proposition Tor F depending on which branch ends. We call this 
process the objective evaluation of a proposition: 

l<true<act ea>> 
<obj ea!> ~ sl 

l<false<y ea?>> 

l<false<act ea>> 
<obi ea?> ~ sl 

l<true<y e ?>> ----- a 



<true ex> ~ T 
<fal§e ex> • F 

All we said above concerning the disjunction in (EM ) is 
l 

applicable also to the process obj. In particular, the Lemma 
guarantees that the assumption of the finiteness of obi will not 
lead to a contradiction. 

(b)Induction on generation. Consider a proposition-generator 
which calls no cognitive functions; let it be P. We can assume 
that as a process it is infinite. If it is finite, we modify it 
so that instead of stopping it goes on infinitely without pro
ducing new members. All the propositions produced by Pare inter
pretable and, by the inductive hypothesis, have a definite objec
tive evaluation. Intuitively, P is true if it produces only true 
propositions. We can construct a process which tests this. Every 
time that a proposition is produced by P we apply the process of 
objective evaluation to it. By the induction hypothesis, it is 
always finite. If the result is F, we stop and mark the proposi
tion-genrator as F. If it is T, we go on running the generator. 
This defines a certain process; let us denote it as A. Although A 
is not mechanical, the reasoning which led us to accept (EM 1 ) is 
still applicable to it. Again, the assumption of (EM 1 ) cannot 
lead to a contradiction. Therefore we construct the finite pro
cess of objective evaluation which runs the process A and the 
proof of its infiniteness in parallel. This process assigns toP 
a definite truth-value. 

(c)lnduction on cognitive function calls. Consider an interpre
table search, say A. Whenever y(P) or y(P) is called, the propo
sition P is interpretable and, by the induction hypothesis, has 
an objective evaluation. Modify A as follows. When y(P) is met, 
initiate the process of objective evaluation of P. It is always 
finite. If the result is T, replace y(P) by any object expression 
(according to point 1.2 in the definition of interpretability, 
the further development of A will not depend on it). If the 
result is F, replace it by any infinite process. Let the process 
modified in this way be A'. It is either finite or infinite. In 
the first case we intuitively take the proposition A! as true, in 
the second case as false. Reasoning as in case (b), we can apply 
(EM 1 ) to A'. The process QQj(A' !) must be finite. It is the 
objective evaluation of A!. It results in the assignment of a 
definite truth-value to it. 
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Consider an interpretable proposition-generator, say G. 
Replace ~/y-calls as above. The resulting generator can be 
treated as in point (b). Thus we again are able to construct a 
process, the objective interprtetation of G, which is finite, 
produces Tor F, and corresponds to our intuitive understanding 
of objective truth-values of propositions. 

A process, say A, is semantically dependent on another 
process, say B, if one of the future stages of A includes 
<ytB!>, or <vtB?>, or <vtB!>, or <vtB?> as a subexpression. For 
the process A to be interpretable all processes on which A 
semantically depends must be interpretable, and their interpreta
bility must have been established prior to the consideration of 
the interpretability of A. The relation of semantic dependence is 
obviously transitive. If a process semantically depends on itself 
we refer to this situation as a semantic recursion. For a para
metrized process, semantic recursion, like the usual recursion, 
may be finite or infinite. A process which generates infinite 
semantic recursion, e.g., the process <A> defined by the sen
tence: 

(1) <A> • (y*(A)?> 

is not interpretable. Compare it with the usual infinite recur
sion: 

(2) <A> • <A> 

The process <A> defined by (2) is perfectly interpretable and 
infinite. The question whether <A> defined by (1) is finite or 
infinite has no meaning. We understand what finiteness/infinite
ness is when we speak of deterministic, mechanical processes. 
With real-time processes, as we discussed above, the modality of 
necessity gives place to the modality of possibility. The concept 
of finiteness/infiniteness loses its meaning unless it is somehow 
defined. For interpretable processes we can construct such a 
definition through the objective evaluation. For uninterpretable 
processes we have no definition. 

If we assume that the process defined by (1) can be judged 
in terms of finiteness/infiniteness, we immediately come to a 
contradiction. Indeed, if <A> is finite then the right side of 
(1) is also finite, which means that <A> is infinite. If <A> is 
infinite then <~*(A)?> should be finite, which makes <A> finite. 
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Uninterpretable propositions stand behind all paradoxes of mathe
matics. Note that if we change (l) in this way: 

(3) <A> ~ <v*(A)!> 

we will not be able to come to a contradiction -- not immediately 
at least -- but <A> defined by (3) is etill uninterpretable. 
v 

Objectve interpretation has double importance. First, it 
gives an instrument to decide which proposition is true and which 
is not. According to the general definition of truth in the 
dynamic interpretation of cognitive function, in order to add 
some proposition, say P, to human knowledge, we must prove to the 
judge of intuition that P will hierarchically produce only true 
predictions in the context of any knowledge. How can we prove it 
in a convincing way? The definition of objective interpretation 
reduces this problem to a series of problems of one special type: 
a proof that a given search is infinite. If we know how to solve 
this problem -- and to the extent we are able to solve such 
problems -- we can solve any mathematical problem. 

Second, objective interpretation divides all interpretable 
propositions into two categories: true and false. This is a 
tremendous help in analyzing complex propositions. The concept of 
falsehood becomes defined on its own, independently of the con
cept of contradiction. Yet, as we shall establish in the next 
section, contradiction and falsehood go together, so we still 
need only one function ~ to recognize them. 

4. Weak interpretability.Correctness theorem 

The requirement of strong interpretability can be weakened. 
If a generator produces at least one interpretable and false 
proposition, it can be labeled as false even though some of its 
other branches are uninterpretable processes. In contrast, for a 
generator to be true all of its branches must be interpretable 
and true. Also, a search can be labeled as finite if at least one 
of its branches is interpretable and finite, even though other 
branches may be uninterpretable. A search is interpretable and 
infinite only if all its branches are interpretable and infinite. 
We can make this extension of the concept of interpretability 
because we examine parallel branches of processes in parallel. 
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When examining an uninterpretable branch, the function QQj will 
work infinitely in a futile attempt to get to the bottom of 
semantic recursion; meanwhile, another branch may lead to a 
definite result. 

For a better insight into the structure of propositions, we 
shall use their semantic maps. The function obj will be defined 
as the process of labeling the semantic map of a proposition. 

maps. 

• 

' • 

The following is the definition of the elements of semantic 

) 

A proposition-generator which starts producing 
something. A semantic map is a directed graph with 
nodes (dots) representing propositions and arcs 
(lines) representing processes. Unless the direc
tion of an arc is indicated explicitly, it is from 
left to right and from top down. If a line peters 
out, it means that the map does not show what will 
happen later. 

A proposition-generator which branches into three 
parallel processes. 

A proposition-prediction that a search is finite; 
and the beginning of that search. 

A search branches into two parallel searches. 

A branch of a generator produces a prediction. 

A branch of a search ends. 

A process becomes infinite. The part to the right 
of the cross never materializes. 

A process calls y(P) and goes on. P is represented 
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C) 

by a dot, i.e. as a proposition-generator. 

A process calls ~(A!) and goes on. We do not dis
tinguish between a proposition-generator which 
generates one prediction, and that prediction. 

A process calls ::Y(P)! and goes on. 

A y-call is known to be finite. Analogously for ~-

A y-call is known to be infinite. Analogously for 

~-

A process has more branches than shown in the map. 

An infinite loop in the process. 

Examples of semantic maps 

Fig.l. Proposition (A! and B!) where A is finite and B infinite. 
Fig.2. Proposition if y(B?)! then or(y(A!),y(A?))! 

with A finite and B infinite. 
Fig.3. Proposition if ::Y(P)! then ::Y(P and Q)!, 

where P and Q are propositions whose truth-values are as 
yet unknown. 

Fig.4. Proposition isr! where isr is defined by: 

<isr> ~ <~ *(isr)?> 

There are a number of simple transformations that can be 
done over a semantic map without changing it in a significant 
manner. An infinite recursion loop can be replaced by a cross; 
two consecutive stages of a process can be merged into one; an 
infinite branch of a generator can be eliminated. 
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A semantic map can be labeled. This is a process which 
results in the marking of every ~/y-call as either finite or 
infinite and the assignment to every proposition in the map of 
one of the following truth-values: T for true, F for false, and U 
for uninterpretable. Labeling the map of a proposition P is the 
same as giving it objective interpretation. There is no algorithm 
that could label the semantic map for every proposition; the 
process of labeling is metamechanical. We have no general method 
to determine the labeling; we only de(tne it. 

The rules of labeling are as follows. 

Labeling rules 

LRl. A call v(P) with P labeled T is marked finite. 

LR2. A call v(P) with P labeled F is marked in
finite. 

LR3. A call y(P) with P labeled T is marked in
finite. 

LR4. A call y(P) with P labeled F is marked finite. 

LR5. A call v(P) or y(P) with P labeled U is left 
unmarked. 

LR6. If every branch starting from a proposition
generator either leads to a proposition labeled T, 
or is infinite, this proposition-generator is la
beled T. 
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) 

LR7. If at least one branch starting from a propo
sition-generator leads to a proposition labeled F, 
then this proposition-generator is labeled F. 

LRB. If at least one search starting from a pre
diction node is finite, then this prediction i~ 

labeled T. 

LR9. 
node 
F. 

If every branch starting from a prediction 
is infinite, then this prediction is labeled 

LRll. A proposition which cannot be labeled by the 
rules above is labeled U. 

LRll. A branch is finite if it ends, 
calls on it are marked finite. 

and all Y/'Y-

LR12. A branch is infinite if one of these cases 
takes place: 

(a) there is an infinite Y/v-call such that all 
Y/'Y-calls before it are finite; 

(b) there is an infinite recursion loop with all 
the Y/'Y-calls on the branch marked finite. 

Examples of labeling. Fig.5 shows the map of Fig.2 after labe
ling. Fig.Ga and Fig.Gb show the labeling of the semantic map of 
Fig.3 with P true and P false. In both cases the root proposition 
is labeled true, no matter what the labeling of Q is. The predic
tion in Fig.4 must be labeled U. Infinite semantic recursion is 
not necessarily the result of a situation when a stage of the 
process exactly repeats itself. We can define function isr this 
way: 
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<isr e > ~ <~ *(isr <~e >)?> 
--- X --- X 

Then for 1§£()! we shall have the semantic map shown in Fig.7. 

Rules LR7 and LRB do not require that all branches are 
labeled definitely (i.e. Tor F): some branches may call uninter
pretable processes. Thus a proposition-generator or a prediction 
may be interpretable even though the processes it involves are 
only partially interpretable. A proposition which generates at 
least one false proposition is false no matter how we interpret 
-- or fail to interpret -- all other propositions generated by 
it. A search is finite if we know that at least one branch has 
led to a stop, no matter what happens to all the other branches. 
We shall see later that weakly interpretable processes play an 
important role in set theory. 

Consider the paths in the semantic map of a proposition P, 
which start at node P. When such a path passes over from a call 
~(Q) or y(Q) to Q we have a metasystem transition. The number of 
metasystem transitions on a path is its semantic length. A path 
is semantically finite if its semantic length is finite, and 
semantically infinite otherwise. A path is unavoidably semanti
cally tnf~nite if it is semantically infinite, and (l)whenever it 
passes through a proposition-generator there is no other branch 
starting from the same generator such that none of the paths 
taking this branch is unavoidably semantically infinite, and the 
branch produces a proposition labeled F; (2)whenever it passes 
through a prediction ,there is no other branch such that none of 
the paths taking this branch is unavoidably semantically infi
nite, and this branch comes to a halt (is finite). A proposition 
is strongly interpretable if its map allows no semantically 
infinite paths. A proposition is weakly interpretable if no path 
in its map is unavoidably semantically infinite. It is possible 
that a given map contains finite paths of arbitrarily large 
semantic length. 

Note an essential difference between true and false proposi
tions when we allow weak (partial) interpretability: a false 
proposition-generator can produce uninterpretable propositions, 
while a true one cannot. 

When we create a formal system we take a proposition ri as 
its knowledge and define the access function <gns> as 
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Now the function y(P) called by proposition-generators, which was 
undefined before, becomes a completely defined recursive function 
which we denote as Yi(P); and y(P) becomes yi(P). Note that the 
replacement of Y/Y by Y·/Y· takes place only for the purpose of 

t t 
generation. The ultimate product of proposition-generators, the 
predictions, can still include y/y-calls; there is no need to 
replace them. (The replacement would signify a change in inter
pretation from the dynamic to a static one). 

We should now explore the relation between the 
function y(P) and its 'approximation' Yi(P). What we 
course, is that the formal system be correct, i.e. 
finite only when y(P) is finite (P objectively true). 
lationship is established in the following theorem, 
crucial for the whole theory we are developing. 

'precise' 
want, of 
Yi(P) be 
This re
which is 

Correctness theorem. If ri is true then yi(P) for any interpre
table Pis finite only if Pis true, i.e. a formal system with 
the knowledge ri is correct. 

Proof. Let Yi(P) be finite and suppose that P is false. The 
process Yi(P) is the running of the generator ri until it pro
duces P. Consider the branch Bi of ri which has produced P (to be 
referred to as the dertvatton branch for P), and compare it with 
the corresponding branch Bin the semantic map of ri. They are 
different only in that every call y(Q) in B is replaced by Yi(P) 
in Bi(P), and every y(Q) is replaced by yi(P). The branch Bi has 
no more than a finite number of Yi/Yi calls. Let them be: 

We can take every Qr and find a derivation branch in ri which 
produces Qr. And we can take every Q; and find two derivation 
branches in (rt and Qs) which produce a contradictory pair of 
atomic propositions, A! and A?. Since each of these branches is 
finite, we can again construct derivation branches for the Yt/Yi 
calls they involve (if any). Since the process of producing P 
from ri is finite, we shall ultimately come to a finite deriva
tion tree for P (see Fig. 8). 

