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Chapter3 

THE BASICS OF METACOMPUTATION 

When we use the Refal machine for computation, we load a program 
into it, put the expression to evaluate into the view-field, and switch the 
machine on. The Refal machine works on its own; we do not interfere with its 
operation. After a while it comes up (or does not come up) with the desired 
(or not exactly desired) result. 

Metacomputation is an operation mode of the Refal machine where it is 
not left to itself, but is run under the supervision and control of a higher 
authority, which can be the user, i.e. a human being, or another machine. The 
purpose of this is to explore the behavior of the Refal machine with an initial 
view-field which is not completely defmed, but can be represented by an ex
pression with free variables. The program is defmite and remaines fixed. The 
ultimate goal of metacomputation is to construct a formal model of the Refal 
machine working under these circumstances, a model which could serve as the 
machine's alternative defmition for that special case. 

3.1 Examples of driving 

Let us start with a couple of simple examples which will help us in defin
ing the basic concepts of metacomputation in Refal. 

Consider the definition of the power function through repeated multi
plication: 

Power { 
1 OfsX = sX; 
sN Of sX = < Mul <Power <Sub sN, 1 > Of sX >, sX >; } 

Suppose now that we want to compute the cube of some number sX using the 
function Power: 

<Power3 OfsX> 

We can do it directly by turning the expression above to the Refal machine. 
But we can do better. Since the variable sN of the function Power has a 
defmite value, we can do some part of computation in advance, namely that 
part which depends on sN, but does not depend on sX (which remains 
unknown). This procedure is known as panial evaluation of the function call 
Q1. It is the simplest form of meta-evaluation. 

Indeed, let us put the defmition of Power in the program field of the 
Refal machine, and Q in the view-field. We must note immediately that a 
non-ground (i.e. including free variables) expression like Q1 can not be ac
tually placed in the view-field. This only is our way of tracing the evolution of 
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a whole class of ground expressions in the view-field of the Refal machine. We 
shall refer to classes of ground expressions in the view-field as configurations 
of the Refal machine. Thus the expression Q1 is a configuration. It represents 
the set of ground expressions the members of which are all expressions that 
can be obtained from Q1 by substituting some symbol for sX. The program in 
the the program field of the Refal machine is ftxed and does not change when 
the machine is running. Therefore, the ground expression in the view-field 
determines, at every moment, the exact state of the Refal machine. A con
figuration defmes a generalized state of the Refal machine, a set of exact 
states. Since the Refal machine is deterministic, its exact state determines the 
exact state after the next step, and all the subsequent steps. For a generalized 
state represented by a non-ground expression, the next state may depend on 
the values of the variables in the expression. Thus the evolution of the view
field must be represented by a graph, where the nodes are configurations, and 
the directed arcs describe transitions between the configurations and carry 
conditions on the configuration variables. We shall refer to this graph as the 
graph of states of the Refal machine, or simply a Refal graph. The result of 
metacomputation should be a Refal graph. 

So, let us construct the graph of states for the initial configuration Q 1. 

What will be the next state after Q1? To find it, we must make a step of the 
Refal machine with a non-ground expression in the view-field. We call such a 
step driving. The free variables of the non-ground expression are not sup
posed to get into the cogwheels of the Refal machinery, but we still "drive 
them through" forcefully, treating them as sets of their admissible values. 

In accordance with the general step procedure, we match the argument 
of Power to the left side of the first sentence: 

3 Of sX : 1 Of sX 

Such a matching is something new for us, because the argument (left side) of 
it includes a free variable sX. Note that sX in the argument has nothing to do 
with sX in the pattern. Their textual identity is purely coincidental. The left
side sX represents the set of all symbols which can replace it in the current 
configuration; the right-side sX is a detail of the Refal machine used for at
taching to it a value, which can be any symbol. We are going to handle match
ing and replacement in such a way that the use of textually identical variables 
in these two sets will never lead to a confusion. 

The result of matching in our case is pretty obvious: it never (i.e. for no 
value of sX) succeeds, because 3 does not match 1. 

Thus the Refal machine will try to use the second sentence, i.e. to match: 

3 OfsX : sN OfsX 

Here the matching is as easy: it always (i.e. for any value of sX) succeeds, and 
sN takes the value 3, while sX takes the value sX. Therefore, the Refal 
machine makes a replacement and the next configuration in the view-field be
comes 

< Mul < Power < Sub 3, 1 > Of sX >, sX > 

In the next step, < Sub 3, 1 > becomes primary active, and is replaced by 
2: 
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< Mol < Power 2 Of sX >, sX > 

The next step is analogous to the first one, and the result is: 

<Mol <Mol < Power < Sub 2, 1 > Of sX >, sX >, sX > 

Proceeding in this manner, we have: 

<Mul <Mol <Power 1 OfsX>, sX>, sX> 
<Mol <Mol sX, sX>, sX> 

And this is all we can do. Further metacomputation is impossible, be
cause multiplication is a built-in function which has no Refal definition. The 
calls of this function will have to enter our final Refal graph. The configura
tions which, for one reason or another, are allowed to enter the final graph of 
states will be referred to as basic. One reason for a function call to become a 
basic configuration is that the function is built-in. 

So, we have completed the partial evaluation and come to the expression 
Q{> for the cube of sX. As a program, it is considerably more efficient than the 
in1tial program Q1. There is no need now to make comparisons and subtrac
tions; we only have to perform two multiplications. 

In our second example there are no predefmed parameters which would 
make a case for partial evaluation. An optimization of a program will be 
achieved by metacomputation through a change in the control structure. Con
sider this program: 

Fab { A e1 = B < Fab e1 >; 
s2 e1 = s2 < Fab e1>; 
=;} 

Fbc { B e1 = C < Fbc e1 >; 
s2 e1 = s2 < Fbc e1 >; 
=;} 

F { e1 = < Fbc < Fab e1 > >; } 

The function F first applies Fab to its argument, which substitutes B for every 
A; then it applies Fbc, which substitutes C for every B. Let us meta-evaluate 
the call of F with an arbitrary argument: 

<FeX> 

As the result of the first step we have 

< Fbc < Fab eX> > 

At the next step < Fab eX> becomes primary active, and we have to match: 

eX:Ael 
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In the next section we shall give the general algorithm for matching non
ground expressions. In this section we perform matching by reasoning for 
each specific case. The variable eX in the argument of the matching may have 
any value. If it starts with the symbol A, the matching will be successful, other
wise it will fail. Tracing the evolution of the state of the Refal machine, we 
must consider these two cases separately. If the the value of eX is such that 
the matching succeeds, the flrst sentence in the defmition of Fab will be used. 
For other values of eX we must examine the applicability of further sentences. 
Therefore, at this stage of tracing we should separate from the whole set of 
expressions a subset for which the matching is successful, and the flrst sen
tence applicable. We na1Tow, or contract the whole class represented by a 
non-ground expression (eX in this case) to a subclass which includes those 
and only those ground expressions for which the flrst sentence of Fab will be 
used. We call this operation a contraction. 

Contractions make one of the two types of building blocks from which 
Refal graphs are constructed. A digression to describe these blocks is now in 
order. 

The general form of a contraction is 

v-> E 

where v is a variable, and E a pattern expression which represents the subset 
to which the set of all admissible values of v is narrowed. In our case, the 
contraction can be written as 

eX-> AeY 

In addition to checking a certain condition on the value of a variable, a 
contraction matches that value to the pattern in its right side, thus assigning 
some values to the variables of the pattern. We say, therefore, that in the con
traction v -> E the variables of E are derived from (or are derivatives ot) the 
variable v. Example: if the value of eX is A 8 C D, then the contraction above 
is applicable and results in the value 8 CD for the variable eY. We can use the 
contracted variable itself in the right side of the contraction, e.g., 

eX-> AeX 

The execution of this operation, when it is successful, results in the reassign
ment of a new value to eX. 

A contraction is, actually, a special case of the general matching opera
tion when the left side is a single variable. We write it with an arrow because 
with a single variable in the left side a matching becomes a substitution: that 
of a pattern for a variable. The other special case of matching is with a sin~ 
variable in the right side. This substitution is an assignment: 

E<- v 

An assignment is always applicable if the syntactic type of E corresponds to 
the type of v. We shall use only such assignments where this condition is 
satisfled. The assignments like 

Al + e1 <- tX 
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which are always failing, or 

e1 <- s5 

which may fail or succeed, will be considered illegitimate. 
Our notation of general matchings, contractions, and assignments keeps 

to the following two principles: 

1. The variables on the left (argument) side are defined, i.e. have some, known 
or unknown, values. The variables on the right (pattern) side get defmed in 
the process of matching through the values of the left-side variables. 
2. When one of the two parts to the matching is a single variable, the matching 
becomes a substitution, and the arrow is directed from that variable to its re
placement. Assignments will also be used as a form to list the values of 
defmed variables. 

Here are a few examples of the execution of contractions and assign
ments. 

The values of 
defined variables 

ABCD <- eX 

(ABC) <- el 

(A B (C)) <- e2 

'+***+' <- e1 

AB <- el 
CD<- el 

Operation 

eX-> AeX 

el -> (el sX)el 

el -> (el sX)el 

e1 -> sXel sX 

el el <- e1 

The values after 
the operation 

BCD<- eX 

AB <- e1 
C <- sX 
<- el 

failure 

'+' <- sX 
'***' <- el 

ABC D <- e1 

We can return now to the driving. The configuration we consider is Q2, 

and we separated a subclass of it which is described by the contraction eX -> 
A eX and includes all those ground expressions of Q2 for which the Refal 
machine uses the first sentence of Fab. Now we do the same for the second 
and the third sentences, which call for the contractions eX -> sY eX and eX 
-> , respectively. Therefore, there will be three branches outcoming from the 
configuration Q2 in the Refal graph, as shown in Fig. 3.1. The symbolic form 
we shall use to represent Refal graphs is close to the form of a Refal program. 
The generalized history of computation as we have traced it by this moment, 
and as pictured in Fig. 3.1, is represented as follows: 

Q1 = Q2 {(eX-> A eX)= Q3 
+(eX-> sYeX) = Q4 
+(eX-> ) = Q5 
} 
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Here the equality sign symbolyzes, as in a Refal program, the replacement of 
one expression by another. The configuration Q1 turns into Q2 uncondition
ally. Q2, however, fmds itself at a branching point. The braces enclose the list 
of branches starting from the point represented by the opening brace. The list 
is written as a sum. A branch includes a number of parenthesized contractions 
and is concluded by a replacement. Like the sentences of a Refal program, the 
branches starting at each node are ordered. A branch is actually used only if 
all preceding branches were found unapplicable. The subclass sY eX of the 
second branch of the graph includes the subclass A eX of the first branch. But 
when we interpret this graph as a program, this contraction will be used only if 
sYis notA. 

The configurations Q3, Q4, and Q5, are as follows: 

<Fbc B <Fab eX>> 
<FbcsY <FabeX> > 
<Fbc > 

We now have to trace the further development of each of these configura
tions. In the case of Q3, the primary active expression in the next step will be 
< Fab eX> again. However, we can force the Refal machine to work dif
ferently. Consider the outer function Fbc in Q3. It will not be evaluated until 
the computation of Fab is completed. But we can figure out that the first step 
in the evaluation of Fbc does not depend on the result of the computation of 
< Fab eX>. We can change the order of evaluation of function calls without 
changing the overall result. Let us consider < Fab eX> as some unknown ex
pression and make one step in the evaluation of Q3. The result will be 

Q3 = C < Fbc < Fab eX> > 

We can do the same with Q4• The result of the step will depend on sY, so 
there will be a branching on its value, but there is no dependence on the value 
of <FabeX>: 

Q4 { (sY -> B) = C < Fbc < Fab eX> > 
+ = sY <Fbc <FabeX> > 
} 

As for Q5, it becomes empty. Combining all this in one graph yields: 

Q1 = Q2 {(eX-> AeX) = Q3 = C <Fbc <FabeX> > 
+(eX-> sYeX) = Q4 { (sY-> B)= C <Fbc <FabeX> > 

+ = sY <Fbc <FabeX> > 
} 

+ (eX-> ) = Q5 = empty 
} 

We could drive further each of the active configurations in this graph, 
and go like that infmitely. We want, however, a fmite model of our system. We 
can notice that on the ends of all branches we have either a passive (actually, 
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empty) expression, or the combination < Fbc < Fab eX> >, which is nothing 
else but the configuration Q2! We can, therefore, transform our graph as fol
lows: 

Q1 = Q2 {(eX-> AeX) = CQ2 
+ (eX-> sY eX) { (sY -> B) = C Q2 

+ = sYQ2 
} 

+ (eX-> ) = empty 
} 

This graph has two configurations, Q1 and Q2, as its nodes. For each of 
them the graph includes a development, i.e. a subgraph indicating what hap
pens to the configuration after one or more steps of the Refal machine. 
Therefore, this graph is a self-sufficient model of the Refal machine evaluat
ing the initial configuration Q1. It can be used to compute Q1, i.e. < F eX>, 
with any value of eX; we can convert this graph into an equivalent Refal 
program. 

Of the two configurations in this graph, Q1 goes over, unconditionally, 
into Q2. We shall call such configurations as Q1 transient. We do not really 
need Q1 in the graph; it can be identified with Q2. The other configuration, 
Q2, must necessarily stay in the graph, because it calls itself. Q2 is a basic con
figuration. Calling itself is a good reason for a configuration to be declared 
basic and stay in the final graph. 

Identifying Q1 with Q2, and rewriting our Refal graph in the format of a 
Refal program, we get a new defmition of the function F: 

F { A eX = C < F eX>; 
BeX = C <FeX>; 
sYeX = sY <FeX>; 
= ;} 

This is a better defmition than the original one. With the original program 
the argument was passed twice; now all work is done in one pass of the argu
ment; instead of converting every A into B, and then 8 into C, A is converted 
directly into C. 

3.2 Strict Refal 

Metacomputation is considerably simplified if we put certain restrictions 
on the language in which the program is written. We shall refer to the lan
guage thus restricted as strict Refal. It is a subset of basic Refal. The restric
tions are: 

1. t-variables must not be used; 
2. only such built-in functions are allowed that the effects of their evaluation, 
including the values returned, do not depend on the order of evaluation; 
3. in the left sides of sentences there must be no open e-variables and no 
repeated e-variables; 
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The first requirement does not ask for much, because wherever a 
t-variable, say tX, is used, we can eliminate it by considering separately the 
two possible cases of tX: when it can be replaced by sX, and by eX. For in
stance, the sentence: 

< F (e1) tX e2 > = < F (eltX) e2 > 

can be replaced by two sentences: 

< F (el) sX e2 > = < F (el sX) e2 >; 
< F (el) (eX) e2 > = < F (el (eX)) e2 >; 

However, if there are n t-variables in a sentence, the replacement will 
produce 2" sentences, and this may be a nuisance. Therefore, it is advisable to 
avoid t-variables when writing with a view on metacomputation. This is not 
very hard, because the programmer using at-variable usually knows whether 
a symbol or a parenthesized expression is expected. If he does not know this, 
he should modify his data structures so as to know, or use no more than one 
t-variable in a sentence. 