Consider the Yt/Yt calls (*). The corresponding Y/Y calls in 
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the semantic map of ri cannot all be finite because it would mean 
that rt produces a false proposition P and is,therefore, false. 
Hence either there is a false Qr for which ~t<Qr) is finite, or 
there is a true Q~ for which yi(Q~) is finite, (or both). In the 
first case we again face a situation where a true rt produces a 
fals~ proposition, this time it is Q . In the second case a true r 
proposition (ri and Q~) produces a pair A!, A? of atomic proposi-
tions from which one is false: the same situation again. In both 
cases the new derivation tree is a subgraph of the original tree. 
Since it is finite, this situation cannot repeat unlimitedly. 
Sooner or later we must come to a true proposition which gene
rates a false proposition. This contradictio~ proves the theorem. 
v 

Corollary 1. If ri is true then yi(P) for any interpretable Pis 
finite only if P is false. 

Indeed, should P be true, we would have a situation where a 
true proposition (ri and P) produces a false atomic proposition. 

Corollary 2. Every interpretable proposition is context-safe. 

Corollary 3. If ri is true, the formal system which takes ri as 
its knowledge is consistent. 

(Because, if both ~i(P) and yi(P) are finite then it vio
lates either Correctness theorem or Corollary 1). 

Theorem. If P is a false proposition then y(P)!. 

Proof. We use induction on the structure of the interpretable 
proposition P. 

Base. If P is A! with a mechanical A, and it is false, then A? is 
true. We can add A? to the current knowledge, thereby making P 
contradictory and y(P) finite. Thus there exists such a (true) 
knowledge ri that Yt(P) is finite. By the definition of dynamic 
interpretation, this means that y(P) is finite. If P is A?, we 
add A! to human knowledge. 

Induction on generation. If Pis a false generator, it produces 
at least one false proposition; let it be Q. By the induction 
hypothesis, y(Q) is finite. Therefore, y(t) is finite. 

~ 
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Induction on co9nitive function calls. Let P be A! and false. 
Suppose first that the search A has only one branch. Since A! is 
false, at least one of the following three situations must take 
place: 
(a) The search A' produced from A by 'short-circuiting' (that is 
replacing by the empty expression) all cognitive function calls 
is infinite. 
(b) A' is finite, and y(Q)! with some false Q appears in A. 
(c) A' is finite, and y(Q')! with some true Q' appears in A. 

Upon examination, case (c) is impossible. 
then its addition to human knowledge cannot lead 
tion. 

If Q' is true, 
to contradic-

In case (a) we add to human knowledge the proposition 

if A! then A'! 

which is, obviously, true. Then we add A'?, which also is true. 
Now A! produces a contradiction, namely A'! and A'?. 

In case (b) we add to human knowledge: 

if A! then Q 

By the induction hypothesis, the addition of Q leads to a contra
diction. Therefore, the addition of A! also leads to a contradic
tion. 

If the search A has more than one branch and is finite, then 
there must be at least one branch that is finite. Applying the 
reasoning above to this branch we can prove that A! leads to a 
contradiction. Since the statement that A is finite (which, in 
addition, is false) does not give us any indication which of the 
branches is thought to be finite, we cannot indicate specifically 
what true statements must be added to human knowledge to ensure 
the derivation of a contradiction from A!. But the reasoning that 
if A is finite then there must be a finite branch, with the 
subsequent invoking of the above proof that the existence of such 
a branch is contradictory -- is intuitively beyond doubt and a 
part of classical logic. Therefore, it can be formalized as part 
of human knowledge in our theory; then a contradiction can be 
formally derived from A!, that is y(P) is, in dynamic interpreta
tion, finite. 
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So, if Pis false then y(P)! is true. On the other hand, if 
y(P)! is true then P must be false: if it were true it could not 
produce a contradiction. The statements 'P is false' and 'P leads 
to a contradiction' are equivalent. A pair of the form P and v 
(P)! will be considered now as a formal contradiction, like A! 
and A?. Indeed, if the addition of a proposition, say Q, produces 
both P and y(P)!, then one of the two is false, which means Q is 
false. 

Objective interpretation is based on our intuition of the 
separability of the object and the subject of knowledge. When we 
deal with quantum-mechanical phenomena this intuition deceives 
us. The object and the subject of knowledge are not completely 
separable in the quantum-mechanical measurement. Our functions v 
and y can be seen as measurement procedures, of a kind. We took 
pains to separate the results of these 'measurements' i.e. 
truth values of propositions, from our state of knowledge. Our 
theory allows 'interpretable' propositions only; this leads to 
the usual two-valued logic. It is possible that a more general 
theory can be built, which would not limit itself to those propo
sitions we call interpretable, thus overstepping the boundaries 
of traditional logic. This possibility occurred to the author 
under the influence of the ideas of the wave logic developed by 
Yuri Orlov. Orlov's ideas can probably be used in trying to 
expand the present theory aiming at description of subatomic 
phenomena. 
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C H A P T £ R 5 

I no i •'"' -- J--

1. First-order theories 

Let us sum up where we are. We defined mathematical proposi
tions as generators of predictions. We found that in order to 
explicate in this way the most usual logical constructs, such as 
existential quantification and material implication, it is neces
sary to introduce into the theory a formalization of the process 
of getting the knowledge that a given proposition P is true. We 
denoted this process by y(P) and defined it as a logical infer
ence of P from a proposition r, which represents the sum total of 
the knowledge accumulated up to date by humanity. We denoted the 
process of establishing that Pis false by y(P); it is the pro
cess of finding a contradiction in the logical conjunction of r 
and P. We translated the language of mathematical logic in terms 
of our theory. 

Naturally, r is not a fixed expression, but it changes as 
time passes. Unlike mechanical processes, which we define using 
the Refal machine or any other linguistic machine, human know
ledge is a real-time process; we cannot reproduce all of its 
stages in their sequence, as we can do with mechanical model-time 
processes; we can only know what its present stage is. 

We defined the concept of truth as follows: a prediction A! 
is true if the process A is finite; a general proposition P is 
true if all the predictions it hierarchically produces are true. 
We recognized then the following fact, which is of the utmost 
importance: since human knowledge enters the meaning of proposi
tions (the set of predictions produced and the processes referred 
to by predicttions), we cannot assume automatically that a propo
sition that is true today will be true tomorrow. We gave an 
example where adding a true proposition to a true knowledge 
results in a false knowledge; it happenes because by adding a new 
proposition to r we change the meaning of r and other proposi
tions, and some of them may become false. We found a way out in 
exploiting the intuitive idea of objectivity, according to which 
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the cognitive processes v and Y only register the truth values of 
propositions, which 'are there' anyway. We defined a procedure of 
objective interpretation of a proposition, and agreed to accept 
as meaningful only those propositions for which this procedure 
leads to a definite truth value. However, the naive notion that 
some 'real' truth values 'are there' attached somehow to proces
ses is not acceptable for us as part of our formalism; we have 
shown that the dynamtc interpretation of references to r is 
equivalent to the intuitive objective interpretation. 

The procedure for establishing the interpretability of a 
proposition is by no means an algorithm with a guaranteed end. 
Interpretable propositions form a hierarchy which is constructed 
step by step, starting with the propositions that never refer to 
cognitive functions. At each step proofs are required, which rely 
on our current knowledge. To be valid, this knowledge must use 
only interpretable proposition; their interpretability, there
fore, must have been established prior to their use for estab
lishing interpretability of other propositions. The hierarchy of 
interpretable propositions which must be constructed in order to 
validate a given proposition as interpretable Pn includes not 
only those propositions P7- 1 • P~- 1 • etc., in terms of which Pn is 
interpreted, but also the propositions which are necessary to 
prove that Pn really is interpretable if P7- 1 , P~- 1 • etc. are 
interpretable. Interpretability and knowledge are inseparable. 

We proceed now to examine in greater detail the structure of 
a mathematical theory. First of all, every theory has certain 
objects to deal with, and certain primary predicates applicable 
to objects. Then there are certain logical forms to make compo
site predicates from primary ones: connectives and quantifiers. 
All these are usually defined purely syntactically, without any 
indication as to what the meaning of the predicates and logical 
forms is. It is entirely left to the stage of application. In our 
approach, the logical forms and the primitive predicates of a 
mathematical theory are parametrized processes. The logical forms 
are machines defined in Refal, namely: imp, £2n, if, and, or, 
all, sch. The primitive predicates may be defined by machines, or 
left undefined (see Section 3.2 about cybernetic and axiomatic 
theories); in the latter case their definition is left for appli
cations. All propositions in our approach have a definite meaning 
expressed in terms of processes, as we have just summed up above. 

There are two possible situations with regard to what can be 
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treated in the theory as an object. (l) The objects of the theory 
may be predefined at the outset of that theory. If their number 
is finite, they can be simply listed. If their number is poten
tially infinite, a machine can be defined which generates all of 
them. This situation is traditionally known as a first-order 
theo-y. The objects of such a theory are completely separated 
from the propositions about the objects. (2) The set of the 
objects of the theory may not be predefined, and the propositions 
of the theory may, in their turn, become new objects. This situa
tion is referred as a higher order theory. The origin of the 
terms is this. When you have some objects, you can create a lan
guage and a theory to treat these objects. It is a theory of the 
first order. Then you take the propositions of this theory as the 
objects for a new theory, which is thereby a theory of the second 
order, etc. In practice, mathematics uses only one theory, but it 
is of the infinite order. It is set theory. Indeed, the concept 
of a set is essentially identical to the concept of a proposi
tion: when we define a set we define a predicate of being an 
element of this set, and vice versa. In set theory we define 
sets, which then become legitimate new objects. This conversion 
of a proposition into an object can be repeated indefinitely. 

In this chapter we consider the common features of the 
first-order theories, which amounts to considering logic. First
order logic, they often say. 

A first-order theory is a real-time process each stage of 
which is a formal system as defined in Chapter 4. According to 
that definition, a formal system consists of two parts: a number 
of machines, and a knowledge r. The mechanical part of any first
order theory includes all the logical machines listed above. Now 
we are about to create the knowledge part. 

In accordance with the strategy formulated in Chapter 4, we 
go ahead by steps, starting with an empty knowledge and adding 
propositions which we have proved to be true in some way which 
our intuition accepts without doubt. Our purpose is to reconsti
tute all the usual apparatus of formal logic, thereby proving 
that logic is true and consistent. As we go on, we shall consider 
one or another proposition P with an aim to justify its use in 
logic, if possible. We have two ways to do it. First, we can show 
that with the knowledge r we have proved true up to the moment, P 

is deducible in our formal system, i.e. implied by r. We shall 
represent this proposition by the formula 
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r ~ P 

An equivalent form of it would be Y(P)!. Second, if P is not 
implied by r we can prove intuitively that it is true and include 
P into r, i.e. change the current r to and(r,P). This iS not 
merely a proposition, but an act in real time, which we called a 
statement in Chapter 4. We shall represent this statement by the 
formula 

r • P 

We shall refer to the set of all propositions produced 
hierarchically by r as its scope. If a proposition Pis implied 
by r, directly or hierarchiclly, its scope is, of course, a 
subset of the scope of r (see Fig. 5.1). If r is true then every 
P implied by it is also true, which is a trivial case. But a 
proposition, such asP' in Fig.5.1, may have a scope which is a 
subset of the scope of r without being ever produced (implied 
directly or hierarchically) by r. We say that P' is justified by 
r. It is true if r is true. Instead of proving P' intuitively, we 
can prove that it is justified by r and add it by the correspon
ding statement. It should be noted that the addition of a propo
sition P' justified by r may expand the scope of and(r,P') beyond 
the union of the scopes of r and P'. This situation is shown 
schematically in Fig. 5.1. An example when it takes place fol
lows: 

r = and(A! ,and(B?,ify(and(A! ,B?))! thenC!) 
P' = and(A! ,B?) 

The scope of r consists here of the following five propositions: 

(1) r itself 
(2) A! 
(3) and(B?,ify(and(A! ,8?))! thenC!) 
(4) B? 
(5) ify(and(A! ,B?))!thenC! 

The proposition and(A! ,B?) is not among them, therefore the if
proposition (5) produces nothing. The proposition P' produces two 
atomic propositions A! and B?, which are also produced by r. 
Therefore, it is justified by r. When we add P' to r, the resul
ting system produces and(A!,B?), and as an additional result 
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produce& the atomic proposition C! 

Let <obj> (just obj in the free format) be the generator of 
all objects of a first-order theory. Then all quantifications 
will take place over this set, and we can omit references to it 
the way it is usually done in formal logic. Thus instead of 

all(xEobi:P(x)) 

we shall write 

all(x:P(x)) 

and the same for sch. 

When constructing a theory we want to be sure that all 
propositions of it are interpretable. With first-order theories 
this problem is solved very easily. One can verify that all the 
logical machines we defined are such that when their arguments 
are interpretable, the resulting processes are also interpret
able. When primitive predicates are defined by machines, they 
would not include references to cognitive functions, and there
fore initiate interpretable processes. Since the whole set of 

possible propositions is produced by substitutions, there is no 
way an uninterpretable proposition can appear in a cybernetic 
theory. The same will be true for an axiomatic theory if the 
axioms are all interpretable. It would be strange if they were 
not, because axioms are created as a formalization of the proper
ties of natural processes, which are thought of in objective 
terms and leave no place for cognitive processes. 

It follows from the preceding that not only the set of all 
objects but also the set of all processes and propositions in a 
first-order theory is produced by mechanical generators (are 
recursively enumerable). Let~ be the generator of all proces
ses-searches, ~ the generator of all processes-generators, and 
~ the generator of all propositions. This allows us to quanti
fy variables over these sets in order to express very general 
propositions of logic. Suppose we have a propositional form P(p) 
which depends on the propositional variable p. Then we can form, 
and possibly add to r, a single proposition 

5-5 



which will be equivalent to the set of propositions P(P) where P 

stands for an arbitrary proposition, i.e. is used as a metasym
bol. Since this second form is more readily understandable, we 
are going to prefer it to the quantified form, but one should be 

aware that such propositional forms stand for single quantified 
propositions, and there is no need in our theory to introduce 
anything like axiom schemata of mathematical logic. Even most 
general logical laws are expressed in our theory by single lin
guistic objects. 

To finish up with the preliminaries we only have to sum up 
the results of Chapter 3 in the form of a table translating the 
usual logical notation into the corresponding propositions of our 
theory. The translation of a conventional logical proposition P 
will be denoted by [P]. Primitive predicates are translated 
according to their meaning if we construct a cybernetic theory, 
or as undefined parametrized processes, for which only the name 
must be chosen, if we construct an axiomatic theory. For compo
site propositions the translation rules are: 

[.,.P) = :Y([P])! 
[P&Q] = and( [P], [Q)) 
(PvQ] = or(v([P],v([Q]))! 
[P ... Q] = if-v([P])!then[Q] 
[(Ax)P(x)] = all(x:[P(x)]) 
[(E"x)P(x)] = sch(x:-v([P(x)]))! 

2. Definition and verification 

One of the mosl ccrlain parts of our knowledge is what we 
know by definition, because we set it to be that way. The ma
chines we use are defined by sentences in the program field of 
the Refal machine. Let us see how the knowledge contained in 
these definitions can be formalized. 

Consider the first sentence of a function definition, and 
suppose its left side L, and therefore also its right side R, 

includes no free variables. Then one step of the Refal machine 
will transform L into R. This can be expressed as the proposi
tion: 

(1) t<=(<steptL>)(tR)>! 
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which encapsulates the whole knowledge contained in the original 
sentence. We shall say that the expression Ex immediately entails 

Ey if one step of the Refal machine transforms Ex into EY. The 
proposition (1) states that L immediately entails EY. 

The predictions of mathematics state the finiteness of pro
cesses without indicating how many steps it takes for a process 
to stop. Pure mathematics, unlike computer science, does not 
count computation steps. Therefore, the transitive closure of 
immediate entailment will be more useful for mathematical pur
poses. We say that Ex entails EY if Ex is transformed by the 
Refal machine into EY in any number, but at least one, steps. It 
is easy to define the function which tests this relation: 

The process <ent(tEx)~tEy> ends if and only if Ex entails EY. 
Instead of (1) we can now use this proposition: 

(2) 

If L includes free variables, they can be universally quan
tified in the propositions (1) and (2); if they are left free, 
the quantification is assumed when we deal with such propo
sitions. If the sentence L ~ R is not the first in the group of 
sentences defining a function, then we cannot simply transform it 
into (l) or (2), because this sentence will be used only if all 
the preceding sentences of the definition are unapplicable. This 
means that the free variables in L cannot be universally quanti
fied, but exceptions must be made for those possible cases when 
this sentence will not be really used. For instance, if the 
function fun is defined by two sentences 

<fun Aez> 
<fun sxez> 

B 

then in the proposition representing the second sentence sx must 
be quantified over all symbols except A. 

It is possible to represent all the information contained in 
the definitions of a theory in the form of propositions of en-
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tailment. Also, as we shall see in a moment, all individual 
propositions about entailment can be produced in a simpler way, 
using only one very powerful statement, to the discussion of 
which we now proceed. 

This statement is the verification principle: 

In the form with metavariables: 

r .. ilA!thenA! 

where A is an arbitrary search. 

If we try to translate this principle into the language of 
formal logic, we come to the trivial axiom 

finite(A) ~ finite(A) 

whic'h is of little, if any, use. In our system, however, the 
verification principle is far from being trivial, and not an 
axiom but a theorem. Let us see what is the full scope of propo
sitions it hierarchically produces. We add to our knowledge r a 
proposition which produces the propositions 

(3) ifA!thenA! 

with all possible searches A! expressible in the theory. When r 
starts working, every proposition (3) starts working, and if the 
search A in it is defined and finite, it produces the prediction 
A!. If the search is undefined or infinite, it produces nothing. 
Thus all those and only those predictions A! for which A is 
defined and finite will be produced by r. The verification prin
ciple formalizes the fact that the finiteness of a search which 
is defined mechanically can be directly verified, at least in 
principle. The generator (3) produces all propositions that can 
be proved true through verification. It is an intuitive theorem 
of our metatheory, which we have just proven by establishing that 
the verification principle produces only true propositions. 

Let Ex entail £Y. Then the search ent(£x,Ey) is defined and 
finite, therefore ent(Ex,E )! is produced by the verification 
principle. Thus the verification principle alone provides for all 
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individual relationships of entailment which can be derived from 
the definitions in the memory field. (But it does not provide for 
quantified propositions of entailment like (1). They are justi
fied by the verification principle, but not produced by it). 

Definition. Two parametrized searches S 1 and S 2 are functionally 
equivalent: s,:S 2 , if one of the following two situations takes 
place with any values of free variables: (l) both searches are 
infinite, or (2) both searches are finite and their results 
(finite stages) are identical.v 

The following general statements can be made, which are ob
viously true: 

r ... if 
r -+ if 
r -+ if 

ent(S 1 -+S 2 )!then S 1 :S 2 

ent(S -+S )'then S :S 
-- 2 1 ·-- 1 z 
v(S 1 :S 2 )!then S 2 :S 1 

Here S 1 and S 2 are arbitrary parametrized searches. 

If the machinery of a formal system includes the functions 
stepu and actu, then the introduction of new machines by adding 
their definitions to the memory field adds really nothing to the 
power of the existing machinery. Indeed, suppose we define a 
certain function, F, by the list of sentences S. The expression 

<~<actu(and(D,tS)) *(F<uex>>> 

where D is the list of definitions currently in the memory, is 
functionally equivalent to <Fex>· Since we do not care in mathe
matics how long it takes to compute something, we can use the 
former wherever we use the latter. The definition of new func
tions by adding new text to the memory field becomes just a 
matter of convenience, a notation. Whenever we say 'define a 
function by such and such sentences', we also could say 'consider 
the function actu with such and such first argument'. Since we 
introduce the functions stepu and actu at the early stages of 
our theory, we shall assume that all the definitions made later 
become automatically known to the formal system. 

3. Basic logical principles.Intuitionism 

In this section we construct that part of logic which does 
not depend on how we treat human knowledge r when determining the 
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truth values of propositions. As mentioned before, it can be done 
in two ways. r can be considered as fixed: a definite, though 
perhaps very big, expression. It is not required that r is actu
ally written down; for practical purposes of making proofs we 
draw, as always, on our intuition, and when we prove something we 
consider it as included in r. When reasoning theoretically in 
this approach, we do not use any specific features of r, but only 
the fact that it is definite. This is not to deny that r changes 
in real time. We simply refuse to speculate on what can happen to 
r in the future, and identify the truth of any proposition with 
its deducibility from the r of today. This is the static inter
pretation of r. The alternative dynamic interpretation claims 
that even those propositions that can neither be proved nor 
refuted today must be true or false; it does speculate on future, 
boldly tying up the concept of truth with the future of the 
process r. A major part of logic does not depend on the interpre
tation we keep to. It is common to the intuitionist and the 
classical logic. 

So we start constructing logic from scratch. First we create 
the necessary machinery: put in the memory of the Refal machine 
the definitions of all logical machines discusses above. At this 
stage the knowledge r of out theory is still empty. Let us take 
the verification principle as our first statement (see the pre
ceding section). Now r produces all propositions of the form: 

(1) ifA!.tJlMA! 

where A is a search. 

For an arbitrary P, substitute y(P) for A in (1): 

(2) 

All possible propositions (2) are produced in r as a subset of 
the scope of the verification principle. If P is produced by r, 
then y(P) is finite. Then (2) produces y(P)!. We can now substi
tute y(P)! for P in (2), and so on. We conclude that if P is 
produced in a formal system r (this is for short instead of 'a 
formal system with the knowledge r'), then the propositions 
y(P)!, 'Y(Y(P)!)!, etc. are also produced in it. In words: If r 
knows P, then it also knows that it knows P, and it knows that it 
knows that it knows P, etc. 
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Suppose now that r~~(P)!. Since r is true, the fact that 
-v(P)! is produced by r means that it is actually true, i.e. that 
-v(P) is finite. But its finiteness means that r~P. Combining this 
result with the preceding one yields the following 

Theorem. Propositions P and ~(P)! are equivalent in r, 

P:.~ (P)! 

meaning that whenever one is produced by r the other is produced 
too. 

We can now easily prove theorems corresponding to well-known 
logical identities. For instance, 

Theorem. Implication is transitive: 

r+- if-v(li~(P)!then Q)!then 
if-v(if-v(Q)!then R)!then 
li-v(P)! then R 

It can be made easier to review in the form of a derivation rule: 

r .. li-v(P)!thenQ 
r .. if-v(Q)! thenR 

f-+ if~(P)!thenR 

Proof. The proposition in (i3) produces R whenever r produces P. 
But if r produces P then, according to (il) it also produces Q, 

and if it produces Q then, according to (i2), it produces also R. 

Therefore (13) produces R only in the case when r already pro
duces it anyway. The proposition in (i3) is justified by r, 
therefore the statement C*3) is correct. Note that although the 
proposition in (i3) is justified, it is not produced by r, this 
is why (i3) is a statement' r .. , not a proposition r~. After this 
statement our implication becomes transitive, but not before it. 
The proof of the theorem is the proof that the statement leaves 
the current knowledge true if it was true before. As we mentioned 
before, the theorems we prove while constructing a formal system 
PithP.r ~how that a desired feature is there already, or justify 
the next construction step, which is made in order to have this 
feature. This theorem is of the latter type.v 
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To show the equvalency of our construction to a formal 
system already known we must interpret in our terms the axioms 
and the derivation rules of that formal system. We shall do it 
for the part of mathematical logic which is common to classical 
and intuitionistic logic, and this part is coextentional with 
intuitionist logic, because every proposition provable in intui
tionist logic is also provable in classical logic. The inverse is 
not true; classical logic can be constructed from intuitionist 
logic by adding one more axiom: the law of the excluded middle or 
its equivalent. 

The intuitionist propositional calculus can be based, accor
ding to Heyting (1966), on eleven axioms (Hl-Hll),which we prove 
below as theorems in our system. 

Theorem Hl: P -i> P&P 

From the definition of the and machine it is obvious that 
and(P,P) generates only P (though twice). The statement 

r ~ ify(P)then and(P,P) 

produces P only it is already produced by r. Thus it is justi
fied. 

Theorem H2: P&Q .. Q&P 

If and(P,Q) is produced, then P and Q are also produced, and 
therefore and(Q,P) is justified: 

r ~ if and(P,Q)!then and(Q,P) 

Theorem H3: (P .. Q) -i> (P&R -i> Q&R) 

Let 

(1) r .. 

and 

(2) Arui(P,R) 

From (2) we see that r produces P, therefore (1) will produce Q. 
It also produces R, because of (2). This proves that H3 is justi-
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fied. 

Theorem H4: 

This theorem follows readily from the definition of the and 
machine and the transitivity of implication which we proved 
above. 

Theorem H5: 

The statement 

does nothing more than add if~(P)!thenQ to r if Q is produced by 
r. Since this non-atomic statement can produce only Q again, it 
is justified. 

Theorem H6: P& ( P-+Q) -+ Q 

The statement 

produces Q only if P and if~(P)!thenQ are produced. But in that 
case Q is produced anyway. 

Theorem H7: P ..,. PvQ 

Consider the statement: 

r .. ifA!then or(A,B)! 

where A and B are any processes. If A is finite it produces the 
prediction that or(A,B) is finite. This is a true prediction, as 
one can immediately see from the definition of the QI machine, 
which runs A and B in parallel until either of them stop. 

Theorem H8: PvQ -+ QvP 

This theorem also immediately follows from the definition of 
the QI. machine. 

Theorem H9: (P-+R)&(Q-+R) ~ (P&Q -+ R) 
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Suppose that the antecedent of this implication is true, 
i.e. 

r ~ ify(P)!~R 

r ~ lly(Q) !ihJnR 
Then the statement 

is justified because it produces R only if at least one of the 
processes y(P) and y(Q) is finite, but in that case R is already 
produced by r. 

Theorem 811: 

which 
nite. 
(P)! 

This corresponds to the statement: 

will produce something only if both y(P) and v(P) are fi
But this is possible only if r is contradictory. Indeed, v 

means QQQ(r&P)!. Since y(P)!, the proposition Pis produced 
by r, therefore the £Qn machine will find a contradiction with r 
alone on the input: QQQ(r)!. But this is imposiible because our 
system was consistent in the beginning, when it was empty, and 
has remained consistent after every statement. Therefore Hll 
represents an empty proposition, and as such is justified. 

Theorem Hll: 

Suppose that the antecedent is true. Then 

r ~ ify(P)!thenQ 
r ~ ilY(P)! then:Y(Q)! 

Form r• as ~(r,P). Both y(Q)! and :Y(Q)! are produced in r•, 
which means that it is contradictory: con(and(r,P))!. We denote 
this as y(P)!, so Hll is justified. 

When all the statements referred to in the proofs of Hl to 
Hll are made, we have a formal system in which every axiom of the 
intuitionist propositional calculus is produced. We want to prove 
now that every theorem of that calculus is produced also. To 
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achieve this goal it suffices to show that if a proposition of 
logic, say P, can be obtained by applying one of the tn(erence 
rules of the logic to some propositions already proven (inclu
ding, of course, the axioms in that number), then Pis also 
produced in our formal system r. There are two inference rules in 
the propositional calculus. The Substitution rule allows one to 
substitute any proposition for a propositional variable. In our 
sytem it is taken care of by the definition of universal quanti
fication. The all machine will produce all those propositions 
which can be proved in logic by applying the substitution rule. 
The Modus Ponens rule of logic declares that if P and P~Q are 
proved then Q becomes proved. It is taken care of by the defini
tion of the if machine in our system. Indeed, 

if 
and 
then 

p 

ify(P) !thenQ 
Q 

To construct the predicate calculus, we must add to 
axioms of the propositional calculus two axioms: APl and AP2, 
two rules of inference: IPl and IP2. They are also sufficient 
the predicate calculus in classical logic. We prove them 
theorems. 

Theorem APl: (Ax)P(x) ~ P(r) 

the 
and 
for 
as 

where P(x) is a proposition depending on the free variable x, and 
r is an object. 

This axiom, like the substitution axiom, is taken care of by 
our definition of universal quantification, the difference being 
that the quantification is over the set of all legitimate terms, 
not propositions. 