The restriction on built-in functions is called for by the outside-in order 
of evaluation in metacomputation. We must be able to change the order of 
evaluation of function calls without altering the results of computation. In 
particular, Input/Output functions, as well as the functions Brand Dg, cannot 
be used. Suppose, e.g., that we meta-evaluate th~ following expression: 

(1) < F1 ( < Inputl >) < Input 1 > > 

where the function F1 is defined as follows: 

F1 { (el) 0 e2 = el; 
(el) e2 = e1 e2; } 

Driving (1) outside-in, we match: 

( < Inputl>) <Input 1 > : (el) 0 e2 

e1 takes on the uncomputed value of the frrst call <Input 1 >, but further 
matching requires the evaluation of the second call < Input 1 >, in order to 
test whether it starts with 0. Therefore, the first function call to be evaluated is 
the second call of Input, while it is the first call that must be evaluated frrst 
with the inside-out order. The program resulting from meta-evaluation will 
not be equivalent to the original program, because the frrst item in the input 
stream of channel1, which is meant by the original program for the first argu
ment of F1, will be directed to the second argument. 

However, if we meta-evaluate 

(2) < F1 (<Input 1 >) < Input2 > > 

there will be no such confusion, and the metacomputed program will be 
equivalent to the original one. If there are no more inputs than one from each 
channel, the independence of the results from the evaluation order required 
by Restriction 2, is guaranteed. The same is true with regard to the functions 
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Dg and Cp if the names under which expressions are buried are fixed. Calls of 
Cp can be evaluated any number of times. In this way we can keep some 
global paramenters buried, while still writing in strict Refal. 

Beyond these simple cases, Input/Output and Bury/Dig functions cannot 
be used in strict Refal. They must be left as they are in the program, and only 
such functions picked up for transformation by metacomputation that can be 
defmed in strict Refal. 

The difference between the inside-out and outside-in orders of evalua
tion is the question of semantics. We chose to endow our basic language, 
Refal, with the inside-out semantics, but execute metacomputations over 
Refal expressions using the outside-in evaluation order. It is because of this 
semantic difference that we have to introduce restrictions on built-in func
tions. Our choice may seem strange, so we want to give some arguments in its 
favor. 

Our main argument has already been mentioned above: the inside-out 
semantics is much easier to understand. The order in which function calls are 
evaluated in a given expression with free variables is uniquely (and simply) 
determined in the case of the inside-out semantics. With the outside-in 
semantics, the order of evaluation may depend on the values of free variables, 
and there are no universal algorithms which could answer simplest questions 
about actual evaluation order, e.g., whether for any values of free variables 
one function call will be evaluated before another. We consider the symbolic 
process as our most fundamental primary concept; we want, therefore, our 
notation to represent processes in an easily understandable way, and we must 
be able to combine processes in natural ways. 

A user who intends his program for metacomputatien can write in Refal 
with the outside-in semantics. Then he can use any built-in functions. But it 
will be much more difficult than in the case of the inside-out semantics. In the 
example above, e.g., he would have to figure out that the second call of Input 
is called first, and put the data into the input stream in the corresponding or
der. This assumes, however, that the call (1) is on the top of the graph of 
states. What if it is not on the top? It may me called after some other input 
operations, or not called at all, if its value is not actually needed. To under
stand the meaning of what he is writing, the programmer may have to do a lot 
of analysis. When we program in an operator language, we cannot but think in 
terms of the order of operations. When we use a functional language, we think 
in terms of pairs argument-value, and want to minimize the interaction be
tween computation processes. The semantics of Refal is the simplest proce
dural interpretation of a functional language in this spirit. 

There is another argument in favor of the inside-out semantics, which is 
of no less importance. We use the outside-in order in metacomputation for 
the sake of efficiency. But it is not always true that an outside-in execution of a 
program is more efficient than the inside-out. Consider this example. 
Evaluate 

(1) <Fl <F2 el> > 

where the defmition of F2 is not important, and F1 is defined by 

Fl{eX = eXeX;} 
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With the inside-out order, we evaluate < F e1 > and then copy the result and 
concatenate it to itself. With the outside-in order, we copy the function call 
and concatenate it to itself: 

< F2 el > < F2 e1 > 

and then compute < F2 el > twice. Obviously, this is not the efficient way. 
Therefore, in metacomputation we should be free at any moment to 

switch to whichever of the two methods leads to better results. The meta
evaluator described in Chapter 6 (the supercompiler), when developing the 
graph of states for (1), will depart from its regular outside-in order, so as not 
to compute the same function call twice. 

Thus our solution to the problem of evaluation order is this: we take the 
inside-out order as the semantics of Refal, and consider any deviation from it 
as a way of optimization. 

We shall still have a few occasions to return to the evaluation order. We 
shall discuss in more rigorous terms the relation between the two semantics, 
and how the outside-in semantics can be interpreted in terms of the inside-out 
Refal machine operating on infinite objects (Sec. 3.5). And we shall see how 
an outside-in meta-evaluator can be forced to follow the inside-out semantics 
(Chapter 7). 

We turn now to the third restriction imposed on the strict Refal. Its 
meaning is to make all recursion explicit by eliminating hidden, implicit 
recursion that may be present in the process of pattern matching. 

Indeed, in the program 

One-a-b { 
el A e2 = e1 8 e2; 
e1 = el;} 

it may seem that One-a-b is a non-recursive function. Actually, of course, it 
includes a loop, which is implicit in the open e-variable el. In the same man
ner, there is a hidden recursion in the first sentence of the function 

Equal { 
el,el = T; 
el,e2 = F;} 

We shall use the term L-expression (from Left side of a sentence) for a 
pattern expression which has no open or repeated e-variables. An 
L-expression has no more than one e-variable on every level of parentheses 
structure, and each e-variable may be used only once throughout all levels. 
The left sides of sentences in a strict Refal program must all be L-expressions. 
The following property of L-expressions should be noted: any subexpression 
of an L-expression is an L-expression. But, if an L-class is a class represented 
by an L-expression, then a subclass of an L-class is not necessarily an L-class. 
While a subexpression is a part of the original expression, a subclass is repre
sented by an expression which can be obtained from the original expression by 
a substitution. Thus el is an L-class, but its subclass e1 + e2, which is obtained 
by the subsitution e1 -> e1 + e2 is not. 
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There is a Refal program which translates a text in Refal, including ex
tensions, into strict Refal. We have had already some experience with 
eliminating hidden recursion (see Sec. 2.2, and exercises), and saw that it can 
be easily algorithmized. In the case of One-a-b, we want to eliminate the open 
variable e1 in the first sentence. We do that by putting it in parentheses, which 
means that it will be a different function. The left side becomes: 

(1) < One-a-b-1 (e1) A e2 > = e1 B e2 

The function One·a·b must call this new function with the initial value of e1 
empty: 

< One·a·b eX> = < One·a·b·1 () eX> 

Each open variable in a sentence calls for a special funciton which defines the 
process of its lengthening. One sentence, (1) in our case, mimicks the original 
sentence; two others describe lengthening: 

(2) < One·a·b·1 (e1) sX e2 > = < One·a·b·1 (el sX) e2 > 
(3) < One·a·b·1 (e1) (eX) e2 > = < One·a·b·1 (e1 (eX)) e2 > 

(we cannot use t-variables in strict Refal). Coming to an end without satisfying 
the pattern may reqire one more function, which does the job of the remain
ing sentences. In our case it is simply the end of work. But we must not forget 
to delete the format parentheses: 

(4) <One·a·b·1(el)> = e1 

Thus we have the following translation: 

One·a·b { eX = < One·a·b·1 () eX>; } 

One·a·b·1 { 
(e1) A e2 = e1 B e2; 
(el) sX e2 = < One·a·b·1 (e1 sX) e2 >; 
(e1) (eX) e2 = <One·a·b·1 (e1 (eX)) e2>; 
(e1) = e1;} 

Here all left sides are L-expressions. 
When there are repeated e-variables, they are replaced by different vari

ables. Then strict Refal functions for testing equality of expressions must be 
used. 

To illustrate how the extensions of basic Refal, conditions and blocks, 
are translated into strict Refal, let us take the definition of Prec·let 
(precedence between letters) from Sec.2.7: 

Prec-let { 
s1 s1 = T; 
s1 s2 where <Alphabet> : eA s1 eB e2 eC 

= T; 
e1 = F;} 
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The execution of a condition E : L is a matching operation. Therefore, we in
troduce an auxilliary function which will have E as one of its arguments, and 
will include the matching to L in its definition. All variables defined up to the 
point where the condition starts (in our case this is s1 and s2) must be in
cluded into the arguments of the auxilliary function. The second sentence of 
Prec-let becomes: 

< Prec-let s1 s2 > = < Prec-let-1 s1, s2, <Alphabet> > 

The definition of the auxilliary function will (originally) consist of two sen
tences: one for the case when the condition is met, 

< Prec-let-1 s1, s2, eA s1 eB e2 eC > = T 

(note how necessary s1 and s2 are in the argument), and the other when it is 
not: 

< Prec-let-1 s1, s2, eA> = ... 
The right side of this sentence must reconstruct the original argument of 

Prec-let, which is s1 s2 in our problem, (note, again, the necessity for Prec· 
let-1 to have s1 and s2 in its argument), and call another auxilliary function, 
which will do the job of Prec-let for the remaining sentences: 

< Prec-let-1 s1, s2, eA > = < Prec-let-2 s1 s2 > 

where 

Prec-let-2 { e1 = F; } 

Because of the trivial character of Prec-let-2, the fmal definition is simplified: 

Prec-let { 
s1 s1 = T; 
s1 s2 = < Prec·let·1 s1, s2, <Alphabet> >; 
e1 = F;} 

Prec-let-1 { 
s1, s2, eA sl eB e2 eC = T; 
e1 = F;} 

It still remains to eliminate the open variables in Prec-let-1. 

Exercise •.• Do that. How many auxilliary functions will be needed? 

The case of a block is even easier for translation than that of a condition, 
because there is no way back from the block. We simply introduce a new func
tion, which, as in the case of a condition, has additional arguments to remem
ber the values of defmed variables, but otherwise is defined by the block. Take 
the function Merge2 (merge two lists) from Sec. 2.11: 

12 



Merge2 { 
t1 eX, t2 eY with < Prec tl t2 > : 

{ T = tl < Merge2 eX, t2 eY>; 
F = t2 <Merge tl eX, eY>; 

}; 
el, e2 = el e2; } 

The elimination of the with-statement results in: 

Merge2 { 
t1 eX, t2 eY = < Merge2-1 (tl eX, t2 eY) < Prec t1 t2 > >; 
el, e2 = el e2; } 

Merge2-1 { 
(tl eX, t2 eY) T = t1 <Merge2 eX, t2 eY>; 
(tl eX, t2 eY) F = t2 <Merge t1 eX, eY>; } 

To finish the translation into strict Refal, we still have to eliminate 
t-variables. Our program is usable for sorting sequences of terms which can 
be both symbols, and parenthesized expressions. We can preserve its full 
generality; then each of the three sentences which use t-variables will give 
birth to four sentences. If we assume that we sort either strings of symbols, or 
lists of expressions, then each of the three sentences will become two. If we 
know whether it is going to be symbols or pare!lthesized expressions, we will 
have the same number of sentences. The list format is, of course, more 
general: we always can enclose every symbol in parentheses. 

3.3 The Generalized Matching Algorithm 

By the definition of the operation of matching, the argument must not 
include free variables. If it does, as is the case in driving, then to execute the 
operation E : L we must first substitute some values for the variables in E, and 
then match as usually. Thus the result will depend, generally, on the sub
stituted values. We can, however, analyze the matching E : L with unspecified 
values of the variables in E and describe what happens under different as
sumpitons about these values. In this section we define the algorithm of 
matching generalized in this way. It will be limited to the situations we face 
when the program is in strict Refal. 

3.3.1 MATCHING IN STRICT REFAL 

In strict Refal the matching algorithm is much simpler than in the basic 
version of the language. We only need to consider pairs E : L, where E is, as 
before, an arbitrary object expression, and L is an L-expression. Let us call ul
timate terms such terms of an expression which remain terms after any admis
sible substitution of values for the expression's variables. Thus A, sl, ( el e2), 
etc. are ultimate terms, while el is not. Since an L-expression has no more 
than one e-variable on any level of parenthesis structure, we can carry on 
matching by considering ultimate terms on either end of L, until we either ex-
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haust L, if there is no e-variable on the current level, or come to an isolated 
e-variable, in which case this variable takes on the remaining subexpression of 
E as its value. 

In Chapter 2 we defined matching as a deterministic process by fixing the 
order in which the terms of the pattern are projected on the argument. We 
did that in order to defme Refal as a deterministic algorithmic language. At 
this point, however, we are engaged in an analysis of possible results of the 
operation of the Refal machine. How the Refal machine comes to the result of 
matching is not important for us; we only want to know what is the result. 
Therefore, we can redefme the algorithm of matching (for strict Refal only), 
so as to leave some freedom in the order of projecting. As we shall see later, 
this will be very useful for the generalized matching, when E is a general Refal 
expression. 

There is one generalization of the matching operation which we can do 
at this point. Both parties to the matchig as it was used before were passive 
expressions; they did not include activation brackets. Now we allow activation 
brackets and will treat them in the same fashion as structure brackets. To a 
pair of activation brackets in L only a pair in E can correspond in a successful 
matching. Like structure brackets, activation brackets make pairs where you 
can jump from one mate to the other, and create closed e-variables. In the 
context of matching, we can see the expression <E > as Act(£), where Act is 
a special symbol which is used only in this role. 

Thus the argument E in the matching E : L may be any ground expres
sion, and the L-expression L may include activation brackets. 

When the term of L that is being projected is of the form (L1) or 
<L1 >, and projecting is possible, which means that the term on the cor
responding side of E is (£ 1) or < L 1 > , respectively, then in addition to the 
continuation of matching on the current level, we have a new sub-problem 
£ 1 : L1. Such sub-problems may accumulate; we need, therefore, to maintain 
a list of current sub-problems. In the algorithm below we use the variable 
CLASH-LIST to keep the list of subporblems. We use the word clash for a 
matching pair E : L considered as a formal object. For example, if we want to 
match 

(A 8 C) DE F (IJ K) : (el) e2 F (I e3) 

the initial CLASH-LIST is 

((A 8 C) DE F (I J K): (el) e2 F (I e3)) 

If we choose to start projecting from the left end, then after one step it be
comes: 

(A8C:el) 
(DE F (I J K): e2 F (I e3)) 

and then, if we choose to continue on the same level: 

(A 8 C: el) 

(DE F: e2 F) 
(IJ K: I e3) 
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We can now choose any of these three sub-problems. 
As we go on with matching, the variables of the pattern are assigned 

some values necessary for a successful matching. Assigning values to free vari
ables is known as binding. We shall keep the current binding of the pattern 
variables as a list of assignments named BIND. 

Now we can formulate the algorithm of matching. The notation we use 
should be understood easily. 'begin' and 'end' are used as brackets enclosing a 
portion of the algorithm to be executed after 'do'. 

variables: CLASH, CLASH-LIST, BIND, as defined above. The letters E, L, 
and S, possibly with subscripts, stand for some ground expression, some 
L-expression, and some symbol, respectively. I is some index of a variable. 

procedure: to match £ 0 : L0, do 
begin 
Set CLASH-LIST to include one member, which is £ 0 : L 0; 

Set BIND empty; 
While CLASH-LIST is not empty, do: 

begin (while-loop) 
Take any CLASH from CLASH-LIST and remove it; 
Use any applicable rule of the following: 
case 1. CLASH is empty: empty. Do noth~g. 
case 2. CLASH is£: el. Add E <- ei to BIND. 
case 3. CLASH is SE : SL orES : LS. A ddt E : L to CLASH-LIST. 
case 4a. CLASH is SE : sf L orES :Lsi, and there is no assignment to sf 

in BIND. Add S <- sf to BIND; add E : L to CLASH-LIST. 
case 4b. CLASH is SE: sf E orES: Lsi, and there is the assignment 

S<- slinBIND.AddE:L to CLASH-LIST. 
case 5. CLASH is (£2)£1 : (L 2)L1 or £ 1 (£2) : L 1 (L 2) or 

<E2 >£1 : <L2 >L1 or £ 1 <£2 > : L1 <L2 >.Add £ 1 : L1 and £ 2 : L2 to 
CLASH-LIST. 

case 6. None of the above cases is applicable. The matching fails. 
end (of while-loop; CLASH-LIST is empty). The matching is completed 

successfully. BIND is the list of assignments to the variables of L0. 

end (of algorithm). 

It is easy to see that because the pattern is an L-expression, the values 
assigned to its variables in case of a successful matching are unique, without 
the need to accept any additional convention. Indeed, as long as L is not a 
single e-variable, an ultimate term on either of its edges must match the term 
on the same edge of E; our algorithm uses this recursively. This is an•impor
tant property of strict Refal which does not hold in the basic version. 

The other important property, which was referred above as the absence 
of hidden recursion, is also obvious from our algorithm. The only recursion 
which is there is a structural recurison on L. If L is given, then the number of 
elementary opepations needed for successful matching can be computed; it 
does not depend onE, because there is no recursion on E. In the operation of 
the Refal machine, the left sides of sentences are used as patterns, and the ar
guments of function calls are arguments in matching. All left sides of sen
tences are given, of course, when a definite Refal program is given, hence the 
time necessary for trying the applicability of a sentence is fixed and can be 
computed. The number of elementary steps needed for an efficient Refal in-
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terpreter in order to make the replacement of the left side by the right side is 
also independent on the view-field and can be computed. Thus the time 
needed for one step in strict Refal is fixed and does not depend on the con
tents of the view-field. The number of steps necessary to complete a computa
tion can be a measure of the computation's complexity. This, again, is a 
property which the basic and extended versions of Refal do not have. 

3.3.2 LIST SUBSTITUTIONS 

On the basis of the matching algorithm for strict Refal we now proceed 
to construct an algorithm for generalized mapping E : L, where the expres
sion E is not necessarily a ground expression, but a general expression of 
Refal. We do not require that it should be an L-expression; the right sides 
of Refal sentences and the configurations of the Refal machine in metacom
putation may have any structure; it is only the left sides that are 
restricted to L-patterns. But before formulating the algorithm, we must 
somewhat extend our notation of substitutions. 

In the construction of Refal graphs we shall use both simultaneous, 
and sequential substitutions. We need then to distinguish between these two 
cases, because the effects of executing the same substitutions simul
taneously and sequentially are generally different. For instance, if eX <
el and e1 <- el are executed simultaneously, the new value of el will be the 
old value of el; if they are executed sequentially in the given order, the new 
value of e2 will be the value of eX. 

We shall call a varlist (a short form of 'variable list') an expression of the 
form 

where v 1 etc. are Refal variables, all different. If E is a Refal expression, 
m(E) is the list of all variables which enter E, e.g. 

m(el(A+sX)el eY) = (el)(sX)(eY) 

We shall treat varlists as unordered sets. We write V1 ..s_V2 to mean that 
every variable in v1 is also in v2. If v1 ..s.. v2 and vi! ..s.. v1, we shall say that 
V1 and V2 are equal. In programming, it is convement and efficient to have 
varlists ordered in some fashion; than two lists will be equal if and only if they 
are identical as Refal expressions. 

The list contraction 

will stand for a simultaneous execution of the contractions (v1 -> L1) etc. The 
list assignment 
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will stand for a simultaneous execution of the assignments (£1 <- v1) etc. As 
in the case of individual contractions and assignments, the arrows ' -> ' and 
' <- ' in list contractions and assignments have exactly the same meaning as 
the general sign of matching':', thus to execute the contraction and assign
ment above, we execute 

and 

As we saw in the examples of driving in Sec.3.1, the generalized match
ing E : L fmds such contractions (if any) for the variables in E that after the 
execution of these contractions on E, it becomes recognizable as L. These 
contractions must be applied simultaneously. They can be represented with 
one list contraction 

m(E) -> L 1 

where L 1 is the list of all the right sides of contractions for individual vari
ables. Consider, e.g., this sentence: 

<F(eXA)BeYCD> = eXeY 

and suppose we want to drive the function call 

< F (el)sl e3 > 

Then the matching we want to perform is 

(el)sl e3: (eX A)B eY CD 

Because of the unique matching of parentheses here, the problem im
mediately reduces to two subproblems: el : eX A, and s2 e3 : B eY C D. The 
contraction resolving the frrst subproblem is el -> e1 A; it requires that el 
ends with A. From the second subproblem we see that s2 must be B, which is 
expressed by the contraction s2 -> B. The remaining part of the target now is 
e3; the remaining part of the pattern is eY CD. The contraction necessary in 
order to make the target to conform to the pattern is e3 -> e3 CD. We sum 
up all this as the list contraction 

(el)(sl)(e3) -> (el A)(B)(e3 CD) 

We may wish to look at the subclass of the function call under driving 
which results from the contraction. Then we execute the substitution: 

< F (el)sl e3 > I ((el)(sl)(e3) -> (el A)(B)(e3 CD)) 
= <F (elA)B e3 CD> 
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As expected, it is a subclass of the left side of the sentence. We can match it to 
the left side: 

<F(e1A)Be3CD>: <F(eXA)BeYCD> 

which results in the assignments (the list form): 

(el)(e3) <- (eX)(eY) 

In driving, however, we do not need to perform the substitution of contrac
tions. The algorithm which we will formulate below yields for each set of con
tractions that achieves matching the corresponding assignments for the vari
ables of the pattern, i.e. the left side. Thus the assignments above will come 
with the completion of the generalized matching. 

It is the turn of the replacement now. The replacement is done by sub
stituting the assignments we have found into the right side of the sentence: 

((el)(e3) <- (eX)(eY)) I eX eY 
= el e3 

The fmal result of the driving is the graph: 

Q1 ((el)(s2)(e3) -> (el A)(B)(e3 CD)) = Q2 

(Q1) < F (el)s2 e3 > 
(Q2) el e3 

In the contractions above, the left-side variable is also among those used 
in the right side. But we could have introduced a completely new set of vari
ables in contractions: 

(el)(s2)(e3) -> (e8 A)(B)(e9 CD) 

or even use the same textually variables as in the sentence: 

(el)(s2)(e3) -> (eX A)(B)(eY CD) 

In both cases, as one can easily verify, the resulting graph would be the same. 
When we use full sets of variables in matchings and replacements, the vari
ables from different sets have no chances to mix. 

3.3.3 FACTORIZATION. OLD AND NEW VARIABBELS 

In generalized matching we come to the final contraction by steps, each 
step being a contraction for one variable which is required by the projection of 
one of the terms of the pattern. We write this contraction as v; -> L;, but the 
true meaning of it is a list contraction, where v; contracts to L;, and each 
other variables contracts into itself. For instance, the individual contraction 
e1 -> e1 A in our last example should be understood as 

(el)(s2)(e3) -> (el A)(s2)(e3) 
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Let the sequence of contraction produced by the generalized matching 
algorithm be: 

They must be executed one after another. We can fold this sequence into a 
single list contraction, i.e. compute the composition of the factor-contractions. 
For that we must know the full initial varlist, V. Then the composition is: 

The operation of substution I is left-associative; the above should be under
stood as 

V -> ( ... ((VI c1) I C2) I ... I Cn) 

The case of assignments is different. The GMA produces individual as
signments one after another, but the meaning is that they are parts of the full 
list assignment, and must be executed simultaneously. Thus if there is no as
signment for some variable v;, this does not mean that this variable retains its 
old value, but that the value of v; is yet undefined. We simply do not know it 
yet. To minimize our syntax in examples and in programs, we write list assign
ments as lists of individual assignments. Unlike the case of contractions,a// 
variables defmed at the point when the assignment is executed must be 
present in the list. It must be remembered that the assignments in the list 
must be performed simultaneously. 

It is important to keep in mind that individual contractions are factors of 
list contractions, because the meaning of an individual contraction may 
depend on the full list of variables. Take the contraction el -> sX el, for in
stance. If sX is not in the current varlist, then this contraction succeeds when
ever the value of e1 starts with any symbol; sX is then added to the varlist and 
takes on this symbol as its value. We refer to such a variable as a new variable. 
If sX is already in the varlist, it is referred to as an old variable. In this case for 
the contraction to succeed, the value of e1 must start with the symbol which is 
the current value of sX, not just any symbol. Without knowing the varlist we 
cannot execute this contraction or translate it into a computer code. Full list 
contractions give us all necessary information. If there are no other variables 
in the varlist, the full contractions for the two cases are: 

(newsX) 
(old sX) 

(el) -> (sX el) 
(el)(sX) -> (sX el)(sX) 

The interpretation of list contractions is the same as that of individual con
tractions (both are matchings): replace the variables in the left side by their 
values, and match to the right side. Suppose, for example, that in the case of 
the new sX the variable e1 has the value A B C. Then the matching is: 

(A B C) : (sX el) 

The result: sX is A, and el is BC. For the case of the old sX suppose that sX 
has the value A, with the same as before el. The matching then is: 
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(A 8 C)(A) : (sX el)(sX) 

It succeeds, with e1 redefmed as 8 C, and sX, of course, having the old value. 
If, however, the value of sX is D, the corresponding matching 

(A 8 C)(D) : (sX el)(sX) 

fails. 
Unlike s-variables, e-variables in L-expressions cannot show up more 

than once. So, they are always new, i.e. can take any subexpression on which 
they are projected. It is not necessary, however, to give new indexes to 
e-variables at each contraction. As in the examples above, we can use the 
left-side e-variable in the right side, if necessary (only once, of course). Such a 
variable is, strictly speaking, neither old, nor new, but redefined. An e-variable 
can be, also, new. The condition that the value of el must start with a left 
parenthesis can be expressed by the contraction e1 -> (eX)el, in the assump
tion that there is no eX in the current varlist. 

List contractions have the advantage that they can be considered as any 
other matching, and this can be useful when we write programs for metacom
putation. To read them, however, is not so easy as a sequence of individual 
contractions. It also often happens that a considerable part of a varlist is trans
formed into itself, then it is irritating an inefficient to write out explicitely 
those unchanged variables. Thus we shall use full list contractions and assign
ments mostly as an instrument of a theoretical analysis of pattern operations, 
and as a guide in programming. In examples, as well as in the data structures 
of programs, we shall use contractions and assignments in a factorized form, 
broken into individual contractions. 

3.3.4 THE GENERALIZED MAPPING ALGORITHM (GMA) 

Structures and variables 
Let the clash to resolve be £ 0 : L0. A partial resolution term, PRT, is a se
quence of individual contractions for variables from var(L0) followed by a list 
assignment for a subset of lli(L0): 

(bars 'I' are used to separate elements of structures). A PRT followed by a list 
of clashes is referred as a PRTC. A STATE is a list of PRTCs, which we write 
as a sum 

PRTC1 + PRTC2 + ... + PRTCn 

Every PRTC is processed by the GMA independently of the others. 
During the processing, a PRTC term may be eliminated, or give rise to two 
terms. If the list of clashes in a PRTC becomes empty, we say that the term is 
closed and becomes one of the resolution temzs, RTs, of the initial clash E0:L0. 
The outcome of the GMA is a sum of RTs. An identity operation, i.e. the one 
like e1 -> el, which is always successful and does nothing, is denoted as I. An 
impossible operation, i.e. the one that always fails, is Z. It also represents a 
sum of zero resolution terms. 
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Letters E and L, possibly with subscripts, are some expressions and 
L-expressions, respectively. S is a syntactic symbol, i.e. either a symbol, or an 
s-variable. I stands for some index (of a variable). J' is a new index, i.e. such 
that, at the moment when it is introduced, cannot be found among the vari
ables of var(E0) or their derivatives. 

Auxilliary procedures 
To update a PRTC by an individual contraction v; -> L;, add it to the con
traction list and apply it to the left sides of all assignments and clashes in the 
PRTC. To update a PRTC by an individual assignment, add it to the already 
existing assignments of the PRTC. To update a PRTC by a sum of individual 
contractions, take one copy of PRTC for each contraction, update it, and sum 
the result. 

An internal clash is a clash S:S', where S and S' are either symbols, or 
s-variables from the same set of variables. To resolve this clash, use the fol
lowing rules, where A is a symbol: 

l.S:S =I 
2. sf : s = sf -> s 
3. A : sf = sf -> A 
4 If none of the above, Z. 

Main procedure 
begin 
Set STATE to consist of one PRTC which is I I I I (E0 : L0). 

Until all terms in STATE are closed, do: 
begin 
Pick any CLASH from any PRTC in STATE. Use any applicable rule of 

the following: 
case 1. CLASH is empty: empty. Delete CLASH in PRTC. 
case 2. CLASH is E : e/. Delete CLASH from PRTC, and update PRTC 

byE<- el. 
case 3. CLASH is S'E: SL, orES': LS. If there is no assignment for Sin 

PRTC, change CLASH toE: L, and update PRTC by S' <- S. If Sis a symbol 
S", or a variable for which there is an assignmentS" <- S in PRTC, then 
resolve the internal clash S' : S", and let the resolution be R. Change CLASH 
toE : L, and update PRTC by R. 

case 4. CLASH is (E2)E1 : (L2)L1 or E 1 (E2) : L1 (L 2) or 
<E2 >E1 : <L2 >L1 orE1<E2 > :L1 <L2 >.ChangeCLASHtoE1 :L1, 

and add a new clash, E?: L 2 to PRTC. 
case SL. CLASH ts el E: SL. Update PRTC by (el-> ) + (el-> sf' el). 
case SR. CLASH is E el : LS. Update PRTC by ( el -> ) + ( el -> el sf'). 
case 6L. CLASH is el E: (L2)L1. Update PRTC by 

(el->)+(el-> (el')el). 
case 6R. CLASH is Eel: L1 (L2). Update PRTC by 

(el-> )+(el-> el(el')). 
case 7. If none of the above is applicable, delete CPRT from STATE. 
end (of processing CLASH) 

Output the sum of closed resolution terms. If there are none, output Z 
(matching impossible). 
end (of the GMA). 
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At each step of the GMA we use the necessary and sufficient conditions 
for the matching to be successful. Therefore, the GMA applied to E : L fmds 
all subclases of E which are, at the same time, subclasses of L. The contrac
tions in the resolution terms resulting from the GMA are represented as se
quential individual contractions (where the same variable may be contracted 
more than once). We can fold them all into one list contraction for the full 
varlist var(£). Then the result of the GMA can be written as: 

(1) E: L = sum ; (var(£) -> L ;)(£; <- var(L)) 

where 

(2) E I (var(£) -> L ;) = (E; <- var(L)) I L 

for all resolution terms i. The sum (union) in (1) represents the intersection 
of the classes E and L. Each subclass (2) can be seen either as the application 
of the contractions toE, or as the application of the assignments to L. The 
empty sum (or Z) corresponds to the empty intersection, when no subset of E 
can be recognized as L. If there is only one subset, and the contraction in it is 
empty (i.e. I), then E is a subset of (reco~able as) L. If Eisa ground ex
pression, there can be no contractions, and the intersection is either E itself 
(the matching succeeds), or empty (it fails). . 

J:or each resolution term in (1), if any, var(£1 ) is equal (as a set) to 
var(L ~). This m~y not me immediately obvious. Of course, the inclusion 
var(£1) ~ var(L 1) must hold according to our rules of operations with full 
varlists. But why the two are identical in this case? 