Theorem AP2: P(r) .... (Ex)P(x) 

To cover this axiom, we make the statement: 

r ~ ifA(R)!then sch(x:A(x))! 

where A(x) is a metavariable for any process parametrized on x, 
and R a rnetavariable for an object. It is justified by the defi
nition of the sch machine. If there is such an object R that A(R) 
is finite, then the sch, which executes all the processes A(x) in 
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parallel, is bound to find R, if nothing else, and stop. The 
substitution of v(P) for A proves the theorem. 

Now;~ the inference rules. 

~heorem IPl: If Q ~ P(x) is true, and x does not appear freely in 
Q, then Q ~ (Ax)P(x) is also true. 

This rule of inference, as well as the next one, deals with 
propositions which include free variables (propositional forms). 
A free e-variable in a Refal expression stands for an arbitrary 
object expression. It may happen that when we are (or rather the 
Refal machine is) processing an expression, some subexpressions 
of that expression are not actually analyzed or changed: they are 
manipulated as some unknown wholes. Such subexpressions could be 
replaced by free variables during the processing, and the Refal 
machine would not notice that they were free variables and not 
regular (object) expressions. For instance, with the function 

the expression <cdr AB(l234)> is concretized as 8(1234). We also 
can say that <cdr Aex> is concretized as ex, and <cdr AB(ex)> is 
concretized as B(ex), etc. But we can say nothing about <cdr ex> 
or <cdr ex AB>. Whatever the contents of the memory of the Refal 
machine, if an expression inr.lnning free variables, say£, passed 
a certain processing successfully, then any expression resulting 
from the substitution of arbitrary object expressions of corres
ponding syntax types in place of free variables in E, will also 
successfuly go through the same processing. In other words, free 
variables in propositions must be interpreted as universally 
quantified. 

If the premise of the rule is true, i.e. 

(l) ify(Q)!thenP(x) 

is produced by r, then every proposition resulting from substitu
tion of any object for x into (1) is true. Since Q does not 
depend on x, we can first, and only once, check that y(Q) is 
finite, and then produce all the propositions P(x). This justi
fies adding (1) to Q. 

~heorem IP2: If P(x) ~ Q is true, and Q does not contain x 
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freely, then (£x)P(x) ~ Q is also true. 

If the premise is true, then every proposition 

(2) 

with an arbitrary object X is true. Note that Q is the same in 
all these propositions because it does not depend on x. Suppose 
now that (£x)P(x) is true. This means that there is at least one 
object X0 for which y(P(X 0 )) is finite. Substituting X0 for X in 
(2), we get a true proposition which produces Q. Therefore, Q is 
true. Thus, if (Ex)P(x) is true then Q is true. This proves the 
consequence of the theorem, and we can make the corresponding 
statement. 

This completes the construction of a formal system known as 
intuitionist logic. That it is intuitionist can be seen not from 
what is included, but from what is left out. The different con
cepts of mathematical truth embraced by intuitionist logic and 
classical logic manifest themselves in the way these theories 
treat negation. For classical logic, the truth values of proposi
tions are sort of tags, 'objectively' attached to them, and there 
are exactly two truth values: true and false. To state a proposi
tion is equivalent to stating that it is true. To negate it means 
to state that it is false. To negate the negation of a proposi
tion is to state that it is true. This is the double negation 
law: 

Every statement is either true or false. There can be no third 
possibility. This principle is known as the law of the excluded 
third (or middle): 

Pv~P 

Intuitionism regards a proposition as the expression of some 
mathematical reasoning, or proof, which is trusted by our intui
tion. To state a proposition is to state that you have a proof of 
it. To negate a proposition is to state that you have a proof 
that it leads to contradiction. If this view is taken, then there 
are no immediate reasons to believe in the law of the excluded 
third. It is possible that you can neither prove nor disprove a 
proposition -- this is the third logical possibility. Also, the 
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law of double negation loses its grounding: if there is no proof 
that P is contradictory, it does not yet follow that P is true. 

Our theory provides a convenient means to understand intui
tionism and its relation to classical logic. 

In our formalism, the double negation of a proposition P is 

It reads: 
to r. It 
r(P)!. The 

:YCv(P)!)! 

it is contradictory to r that P is found contradictory 
is obviously not the same as to say that P is true: 

disjunction in the law of the excluded middle is: 

or(y(P) ,:Y(P))! 

It states that every proposition P is either implied by r or 
contradicts to it. It is far from being obvious. In fact, if we 
accept the static interpretation of r, i.e. assume that r is a 
definite expression, then it becomes definitely false. For we 
know from Goedel's theorem that for every formal system there is 
a proposition which can be neither proved nor refuted in it. 
Therefore, if we accept the static interpretation of r we come 
inevitably to intuitionist logic. 
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4. Goedel'8 theorem. 

Of the two types of atomic propositions, on which, in the 
last analysis, the whole edifice of mathematics is built, the 
first type, the prediction A! is directly verifiable, at least in 
principle. The second type, the infinity model A?, is not; in 
order to establish that A is infinite, we have to rely on some 
proof based on some knowledge, i.e. a conjunction of truths. Is 
it possible to find a knowledge such that it would enable us to 
prove the infinity of any mechanincal process A, if it in fact is 
infinite? Note that to discover such a knowledge would mean, in a 
sense, to outsmart nature. For the impossibility of reducing the 
infinite to the finite is deep in the nature of things. By defi
nition, you cannot examine all the stages of an infinite process 
and come to an end. And if you cannot examine all its stages how 
can you know that a final stage will never be reached? One, and 
probably the only, way is to analyze the conctruction of the 
machine that originates the process, and demonstrate that none of 
the stages which could terminate the process can actually occur. 
The simplest example would be a process where an active stage 
reproduces itself and only itself at each next step. Yes, you can 
construct a lot of processes of this kind, a big library of 
prototypes or patterns which originate infinite processes, more 
and more complex. If somebody gives you a definition of a pro
cess, you may be able to discern in it some patterns familiar 
from your library, like the simple circularity. Then you will 
know that the process is infinite. This is exactly what the 
mathematicians are doing. But it should be clear that the number 
of possible patterns of infinity is infinite. We build the libra
ry starting from the end of the finite, and no matter how big the 
library is, it will never reach the end of the infinite. The 
general problem demands that we start from the other end: an 
arbitrary infinite process is given, and one must check that it 
is really infinite. Our library of patterns does not bring us 
closer to the solution of this problem. Looking at the problem 
from this angle, we start to realize that it would be a miracle 
should a device be found which allowed us to solve it, because it 
would have been a device which 'outsmarts' infinity, essentially 
liquidates it. The famous Goedel's theorem of incompleteness 
tells us that there will be no such miracle. 

The idea behind Goedel's theorem, when put in terms of our 
theory, is this. Suppose we can construct a process G which is 
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proving 
Then the 
that the 

(trying to prove) in a certain theory its own infinity. 
following two statements must be true in the assumption 
theory is true: 

(1) The process G is infinite. Indeed, if it is finite, then its 
infinity in out theory is proven, and since the theory is true, G 
must be infinite, which is contradictory and,therefore, impos
sible. 

(2) It is impossible in our theory to prove that G is infinite. 
Indeed, if the proof of the infiniteness of G is finite then G, 

which is exactly the process of proving that, is finite, which, 
as we have just established in (1), is impossible. 

Therefore, G? is a proposition which is true but not prov
able in the theory. If the process of proving its own infinite
ness is expressible in a theory, and the theory is true, it is 
incomplete. 

To apply this idea to formal arithmetic, Goedel had to map 
proofs on numbers, a procedure that became known as Goedeliza
tion. In our theory, the very general nature of objects and 
processes we deal with, plus the transformation of metacoding, 
makes unnecessary any additional Goedelization. In fact, our 
metacode transformation is a generalization of Goedelization: it 
transforms processes, in particular the processes of proving, 
into objects, in particular, the objects of discourse. Our gene
ral term for this is: metasystem transition. The important fea
ture of our formalism is that it is designed not for theoretical 
purposes only, like showing the non-existence of this or that 
algorithm, but for the actual creation of intelligent computer 
systems. The Goedelization procedure actually used by its author 
is completely unfit for practical purposes. 

The most straightforward definition of the Goedel process G 
is: 

(1) <G> ~ <y*(G)?> 

It is a legitimate definition of a process in Refal. Should *(G)? 
also be a legitimate proposition in our theory, the theory would 
be ruined. Indeed, we saw that in our main, dynamic interpreta
tion of r, which we expect to yield the explanation of classical 
logic and set theory, y(P) must be finite for every true P, i.e. 
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the theory -- by which we now mean not any formal system, but the 
metatheory, i.e. our whole theory of mathematics --must be 
complete. But this contradicts the impossibility of proving the 
proposition G? (which is *(G)? in the strict notation), which 
has been established earlier. To repeat the reasoning with regard 
to (1), if (y*(G)?> is finite, then by (1), <G> is also finite; 
but then the theory is false because *(G)? is validated by Y. 

Therefore, <y*(G)> is infinite and <G> is infinite; but then the 
metatheory is not complete because y fails to validate the true 
statement *(G)?. 

This disaster does not happen to our theory because the 
process <G> as defined by (1) is uninterpretable, and so are all 
the propositions using it. According to the definition of inter
pretability, for the proposition A? to be interpretable A must 
not refer to cognitive processes. But G does. We can eliminate 
the question mark by redefining G so that it proves not its 
infinitness, but the falseness of its own finiteness: 

(2) <G> ~ <~*(G)!> 

This definition is equivalent to (1) and leads to all the same 
contradictions. But it is not interpretable either. To prove that 
<G> is interpretable we must first prove that the argument of ~. 

i.e. *(G)! is interpretable; but to prove this we must first 
prove that <G> is interpretable. Since we cannot do it, the 
process is, according to point I.5 of the definition of interpre
tability, uninterpretable. It is not interpretable in the weak 
sense either, as one can check constructing its semantic map (see 
Fig 4.7). It is a typical example of infinite semantic recursion. 

The concept of completeness, as it is currently used, is 
applied to theories which are identified with formal systems. We 
draw a difference between these two terms, so we must see what it 
changes with regard to the concept of completeness. Recall that 
by A formAl system we mean, as usual, a purely mechanical device 
to produce true propo~itions. A theory is a real-time process 
each stage of which is a formal system. By the scope of a theory 
we mean the set of all processes which can be used in proposi
tions of the theory. It may or may not depend on real time. The 
knowledge of a theory is the part of human knowledge pertaining 
to the scope of the theory. Total human knowledge is the sum 
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of the knowledges r 1 of different theories. In a particular case, 
a theory may atop in real time and reduce to a mechanical theory, 
a formal system. Finally, by the metatheory we mean our general 
theory of creating, justifying, and further developing theories 

A theory is complete if for every proposition P of this 
theory either v(P) or v(P) is finite: 

(3) QL(v(P),y(P))! 

It is taken for granted that the theory is true (and therefore 
consistent). Then for every true P the process v(P) is finite and 
v(P) infinite, and for every false P the process v(P) is finite 
and v(P) infinite. There can be no third, or middle. Our state
ment of the completeness of a theory is identical to the state
ment that the law of the excluded middle holds for all legitimate 
propositions of the theory. It differs from the usual notion of 
completeness (i.e. that of a formal system) because of the in
volvement o real time; it deals not with the current state of a 
theory, but with its theore~ical limit; the cognitive functions 
are metamechanical, not mechanical devices. 

I f , 
system 
to some 
becomes: 

(4) 

however, we consider a stopped theory, i.e. a formal 
then the cognitive functions y and v reduce themselves 

mechanical functions vi and Yi, and proposition (3) 

This corresponds exactly to completeness in the usual sense: for 
every legitimate proposition P, the theory gives a mechanical 
means to decide whether it is true or false. 

Our general metatheory allows any processes that can be 
defined in Refal, and any propositions about these processes. To 
state the completeness of this theory is to state the law of the 
excluded middle. 

But we can consider less general theories. The set of legi
timate processes of the theory can be limited in one way or 
another, and all other processes declared undefined, i.e non
existent as far as the theory is concerned. In such theories the 
criterion of completeness will be easier to meet. 
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Take, for example, the theory T in which only one process A 
is defined, and it is finite; and let the knowledge of the theory 
consist of one prediction A!, with the cognitive functions de
fined as in the general theory. Then the only propositions in 
the theory are A! and A?. This theory is true and complete. 
Goedel's proposition is not expressible in it. 

Consider a mechanical theory, a formal system. A natural 
restriction on it would be the requirement to use only a certain 
number of machines defined beforehand. If the machines step and 
act are in that number, this is no significant restriction at 
all, because using them we can emulate any Refal definition. 
Since our general theory includes the definitions of these func
tions we do not care if we are limited to the predefined machines 
only. As we saw, if arbitrary Refal definitions are allowed in a 
theory, the Goedel statement is expressible through the defini
tions (1) or (2), where y and~ are now mechanical functions. But 
the possibility of arbitrary Refal definitions is a rather strong 
requirement. We are going to abandon it and explore what kind of 
machinery is sufficient for the Goedel proposition to be expres
sible in a theory. 

To include in consideration less powerful systems, we gene
ralize the definition of what a formal system is. We do not 
require that any of the functions we introduced before are de
fined. There are only two functions which must be necessarily 
defined in every formal system, namely those which do the job of 
y and y in the general theory. We shall denote them g and ~. 

respectively, and call them the proving machines of the theory in 
order to stress their mechanical nature and not to confuse them 
with the cognitive functions of our general theory. The way g and 
g are defined is left open. But we still use Refal as the meta
language to define processes, and we understand propositions as 
before. 

To take an example, the simple system we discusses above can 
be completely defined by these sentences: 

and have no other processes defined at all. We left out even the 
definition of A, making our theory axiomatic. If a theory allows 
propositions about undefined processes known only through axioms, 
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the set of such processes must be additionally defined. In this 
case it consists of one process A which is known to be finite. 

We shall now make two assumptions about the formal system, 
which we shall show to be sufficient for the proof of incomplete
ness. 

(1) The proving machines of the theory are defined as specializa
tions of a certain class of machines: 

<u(D)e > 
- D P <u( ')ep> 

where u and u are certain universal functions with the formats 
<u(ed)ep> and <u(ed)ep> characterizing a class of formal systems, 
and D is an expression which specifically defines the formal 
system in question. 

This assumption is commonly justified. In the case of our 
general theory, u and a are imp and con (the latter slightly 
modified by including and), and the definition Dis the knowledge 
of a specific formal system rt. In usual formal logic, the ma
chines u and a implement the inference rules to prove or refute a 
proposition e taking ed for axioms. In word problems, u and u 
are the machfnes which apply the rewrite rules ed to the initial 
word ep. 

(2) The universal machines u and a are defined in the system; the 
metaccode transformation " is defined; and every machine and 
process which can be produced by substitution from the machines 
already defined is also defined. Atomic propositions about de
fined processes are legitimate propositions of the theory. 

Coedel's incompleteness theorem. Under the assumptions (1) and 
(2) the formal system is incomplete if it is true. 

(In the original Goedel's theorem the condition for the formal 
system was consistency, not truth). 

Proof. Consider the machine G . 1 . 

It is defined in the theory because it is constructed as per-
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mit ted by the assumption (2). Substitute D for the argument in 
G1 : the resulting process <G 1 D> is again defined, 
proposition t<G 1 D>? is legitimate in the theory. 

therefore the 

We shall say that the process A is functionally equivalent 
to the process 8 and denote this A:B if either both A and 8 are 
infinite, or both are finite and produce the same results (have 
the same final stage). From the definition of <G 1 D>, 

which can be rewritten as 

<G D> 
l 

From the deifinition of g, the right side can be replaced by a 
call of g: 

(3) <G D> 
1 

We see that <G 1 D> is the familiar 
proves in the theory its own infiniteness. 
a true and legitimate proposition which, 
in the theory.v 

Goedel process which 
Therefore, t<G 1 D>? is 

however, is not proved 

Goedel's theorem can also be proved using the other form of 
the Goedel process: a process which refutes its own finiteness. 
We define: 

Then <G 2 D'> is this process. 

Practice. Give a full proof of Goedel's theorem using the G2 

machine. 

The requirement of the interpretability of propositions in 
our theory makes it invulnerable to Goedel's argument and allows 
it to remain both complete and true. It is interesting that 
Goedel's theorem does not work on the two extremes of the power 
of a theory. On one extreme, a theory can be so weak that 
Goedel's process (or proposition) is impossible to express in it. 
In between we have all formal systems strong enough for Goedel's 
theorem. On the other extreme we have our theory, which forma-
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lizes not one formal system, but an infinite sequence of formal 
systems. Since the functions y and y are changing in real time, 
we have to introduce the restriction of interpretability, which 
again makes the Goedel proposition unexpressible. 

5. Metasystem transition 

While Goedel's theorem is not applicable to our metatheory, 
it is, of course, applicable to every formal system we construct, 
if we replace the real-time human knowledge r by its definite 
stage ri, i.e. a definite proposition, and make this change 
throughout the whole system. As a result of this operation, a 
theory of our metatheory, i.e. a real-time metamechanical pro-
cess, will 
system in 
ledge. We 
theory. 

be converted into a purely mechanical device, a formal 
the usual sense, which can become an object of know
shall call this operation the objectification of the 

A simple way to objectify a theory is to cut off the access 
fun.ction gns from the world and define it by the sentence 

( 1) 

where ri stands for the knowledge of the present stage of the 
theory. This, however, makes it impossible to use the objectified 
theory in the context of our general theory which goes on deve
loping in real time, because we changed the definition of the 
function gns and, thereby, of all those functions which directly 
or indirectly call gns, including Y and Y. Therefore, we have to 
make a copy of the theory and change in it the names of all, or 
at least some, functions to avoid confusion with the original 
functions of the general theory. 

We come to the following procedure of objectification. Make 
a copy of the Refal machine implementing a theory. Redefine gns 
as in (1). Rename every Refal function in the copy, i.e. put in 
correspondence to every function symbol F a symbol r' never used 
before, and replace every entry of F when it immediately follows 
after an activation bracket <by r'. In particular, rename y as g 

and Y as ~; these new functions will be referred to as the prov
ing machines of the objectified theory. Put all the new defini
tions into the program field of the Refal machine implementing 
the metatheory. This is, literally, a formalization of the an-
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cient dictum: "Know thyself". 

The formal system thus created is fully defined and repre
sented by its two proving machines; now we can freely use them in 
our general theory. It is important to note that the renaming of 
functions in the process of objectification does not affect those 
function names which are used only as symbols in expressions; it 
is only when a function name F immediately follows an activation 
bracket that the effect of objectification becomes visible. Sup
pose a metacoded function call *(Fe) is part of an expression 
processed by the functions of an objectified theory. It is pro
cessed in exactly the same way as it would be processed without 
objectification, until the time comes to demetacode the call 
through the use of functions step or act. At that time the 
modified versions step' and act' will be in action instead of the 
regular functions. They will operate as if *(Fe) were demetacoded 
into <F'E>, not <FE>, without actually substituting F' for F. 

To see it in more detail, remember the definition of the 
function .§ll.Q: 

<step *(gns)> ~ <~ <gns>> 
<~ es> ~ <stepu(P)es> 

The function stepu never calls gns, 
same name in the objectified theory. 
is defined by: 

so we can leave it with the 
The modified function step' 

<step' *(gns)> ~ <~ <gns'>> 
<step' es> ~ <step(P)es> 

Here P, the current program, is an object expression, 
therefore, the same in the modified definition as in the 
nal. We see that ifF is not gns the step is performed 
there was no modification. Nowhere is F replaced by F'. 
only gns which is modified because it is in the active 
(follows an activation bracket) iry the program. 

and is, 
origi
as if 
It is 

position 

The function act calls step repeatedly. The modified act' 
will call the modified step'. At each step of the emulated Refal 
machine, the function names in the metacoded function calls will 
remain unmodified; it is only when *(gns) is to be activated that 
the difference between the original theory and its objectified 
version manifests itself: instead of the current knowledge r, one 
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of the past stages of knowledge ri is invoked. Since that time, 
human knowledge may have developed dramatically, but the objecti
fied theory still operates as the general theory operated at that 
stage. And it "does not know" that it is objectified; in the 
metacode, the objectified theory uses the same language it used 
before, when it represented the present of the general theory. In 
particular, it refers to the cognitive functions as~ and ~. 

although when they are activated they are executed with the fixed 
ri, i.e. as g and g. But it is only the metasystem, our general 
theory, that knows that things change in real time and has a 
different notation for the true cognitive functions on the one 
hand, and objectified cognitive functions, i.e. proving machines 
of various formal systems, on the other. 

Looking through the list of the functions we defined we see 
that the following three functions refer directly to gns: step, ~ 

and Y. Those functions which call step, call gns indirectly, and 
so do the functions which call these functions, etc. The func
tions y and y , renamed into g and g, will be accessed from the 
general theory, but they are not recursive and never called from 
inside of the objectified theory. 

This last detail may seem strange. We know that the process 
of proof in logic is recursive. So is the process of hierarchical 
generation of propositions in our theory. How is it possible that 
the proving machines of the objectified theory, i.e. a formal 
system, are not recursive? 

The functions ~and y in our theory may call themselves, but 
not directly (call as value) but through the metacode (call as 
process). The recursive configurations are not <~ex> and <~ex>, 

but <step *(yex)> and <step *(~ex)>. When we rename cognitive 
functions into proving machines, their active entries are changed 
-- and they appear only once, at the time of definition -- where
as the metacoded entries are left unaffected. The new recursive 
configurations are <~' *(yex)> and <step' *(~ex)>. Essen
tially, it is the function step' (since it depends on r. it l • 

should be denoted as stept) which defines the operation of an 
objectified theory, and other functions are redefined in order to 
call ~· instead of step. But when we are using the objectified 
theory as a formal system without going into the mechanics of it, 
we need only the proving machines g and ~. 
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Now that our general theory has the means to deal with its 
objectivized self, we can make a step in real time and expand our 
knowledge. Take the Goedel proposition for the objectified ri in 
any of the forms discussed above; let us denote it G1 . Make the 
statement: 

r • 

It is true because, 
not provable before 
trivially provable, 

as we proved above, Gt is true. But it was 
we made this statement. Now, of course, it is 
because the current state of knowledge is 

= 

But it is a new formal system; these two propositions are true: 
gt(Gi)? and gt+l(Gi)!. The new system ri+l can again be objecti
fied and the proposition Gi+l added, etc. 

We assume that the theories we are dealing with have a 
certain mimnimum of means (machinery and knowledge), which will 
be concretized as we go on. In particular, the conditions of 
Goedel's incompleteness theorem are met. We now have the fol
lowing, somewhat schizophrenic, situation. There is the formal 
system F 1 with the knowledge r 1 . Among the machines defined in Fi 
there are gi and gi, which mimic the operation of the cognitive 
functions of F 1 . Also, there are the machines G1 and G2 defined, 
such that G1 (ri)? and G2 (ri)! are Goedel's propositions for the 
objectivized ri (they will be denoted summarily as Gi): 

g(Gl(ri)?) 
g(Gz(ri)!) 

We want to know what can and what cannot be proved in our theory 
at the present time, that is to say, in Fi. I call this situation 
schizophrenic because when we freeze the time and consider only 
the present moment, the difference between the formal system F. 

t 
and its objectified copy is only potential, not actual; the 
functions Y andY on one hand, and g and g on the other, operate 
in exactly the same manner. 

We proved that g.(G.) cannot be finite Therefore y(G·) is t t . l 
not finite either: the Goedel propositions are not provable in 
Fi, though true. This much we knew before. Our aim now is to 
analyze in greater detail why the intuitive proof that G. is true 

l 
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cannot be formalized in Fi itself. This proof is short and 
simple. If there are no means at the present stage of r to 
formalize this proof, why cannot we add the necessary means to r 
once and forever? 

Let us examine the proof of Goedel's theorem. First, we used 
the definitions of gi and G1 to prove (3). The definitional 
knowledge, as we discussed in Sec.5.2, can be always assumed to 
be present in the current formal system if it is mechanically 
universal. To be able to combine definitions as necessary for the 
proof, a formal system must use the transitivity of entailment 
and know how to make substitution. We suppose that the system ri 
has this minimum of knowledge. Then: 

(4) 

After this had been established, we reasoned as follows. 
From (4), if G1 (r 1 )! is true then G1 (ri)? is proven in the objec
tified version of ri. Since it is a true formal system, G1 (ri)? 
must be true. The first step is simply the equivalence (4) read 
in one direction, therefore it is producible in r 1 : 

(5) 

The second step uses the assumption that the objectivized version 
of ri is true. It can be formalized by the proposition: 

(6) 

where P is an arbitrary proposition (metavariable). It states 
that if P is proved by gi then P is true. This is, of course, a 
true proposition, but we do not know whether it is produced in ri 
or not. Let us suppose that it is produced and see what happens 
if we go on with the proof. From (6) with G1 (ri)? substituted for 
P: 

(7) 

From (5) and (7) by transitivity of implication: 

(8) 

came 
Now we can come to a contradiction in the same way that 

to a contradiction in Goedel's proof. If we add G1 (r 1 ) 
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ri, then by (8), G1 (r 1 )? will also be produced. This means that 
c,cr 1 )! is contradictory in r 1 , i.e. 

Since G,(ri) is a mechanical process: 

This, however, contradicts the unprovability of G1 (r 1 )? in ri, 
which we have already firmly established. We conclude that (6) is 
not produced in ri. Using the proposition Gz(ri)! instead of 
G1 (ri)?, we come to the analogous conclusion regarding §: the 
proposition 

(9) 

with an arbitrary proposition P, is true but unprovable in ri· We 
shall refer to the conjunction of the propositions (6) and (9) as 
the correctness statement for r. t . 

When we discover a new knowledge which is not currently 
produced by r, we add it to r. We can do this, of course, with 
(6) and (9), which would result in a new formal system ri+l· But 
these statements depend on the specific proving machines g and ~. 

so to add to knowledge in this fashion we have to consider every 
formal system individually. Our wish was to introduce a general 
principle which would be applicable at any stage and add it once 
and forever. We see now that we cannot do it. If we try to 
generalize (6) and (9) by substituting the general cognitive 
functions ~ and ~ for the proving machines g and g, we come to 
the trivial propositions: 

il ~(P)!then P 
il :Y(P)!then :Y(P)! 

which add nothing to the knowledge. 

It may seem strange that a proposition so obviously true as 
the conjunction of (6) and (9) should never be provable in the 
current system. This happens because we look at the current 
system Fi and its objectified copy Fi from the metasystem, and we 
see that they are essentially identical. But for Fi its objecti
fied copy Fi is just a machinery, and in order to predict any-
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thing about its workings, Ft must analyze the definition of Fi as 
such, without comparing Fi with itself, because there is no 
itself to compare with, other than the objectified copy Fj. This 
is not the question of machinery, of course, but the question of 
knowledge. We can compare ri and r from the vantage point of our 
human metasystem, as creators of all theories. But r is a meta
symbol. It does not appear in the formalism: it is only the 
access function gns that is to be found there. And it is used in 
such a manner that the result of its concretization cannot be 
subject to analysis, but only used in the functions v and Y 
(where it works, being hierarchically activated, so even there it 
is not treated as object). 

We now turn to the second theorem proven by Goedel, which 
states that the consistency of a strong enough theory cannot be 
proven in the theory itself. How should this statement be forma
lized in our theory? First, let us try the following way. Take 
any proposition P; its provability is y(P)!. Take its negation y 
(P)!; the provability of the negation is y(y(P)!)!. It seems that 
the negation of the conjunction of these two provabilities: 

y(y(P)! & y(y(P)!)!)! 

should be the adequate expression of the idea. But this proposi
tion is easily provable (producible) in any rt which includes the 
basic logic principles! It corresponds to the propositon 

"'(P & .,.p) 

in usual notation. 

The fallacy of this interpretation is that v in our theory 
refers not to a specific formal system, but to any formal system 
we are ready to trust. This corresponds to the concept of being 
true in the usual approach, not to the concept of being provable. 
To formulate Goedel's second theorem we again have to make dis
tinction between a formal system and its objectivized copy. 