Imagine that after the i-th subclass of E is identified, we throw away t~e 
assignments and perform the matching E': L, where E' = E I (var(£) -> L 1); 

this matching, as we know, must succeed. Matching the expression £' to the 
pattern L breaks £'into parts which become projections of the elements of L. 
The elements of L are either constants (symbols or parentheses), or variables. 
Constants can be projected only on identical constants in £'. Therefore, all 
variables in£' enter the projections pf the variables from L. But then the full 
list of all the values of var(L), i.e. £ 1, must incl_ude every variable entry in£' 
and qmnot include a!}y other V¥iable: var(£1) = var(£'). But m(£') = 
var(L 1), hence var(£1 ) = YM.(L 1). 

3.3.5 EXAMPLE 

Let us illustrate the use of the GMA by the following example. The 
matching to resolve is: 

A sl(C + e2)e2 :A sX(sX eY)eZ sX 

The initial PR TC is: 

1. I I I I (A sl(C + e2)e2 :A sX(sX eY)eZ sX) 

Case 3, with S = A. Internal clash A : A. Its resolution is I. 

2. I ! I I (sl(C + e2)e2: sX(sX eY)eZ sX) 
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Case 3, with S being sX, which has no value as yet. Update the assignment list 
I by sl <- sX: 

3. I I (sl <- sX) I ( (C + e2)e2: (sX eY)eZ sX) 

Case 4. There are two clashes now: 

4. I I (sl <- sX) I (C + e2: sX eY)(e2: eZ sX) 

We peak up the first clash, and will do so below. This is case 3, with S being 
sX, which already has a value, namely sl. Internal clash C : sl. Its resolution is 
sl -> C. Add it to the contractions and substitute C for sl in the left sides of 
the assignments and clashes (sl is not to be found in the clashes, though): 

5. (sl-> C) I (C<- sX) I (+e2:eY)(e2:eZsX) 

Case 2 (the closed variable eY). The clash is resolved: 

6. (sl-> C) I (C <- sX)( +e2 <- eY) I (e2: eZ sX) 

Case SR. Update by (e2 -> ) + (e2 -> e2 s3), where e3 is a new variable. We 
now have two PRTCs: 

7. (sl-> C)(e2 -> ) I (C <- sX)( + <- eY) I (: eZ sX) 
(sl-> C)(e2-> e2s3) I (C<- sX)(+e2s3<- eY) I (e2s3:eZsX) 

We first go on with the first one. This is case 7, recognition impossible. The 
first PRTC is eliminated; again, we have one PRTC. It is case 3, where Sis sX, 
which has the value C. The internal clash is s3: C, with the resolution s3 -> C. 
After the update, the PRTC is 

8. (sl-> C)(e2-> e2s3)(s3-> C) I (C<- sX)(+e2C<- eY) I (e2:eZ) 

Case 2, the closed variable eZ. An assignment is added. The clash is resolved. 
The only PRTC is closed. The last stage of the algorithm yields the resolution 
term: 

9. (sl -> C)( e2 -> e2 s3)(s3 -> C) I (C <- sX)( + e2 C <- eY)( e2 <- eZ) 

The substitution of the contractions in E produces: 

AC(C+e2 C)e2 C 

The substitution of the assignments in L produces the same expression -- the 
intersection of E and L. 

Exercise ••. Use the GMA to resolve the clash: 

e1 + e2: sl(e2)e3 s4 A 
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Find an object expression which belongs to two subclasses of the resolution. 
Find an expression belonging to all the subclasses. 

3.3.6 ORTHOGONALITY OF CONTRACTIONS FROM GMA 

As one can see from Exercise ... , the subclasses resulting from the GMA 
may overlap. But if E is also an L-expression, then the subclasses will be dis
joint. This is a special case of a more general (and more important) property 
of the contractions generated in the GMA: when contractions from different 
resolution terms are substituted into any L-expression L ', not necessarily the 
argument of the matching, they produce disjoint subclasses of L '. We shall call 
such contractions orthogonal. 

THEOREM. Let E : L, where E is a ground expression, and L an L-expression, be 
resolved by the GMA as 

E:L = sum.dA; __ , 
where ci are contractions for var(E), and A; assignm~nts for var(L). Let L' 
be an L-expression, and var(E) ~ var(L'). T~en L' I C1 are L-classes disjoint 
for different i. (If var(E) < var(L'), then C1 must be extended by including 
identical contractions for the variables in L' but not in E). 

Proof. In the contractions for e-variables required by the GMA, e-variables 
can generate another expression variable only confined m parentheses (cases 
6L and 6R). This variable is always new, thus excluding the possibility of 
repeated e-variables after the subsitution. Therefore the expression resulting 
from substitution will remain an L-expression if it was an L-expression. 

More than one subclass can be produced in the GMA only by a substitu
tion for an e-variable in cases SL, SR, 6L, 6R. In all these cases the first sub
class eliminates the e-variable, while in the second subclass the replacement 
for the e-variable has at least one ultimate term. Suppose that there is an 
e-variable on the top level of structure in L '. There can be no more than one 
e-variable on any level in L '. Therefore, all other syntactic terms on the top 
level are ultimate terms. If the number of ultimate terms in L' before the sub
stituion was n, then in the first subclass, and in all subclasses which can be 
produced by further contractions, the number of ultimate terms on the top 
level will be exactly n, because there is no e-variable on this level any more. In 
the second subclass, and in all subclasses produced by further contractions the 
number of ultimate terms will be at least n + 1. Therefore, no object expres
sion can simultaneously belong to both groups. 

The further proof is by structural induction on the e-variables of L '. Pick 
some e-variable on the level k in L '. If k = 0, then substitutions for ei can 
produce only disjoint subclasses, as we have just proven. Thus we assume that 
k _2:. 1. Let the subterm containing ei be 

(1) 

Suppose that the following proposition is true for e/ : all e-variables on the 
levels higher thane/ (i.e. k-1 or less) can produce, in substitutions from GMA, 
only disjoint subclasses. Then for L' to produce two overlapping (not disjoint) 
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subclasses all the substitutions for e-variables on the levels .s_ k-1 must be 
the same, and then there are two possibilities: (a) the terms produced from 
(1) by some pair of substitutions fore/ are overlapping, (b) the same substitu
tion is used in (1), and another e-variable produces the desired result. 
However, the possibility (a) must be excluded, because it would mean that 
two substituions for an e-variable on the top level in 

(1') 

produced overlapping subclasses, and this is impossible. Therefore, another 
e-variable, not e/, must be responsible. If we start with an e-variable on the 
top level inL', then the inductive assumption will be true in the beginning, and 
the search for a suitable variable will end without fmding one. 

3.4 Step-long function transformations 

Using the generalized matching algorithm we can perform a few trans
formations of function definitions which, as it is easy to see, leave the function 
strictly equivalent to what it has been. The transformations we consider in this 
section are markedly different from the transfrmation by metacomputation in 
that they do not trace the work of the Refal machine for more than one step. 
If F2 is a function obtained by such a transformation from Fl, then for every 
argument E the result of one step with < F2 E > in the view-field will be ex
actly the same as with < F1 E > . 

1. The Transposition ntle. If two adjacent sentences in a function defmition 

have orthogonal left sides L1 and L 2, by which we mean that the classes repre
sented by them are disjoint, then we can transpose these sentences: 

In order to establish that L1 and L 2 are orthogonal, we match L1 : L2 (or 
L2 : L1), and check that the resolution is Z (matching impossible). 

2. The Screening ntle. If there are two sentences anywhere in a function defini
tion 

25 



and the left side L1 of the first sentence subsumes the left side L2 of the 
second sentence, by which we mean that the class L 2 is a subset of L1, then 
the second sentence can be eliminated; we shall say that it is screened by the 
first sentence. To establish that L1 subsumes L 2, we match L 2 : L1, and check 
that the resolution exists and there are no contractions in it. 

3. The Subsumption rule. If there are two adjacent sentences in a function 
definition 

and there exists an assignmentS for the variables in L 2 such that 

then the first sentence can be eliminated. It is subsumed by the second sen
tence. To establish that this situation takes place, we match L1 : L 2 and check 
that the matching occurs without contractions. Then we take the assignment 
resulting from the matching, apply it to R2 and compare the result with R1. 

These transformation rules do not cover all improvements which can be 
made in a program without altering the result of every step. Consider this 
program: 

F { sl e2 = R1 ; 
(el)e2 = R2 ; 
= R3; 

e1 = R4; 
} 

The fourth sentence will never be applied, because every expression either 
starts with a symbol, or starts with a left parenthesis, or is empty. Thus it can 
be deleted. Yet it is not possible to do this using only the three transformation 
rules above. We shall see in Chapter ... how this transformation can be ac
complished in metacomputation. 
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3.5 The Algorithm of Driving 

We can formulate now the general algorithm of driving. First we do it for 
the inside-out evaluation order. We want to construct the graph of states for a 
configuration Q. Let P be the primary active subexpression in Q. It has the 
form < F E >, where F is a function symbol, and E a passive expression. Q 
can be decomposed as follows: 

Q = (P <- eX) I Q' = (<FE> <- eX) I Q' 

where we assume that eX is not among the variables used in Q. The variables 
like eX, which are used for separating a subexpression from a larger expres
sion, will be referred to as liaison variables. 

Let the sentences for F be: 

<FL1 > = R1 
<FL2 > =R2 

<FLn> = R n 

Imagine that Q is in the view-field of the Refal machine, and trace its evolu
tion. For those values of the free variables in Q with which E matches L1, the 
Refal machine will use the first sentence to make a step. It is a certain sub
class of£. To fmd it, we resolve, using the GMA, the clash: 

k = 1, 2, ... H1 

Under each contraction in the sum, the Refal machine will use the first sen
tence for F and replace P by 

k k Pt = (£1 <- ~(L1 )) I R1 

because the assignment part of the resolution gives us the values taken by the 
variables of L1 in the process of matching. It is only the variables from L1 
that are allowed to be used in R1, hence after the substitution we have an ex
pression that depends only on the variables of E and its derivatives. 

Thus the first part of the graph of states for Q, which corresponds to the 
first sentence in the defmition of F, will consist of H1 branches: 

{ (m(E) -> L~) = (P~ <- eX) I Q' 
+ ~(E) -> L~) = <F, <- eX) I Q' 

... 
+ ~(E)-> L H~) = (pH~<- eX) I Q' 

For those members (ground expressions) of the primary configuration P 
which do not belong to any of the subclasses separated in the matching 
E : L1, the first sentence will be found unapplicable. The Refal machine will 
then try to apply the second sentence, which we should take into account by 
separating another group of subclasses of E and adding it to the first group. 
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Repeating this procedure for each sentence in the definition ofF, we come to 
a graph which ends with the branch for the last subclass separated in the use 
of the last sentence: 

+ (var(E) -> L M~) = (J"1~ <- eX) I Q' 
} 

The subgraph following a conftguration Q in a graph will be referred to as the 
development of Q, and denoted as dev(Q). 

There is an obvious optimization to the construction of the graph of 
states as described above. If for the i-th sentence of F the argument E is 
found to match L; without contractions, which means that E is a subclass of 
L;, then the branches originating from all the sentences starting with the 
i +1-st can be omitted, because they will never be used. 

Let us trace the dynamics of varlists in the process of driving. As we 
know, the only operation of Refal is the operation of matching. We shall in
sert between the designations of matchings (clashes), and possibly at the 
beginning and end, the full lists of variables that are defmed at that point. 
They will be enclosed in square brackets, and viewed as comments. Recall 
how a generalized matching E : L is executed. First the values of the variables 
are substiuted in E, then the usual matching is performed. Therefore, each 
variable found in E must be in the current varlist; it is not necessary, though, 
that each variable from the varlist is actually used in E. After the matching the 
new set of variables is defmed, var(L ); they, and only they, are defmed after 
the matching. Thus we have the following scheme: 

where var(E) ~ V1, and ygr(L) = V2 

For contractions and assignments we have the schemes: 

(V1] (V1 -> L) [ygr(L)] 
(V1] (E <- V2) (V2] where var(E) ~ V1 

When we construct a graph of states, the variables in the initial and sub
sequent configurations will be referred to as C-variables ( conftguration 
variables); the variables in the sentences of the program will be called 
P-variables (program variables). The scheme of one step of driving through a 
sentence <LP > = R.P is as follows: 

~] 
(0 -> L) 

[0'] 
(E <- JJ') 

The initial configuration. 
= m(Q1). The C-variables of the initial configuration. 
Contractions of C-variables necessary to match Q1 to the 
left side LP; they result from the GMA. 
= ru(L ). A new set of C-variables derived from VC. 
where vP = ru(LP). This is the set of assignments 
resulting from the GMA. 
= (E <- lR) I RP. The conftguration resulting from 
drivin_g. 
~ [V:']. 
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(The reason for the last relation: since var(RP) ..:::._ YN,.(LP) = TR, and the 
values E assigned to TR depend only on VC ', the substitution (E <- lR) I RP 
produces an expression that may depend only on VC•; therefore, var(Q2) ..:::._ 

[VC']). We start from a configuration depending on VC, and end up with a 
configuration depending on the derived set VC•. The P-variables used in the 
step are gone. 

Now we shall defme the outside-in driving, which is our main mode of 
driving. If in the inside-out driving we take up an active term of the configura
tion Q which contains no other active terms, in the outside-in driving we start 
with an active term which is not a part of any other active term of Q. If there 
are more than one such terms, we can pick up any of them: as we know, paral
lel processes do not interact in strict Refal. We, again, decompose the con
figuration: 

Q = (P<- eX)/Q' = (<FE><- eX)/Q' 

where P is the active term we have chosen for driving. As in the inside-out 
computation or driving, we call P a primary active term. However, E is not 
necessarily a passive expression any more, but may include active subexpres
sions. This may prevent us from completing the matching and force to 
suspend the evaluation of P and take a subexpression of P as a new primary 
active term for evaluation. When we do matching for the purpose of outside
in driving, we must distinguish between two kinds of failure. If we take, e.g., 
the clash (A) : sX, we can positively say that the matching is impossible. For 
the clash < F e1 > : sX, the matching is again impossible if we consider 
< F el > as a fixed stage of the Refal process represented by this active ex
pression. But this is not the approach we want in driving where we look for
ward to the completion of evaluation processes. When < F el > is computed, 
it still may turn to be a single symbol, which will make the matching possible. 

As long as active terms do not show up on either edge of the argument E 
in the matching E : L, the GMA simply does not notice them; for subclasses 
where the matching is possible, active terms, if any, will enter the values of 
e-variables. When an active term < E' > appears in a position where it must 
me matched to a term in L, we cannot successfully complete the matching 
without first computing (at least, partially) <£'>.We shall say that this term 
hinders the process of matching. We want to separate such cases from the 
cases of certain failure. The following additions must be made in the GMA for 
cases 3 and 4: 

case 3'. CLASH is <E'>E: SL or E<E'> : LS. The term <E'> 
hinders successful matching. 

case 4'. CLASH is <E'>E: (L2)L1 or E<E'> : L 1(L2). The term 
<E'> hinders successful matching. 

Even though we cannot successfully complete the matching in case of a 
hindrance, we may be able to establish that the matching fails no matter what 
is the result of the evaluation of the hindrance. Take this clash, for instance: 

(1) <Fel> e2AB: sXeYC 
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The term < F el > hinders successful matching. However, by turning to the 
right end of the pattern we establish, without evaluating this term, that the 
matching will always fail. The situation on the other end of the pattern is not 
the only potential cause of a failure. Remember that PRTC's in the GMA in
clude, generally, a number of clashes, which all must be successfully resolved 
for the success of the original matching £ 0 : L 0. In this matching: 

(2) (<Fel>)A: (sX)B 

we try to resolve < F el > : sX, and cannot do that because of a hindrance, 
but the other clash, A : B, causes a failure anyway. 