Goedel's 
enough, 
sit ion 

consistency theorem. If the formal system ri is strong 
the consistency of its objectified copy, i.e. the propo-
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cannot be proven 1n rt· 

Proof. In addition to the conditions of the incompleteness theo
rem, we shall assume a certain minimum of knowledge in ri. First 
of all, it is the verification principle. If ri includes it, then 

(10) r. 
1 

R & il A!then A! 

with some R and an arbitrary A. The second assumption is: 

(11) ri .... if A!then imp([R & if A!then Q]-+ Q)! 

with arbitrary A, R, and Q. If this assumption does not hold, we 
can make the corresponding statement, which will be true. The 
proposition in (ll) follows directly from the definition of the 
function imp, which runs the first argument until it produces the 
second (if it does). The running of the if generator in the 
square brackets in (11) must produce Q if A is finite. 

Substituting A! for Q in (11) and using (10) we get: 

The call of imp here is a call of gi• by the definition of the 
latter. Abbreviate G~(ri) to G2 , and substitute it for A: 

(12) 

As we saw earlier, 

Combining it with (12) we have: 

Suppose that the consistency of (the objectified copy of) ri 
can bP. proven in ri: 

Substituting G2 ! for P we get: 
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If we add G2 ! tori, (13) and (15) will immediately produce 
opposite propositions. Therefore Y(G 2 !)! will be provable in ri. 
But this, as we know, leads to a contradiction. Therefore, (14) 
is false, which proves the theorem.Q 

We found three propositions which are true but unprovable in 

r i : 
(1) Goedel's proposition in two equivalent forms: G1 (ri)? and 

G~(ri)!. 
(2) The consistency statement for ri. 
(3) The correctness statement for ri. 
While the first two give us only individual propositions, the 
third is a general principle, which yields infinitely many indi
vidual propositions. One divines a great power in it. We saw 
earlier that when we add the correctness statement to r. the ' , 
resulting system ri+l proves Goedel's proposition. We show now 
that the consistency statement also follows from the correctness 
statement (which intuitively should have been expected). 

From rt+l by adding the correctness statement: 

Then 

(16) 

(17) 
r. l ... '+ r. l ... 

1 + 

if gi(P)!then P 

if gi(P)!then :Y(P)! 

Consider the proposition gi(P)! & gi(P)!. It follows immediately 
from (16) and (17) that 

Hence by the contradiction principle: 

for any P.Q 

Thus the correctness statement alone is sufficient to cover 
all known propositions of that kind. The objectification of the 
current knowledge and the statement of its correctness is a 
metasystem transition with respect to the current system; it 
allows us to expand our knowledge. The results of this section 
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concerning this method of expanding knowledge can be summed up in 
the following important theorem: 

Metasystem transition theorem. We can expand the knowledge of the 
current formal system rt by making an objectified copy of it and 
adding to ri the correctness statement 

In the resulting formal system ri+l the Goedel proposition for ri 
and the consistency of ri are proved.v 

6. Classical logic 

We saw that the static interpretation of r leads to intui
tionist logic. With the dynamic interpretation, we can add to 
human knowledge the law of the excluded middle in its general 
form: 

(EM 2 ) all(p E ~: Q£(y(p),y(p))!) 

Then we get classical logic in full. The law of double negation 
is deduced immediately. Conversly, we could postulate the double 
negation law and deduce (EM 2 ). 

The strength of classical logic as compared to intuitionist 
logic comes from the more permissive treatement of the cognitive 
functions. Intuitionistic logic fixes the human knowledge r into 
ri, at least for the time of discourse. Classical logic bases its 
proofs on the concept of the growing r; it allows the index i in 
ri to go into infinity. This invokes the type of reasoning fami
liar from the calculus: "for every x there exists such a y 

that ... " etc. The relation between Goede 1 's theorem and the law 
of the excluded middle becomes very clear when seen in this 
light. Goedel's theorem establishes that: 

(a) For every formal system ri there exists such a proposition Gi 
that 

(l) 

(b) For that very proposition Gi there exists another formal 
system ri+l' such that 
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(2) 

If we simply take the limit of (1) and (2) for i~~. we get 
two contradictory propositions. This is a situation familiar from 
the calculus, when the correct answer depends on the order in 
which two interrelated variables are treated in the jump to the 
limit. In intuitionist logic we first fix the index t of the 
formal system and let the generator of propositions in (EM 2 ) run 
infinitely. Then it will generate at least one proposition, 
namely Gi, such that the disjunction in (EM 2 ) is false, and hence 
(EM 2 ) is false. In classical logic we use ~ and ~ to denote the 
limit of g 1 and gi as i~~. The generator (EM 2 ) produces 

(3) or(~(P),:Y(P))! 

for every proposition P. Thus P comes first, and now we interpret 
(3) by seeing r and :Y as the corresponding limits. Then for every 
P there is an t for which (3) is true, and (EM 2 ) becomes true. 

Negative results in mathematics exert a hypnotizing action 
on mathematicians. When it is proven that something that had been 
considered very desirable does not really exist, people convince 
themselves that they did not really want it, and go after some
thing else. The most famous case of this kind is the discovery of 
inconmensurability by the ancient Greeks, which prevented them 
from developing the algebra of real quantities. The Greeks could 
not overcome the threshold of introducing a notation like '2; for 
them it would have been a contradiction in itself because it was 
proven that no number becomes 2 when squared. 

After a while, however, it is discovered that we still can 
introduce a notation for "non-existing entities" and interpret it 
as ideal objects to which we can strive and which can be approxi
mated by entities which undoubtedly exist. It was Descartes (see 
Turchin 1977) who did it for inconmensurable quantities: a disco
very that transformed mathematics. 

We can draw a parallel between Goedel's theorem and the 
inconmensurability theorem. Universal resolving procedures have 
been as desirable in this century, and as much in the spirit of 
the time, as numerical representation of geometric quantities was 
in the time of the Pythagoreans. Goedel's theorem and the sub
sequent results of the non-existence of the most important uni
versal algorithms undermined the effort to ground mathematics on 
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the concept of the algorithm (ditto the resolving procedure, 
ditto the machine). Ever since, such trends of thought as intui
tionism and constructivism have remained on the margins of mathe
matics. The work on the foundation of mathematics lost its elan 
vital. 

Goedel's theorem became widely known, and its popular inter
pretation is purely negative. It is thought of as showing our 
inability to do something. But in fact the balance of the message 
of Goedel's theorem is strongly positive. In its negative part it 
shows that we cannot construct certain universal procedures be
cause the idea of such a procedure is, after a closer exami
nation, self-contradictory. This is not what we intuitively un
derstand by inability. It should not discourage us any more than 
our "inability" to create a number which is greater than itslef. 
On the positive ~ide, Goedel's theorem gives a constructive 
procedure to find a proposition which is unprovable in a given 
formal system, but is true and is proven to be true. It shows 
that using metasystem transition we can prove propositions which 
we could not prove before. This is an ability, not an inability. 
It is this positive aspect of Goedel's method that is capitalized 
on in our theory. 

It is only the form, the appearance of Goedel's theorem that 
looks negative. One and the same result can be presented both as 
a negative and as a positive statement. You can say: "there 
exists no maximal whole number", which looks like a negative 
statement. But you can also say: "whatever is a whole number N, I 
can construct a greater number N+l", and this is a positive 
statement. It makes a better sense, because it goes deeper into 
the matter and better reflects the proof. 

There is an analogy between our theory and the geometric 
algebra introduced by Descartes, and it is not superficial at 
all. Mechanical procedures in our theory correspond to rational 
numbers at the time of Descartes. They "really exist". The func
tions y and Y, and the whole lot of functions that can be defined 
using them, correspond to irrational (note the word!) numbers; 
they "cannot be understood by reason", and "do not really exist". 
The law of the excluded middle, in both its forms, is a sort of 
equation for the non-existent Y, like x 2 =1 is the equasion for 
the non-existent v2. We approximate Y by g 1 , g 2 ... , etc., as v2 
is approximated by 1, 1. 4, 1. 41 ... , etc. The act of metasystem 
transition corresponds to taking the next term in infinite series 
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of infinitesimal analysis. By this analogy, our method may be 
called metasystem analysis. The parallel notions and entities are 
summed up in the following table. 

metaayatem analysis 

Mechanical processes 

Goedel's theorem 

Incomputability 

(*) -v(P)! v :Y(P)! 

"There is no recursive 
function -v such that (*) 
is true for all P" 

Set theory. Zermelo 

"Set theory is richer 
than automata theory" 

Symbolic notation for 
all decision processes 

The solution of (*) is: 
gl, g2, g3, ... • etc. 

Metamechanical processes 

All processes 
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algebra and calculus 

Rational numbers 

The Pythagoras theorem 

lnconmensurability 

(*) X/2 = 1/X 

"There is no x 

such that (*) is true" 

Geometry. Euclid 

"Geometry is richer 
than arithmetic" 

Descartes's Geometry: 
symbolic notation for 
all geometric quantities 

The solution of (*) is: 
l, 1. 4, 1. 41, ... , etc. 

Irrational numbers 

All real numbers 



C H A P T f R 6 

a::· t ._.e Thec·r- y 

1. Extensionality and regularity 

There are two possibilities with regard to the set of all 
objects of a theory: it may be defined by a mechanical generator 
at the outset, or it may be generated by a real-time process as 
the theory develops. Theories with a mechanical generator of all 
objects are known as first-order theories; they have been dis
cussed in the preceding chapter. Set theory is a theory of the 
second kind. Its objects are processes themselves; more precise
ly, they are interpretable set generators. At an early stage of 
the development of set theory it becomes clear that there exists 
no mechanical process which could generate all objects of set 
theory. So, the set of all objects of set theory keeps expanding 
as we keep developing the theory. We shall denote the current 
stage of this real-time process by the metasymbol ~. and the 
Refal function which provides access to it by <~> (from the 
Greek 'Logos'). Thus ~ is a mechanical generator of all the 
objects of set theory introduced up to now. 

The machines of a theory are normally defined in such a way 
that if their inputs are legitimate objects of the theory and 
interpretable propositions, then the resulting process is inter
pretable. This is certainly true for the machines we have defined 
up to now and shall define below. Since the primary machines of a 
theory must be defined explicilely, their number can be only 
finite. With a given mechanical generator of all legitimate 
objects, the set of all interpretable propositions of a theory 
can be generated by substituting enumerably many entities for the 
inputs of the primary machines (including, of course, the substi
tution of entities which themselves result from previous substi
tutions). If G is the generator of all objects of a theory, 
then the generator of all possible propositions will be referred 
to as ~(G). In a first-order theory, the set of all inter
pretable propositions is enumerable, i.e. generated by a mecha
nical process. (The set of all true propositions of a first-order 
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theory is still a real-time process). In set theory we can use 
the mechanical generator ~ of interpretable propositions for 
every stage ~i of the real-time process ~- Thus the set of all 
interpretable propositions in set theory becomes a real-time 
process QLQR(~). which develops together with~- There are 
two essentially independent real-time processes in set theory: 
~ with its derivative QLQQ(lg§), which yields the language of 
the theory, and~. which yields its knowledge. The only connec
tion between them is that at any stage gns must be a subset of 
llQ:2 ( lg§J . 

Passing on to a formal exposition of set theory, we identify 
the concept of a set with the concept of a generator, and contend 
that any interpretation of an infinite set which cannot be re
duced to a generating process is intuitively meaningless. Since 
we allow the use of real-time cognitive processes v and v, we 
limit set generators to interpretable processes, otherwise we 
shall not be able to interpret the membership of an object in a 
set. 

When an object and a set are given, we must be able to 
establish whether the object is an element of the set. A 
straightforward solution to this problem would be given by the 
function elm, which we have already used before (Sec.3.3). The 
process 

<elm(tE)of G> 

stops if and only if the expression E is among the expressions 
generated by G. 

This staightforward concept of being an element is not the 
one adopted in set theory. It is applicable only when the expres
sion E represents one of the primary objects, or ur-elements of 
the theory, by which we mean those objects (if any) which are not 
sets, so that their 'physical' identity as expressions is the 
necessary and sufficient condition of being identical as objects 
of theory. But most important objects of set theory are, of 
course, sets. Set theory uses the extensionality principle to 
define the identity of sets. According to this principle, two 
sets are declared identical, or equal, if and only if every 
element of one set is also an element of the other. Consequently, 
the identity, or equality of sets is not the same as the identity 
of the Refal expressions which represent them. Indeed, it is easy 
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to define two different processes in Refal which will generate 
the same objects. 

To comply with the extensionality principle, we must distin
guish between ur-elements and sets, and use the concept of set 
equality when deciding whether a given set is among the objects 
produced by a given generator. 

The set of all ur-elements may be different in different 
versions of set theory (it may be, in particular, empty). The 
only requirement on this set is that we should be able to distin
guish an ur-element from a set. We define an ur-element as any 
Refal expression which includes no asterisks * . This immediately 
makes ur-elements distinguishable from set representations be
cause the latter have the form *(E). 

In the case of infinite sets, the equality of expressions as 
set representatives, unlike their physical identity, cannot be 
directly established. A reference to some proof, i.e. to a know
ledge, once again becomes an implicit part of semantics. Let us 
denote by E=E' the proposition that the sets represented by the 
expressions E and e' are equal; we shall write out this proposi
tion in a moment. Then 

(y £=£'> 

is the process of proving that set E is equal to set e' . Using 
this notation we define function el as follows: 

= 

= 

Here the auxiliary function ~. the equality of set-theoretical 
objects, is defined as: 

<~(ex)(ex)> = T 
<~(*(ex))(*(ey)) = 

The process <el(E) E G>, (which is~(£ E G) in free format 
notation) stops if and only if E is an element of G. 

Equality of sets is the double inclusion: 
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(1) ( S=T) : ( [ S in T] & [ T inS]) 

The relation of inclusion (being a subset) is defined by 

(2) (Sin T) : all(x E S: ~(x £ T)!) 

We see recursion here: function el is defined using the 
relation of equality, which in its turn calls function~- Fur
thermore, this is a semantic recursion because it crosses the 
boundaries of cognitive function calls. Therefore, we must ensure 
somehow that using function ~ we get interpretable propositions 
only. 