Thus the following way of treating hindrances can be adopted: 

In case of a hindrance in a PRTC, suspend the matching on the current side of 
the current clash, and continue the matching on the other end and in the other 
clashes. If progress is nowhere possible because of hindrances, take any of 
them as a new primary active term. 

We will make no error, though, if we change the primary active term the 
first time that we meet a hindrance. If the matching is impossible, we will dis
cover this in due course anyway. And to fmd that the matching is possible, all 
hindrances must be first evaluated. In the assumption that the initial expres
sion we put in the view-field of the Refal machine is a defmed and fmite 
process, the choice of the primary active subexpression at each step of 
metacomputation determines only the order of operations, but not the fmal 
result. 

The stipulation that the overall process is defmed and fmite is very im
portant, however. Take the matching (1) above. We asserted that it will fail. 
But if the function F is undefined, the Refal machine will come to an abnor
mal stop trying evaluate it. If < F E > for some E is an infmite process, the 
Refal machine will run forever. In both cases, the matching will simply have 
no chance to fail if we do not dismiss the true, i.e. inside-out, semantics of 
Refal. This brings us to the question: what kind of equivalence do we 
guarantee between the original Refal program and the program resulting 
from outside-in driving? 

Let the initial configuration be Q, and let us take a binding for the vari
ables of Q described by the assignment (E <- var(Q)), such that Q with this 
binding is a defmed fmite process. Then with every active term in Q we can 
associate its final stage. The Refal machine, when it evaluates a function call, 
first computes and replaces by their fmal stages all the active terms in the ar
gument. When we construct a graph of states by the outside-in driving, we as
sume that all active terms in the argument stand for some expressions -- which 
is true -- and proceed as far as possible without knowing what these expres
sions are. We compute active terms in the argument of a function call only 
when their fmal stages make impact on the computation of the function. 
Otherwise, the construction of the graph mimicks the operation of the Refal 
machine. Therefore, the fmal stage of Q as given by the graph of states will 
be the same as computed by the inside-out Refal machine. If the inside-out 
computation leads to a defmite result, then the outside-in computation leads 
to the same result. 

30 



Now let us allow for the possibility that some sub-processes in Q may 
not terminate successfully. With outside-in evaluation, an active subexpres
sions may be left uncomputed if the overall configuration does not depend on 
its fmal stage. If the active term the computation of which is canceled stands 
for an infmite or undefmed process, then the outside-in computation may lead 
to a defmite result even though the original Refal program understood ac
cording to the inside-out semantics does not. Outside-in driving may extend 
the domains where the functions involved are defmed. 

It is also worth noting that because of the cancellation of some unneces
sary computations, the outside-in program may be much more efficient than 
the original inside-out program. 

We shall say that a program P' covers a program P if any ground ex
pression which initiates in the Refal machine a finite process under the 
program P, does so also under P', and the fmal stages of these processes are 
the same. Outside-in driving transforms a program P into a program P' 
which covers P. The relation of covering, as one can easily see, is reflexive 
and transitive. 

A few examples. Consider this program: 

• Predicate Fl checks whether the argument starts with A. 
Fl {Ael = T; 

el = F;} 
• This function converts symbols in a string, one by one. 
F2 {Ael = B <F2 el>; 

Bel =A <F2el>; 
s2el = s2<F2el>; 
= ; } 

• The composition of the two functions 
F{el = <Fl<F2el>>;} 

Since Fl depends only on the first symbol of its argument, the computation 
of the whole value of F2 by F is unnecessary. Driving eliminates this inef
ficiency. It yields the following defmition ofF: 

F {Ael = F; 
Bel = T; 
s2 el = F;} 

This defmition can be further improved. We first use the Transposition 
rule (see Sec. 3.4), for the first two sentences: 

F {Bel = T; 
Ael = F; 
s2 el = F;} 

Then we use the Subsumption rule to eliminate the second sentence: 

F {Bel = T; 
s2 el = F;} 

Let us redefine F2 as follows: 
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F2 {sl e2 = sl < F2 sl >; } 

Now < F2 e1 > and, therefore, < F e1 > which calls it, are defined nowhere; 
the domains of both functions are empty. But if we transform the definition of 
F by the outside-in driving, we get the following definition: 

F {Ael = T; 
s2 e1 = F;} 

which defmes < F e1 > for every string e1 that starts with a symbol. We can 
see the "fmal stage" of < F sl e2 > as the infmite string 

sl sl sl sl sl ... etc. 

The function Fl checks whether the first symbol in this string is A, and com
pletes computation in one step. 

In this way we can use infmite processes and think about them as con
structing "infmite objects". Such processes can be used in conjunction with 
functions that analyze these objects in a manner co-ordinated with the man
ner of their construction. We call these functions as if their arguments were 
really infmite objects, and then transform the program by driving. 

Suppose, e.g., that we have a predicate P, and want to fmd the minimal 
whole number for which P holds. We defme the left-to-right generator of 
whole numbers <Nom 0 >, where Nom is defined as 

Nom {sN = sN <Nom <Add sN, 1> >;} 

and the function Look-p: 

Look-p { 
sl e2 & < P sl >: { T = sl; 

F = <Look-pe2>; 
}; 

} 

Then we metacompute < Look-p < Num 0 > > using the outside-in driving. 
We leave this computation to the reader as Exercise ... (The answer, as al
ways, is in the end of the book). If we want to fmd the first prime number 
satisfying P, we defme a generator of prime numbers < Prime-nom 2 > and 
metacompute < Look-p <Prime-nom 2 > >. 

One could be disappointed that our basic method of function transfor
mation does not lead to a strictly equivalent function, but only to a function 
that covers the original one. In fact, however, this is the strong point of the 
method rather than the weak one. As we have just seen, it allows us to deal 
with processes generating infmite objects. More generally, optimization of an 
algorithm is closely tied to the extension of its domain. Whenever we avoid 
some part of computation as unnecessary, or simplify it some other way, we 
potentially eliminate the restrictions necessary for successful completion of 
that computation, and this may bring new elements into the domain. This fea
ture of optimization goes beyond outside-in driving. Consider the following 
function: 
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Bits { 0 eX = 0 < Bits eX>; 
1 eX = 1 < Bits eX>; 
= j} 

The domain of Bits is the set of all binary numbers, and its value is identical 
to its argument. The obvious optimization (which cannot be accomplished by 
simple driving) is to redefme Bits as the identity function: 

Bits { eX = eX; } 

The new funcion, however, is defmed on every expression, not only on binary 
numbers. If we stick to the reqirement of strict equivalence to the original 
function, we have to check that the argument consists only of Os and 1s. But 
then say good-bye to optimization. 

3.6 Transformation of Refal graphs 

3.6.1 REFAL GRAPHS AS PROGRAMS 

We constructed Refal graphs as generalized histories of the evaluation of 
general expressions (configurations) placed in the view-field of the Refal 
machine. A fmished Refal graph, however, is also a program for the evalua
tion of any ground expression which belongs to the initial configuration. As 
objects of manilulation, Refal graphs have certain ad¥antages over Refal 
programs. The format of Refal programs is suitable for defming and discuss
ing algorithms, but we shall use Refal graphs as our basic language in 
metacomputation. In this section we make some additions to our notation of 
graphs and formulate the rules of transformation preserving the meaning of 
the graph as a program. Driving, in particular, will be represented as a graph 
transformation. 

We shall use in Refal graphs a special variable, namely eO. It can be 
described as the variable for input/output operations. Its value is the current 
contents of the view-field of the Refal machine. The graphs we constructed 
before started and ended with configurations. Now we modify slightly the for
mat of the graphs. The initial configuration Q1 of a graph will now be repre
sented as the contraction eO-> Q1, which should be read: "if the view-field is 
Q1, then ... ". The final configuration Q2 on every branch of the graph will be 
replaced by the assignment Q2 <- eO, to be read: "put Q2 in the view-field". 
Such assignments correspond to the nodes of the Refal graph in the old nota
tion and will be often referred to as nodes. By introducing eO we eliminate 
configurations as distinct syntactical elements of a graph, and express Refal 
graphs as trees constructed from matching operations, of which we already 
know two varieties, contractions and assignments, and will soon add one more 
-- restrictions. 

The context-free syntax of Refal graphs is as follows. A graph is one of 
the following: 

a walk, followed by a walk-end; 
a graph-sum enclosed in braces; 
a walk followed by a graph-sum in braces. 

A graph-sum is one of the following: 
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empty; 
a single graph; 
G 1 + ... + G n• where G 1, etc. are graphs. 

A walk is a sequence of matching operations. 
A walk-end is an assignment to eO. 
A matching operation is one of the following: 

a list contraction (V -> L ); 
a restriction (# G), where G is a contraction graph, i.e. a graph-sum 

where all walks consist only of contractions (no restrictions and no walk
ends); walks in contraction graphs can be factorized, as in other graphs; 
( # G) will be referred to as the negation of G; 

a (passive) list assignment (E <- V); 
asubgraph assignment (or active assignment) ({G} <- e/), where {G} is 

a graph, which in this context is referred to as a subgraph, and ei is referred 
to as the liaison variable. 

a define operation def(E <- v), where vis a variable; 
a delete operation !kl(v). 

There is an additional condition a walk must meet in order to be syntac
tically valid, which will be referred to as varlist coupling. It must be possible to 
associate with every walk its input and output varlists, and with a graph its in
put varlist, while observing certain rules. For the basic operations these rules 
have already been partly discussed. If we put the input and output varlists in 
square brackets before and after the walks, and the input varlist of a subgraph 
just before the subgraph, the conditions to be met are as follows: 

[VJ (V -> L) [~(L)] 
[VJ (# V -> L) [VJ 
[VJ (E <- V') [V'] where Yil!:(E) ~ V 
[VJ ([~]{ G} <- ei) [V( ei)] where V9 ~ V 
[VJ !k.UE <- v) [V(v)] 
[V1 (v)V2] !kl(v) [V1 V2] 

The rules of combining operations are: 

1. To sum two or more graphs G1 + G2 + ... , there must be a varlist V 
which satisfies the conditions for being the input varlist of all the graphs G 1 
etc. Then V becomes the input varlist of the sum. 
2. To concatenate W1 and G2, where W1 is a walk, and G a graph (or a 
walk, in particular), there must be a varlist V which serves bo~ as the output 
for W1, and the input for G 2• 

The reason for these requirements is the interpretation of a Refal graph 
as a program. We have already seen in examples how a Refal graph can be in
terpreted as a program and converted into a program. We give now a formal 
definition of the interpretation of a Refal graph. 

While the Refal machine operates on the view-field, a Refal graph works 
with environments as data structures. An environment is a binding where all 
variables of the current varlist are assigned some ground expressions as their 
values; we represent environments as list assignments £9r <- V. To interpret 
a Refal graph, we must be given the initial environment. Then with every 
point in a graph we can associate a definite varlist. Indeed, the rules above 
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have only one indeterminacy in defining input and output varlists: the input 
varlist of an assignment must include all variables in m(E), but may also in
clude some other variables. If the graph starts with an assignment, its input 
varlist will be the varlist of the initial environment. For an assignment which is 
not at the start, we take the output of the preceding operation as the input 
varlist. The output varlist of a walk is uniquely defined by our rules as the out
put varlist of the last matching operation. Now the execution of the graph as a 
program will be a walk through the graph with the assigning of certain values 
to the varlists along the path. This is done according to the following rules. 

1. To execute the contraction (V -> L) with the input environment p;9r <- V, 
execute the matching p;9r : L. If it fails, backtrack (see p.5). If it succeeds, the 
assignment to m(L) is the output evironment. 
2. To execute the restriction ( # V -> L) with the input environment p;9r <
V, execute the matching p;9r: L. If it succeeds, backtrack. If it fails, the un
changed input environment becomes also the output environment. To execute 
the negation of a sum of contractions, execute sequentially the negations of 
the components. 
3. To execute the assignment (E <- V') with the input environment p;9r <- V, 
take ((£9r <- Jl) IE <- V') as the output environment. 
4. To execute the subgraph assignment ( { G} <- el) with the input environ
ment p;9r <- V, fust execute the subgraph { G} with this environment; let its 
output environment be (E <- eO). Take (£9r(E) <- V(el)) as the output en
vironment for the assignment. Thus, all the variables in V retain their values, 
and a new variable el appears, with the value resultin8 from the execution of 
the subgraph. 
5. To execute !k{(E <- v) add v to the current varlist and assign E to it. To 
execute d,d(v) exclude the variable v from the current varlist. 
6. To execute a walk, execute its constituend operations sequentially. To ex
ecute a graph-sum, start with the execution of its fust graph-term. If you come 
to a walk-end, the execution is successfully terminated. If you have to back
track, eliminate the current graph-term, restore the environment at the begin
ning of it, and start executing the next graph-term. If the current graph-term is 
the last in the sum, perforem the same operation on the next level up the tree 
structure, etc. If you have to backtrack from the last graph-term on the top 
leve~ the execution fails and the result is undefmed. This corresponds to the 
abnormal stop of the Refal machine. 

It follows from this defmition of graph interpretation that all matching 
operations are distributive with respect to addition: 

The values of variables in an environment are ground, but not neces
sarily object expressions (because execution of a graph simulates the 
processes in the view-field of the Refal machine, and they involve manipula
tion of activation brackets). Therefore, the execution of contracitons may 
stumble over a hindrance. In this case we shall say that the graph is un
executable. A graph is executable if with any environment involving only object 
expressions it can be executed without hindrances. 

It is easy to give an example of an unexecutable graph: 
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(<Fabel> <- e2) {(e2 -> B e2)(C < Fbc e2 > <- eO) 
+ ... 
} 

The execution of the ftrst branch meets a hindrance: e2 has an active value, 
and the contraction cannot be executed. However, this example is, in a sense, 
artificial. Graphs resulting from metacomputation are always executable by 
their construction. Here we again face the double nature of a Refal graph: it is 
both a program for executing a computation with speciftc input data, and a 
family of computational histories constructed in metacomputation. On each 
branch of the Refal graph emerging in metacomputation the appearance of a 
hindrance causes a new choice of the primary active term; hindrances in the 
ftnal product are not tolerated. The example above is taken from Sec. 1, 
where we drive the expression < Fbc < Fab el > >. At the beginning we try 
to drive Fbc with the active environment ( < Fab el > <- e2), but because of 
the hindrance we switch to Fab, and the hindrance is eliminated. 

The following two aspects of the execution of Refal graphs must be kept 
in mind. 
1. A Refal graph is a tree, not a general graph; its execution corresponds to 
the execution of a ftnite number of steps of the Refal machine, even though 
this number may be different on different branches. Because of that, the 
problem whether a given graph is executable is easily solvable: we take a 
generalized initial environment where all variables have arbitrary values, and 
execute the graph using the generalized matching; this is, essentially, re
driving of the graph. If on no branch we encounter a hindrance, the graph is 
executable. 
2. When it is necessary to evaluate an expression with nested activation brack
ets -- or rather to make a number of evaluation steps -- a Refal graph defmes 
speciftcally which active subexpression must be taken as primary at each step. 
In constructing a Refal graph we are free to use inside-out or outside-in 
evaluation order, or just picking up primary terms arbitrarily; such decisions 
can be taken for any branch independently of others. 

3.6.2 RESTRICTIONS 

Consider a function defmition in the general form: 

<F L1 > = R1; 
<F L2 > = R2; 

The corresponding Refal graph, which can be obtained by driving < F el >, is 

(eO-> <F el>) {(el-> L 1) (R1 <- eO) 
+ (el-> L2) (R2 <- eO) 

+ (el -> Ln) (Rn <- eO) 
} 
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Because branches are used sequentially, they are not completely inde
pendent: the actual use of a branch in a graph is limited to those environments 
(i.e. exact states of the Refal machine) for which all preceding branches 
originating at the same node were found unapplicable. We introduce restric
tions in order to achieve a complete independence of branches. Restrictions 
sieve out those exact states which will not actually reach the branch. 

The simplest way to incorporate restrictions into the graph above is as 
follows: 

(eO-> <Fel>) {(el-> L1) (R1 <-eO) 
+ (# el-> L 1) (el-> L 2) (R2 <- eO) 
+ (# el-> L1)(# el-> L2) (el-> L3) (R3 <- eO) 

+ (# el-> L1)(# el-> L2) ... (# el-> Ln_1) 

(el -> Ln) (Rn <- eO) 
} 

We shall refer to such a graph as complete with restrictions. In each branch 
there is a check that all preceding branches are unapplicable. A graph which is 
complete with restrictions has the pleasant property that the branches out
coming from a node can be transposed and put in any order. We shall see 
later, however, that there are good reasons not to change the order of 
branches, even though they may be complete with restrictions. But first we 
want to make an improvement in the graph above. 

Consider the second branch, which is the first branch including a restric
tion. In the execution of the graph it is first checked that el does not contract 
to L 1, and then it contracts to L2• This may result in unnecessary operations. 
Take the case when L?.. is orthogonal to L1, i.e. their intersection is empty. 
Then any value of e1 which belongs to L2 certainly does not belong to L 1; the 
restriction ( # e1 -> L1) will be, therefore, always satisfied, and there is no 
need to check it in order to determine whether the sentence will be used. 
Speaking in terms of sets of values of el, we identify the set corresponding to 
the second sentence as the difference between the classes L2 and L1. But if 
these classes are disjoint, then the difference is L . 

This inefficiency will be eliminated if we frrst execute the contraction, 
which is necessary anyhow, and then check whether the values assigned to 
var(L2) are such that the argument did not match one of the preceding sen
tences. We want a commutation relation which would transform the combina
tion Rectriction-Contraction (RC for short) into an equivalent reversed 
combination CR. This relation can be established by the following reasoning. 
Suppose a ground expression passed successfully the contraction to L-;.: Since 
it must not, at the same time, belong to L1, the restriction we are loo.Lcing for 
must eliminate the members of the intersection L2 iDJ; L1. This intersection 
must be represented by contractions to the variables of L 2, because the 
restrictions we want are restrictions on ~(L2). Therefore, we match L2 : L1, 
throw away assignments, and retain only the contractions. Let this procedure 
be denoted as £2!!1!:; it gives us a sum of contractions for ~(L2), and we con
vert them into restrictions. The desired commutation relation can be written 
as: 

(RC) (# V -> L 1)(V -> L2) = (V -> L2)(# contr(L2 :L1)) 
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The sum of contractions, when it is used as restriction, is executed se
quentially, and in case if any of the terms in the sum turns to be applicable the 
execution comes to the prohibitive stop. If all the terms are found unap
plicable, this is the "no objections" result. We have, therefore, the relation: 

(RR) (# (V -> L 1) + ... +(V -> Ln)) = (# V -> L 1) ... (# V -> Ln) 

Since restrictions do not change the environment, they commute, and so 
do the branches in contraction graphs, even though the branches of a graph of 
states generally do not. It is easy to see whence the difference. When a sum of 
walks is used as a program and two walks can be applicable to the same ex
pression under evaluation, the result of replacement may be different because 
the assignments are different. When a sum of walks is used as a restriction, 
there are no assignments in the graph, and it is only the applicability of one of 
the contraction that matters. 

Using the commutation relation (RC) and the composition relation 
(RR), we can transform every walk in the function definition to what we shall 
call the nonnal fonn: the sequence CRA, i.e. contraction, restriction, assign
ment (the nonnal order). Take, for example, the third sentence, which in
cludes two restrictions: R1R2CA. We first combine R1 and R2 into one 
restriction using, in the reverse order, (RR). Then we commute it with C 
using (RC). 

There is an important aspect to keeping the operations in a walk in the 
normal order. Assignments, as we know, defme configurations of the Refal 
machine. In particular, if it is a walk-end, i.e. the assignment (E <- eO), then 
E is the whole of the configuration. A configuration is a set of ground expres
sions. A ground expression defines an exact state of the view-field of the Refal 
machine (or a part of the view-field), which determines the further develop
ment of the process in the view-field. Thus we should have good means to 
defme configurations. A general Refal expression defines a set of ground ex
pressions which includes all expressions that can be obtained by substitution 
of any admissible values for free variables. As we have seen, the actual con
figurations which appear in metacomputation very often obey some restric
tions on their variables. Thus we can consider the combination RA as a 
single unit, a restricted general expression which defmes a configuration that 
cannot be represented without using restrictions. The walk CRA can be seen 
as C(RA): a contraction followed by a restricted configuration. 

In metacomputation, restrictions help to purge those branches which ac
tually will never be used: this is their main reason for being. If, for instance, a 
certain configuration is restricted by(# sX -> A), and one of the branches in 
the development requires the contraction (sX -> A), we eliminate this branch. 
Restrictions make it possible to treat each branch in metacomputation 
separately. But in the fmal graph, where all branches are again together, the 
restrictions are not needed if we have been keeping the branches in the cor
rect order; they will be taken care of automatically, through the sequential ex
ecution of branches. When we translate a Refal graph into a Refal program 
we skip restrictions; this assumes, of course, that we never changed the order 
or branches. 

Consider a few examples of working with restrictions. Take this 
program: 
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F {Ael = B <Fel>; 
s2 e1 = s2 < F el >; 
Bel = C <Fel>; 
= ; } 

to be referred to as P1, and let us complete the corresponding graph with 
restrictions: 

(eO-> < F el>) {(el-> A el) (B< F el > <- eO) 
+ (# el-> A el)(el-> s2 el) (s2 < F el > <- eO) 
+ (# el-> A el)(# el-> s2 el)(el-> Bel) 

(C < F el > <-eO) 
+ (# el-> A el)(# el-> s2 sl)(# el-> B el)(el-> ) 

( <- eO) 
} 

Now commute(# el-> A el) with (el -> s2 el) in the second branch. In ac
cordance with (RC), resolve the clash 

s2 e1: Ael = (s2 ->A) (el <- el) 

Discarding the assignment, we come to the restriction (# s2 -> A), the sym
bol variable s2 in the second sentence cannot take the value A 

In the third branch we commute the RC pair 

(# el-> s2 el)(el-> Bel) 

The clash is B e1: s2 el, which is resolved by the assignment (B <- s2). There 
are no contractions, thus the list of contractions must be represented by the 
identical operation I. Since it is always successful, the corresponding restric
tion(# I) is the impossible operation Z. It is not necessary to do further com
mutations. The left side L 3 is a subset of L 2, so this sentence will never be 
used, and the corresponding branch in the graph must be eliminated. 

For the last branch of the graph we compute 

contr(empty: Bel) = Z 

(here the list of resolution terms is empty, not the list of contractions in a 
resolution term, hence the matching is impossible). The restriction (# Z) is I, 
i.e. no restriction. This reflects the orthogonality of L 4 and L3• The commuta
tion of (el -> ) with the other two restrictions also produces I. Finally, we 
have for P 1 the graph: 

(eO-> < F el>) {(el-> Ael) (B < F el> <- eO) 
+ (el -> s2 el)(# s2 -> A) (s2 < F el > <- eO) 
+ (el -> ) ( <- eO) 
} 

It starts with the unrestricted configuration < F e1 > . The configuration 
resulting from one step on the first branch is B < F el >, again unrestricted. 
The walk-end configuration on the second branch is s2 < F e1 >, where s2 
can take any value except A. 
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In this example the varlist at the node of branching was simply (el), so 
we operated on ordinary, not list, contractions (we wrote e1 -> A el, instead 
of (el) -> (A el), etc.) Now suppose the varlist at some node is (el)(s2)(s3), 
and the graph G2 at the node is: 

{ (el -> s2 el s2)(s3 -> A) ... 
+ (el-> s2 s3) ••• 
+ (el -> s3 el s3)(s2 -> A) ••• 
} 

where the walk-ends are left out. We want to complete the graph with restric
tions. The flrst branch, of course, never includes restrictions. To compute the 
restrictions of the second branch, we ftrst have to transform the involved con
tractions to the list form. The two individual contractions on the flrst branch 
must be applied sequentially to the varlist (the composition rule for 
contractions), which yields the list contraction: 

(el)(s2)(s3) -> (s2 e1 s2)(s2)(A) 

and the list contraction of the second branch is 

(el)(s2)(s3) -> (s2 s3)(s2)(s3) 

The clash to resolve is 

(s2 s3)(s2)(s3) : (s2 el s2)(s2)(A) 

As we know, different sets of variables never mix in the GMA and driving, so 
the same indexes can appear in different roles, and we see this in the clash 
above. We are interested in the contractions for the variables in the argument 
of the matching, i.e. those of the L 2 of the graph. The fmal assignments for 
the variables of the pattern, i.e. those of the L1, are of no use for us. But 
before we come to the fmal assignments, we have to maintain some assign
ments for those variables as part of the algorithm. For the computer executing 
this algorithm the likeness of the variables on the different sides of the clash 
presents no problems. But for the human being it is confusing. Thus before 
executing the matching let us rename the variables of L1 as eX, sY, sZ: 

(s2 s3)(s2)(s3): (sY eX sY)(sY)(A) 

Now we go ahead with the matching. The flrst sub-clash is s2 s3: sYeX 
sY. Projecting the left term, we have the assignment s2 <- sY. The sub-clash 
becomes s3: eX sY, and we project the right-end term sY on s3. Since sY al
ready has a value, we face the internal clash s3 : s2, which resolves as s3 -> 
s2. Now eX accepts the remaining part of the sub-argument, which is empty; 
the resolution of the frrst sub-clash is 

(s3 -> s2)(s2 <- sY)( <- eX) 

We substitute now the contraction part of it into the remaining part of 
the clash: 
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(s2)(s2) : (sY)(A) 

where sY has already been assign the value s2 (the contractions must also be 
executed over the values of the pattern variables, but in this case nothing 
changes, because none of them includes s3). Thus the second sub-clash, 
s2 : sY has the empty resoluiton. The third sub-clash, s2 :A, results in the con
traction s2 -> A. The final result of the matching is 

(s3 -> s2)(s2 -> A) (A<- sY)( <- eX) 

Therefore, the restriction on the second branch is 

(# (el)(s2)(s3) -> (el)(s2)(s3) I (s3 -> s2)(s2 -> A)) = 
(# (el)(s2)(s3) -> (el)(A)(A)) 

We also can leave the graph in the restriction in the factorized form: 

(# (s3 -> s2)(s2 -> A)) 

To fmd the restrictions on the third branch we compute two contraction 
sets: 

gmtt( (s3 e1 s3)(A)(s3): (sY sZ)(sY)(sZ)) 
gmtt( (s3 e1 s3)(A)(s3): (sY eX sY)(sY)(A)) 

(where we again renamed the variables in the patterns). ~he reader can verify 
that both sets reduce to (s3 -> A). Thus according to the general rule the 
restriction should be 

(# (s3 -> A) + (s3 -> A)) 

but we can, of course, simplify it to (# s3 -> A). The graph G2 when complete 
with restrictions is: 

{ (el-> s2 e1 s2)(s3 -> A) ••• 
+ (el-> s2 s3) (# (s3 -> s2)(s2 -> A)) ••• 
+ (el-> s3 el s3)(s2 -> A)(# s3 -> A) ••• 
} 

As in the case of contractions, it should be born in mind that the inter
pretation of, and the operations on, restrictions depend on the full list of vari
ables. When we factorize and write out individual contractions only, we must 
know the varlist in order to do correct transformations. Slightly modifying the 
example we gave in the context of contractions, consider the graph: 

{ (el-> e1 s2) ... 
+ (el-> A) ••• 
} 
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From this graph we cannot see whether s2 is in the input varlist or not. 
But this is necessary to know in order to interpret the graph and fmd restric
tions. If the varlist is (el), then s2 is a new variable that can take any value, 
and the first branch completely screens the second. Formally, in order to find 
the restriction on the second branch we match: 

(A) : (el s2) = ( <- el)(A <- s2) 

and the resolution has no contractions. If, however the input varlist is 
(el)(s2), the match is: 

(A)(s2) : (el s2)(s2) = (s2 -> A)( <- el)(A <- s2) 

Now the restriction is ( # s2 -> A). The second branch of the graph will be 
used whenever s2 is distinct from A. 

3.6.3 DRIVING AS GRAPH NORMALIZATION 

Given a contraction C = (V -> L ), we shall call the assignment (L <- V) 
the conjugated assigment of C, and denote it as C - . The pair 

CC- = (V -> L)(L <- V) 

is in the normal order. It is the specialization of the varlist V by the contrac
tion C. Indeed, we execute C, which transforms our varlist V into var(L ), and 
then restore the old varlist with its old values by the assignment C - . Thus the 
only effect of this pair is to check that the current values of V satisfy the con
traction C, without actually changing any values. For every binding of V, the 
specialization CC- is equivalent either to I, or to Z. The same pair in the 
reverse order is always equivalent to I: 

C- C = (L <- V)(V -> L) = I 

Using conjugated assignments we can write the following formula for the 
negation of a product of contractions: 

(#CC) 

Its justification: two contractions applied sequentially say 'no' either if the first 
first one says 'no', or if the first says 'yes', but then the second says 'no'. The 
conjugated assignment c1- is necessary to restore the original environment. 

We derived above a commutation relation for the pair RC. There are 
two more pairs which violate the normal order: AC and AR. The AC pair, if 
we take into account the varlist coupling rules, is nothing else but the familiar 
clash: 

(A C) (E<- V)(V-> L) = E:L 

Here a varlist takes on a value which is immediately required to contract. 
Together with the general formula for clash resolution, 

E: L = .§.Y!llk (m(E) -> L k)(Ek <- m(L)) 
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this gives us a commutation relation which restores the normal order by put
ting all contractions before the assignments. 

Consider the AR pair 

(E <- V)(# V -> L) 

A varlist is bound to some values, after which a check is made whether the 
values comply with certain restrictions. It should be possible to fmd those 
restrictions on m(E) which are sufficient and necessary for the assigned 
values of V not to contract to L. For instance, if we assign a symbol to sX and 
then check that it is not A, we also could start with checking that it is not A, 
and then make the assignment. The commutation relation is: 

(sl <- sX)(# sX -> A) = (# sl-> A)(sl <- sX) 

The general formula is: 

(AR) (E <- V)(# V -> L) = (# £Q!!l!(E: L))(E <- V) 

We exclude those values of the variables in E for which E will become con
tractible to L. 