From the definition of function el we see that el(X e S) may 
call y(X=Y) where Y is any element of S. Thus el(X e S) is seman
tically dependent on all the propositions X=Y with a Y from S. 
Using symbol >> to denote semantic dependence, we can represent 
this by the formula: 

(3) el(X E S) >> X=Y , Y E S 

(The usual notation X E Y stands for el(X e Y)!). 

From (l) and (2) we derive two time sequences: 

(4a) X=Y ~ ~(Z E Y) , Z E X 

(4b) X=Y ~ ~(Z E X) , Z £ Y 

Combining (3) with (4a) and (4b) we have two semantic dependen
cies: 

(Sa) el(X E S) >> el(Z E Y) , Y E S, Z EX 

(5b) el(X € S) >> el(Z EX) , Y E S, Z E Y 

A process which is semantically dependent on itself (infi
nite semantic recursion) is uninterpretable. From (Sa) we see 
that we are immediately in trouble when X=Z and S=Y. Since Z is 
an element of S, the~ process will be uninterpretable unless 

(6a) never: s £ S 
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From (~b), our process becomes uninterpretable 1f X=Z and S=X, 
therefore X=Z=S. Since Y is an element of Sand Z=S is an element 
of Y, such situations are prevented only if 

(6b) never: S E Y & YES 

We call an !l-sequence a sequence of sets 

such that for every i>l 

y. l € y. 
l + l 

It is easy to see that (6a) and (6b) can be generalized into 

(6c) never: there is such an el-sequence of sets 
Y,, Yt, ... , yn 
that S = Y = Y 

1 n 

This condition is necessary for interpretability, but not 
sufficient. The sufficient condition for the interpretability of 
the el function is: 

(7) an el-sequence of sets which starts with S can only be 
finite 

Sets S satisfying (7) are known as regular. Condition (7) is the 
criterion of regularity. 

Regularity Theorem. The process ~(xES), 
element or a regular set and S is a regular 
table. 

where x is an ur
set, is interpre-

Proof. According to the definition of the function~. the only 
source of possible non-interpretability is the semantic recursion 
in function~ itself. Consider a pair (X,S) which is the argu
ment of an ~call. Denote by Z' any element of the set Z. 
According to (5), the semantic recursion in function el can be 
schematically presented by two formulas: 

(X,S) >> (X',S') 
(X,S) >> (S",X) 
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If X and S are regular sets or ur-elements, then any possible 
sequence of the calls of function el can only be finite. There
fore all of them have a definite objective interpretation which 
can be established starting from the last call.v 

Since the repetition of an argument pair in an ~-sequence 

creates an infinite ~-sequence, requirement (6c) is satisfied if 
setS is regular. 

If a set is regular, all its elements are regular. Indeed, 
should an element T of setS not be regular, an infinite el
sequence starting with T would exist. Then we have only to addS 
to it to prove that S is not regular either. Conversely, if all 
elements of S are regular, S is also regular. This is proved by 
noticing that should we have an infinite el-sequence for S, we 
could delete S and get an infinite el-sequence for one of its 
elements. So, for a set to be regular it is sufficient and neces
sary that all its elements are regular. Therefore, all regular 
sets can be constructed inductively starting with sets which 
include only ur-elements. 

Now we limit the objects of our theory to ur-elements and 
regular sets only, which guarantees the interpretability of the 
~ processes. It should be stressed that regularity becomes 
necessary only because function el is defined according to the 
extensionality principle. The concept of a set which has itself 
as one of its elements is not contradictory in itself. For 
instance, this generator: 

(7) <self> = (*(self)) 

is interpretable as a process. It generates exactly one element 
which happens to be the metacode of this very process. If we 
based the concept of being an element of a set on the literal 
identity of expressions, as in function elm, it would be true 
that 

But we would not be able to use function~ with such sets. The 
necessity of regularity arises from extensionality. 

It follows immediately from the definition of regularity 
that there is no (regular) set generator that could produce all 
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regular sets. Indeed. 1f such a generator ~ existed, then ~ 

itself would be a regular set; but th~n it mu&t produce 1tselt, 
wtllch 1s 1mpossiblt•. Therefore, lhe qeneratot uf all sets 1n SE>t 

theory lt. not ~ m~:'Chduiccll but a metamechanical treal-l1me1 

process, which develops as we define new sets. 

We access the generator of all legitimate objects of set 
theory, i.e. ur-elements and sets, through the function ls2. At 
every moment in real-time the process <~> yields a specific 
mechanical generator ~i, which produces all those sets that are 
already known to be legitimate, i.e. interpretable and regular. 
Note that in the free format notation, where we ignore metacode 
transformation, the symbol ~can be understood both as standing 
for the process <lg§> which produces ~. and as the process of 
generation represented by ~- We shall understand 'the process 
~·, or 'the set ~· in the second sense (the first process is 
trivial). The metasymbol ~has no place in the formalism of our 
theory, we only use it to speak about the theory. The symbol ~. 
however, is part of the formalism, and we must make its inter
pretation and possible uses clear. First of all: does it repre
sent a legitimate object of the theory? It is a set generator, 
and as a process it must be, by definition, interpretable. But is 
it a regular set? 

A set is regular if at some stage of the development of 
theory it becomes producible by ~- Symbol lg§ stands for the 
current ~- At no moment in real time is ~ producing ~. and since 
only those sets produced at some time by~ are regular, we come 
to the conclusion that lg§ itself is not regular. This seems 
paradoxical, because we know that at any moment in time~ is a 
regular set. The resolution of this paradox is in remembering 
that the generator represented by ~ changes each time that we 
establish the legitimacy of a new generator as a set, for we 
immediately include this new generator in ~- This is also true 
with regard to ~- We can use every stage ~i of ~ in our theory, 
but ·the moment we use it we include it in lg§, thus turning ~ 

into ~i+l· Before we made this step, ~i did not qualify as a set. 
After we did it, ~i qualifies, but it does not represent lg§ any 
more. The new value of lg§ is ~i+l' and it again does not qualify 
as a set. 

Viewing 
selves: does 
sion: *(lg§) 

this problem from the formal side we must ask our
some of the generators ~ produce this Refal expres
? It depends on how we define <~>. The preceding 
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discussion suggests that we should define it so that this expres
sion is never produced and~ is not regular. In fact, we have 
no choice. Suppose we define every stage ~ as producing *(~) in 
addition to all other set representations. Since *(~) is 
immediately replaced by A, this amounts to A generating itself. 
Therefore ~ becomes not regular. We can still try to use it, 
taking care to separate *(~) from all other products which 
constitute the universe of regular sets available at the time. 
But now at every stage of the development of set theory, ~will 
produce a A which is not regular. and therefore lga is not regu
lar again. 

In terms of Von Neumann's axiomatization, ls2 represents a 
class, not a set of objects. The difference between a set gene
rator and a class generator is not in what they ultimately pro
duce: both produce the same regular sets -- but in the role they 
play at the current (and every) stage of theory, i.e. in the 
current formal system. The class of all sets is an ever-nascent 
creature which produces all legitimate sets, but is not yet 
itself legitimized as a set. 

2. Basic set constructors.Paradoxes 

The language of set theory is, in its essence, a programming 

language. Like other programming languages, such as FORTRAN or 
REFAL, the set-theoretical language gives us the means to create 
linguistic processes (set generators in the case of set theory) 
which we use to model natural phenomena. Unlike computer program
ming languages, the language of set theory includes the means to 
communicate with the real-time processes of language creation and 
knowledge: A and r. 

The role of basic operations of computer languages is played 
in set theory by set constructors. These are machines defined in 
the Refal metasystem and used to create new set generators. A set 
constructor must be such that when its arguments satisfy certain 
stated requirements, the generating process is interpretable and 
the set produced -- regular. In the following we define and 
discuss the basic set constructors necessary to arrive at the 
present-time set theory. 

We need, first of all, the means to create arbitrary finite 
sets out of objects which are already in existence. Since a 
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finite set can be represented_simply by the list of its elements, 
we can define a trivial function fs (for 'finite set') which 
produces the whole list in one step: 

<fs e > 
-- 1 

The argument e 1 is eHpected here to be a list, e.g., (A)(B). 
If e 1 is not a list, the result of fs will not have the structure 
required of a set generator; therefore, the fs so defined is not, 
generally, a set generator. This would not scare a pure mathema
tician who naivelly assumes that functions always get only such 
arguments for which they are meant. But it does not seem right to 
a computer scientist; we would prefer to add what is known as a 
syntaH check, so as to be safe with regard to the format of the 
result. Therefore we redefine function fs as follows: 

<fs(e 1 )e 2 > ~ 

<fs> ~ 

(e )<fs e > 
1 -- 2 

Now <fs e 1 > is always a generator no matter what its argu
ment e 1 • 

Examples. A set generator for a set of two elements A and B is 
<fs(A)(B~>. hence what is {A,B} in the usual set-theoretical 
notation will be *(fs(A)(B)) in the strict notation of our theo
ry. 

The empty set is *(fs). The set 

{A,{A,B}} 

is in our theory 

*(fs(A)(*V(fs(A)(B)))) 

Having fs-constructor alone, we can demonstrate how set 
theory is continuously developed. To start, we must define the 
set of ur-elements. Let it consist of three symbols: A,B, and c. 
At this initial stage our language generator is 

<~> ~ (A)(B)(C) 

Suppose we want to consider a set which has eHactly two 
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elements: A and B, i.e. {A,B} in the usual notation. We can do 
this. We write 

(1) *(fs(A)(B)) 

and simultaneously modify ~· It is now 

<lg§> ~ (A)(B)(C)(*(fs(A)(B))) 

Suppose we want to consider the set 

(2) {A,B,{B,C}} 

We cannot do that immediately, because one of the intended ele
ments, namely {B,C}, is not in~- So we must first consider 

(3) {B,C} = *(fs(B)(C)) 

and prove that it is a legitimate set. If we succeed in this, as 
we do of course, we add (3) to the list defining~- Only after 
that do we legitimize (2) as a set and add it to the list. Now 
the definition of lga is: 

<lg§> ~ (A)(B)(C)(*(fs(A)(B)))(*(fs(B)(C))) 
(*(fs(A)(B)(*V(fs(B)(C))))) 

In these examples lga was modified by adding one object at a 
time. We also can expand lg£ including in one step an infinite 
number of objects. For instance, it is possible to write a gene
rator *(G) which will produce all finite sets that can be formed 
using three ur-elements A,B,C, and the fs constructor. We can 
then include *(G) into lga. To do this conveniently we must 
change the format of the lga definition, using not a list of 
objects but a list of generators. The new format is: 

<lg§> ~ <uni [defining list] > 

where [defining list] is a list of generators, and uni (for 
'union') is the machine which produces all those elements produ
cible by any of the generators in the list. It is defined as fol
lows: 



< un i ( e ) e > ... 
-- I Z 

l<act e 1 > 
gl 

l<uni ez> 

Assuming that a definition of *(G) exists and that it is proven 
to be regular, we can redefine~ as 

<~> ~ <uni(*(fa(A)(B)(C)))(*(G))> 

We can now use any finite set constructible as defined above 
without changing ~· 

The general procedure for using an expression E as a set
theoretical object is as follows. 

l. See if E is generated by~· If it is, use it. 
2. If E is not produced by~ 

prove that e represents an interpretable generator 
and that whenever it produces a setS, 
every element T of S either was in ~from the beginning, 
or has already been produced by E 
at an earlier stage in model time. 

3. If yo~ succeed, add a generator which produces E 
to the defining list of ~· You can use it now. 

Set theory requires the existence of at least one infinite 
set, namely, the set which contains the empty set ¢as its ele
ment, and together with any element x contains also the element 
formed as the union xU{x} . Thus the elements of this set are: 

(4) ¢, <¢>, <¢,<¢>>, <¢,<¢>, <¢,<¢>>>, ... etc. 

The union of two sets A and B in the strict notation is 

*(uni(tA)(tB)) 

The set {X} consisting of the single element X is 

*(fs(tX)) 

To construct a generator producing (4), we want a machine inf(X) 
which in every step produces an X and calls itself with XU{X} as 
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the next argument: 

inf(X) ~ (X) inf(*(uni(tX)(t*(fs(tX))) 

To translate this semi-formal recursion equation into 
definition we replace metacoding symbols t by actual 
transformations: 

a Refal 
meta code 

It is easy to see that with any interpretable argument ex 
the process <inf ex> is interpretable, and if ex is a regular 
set, then it produces only regular sets. Hence t<inf ¢>,i.e. 

(5) *(inf *V(fs)) 

is the desired infinite set. This is a constructor without para
meters which gives us exactly one set. 

Our next constructor will produce sets with elements selec
ted for a certain property. In the free format notation it is: 

(6) ~(XES: H(x)!) 

which is read: the set of all those elements x of the set S for 
which the process (search) H depending on x as a parameter is 
finite. The search H(x) will mostly consist in proving a certain 
property P of x: 

(7a) ~(xES: y(P(x))!) 

or its negation: 

(7b) set(x E S: y(P(x))!) 

The definition of the set function is: 

<.set *EsxE (e 1 )e 2 (ep)!> -+ 

l<if<act<sub(*Es ~e )e >>then(<~e >)> ----- Xlp--.,.1 
gl 

l<set *EsxE ez(ep)!> 
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The format of the set function ir1 strict Refal is: 

<set E G (H)!> 

where Vis a free e-variable in metacode, G is a generator, and H 
a search. It works as follows. The generator G is run step by 
step. Each time it produces an object x, this object is substi
tuted into the search H and this search is run in parallel with 
the continued running of G. Those branches for which H(x) stops 
produce the corresponding object x. 

The construct 

(8) T = set(x E S: H(x)!) 

is an interpretable and regular set if and only if the following 
three conditions are satisfied: (a) the generator S is interpre
table, (b) the process H(x) is interpretable for every element x 
produced by S, and (c) all elements x of S for which H(x) is 
finite represent ur-elements or regular sets. 

If. the set S is regular (and interpretable -- this 
without saying) then the necessary and sufficient condition 
(8) to represent a legitimate set is that the process H(x) 
interpretable for every possible element of S. 

goes 
for 
is 

Can we use ~ in the role of S in the set constructor? 
Consider 

(9) T = set(x E lg§: H(x)!) 