Adding the Refal graphs corresponding to all functions of a program, we 
form the total program graph GP, which is a complete equivalent of the 
program: 

aP= {(eO-> <F1 e1 >) G(F1) 
+(eO-> <F2 el>)G(F2) 

} 

where G(F;) is the graph for the function F;, more precisely, for the con
fJgUI'ation < F; e 1 > . It is a sum of walks in the normal form with the input 
varlist (el) and the output varlist (eO). One walk of GP defmes one step of the 
Refal machine over a primary active expression. Put <E> into the view-field 
by the assignment ( < E > <- eO), and 'hit' it by GP, i.e. concatenate GP on the 
right: 

(<E> <-eO) GP 

We have now a graph which is a program to evaluate <E >.The actual com
putation or metacomputation according to this program will look as an equiv
alence transformation of this graph. Take first the simplest case when the ac
tive expression is a call ofF; with an object expression E0 as its argument: 

(<F;Eo><- eO){(eO-> <F1 el>)G(F1) 
+(eO-> <F2 e1 >) G(F2) 

} 

Using the distributivity of addition and resolving the clashes for eO, we see 
that only the definition ofF; survives: 
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G(F;) is a sum of walks of the form 

(el -> L) (R <- eO) 

where L and R are the left and the right sides of a sentence. Thus we have the 
sum of walks 

(E0 <- el) (el-> L) (R <- eO) 

The resolution of the clash (E0 <- el)( e1 -> L) is the matching of the argu
ment to the left side of a sentence. Since EQ is an object expression, the result 
will be either Z, and the corresponding walks will be eliminated, or an assign
ment (E <- ~(L)). The first of such walks, 

(E <- m(L)) (R <- eO) 

will be transformed by combining the two assignments into one assignment 
for eO, which gives the result of the step. All remaining walks in the graph can 
be discarded, because the first applicable sentence is always used. This was 
formulated in Sec. 3.4 as the Screening rule of function transformation, and 
we already used it in driving. For graphs it looks as follows: if there is a branch 
in a graph on which there are no contractions, all subsequent branches start
ing from the same node can be eliminated. 

We have used the graph without restrictions, and the initial configuration 
without free variables. In the general case there will be free variables in the 
initial and other configurations, and restrictions in the graphs. The rules of 
equivalent transformation of Refal graphs will be used as a way to perform 
driving. We shall also allow restrictions on the variables in the initial con
figuration. 

Let us formulate the general scheme of driving by graph transformation. 
Suppose we have a restricted configuration, i.e. a restriction-assignment pair 
RcA co. Here we indicate by superscripts the input and output variable sets of 
operations (only one set for restrictions). The variables of the initial con
figuration are C-variables. Zero stands for the varlist (eO). The variables of 
the total program graph are P-variables. When we multiply the initial con
figuration by GP, we have a sum of the walks of the form 

These walks are transformed according to the following scheme, where at 
each stage of transformation we enclose in parentheses the pair of operations 
for which an equivalence formula is used. 

Walk Replacement 
and the meaning of tranformation 

ccc'Ac'p 
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Matching argument to the left side. 
C' -variables are derived from C-variables. 

2. (Rcccc')Ac'pRpApO Ccc'Rc' 

Restrictions on the initial variables are 
translated into restrictions on the derived 
variables. 

3. Ccc'Rc'(Ac'pRp)ApO Rc'Ac'p 

Restrictions on P-variables are translated into 
restrictions on C' -variables. 

4. etc' (Rc'Rc')A c'pApO Rc' 

Composition of restrictions. 

5. ccc'Rc' (Ac'pApO) Ac'O 

Composition of assignments. 

Making such transformations along every branch in the program graph 
GP, we come to a graph where all walks are in the normal form. What we 
achieved is, essentially, a transformation of a program requiring two steps of 
the Refal machine into a program which does th.e same thing in one step. The 
pair RA in the original walk requires a check on the input variables according 
to R, and a substitution according to A. This can be seen as a step of the Refal 
machine described by the normal walk CRA with the trivial contraction 
C = I. Thus we transformed IRACRA into CRA. If we have a graph in the 
normal form (i.e. a sum of normal-from walks, possibly factorized by the use 
of the distributive law), we can 'hit' every walk-end which assigns a primary 
active expression to eO by GP, which will give us a graph where some of the 
walks describe two steps of the Refal machine. Then we transform these walks 
into the normal form, which requires only one step more than in the above 
transformation: 

1. CR(AC)RA 
2. C(RC)ARA 
3. (CC)RARA 
4. CR(AR)A 
5. C(RR)AA 
6. CR(AA) 
7. CRA 

The extra step is from stage 3 to stage 4, the composition of contractions; we 
could avoid this step by leaving the contractions factorized: CCRA. Now we 
have a program which is executed in one step of the Refal machine. 

The process of transformation of a Refal graph to the normal form will 
be referred to as normalization. Hitting a primary active walk-end 
( <E> <-eO) by the total program graph GP with the subsequent normaliza
tion is a form of driving. Its advantage for further analysis and computeriza-
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tion is that the process is broken down into simple elementary steps, and at 
each step we have a meaningful representation of the current situation -- a 
Refal graph. 

3.6.4 DEFINING AND DELETING VARIABLES 

As we know, not every graph is executable. In outsde-in driving we have 
sometimes to return to a previous point and make a different decomposition 
of an active expression. Decomposition is an equivalent transformation of a 
graph-- the formula for composition of assignments used in the reverse order. 
We are free to decompose active expressions in any way. When we meet a 
hindrance, we extract it by decomposition and make of it a separate sub
graph, without redoing any part of the work already done. If 

( < Q > <- eO) GP 

is unexecutable, and Q1 is the hindrance in Q, we decompose: 

(<Q><-eO) = (<Q1><-eX)(<Qz><-e0) 

and move GP inside, forming the subgraph assignment: 

We are also free to hit by GP and normalize (i.e. to drive) any primary 
walk-end in the main graph or in any subgraph. In normalization we are free 
to use composition and commutation relations at any point of the graph. 

We need a few more equivalence transformations concerning subgraphs. 
The following distributive relation is obviously valid: 

When a subgraph is reduced to a walk, we can take out some, or all, of its ele
ments. Consider such a subgraph in its context: 

If the walk W starts with a contraction C, the whole walk is applicable only if C 
is successful. Thus we can take C out of the subgraph and put it right after W1. 

This, however, will ruin the after-subgraph part G2 if we do not restore the 
environment in which G2 is supposed to operate, namely, the one that was 
before the contraction C. This restoration, as we know, is achieved by the con
jugated assignment C- . Thus we have the formula: 

For a walk starting with a restriction it is not necessary to restore the environ
ment, since it does not change: 
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For a walk which consists only of a walk-end, we reassign to the subgraph 
variable el the value assigned to eO. It is here that we need the operation !kf 
in order to add ei to the varlist and assign to it the computed value: 

W1 ({(E <- eO)} <- el) G2 = W1 .Qrl(E <- el) G2 

The delete operation 4d is complementary to !kf. Variables can be 
deleted from the current varlist at a point before an assignment (E <- V) if 
ygr(E) is a proper subset of the output varlist of the preceding walk. For in
stance, in the walk 

((e4)(sS)(s7) <- (sS e4 s7)(sS)(s7)) ( < F2 e4 s7> <- eO) 

we can insert a delete operation 

((e4)(sS)(s7) <- (sS e4 s7)(sS)(s7)) .!k!(sS) ( < F2 e4 s7 > <- eO) 

which may be useful when we implement Refal graphs as computer programs, 
but is redundant, because we can always establish that a variable is deleted at 
a certain point in a graph by comparing the output varlist before that point 
with the input varlist after it. 

When variables are deleted, we may be able to make some improve
ments in the graph. Consider a walk of the form 

C R del(v) (E <- eO) 

where Cis some contraction, R a restriction reflecting the position of the walk 
in a graph, and the variable v is not used in E. Then the value of v disappears, 
and will never be used again in metacomputation. Indeed, when we hit the 
walk-end by GP and resolve the clash for eO, only the variables in E matter. 
The restriction R may include some requirements to v, and after v disappears, 
these requirements become irrelevant; we should take that into account and 
simplify R into some R'. 

This transformation can be written as the rule: 

R !kl(v) = R !kl(v) R' 

We left R where it was, because we still want to check the full restrictions to 
decide on the applicability of the walk. But for future development of the walk 
by driving we will use R' as the restriction on the configuration E. As we have 
already mentioned, the combination RA in the normal form of a walk stands 
for a restricted conftguration. We use restrictions in order to avoid unfeasible 
walks in driving. After vis deleted, it is R' that will be used for that purpose. 

Let us now figure out how to transform R into R'. The walks of the form 
(V -> L) in the contraction graph negated by R can be, obviously, deleted. But 
this may not be enough. It may happen that v enters restrictions for other, not 
deleted, variables. Since e-variables are never repeated in contractions, this 
may happen only if vis an s-variable. Take this program: 

F1 { (sS e4 s7)(sS)(s7) = < F2 e4 s7 >; 
(e4)(sS)(s7) = < F3 e4 s7 >; 

} 
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The ftrst walk of the graph G(Fl) for this program we have used as an ex
ample above. The second walk is: 

(el-> (e4)(sS)(s7)) (#e4-> sSe4s7) (<F3e4s7> <-eO) 

The restriction here, which we take as R, does not allow e4 to start and end 
with symbols identical to the values of sS and s7, respectively. Then the vari
able s5 disappears. What is the restriction R' on the remaining variables of the 
walk-end? 

The reader can ftgure out that in this situation there must be no restric
tions on e4 at all, i.e. R' should be empty (identical operation 1). We are going 
to prove this by proving that for any value of e4 and s5 we can a value of the 
deleted variable sS, such that R will let pass the binding. This will mean that 
the walk-end configuration is unrestricted. 

So let us see what values of e4 may be stopped by R. Obviously e4 must 
end with s7, otherwise R will defmitely not stop it. By the same token, e4 must 
start with some symbolS. So, e4 = S E s7, where E is some expression. Take 
any symbolS' distinct from Sand assign it tosS, i.e. form the binding: 

(S E s7)(S')(s7) <- (e4)(sS)(s7) 

When R is executed with this binding, it lets it pass. This proves the point. 
Generalizing this argument, we come to the following theorem. 

Theorem. Let 

R = (# (V -> L1) + (V -> L2) + ... + (V -> Lq)) 

be the restriction on the varlist V just before an assignment (£ <- eO), and let 
V = v"vd, where v" = var(E), so that vd is the list of deleted variables. Then 
the restriction R' which describes the configuration E can be formed from R 
as follows. First, remove the sublist vd from V and the corresponding sublist 
in L; for every negated term in R, thus transforming it into (v" -> L~). Then 
delete every term where there is at least one occurrence of a variables from 
vdinL~. 

Proof. We want to fmd out what restrictions are put on v" because of the 
restriction (# V -> L~ on V. To exclude some value-list L n from v", one 
must be sure that L "L is removed by R from v"vd for every possible value
list L d of vd. If there are no occurrences of vd -variables in L ~, then any value 
list of object e~ressions in L; ",combined with any value-list of object expres
sions from L; d, will become a value-list to be excluded form V. Therefore, 
( # v" -> L ") is the correct restriction on v". If, however, L ~ includes an oc
currence of sl from vd, then none of the object expressions of L~ can be ex
cluded. Indeed, when we pick up an object expression from the class repre
sented by the pattern L ~, we give an object value to every free variable in it. 
Suppose the value given to sl isS, and the resulting object expression (value
list) is L~0• If we also put si -> S while contracting L~ to L~0, then the 
value-list L~0L~0 for V is an instance of L~L1, and will be removed by R. 
But we can give to sl a different valueS'. The object expression thus obtained 
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obviously cannot be recognized as L~L~, and R will not remove it. Hence 
the criterion is not satisfied, and no object expression from L~ can be ex
cluded. The corresponding restriction term must be deleted. 

THE SUMMARY OF GRAPH TRANSFORMAITONS 

In the following E stands for an expression, L an L-expression, V a varlist, W a 
walk, G a graph. If C = (V -> L), then C ~ = (L <- V). 

1. The formats of contractions (C), restrictions (R), assignments (A), and sub
graphs (S): 

(C) [V] (V -> L) [m(L)] 
(R) [V] (# (V -> L1) + ... + (V -> Lq)) [V] 
(A) [V] (E <- V') [V'] where m(E) ~ V 
(S) (V] ( {[V9]G} <- ei) [V(el)] where V9 ~ V 

2. Varlist coupling in composition and addition 

3. Identity operations 

IW= WI= W 
Z+G=G+Z G 
(#I) = Z 
(# Z) = I 

4. Distributive laws: 

(D.L) 
(D.R) 

5. Composition 

(CC) (V1 -> L 1) (V2 -> L 2) = (V1 -> L 1!(V2 -> L 2)) 
(AA) (£2 <- V2) (E1 <- E 1) = ((E2 <- V2)tE1 <- V1) 
(RR) (# G1)(# G2) = (# G2)(# G1) = (# G1 + G2) 
(#CC) (# c1c2) = (#C1) + c1 (#C2)c,~ 

6. Commutation: 

(AC) (E <- V)(V -> L) = E: L = mm;(m(E) -> L ;)(E; <- m(L)) 
(RC) (# V -> L 1)(V -> L 2) = (V -> L 2)(# £Qnt!:(L2 :L1)) 
(AR) (E <- V)(# V -> L) = (# £Q!ll!:(E: L))(E <- V) 

7. Exiting a subgraph: 

W1 ({CW}<- el)G2 = W1C({W}<- el)C~G2 
W1 ( {R W} <- ei) G2 = W1R ( {W} <- ei) G2 
W1 ({(E <- eO)} <- ei) G2 = W1 Qd(E <- ei) G2 
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3.7 Elementary contractions 

When we factorize an individual contraction v -> L, we represent it as a 
composition of two non-trivial contractions. This process can be repeated un
til it comes to its natural end when L is such that the contraction cannot be 
broken down in this way. Such a contraction will be called elementary. In the 
algorithm of generalized mapping we move on with minimal steps when we 
impose contractions on the variables in the argument; these contractions are 
exactly the elementary contractions of Refal. There are seven of them: 

ei -> sf'el S/l' 
ei -> (el')el 8/J' 
ei -> ei sf' Til' 
ei -> el(el') CIJ' 
ei -> empty X/N 
si -> s liS 
sl -> sf 0/J 

As in the GMA, the variables with the index!' are new variables. i.e. such that 
have not yet been used in the preceding factors of the overall contraction. The 
first elementary contraction in this list must be understood as the requirement 
that ei starts with any symbol, and the next three contractions are to be read 
in the similar way. On the contrary, the last contraction uses the variable sf 
(not sf'), which is old, i.e. is assumed to have a definite value in the execution 
of the walk, for which it must have been already used in the right side of a 
contraction or assignment. The requirement is that the value of si is distinct 
from that of sf. 

In programming, elementary contractions can be represented in a com
pact code. We use in the supercompiler the three-symbol code which is shown 
in the second column above. The first symbol codes the type of the contrac
tion. The mnemonics is: S -- Symbol variable; B -- Bracket; T -- the following 
letter of the alphabet after S, to denote a symbol variable, but on the other 
end; C -- the same for Bracket; X -- cross out the expression; I -- the symbol 
variable Is ... ; 0 -- Old variable. The second symbol is always the index of the 
variable being contracted. The third symbol is either the index of another vari
able, or a symbol used in the contraction (N in the X-contraction is for the 
even count, so as to get every elementary contraction by the pattern sl s2 s3 
when programming in Refal. 

There are two more contractions which we often treat as elementary, 
even though they can be factorized: 

ei -> s ei 
ei -> ei s 

(Mnemonics: symbol on the Left and Right.) 

LIS 
R/S 

Some care is needed in dealing with elementary contractions of the 0 . 
type, si -> sf. Our notation has the simplilled form of an individual contrac
tion, but it actually cannot be expressed by an individual contraction. As we 
stressed before, sf is an old variable, which enters the current varlist. The ex
act definition of the 0-type contraction is: 
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(sl -> sf) = (sl)(sl): (sl)(sl) 

The matching checks that the values of sl and sf are equal, and tells us to use 
sf as the variable for this common value. When we use the individual contrac
tion si -> sf for substitution, it is completely equivalent to the full list form. 
But when we trace a contraction chain to determine where and how the vari
ables get defmed, the simplified individual form may mislead. You need to 
observe the full form in order to see that sf gets redefmed as equal to what it 
was before. The simplified form creates an impression that sf takes over the 
value of sl. But this would be true only for the symbol assignment, which is 
defmedas 

(sl <- sf) = (sf) : (sf) 

Thus the general rule that the arrows we use in contractions and assignments 
can be simply replaced by the matching operation sign must be qualified by 
the definition of the 0-type contraction. 