Although ~is not regular, it is interpretable, because at 
every stage in real time it is represented by an interpretable 
mechanical generator. So, condition (a) is satisfied. But (b) is 
not. Indeed, consider the case when the search H(x) is y(P(x)) 
or ~(P(x)). As mentioned before, this is the most typical use of 
the set constructor. In particular, the set used by Russell to 
come to his famous paradox, namely 

(10) R = set(x E 19§: v(P(x))!) 

with 
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(18') P(x) = x E x 

is of that type. For R to be interpretable, the property P(x) 
must be interpretable for every x E ~. and since P(x) is within 
a v-call this interpretability must be proven before and indepen
dently of the interpretability of R. That is, R is semantically 
dependednt on P(x), and on x, for every x E ~· 

At first glance it may seem that we could prove the legiti
macy of R by the following reasoning. ~produces only regular 
sets; therefore P(x) and v(P(x)) are interpretable for every x. 

Then R is interpretable and regular. This reasoning, however, is 
faulty. It assumes unconditionally that ~ produces only legiti
mate objects. But this can be taken for granted only before we 
start considering formula (18). The moment we defineR, it be
comes part of our language, which means that the generator ~ 
undergoes a change tn the process of proving: it now produces R. 
We cannot assume that this new ~ produces only interpretable 
and regular sets: not before we prove it. But R is not interpre
table because it is among the x's produced by ~and therefore 
semantically depends on itself. The set construct cannot be used 
with the universal generator ~· We can collectivize objects by 
an arbitrary property only if they belong to a definite regular 
set. 

Without coming into detail at the present time, we declare 
that all paradoxes of set theory are resolved in our theory in 
the same way we resolved Russell's paradox: by showing that they 
use uninterpretable propositions. When set theory is defined 
axiomatically, the axioms are chosen in order to avoid paradoxes. 
This is hardly a satisfactory way to found a theory. We start our 
theory from a certain conception of what the meaning of mathema
tical propositions is. We do not have to do anything to avoid 
paradoxes. As far as we use only meaningful propositions the 
paradoxes simply do not appear. The paradoxes as they are known 
are built on the propositions which we have shown to be mean
ingless. 

We saw that the set constructor with the universal generator 
~ cannot be used to collectivize objects by an arbitrary pro
perty. However, if we specify the collectivizing property in a 
certain way, namely by putting: 
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P(x) = x in S 

where S is a definite regular set, then we can still form a 
universal set. This set, i.e. the set of all subsets of S, known 
as the powerset of S, plays a most important role in Cantor's set 
theory. It deserves a special constructor pow: 

pow(S) ~ set(x E ~: y(x inS)!) 

The process pow(S) is weakly interpretable. Its semantic map 
is presented in Fig 5.1. It includes a semantically infinite 
path, but it does not prevent us from labeling all the proposi
tions involved. X 1 , x 2 , and other elements of pow(S) may or may 
not be elements of S, butS itself certainly is not an element of 
S, being regular. Thus 

pow(S) in S 

is interpretable and false; pow(S) is not produced by pow(S), 
while all other x's produced by it are regular because they have 
been in~ before the introduction of pow(S). This proves the 
interpretability and regularity of pow(S) for any interpretable 
and regular s. 

The pow constructor stands alone from all the other con
structors we have defined. It calls the function ~which pro
vides access to the real-time process ~ representing our develo
ping mathematical language. If S is infinite then there exists no 
mechanical generator which produces all the objects which can be 
produced by pow(s). This was first proven by Cantor, who inter
preted it in the Platonist spirit as the evidence that pow(S) has 
"more" elements than S. 

The notion that "some infinities are more infinite than 
others" is counterintuitive. Cantor's set theory introduced into 
mathematics a host of unimaginable entities, which later became 
being passed for the only "real" objects of mathematics. Yet in 
no reasonable sense do these entities exist, for we find them 
neither in reality nor in our intuition. The philosophical un
soundness of Cantor's theory has been recognized by many outstan
ding philosophers of mathematics starting with Henri Poincare who 
considered it as a perverse pathological condition that would one 
day be cured. No wonder that the only way to reconcile such a 
philosophical foundation with mathematical practice, in which 
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set theory turned out to be extremely useful, has been to accept 
pure and dogmatic formalism. The formalistic philosophy is, of 
course, no philosophy at all. It simply refuses to discuss what 
mathematical propositions mean; still worse, it discourages the 
fresh minds coming into mathematics from thinking about it. 

We contend that the mathematical formalism of set theory can 
be completely interpreted in terms of intuitively clear and 
unambiguous concepts. We should simply look better into how we 
are using mathematics, how we create its objects and satisfy 
ourselves about its proofs. When Cantor proves that pow(S) has 
"more" elements than S, he only proves that whatever machine is 
offered to us as a generator or enumerator of the elements of 
pow(S), we always can construct a new element, not yet accounted 
for. These pronouns 'us' and 'we' are absolutely essential for 
the meaning of the proof, even if they are avoided by using a 
different grammatical form. It is impossible to understand Can
tor's proof without 'we always can'. It shows that the construct 
pow(S) cannot be interpreted in terms of model-time processes 
only, but involves inextricably the idea of real time in which we 
live and in which 'we always can' create one more element. ~e 

subject of mathematical knowledge is inseparable from the con
cepts that are used here. 

3. The axioms of set theory 

Using the set constructors we defined above and adding a few 
more we can prove all the axioms of the ZF system as theorems in 
the Refal metasystem. Note that there are no ur-elements in the 
ZF system. 

I. Extensionality axiom. Sets 
equal: 

having the same elements are 

(EXT) (Ax)[x E a = x E b) ~ a = b 

This is one part of our definition of equality between sets. 
Using the reversed implication one can easily prove that the 
equality so defined is, as required, reflexive, symmetric, a~d 

transitive. 

II. Axiom of the empty set. There is a set which has no element$: 
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(EMP) (£x)(Ay)[~(y € x)) 

This set is * ( !E,). 

III. Separation axiom For every set a and evety property Plx' 0f 

sets there exists a set whose elements are those and only those 
elements of a which have the property P: 

(SEP) (£b)(Ax)[x e: b : x e: a & P(x)] 

This set is 

b = set(x e: a: P(x)) 

IV. Pairing axiom. Given any sets a and b, there exists a set c 

whose elements are exactly a and b: 

(PAIR) (Ec)(Ax)[x e: c = (x=a v x=b)] 

This set is 

c = *(fs(a)(b)) 

V. Sum.aet axiom. For every set a there exists a set 
elements are exactly those objects occurring in at 
element of a: 

(SUM) (£b)(Ax)[x e: b = (ey)(y e: a & x e: y]] 

b, whose 
least one 

We have to introduce a new constructor to satisfy this 
axiom: 

<sum *(ex)> .... <sum <step *(ex)>> 
I <act *(<ile 1 >)> 

<sum (*V(e 1 ))e 2 > .... gl 
I <sum ez> 

(.§J!!!!) .... 

Now the desired set b is * ( .§.Y!!! a ) . 

VI. PoNeraet axiom. For every set a there exists a set b the 
elements of which are exactly the subsets of a: 

(POW) (Eb)(Ax)[x e: b : x in a] 
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The set b is pow(a). 

VII. Axiom of infinity. There exists a set which includes the 
empty set and with every set x includes xU {x}: 

(INF) (Ea)[~ E a & (x E a ~ (xU tx}) E a)] 

The set a is *(inf*V(fs)). 

The idea of a function, 
by a formula F(x,y) which has 

or operation, is expressed in logic 
this property: 

(Ax)(Ey)(Az)[F(x.z) = y=z] 

It states that for every x there is exactly one y such that 
F(x,y) holds. As a set-theoretical object, the function is the 
subset of the Cartesian product a x b which includes exactly 
those pairs {x,y} for which F(x,y) holds. Set a is called the 
domain of the function, and set b its codomain. 

In our theory the concept of function is even more fundamen
tal than in set theory, because we can identify the function with 
the parametrized search. The parameter of the search is the 
argument x of the function, and the result of the search y is its 
value. Thus we identify the concept of function with the process 
which computes this function. The computation, of course, may 
include references to real-time processes r and ~. in which case 
we have to replace them by their best approximations currently 
known in order to actually make computations. A function defined 
in this way is, generally,partial, i.e. for some arguments the 
search for the value may be infinite. A function is computable if 
there are no real-time calls in the defining process. 

Given an interpretable functional dependence F(x,y), 
build the corresponding computational process using the 
function fYn defined as follows: 

we can 
Refal 

<fun(ex)X~Y: ef> ~ 

<§ch *Ey E ~: y(<sub(<~ex>~*Ex)e,>)> 

Here ex is to be replaced by the argument of 
by the proposition F(x,y). The string x~Y 
functional argument enters F(x,y) as *EX, 
value as *EY. Function fun substitutes the 

6-18 

the function, and ef 
indicates that the 
and the functional 
(metacoded) value of 



ex for *EX in F(x,y) and searches among all legitimate objects up 
to date for such a replacement of *EY that F(*EX,*EY) can be 
proven. 

We may also need a Refal generator which computes a function 
and outputs its value as its single element. For this end we 
define a trivial function 'generator from search': 

The desired generator is now: 

If a function is defined as a set-theoretical object, we can 
construct the corresponding search analogously. This search will 
need no references to the access function <~>. because it will 
be sufficient to look through the codomain of the function. 

VIII. Axiom of replacement. The image of a set under an operation 
(functional dependence) is again a set. More precisely, if a is a 
set and F(x,y) is a formula such that for every x from a there is 
exactly one y such that F(x,y), then there exists a set the 
elements of which are exactly those y's for which an x E a exists 
such that F(x,y): 

(REP) (Ax}(Ey)(Az)[F(x,z) : y=z] ~ 

(Eb)(Ay)(y E b : (Ex)[x E a & F(x,y)]] 

To provide for such a set we introduce a new set constructor 
ima ('image'), which runs through the set a, and for every x 
generates the corresponding y: 

<im~(<step*(ea))er> 

l<g~<fun(<Ue 1 >)X~Y: er>> 
~ gl 

l<irn~(ea)er> 

The generator im~(a,F) is only weakly interpretable, because 
ima(a,F) will be immediately added to~ and tried by function 
fun which has it inside a y-call. However, the use of this gene
rator in propositions, which occurs always through the mediation 
of function el (extensionality principle), will not lead to 
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uninterpretability. The proof that for every x from a there is 
exactly one y such that F(x,y) is done before we construct 
jma(a,F), hence for no xis y identical with im~(a,F). When this 
new set is added to lg§ and tried by fun, it will never lead to a 
successful result (i.e. a halt), because for every x there is no 
more than one corresponding y.Therefore ima(a,F) cannot produce 
itself. All other branches in this process are interpretable and 
the sets produced -- regular. 

IX. Axiom of regularity (or foundation). Every non-empty set is 
disjoint from at least one of its elements: 

(REG) a 1 ¢ ~ (Eb)[b E a & (Ax)[x E a ~ ~(x E b)]) 

If every element of a has another element of a as its ele
ment, then there is an infinite (cyclic or acyclic) sequence of 
sets such that each next set is an element of the preceding one, 
which starts with a. Since a is regular this is impossible. 

X. Axiom of choice. If a is a set the elements of which are 
non-empty sets, then there exists a function f with domain a such 
that for every member b of a it is true that f(b) E b. 

Such a function is referred to as a choice function. We can 
try to construct a choice function as a machine which runs a 
generator (an element of a) and stops the moment the first ele
ment is produced. This element becomes the value of the function: 

<cho *(eb)> 
<cho (e 1 )eb> 

~ <cho <step *(eb)>> 
~ <U e ~ 

1 

Since no element of a is an empty set, this function is 
defined on the whole set a. 

Function cho, however, cannot be legitimately used in set 
theory. The interpretability of cho(b) can be guaranteed only 
when b is countable; for this case, however, the axiom of choice 
has little significance because it can be proved as a theorem: 
one only needs to map the set b on natural numbers and pick up 
the element which is corresponds to number 1. If b is uncountable 
it calls ~. which changes in real time. Let the element of b 
picked up by the function cho at a certain moment be b 1 . We 
cannot guarantee that later in real time cho will pick up b 1 
again. The belonging to b is objectively interpretable, but the 
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order in which the element6 of bare generated is not. 
tion cho is not objectively interpretable. (A more 
discussion of functional interpretability will be given 
next section). 

So, tunc
detailed 

in the 

The axiom of choice stands apart from the other axioms of 
set theory. While all other axioms can be proven by defining 
simple and natural conctructors, the axiom of choice requires 
some more sophisticated, and perhaps artiicial, construction. At 
the present time we leave the interpretation of the axiom of 
choice an open question. Probably, it can be achieved using the 
following idea. Modify the definition of lga so that this genera
tor does not only produce regular sets, but with every non-empty 
set produces also one of its elements. Then the choice function 
will pick up exactly this element as the representative of the 
set. By this trick we fix the real time when we pick up the first 
produced element of a set as the time when this set gets its 
legitimacy. Later, instead of running the function cho each time 
that we want a representative, we always pick up the one produced 
at the outset. 

For one of the most important problems of set theory, the 
problem of its consistency, the interpretation of the axiom of 
choice is unimportant. As proven in Goedel 1940, if set theory 
without the axiom of choice is consistent, then adding the axiom 
of choice will still leave it consistent. (Goedel proved it for 
von Neumann's axiomatization, but the equivalence of this axioma
tization to that by Zermelo-Fraenkel has been established). We 
have proved that every axiom of the ZF set theory, with the 
exception of the axiom of choice. is true in our interpretation. 
By Correctness theorem it follows that set theory without the 
axiom of choice is correct. By Corollary 3 of Correctness theo
rem, it is consistent. According to the above, it follows that 
the full set theory is consistent. This result remains valid even 
if we regard set theory as a purely axiomatic theory: the exis
tence of a non-contradictory model is enough to prove its consis
tency. 

The fact that we are able to prove the consistency of set 
theory does not contradict Goedel's proof that the consistency of 
a theory cannot be proved in itself, because the crucial aspect 
of our theory, the distinction between real-time and model-time 
processes, cannot be formalized in set theory. 
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