Given a contraction el -> L, we can factorize it into elementary contrac
tions by matching e1 : L. The sequence of contractions resulting from the 
match (which, of course, always succeeds) is equivalent to the original con
tractions, but will be expressed in terms of e1 and its derivatives. The assign
ments resulting from the matching express the variables of L) in terms of 
those new variables. Example: if 

L = (sX)sS eY sS 

the sequence of elementary contractions resulting from the matching e1 : L is: 

(el-> (e2)el) (e2 -> s3 e2) (e2 -> ) (el-> s4 el) 
(el -> e1 s5) (s5 -> s4) 

In the code described above this is 

812 S23 X2N S14 T15 054 

Folding these contraction into one, we get 

e1 -> (s3)s4 e1 s4 

If we want a factorization which retains the old output variables, we can use 
the assignment part of the resolution, which is 

(s3 <- sX) (el <- eY) (s4 <- sS) 

in order to make substitutions in the direction opposite to the arrows. 
This procedure or restoring the old output variables looks unnatural and 

is rather messy. But we do not actually need it for metacomputation. When we 
want to decompose the left side of a sentence < F L > = R into elementary 
contractions, we match e1 : L, take the sequence of contractions as the new 
left side, and substitute the assignments into R to produce the new right side. 
This will be the original sentence in the graph form. We can bring it back to 
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the program form by folding the chain of contractions into one contraction. 
Now the whole sentence is expressed in terms of derivatives of el, instead of 
the original variables, but this is not bad at all. On the contrary, this can be 
used for standartization of Refal sentences and graphs with respect to the 
naming of variables. If we accept a certain order of projecting in the GMA, 
and a certain way to produce new variables (e.g. the smallest number not yet 
in use), then the sentences that differ only by the names of variables will be 
reduced to exactly the same normal form. 

The use of elementary contractions in the coded form makes it possible 
to atomize a great deal of the objects of transformations when we work with 
Refal graphs, and develop efficient algorithms of algebraic manipulation of 
these objects. 
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3.8 The strategy of metacomputatlon 

Driving is not the only party to metacomputation. If we simply drive on 
every active configuration as it appears in the graph, we will never stop in 
most cases. The strategy of metacomputation is a method to curb driving and 
arrive at a finite graph of states. To do that we have sometimes to loop back 
from a newly created configuration to one of the already existing in the graph. 
Those configurations which we are prepared to leave in the fmal graph will be 
called basic. It is possible to loop back from a configuration Q to a basic con
figuration B if Q can be reduced to B, i.e. represented as its subset: 

Q = (E<- m(B))IB 

Then instead of calling (putting into the view-field) Q, we execute the reduc
tion assignments and call B: 

(Q <- eO) = (E <- m(B)) (B <- eO) 

Let us consider some cases of configurations we create in driving and 
relations between them (see Fig. 3.2). 

The configuration Q gives rise to two passive configurations (we repre
sent such by rectangles). lhis is a natural end of driving. We do not have to 
worry about Q2 any more. 

Observing configuration Q4 and comparing it with its predecessors Q3 
and Q1, we may decide that none of the predecessors is close enough to Q4 to 
try looping back. Then we go on driving. 

Configuration Q5 is a subset of Q3; in particular, the two may be equal. 
This is the case when we certainly must loop back. The reduction arc is shown 
in the Figure by a broken line. 

Configuration Q6 goes over into Q7 no matter what the values of its vari
ables. The arc from Q6 to Q7 may or may not carry a contraction. We shall 
call such configurations as Q6 transitory. There are good reasons to purge 
transitory configurations from the graph as they appear. The arc from Q4 
must then be redirected straight to Q7, and the possible contractions on the 
Q6-to-Q7 arc must be added. In this way we avoid a great deal of the 
metacomputation overheads in a situation where metacomputation is, in fact, 
computation. The disadvantage of this strategy is that if the initial program al
lows infmite computation processes for some input data, the process of 
metacomputation may aslo become infmite. If one of the goals of metacom
putation is to fmd infmite loops in the program (i.e. some of them), then tran
sitory configurations should not be automatically skipped. 

The relation between the configurations Q and Q9 is the hardest case, 
when, on the one hand, Q9 is not a subset of Q8, ~ut on the other hand, it is, in 
some sense, too close to Q8 to simply go on driving. We foresee that if we 
drive on we can be constructing an infinite row of close configurations. In this 
case we generalize Q9 and Q8, i.e. fmd a configuration Q10, such that both Q9 
and Q8 can be reduced to it. Then we delete the whole development of Q8, 
reduce Q8 to Q10, and develop Q10. 

Consider the following example of the last case. The program is: 
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Fab {eX = <Fabl ()eX>;} 
Fabl { 

(eY)A eX = < Fabl (eY B) eX>; 
(eY)sZ eX = < Fabl (eY sZ)eX >; 
(eY) = eY;} 

and the configuration to meta-evaluate is < Fab e1 > (we want simply to 
reproduce the program). 

The total program graph GP is: 

(GP) {(eO-> < Fab eX>) ( < Fabl ()eX> <- eO) 
+(eO-> < Fabl eX>) 

} 

{ (eX-> (eY)A eX) ( < Fabl (eY B) eX> -> eO) 
+(eX-> (eY)sZ eX) ( < Fabl (eY sZ)eX > -> eO) 
+(eX-> (eY)) (eY <- eO) 
} 

We use letters for the indexes of P-variables, in order to readily distinguish 
them from the numbered C-variables (in porgrams both sets have numbers as 
indexes). The initial graph is 

(1) (Q1 <- eO) 
(Q1) <Fabel> 

To make one step of driving, we hit it by GP and normalize using the proce
dure already familiar to the reader. The result is 

(2) (Q2 <- eO) 
(Q2) < Fabl ()el > 

The construction of the graph of states, however, is not simply driving. We 
must remember the history of computation, the past states of the computing 
system. We shall put Pin front of past configurations, written, as always, in 
the form of assignments. The graph of states at this point should have looked 
as: 

(3) P(Q1 <- eO) (Q2 <- eO) 

but the initial node (1) is transitory, so we do not keep it, and (2) is the right 
graph, after all. 

Now we develop Q2• Consider this in greater detail. We first reserve Q2 
as a past configuration, then make another copy and hit it by the program 
graph: 

After the resolution of the clash for eO, we have: 

P(Q2 <- eO) (()el <- eX) 
{(eX-> (eY)AeX) (<Fabl (eYB)eX> <-eO) 
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+(eX-> (eY)sZ eX) ( < Fabl (eY sZ)eX > <- eO) 
+(eX-> (eY)) (eY <- eO) 

} 

Now we want to normalize the first branch. Formally, we use the dis
tributive law for graphs. The assignment for eX is duplicated and left before 
the remaining branches: 

P(Q2 <- eO) {(()el<- eX) (eX-> (eY)AeX) (<Fabl(eYB)eX> <-eO) 
+ (()el <- eX){(eX -> (eY)sZ eX) ( < Fabl (eY sZ)eX> <- eO) 

+(eX-> (eY)) (eY <- eO) 

} 
} 

Normalization of the first branch results in 

P(Q2 <- eO) { (el -> A el) (Q3 <- eO) 

+ ... 
} 

(Q3) ( < Fabl (B)el >) 

Before developing the remaining branches, we go on with the transformation 
of the node on the first branch; this method is known as the depth-first con
struction of a tree. Consider Q3, and compare it with its predecessor Q2. 
None is a subclass of the other. But they are 'dangerously close'. If we further 
drive Q3, we shall have at the first branch from each node: 

< Fabl (BB)el > 
< Fabl (BBB)el > 

etc., infinitely. We have, therefore to generalize Q3 and Q2• We shall discuss 
the possible algorithms of generalization in Chapter 6. At this point, we 
simply replace the subexpression that causes the difference by a free variable, 
to come to the generalization: 

(Q4) < Fabl (e2)el > 

Now we eliminate the past configuration Q2 together with its develop
ment, reduce Q2 to Q4, and develop Q4: 

(4) ( <- e2) P(Q4 <- eO) (Q4 <- eO) GP 

While it should be clear that this step of transformation is perfectly jus
tified, the formal aspects requires some discussion. When a generalization 
takes place, we can consider all variables V' of the generalized configuration 
as new, and make them all textually different from the current C-variables V. 
By matching the previous configuration to the generalized one, we fmd the 
reduction assignments (E <- Jl'), where var(E) = V. Since no variable from 
V' enters E, the reduction assignments can be factorized into a sequence of 
individual assignments in any order. Now consider those factors which have 
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the form (v <- v'). For each such factor we can rename the variables v' into v, 
i.e. restore its old name, and then delete the factor. This can be done because, 
again, no variable from V' is used in E. After the reduction assignment we can 
delete, using del, those variables form V which do not enter the modified V'. 
In our graph el survives generalization, and a new variable, e2, appears in the 
varlist. 

Normalizing the first branch in ( 4), 

( <- e2) P(Q4 <- eO) { (el-> A el) ( < Fabl (e2 B)el > <- eO) 

+ ... 
} 

we have a configuration which can be reduced to Q4. To fmd the reduction 
assignments, we match 

< Fabl (e2 B)el > : < Fabl (e2)el > 

Even though it is clear that the solution in this case can be given by the in
dividual assignment (e2 B <- e2), the optimal form of the reduction to a 
former configuration generally cannot be immediately obtained from match
ing. Unlike the case of the reduction to a generalization, the variables of the 
configuration to which the reduction takes place are not new, and therefore 
cannot be given new indexes. In the matching 

Qafter : Qbefore 

the variables of Qafter are derived from those of Qbefore. To see how this 
may interfere with factorization of assignment, let us imagine that we want to 
reduce < F (e2)el > to < F (el)e2 >.The matching results in the list assign
ment 

(el)(e2) <- (e2)(el) 

which is, of course, a correct solution, and stands for a simultaneous substitu
tion. If, however, we tried to see it as a pair of individual assignments: 

(el <- e2) (e2 <- el) 

this, obviously, would be an error. 
It is worthwhile to make a digression on the factorization of list assign

ments. To reduce the list assignment above to a sequence of individual assign
ments, we must introduce an intermediate configuration, co-extensional with 
Qbefore, but with a disjoint set of variables. We do that in order to be able to 
factorize the list assignments involved. We have now two matching opera
tions: 

(<F(e2)el>: <F(eY)eX>) (<F(eY)eX>: <F(el)e2>) 

Both can be factorized with the result: 

(e2 <- eY) (el <- eX) (eY <- el) (eX<- e2) 
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This solution can be improved. We can formulate the following commutation
rule for individual factor-assignments: 

Exercise •.• Prove this rule. 

We commute the third and the fourth assignments, then the second and 
the third: 

(e2 <- eY) (el <- e2) (el <- eX) (eY <- el) 

Now the assignment for eX can be deleted because it is not used later, and eX 
is not in the output varlist (el)(e2): 

(e2 <- eY) (el <- e2) (eY <- el) 

This is the efficient solution. No further transposition or deletions can be 
made. 

Exercise. Show formally how to fmd the individual assignment sequence for 
the reduction: 

< F sl s2 s3 > : < F s2 s3 sl > 

Returning to our graph, we see that on the second branch we also have 
the reduction case. We fmally get the graph: 

( <- e2) P(Q4 <- eO) {(el-> A el) (e2 B <- e2)(Q4 <- eO) 
+ (el-> s3 e2) (e2 s3 <- e2)(Q4 <- eO) 
+ (el-> ) (e2 <- eO) 
} 

which is an exact equivalent of the original program. 
Note that because of the depth-ftrst order of graph construction we 

avoided the development of all branches except the ftrst one at the node Q2. If 
we used the breadth-first approach, we would have developed all branches, 
and then discovered that it was unnecessary, since the whole development dis
appears and the graph is redrawn for the generalized configuration Q4• With 
the depth-ftrst method, we have come to the generalized configuration on the 
basis of the ftrst branch only, and this configuration was good enough to 
secure the looping-back on the other branch. This situation is typical and 
speaks strongly in favor of the depth-ftrst graph construction, even though it is 
easy to set up a situation where each new branch requires a new generaliza
tion. 

Exercise ... Give an example where such a situation takes place. 
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There is a great deal of freedom in deciding how to go on with meta com
putation. The strategy of metacomputaiton defmes which of the possible ac
tions must be taken at each stage of the process. The list of actions that may 
be possible includes these: 

1. Pick up one of the configurations in the graph and reduce it to another con
figuration. We have the option of reducing only to a direct ancestor, or to any 
configuration in the already constructed part of the graph. 
2. Pick up an end-configuration, decompose it, and and drive the primary ac
tive subexpression. It still remains to decide what method to use in choosing 
the configuration, e.g., depth-first or breadth-first, and how to decompose, 
e.g., outside-in or inside-out. 
3. Declare a configuration basic. Then it will neither be reduced to another, 
nor driven further. The list of basic configurations could be given at the begin
ning, or a more sophisticated decision procedure could be used. 
4. Generalize a configuration with one of the preceding configurations 
Qbefore, with the following reduction of Qbefore to the generalization. The 
operation of generalization still is to be defmed in some way. 
5. Stop and output the graph. For this to be admissible, each node in the 
graph must be developed or reduced to another node, and there must be no 
loops consiasting of reduction arcs only. In this way the strategy guarantees 
that the graph can serve as the program for the initial configuration. 

The crucial point in elaborating a strategy of metacomputation is to en
sure that the process of graph construction is fmite. One way to do it is to 
defme, in some way, the full set B of basic configurations, and to prove that 
(1) B is fmite, (2) for every ground configuration Q which can appear in the 
view-field under a given program, there is such a configuration in B to which 
Q is reducible. The strategy of metacomputation must then include the provi
sion that each primary active configuration is reduced to one of the basic con
figurations. Two variations are possible. First, we can always drive on tran
sitory configurations, with the consequence that the fmiteness will be 
guaranteed only if the program graph GP guarantees it. Second, we can try to 
reduce each new configuration to one of its predecessors (which will be called 
a recursive configuration in case of success) and only in case of a failure 
reduce it to one of the predefmed basics from B. Then the total set of basic 
configurations will include, in addition to the predefmed basics, those recur
sive configurations which were found during the graph construction. 

Another approach to ensuring the fmiteness of metacomputation is to 
produce basic configurations by generalizaiton on the fly, but limit to such a 
family of potential basic configurations that a sequence of possible generaliza
tions will always be fmite. If we set that all basic configurations must have the 
form < F L > , where L is an L-expression, then the following theorem war
rants the fmitness of metacomputation: 

Theorem. A chain of L-patterns L1 < L2 < ... etc., where each pattern is a 
proper subset of the next pattern, can only be finite. 

Exercise ... Prove this theorem. Prove also that for restricted patterns this 
theorem does not hold. 
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The concept of the set of basic configurations makes it possible to quan
tify the interpretation-compilation dimension of programs well-known in 
programming. We call a program interpretive if it tends to determine which 
action to take by analyzing some data. Such a program can be shifted toward 
the compilation end of the interpretation-compilation axis by analyzing some 
of those data and including the necessary actions right in the program, compil
ing the instructions necessary to do the job. The more compilative program 
will work faster than the more interpretive one, because it will not spend time 
for analyzing some part of the data. On the other hand, it may be considerably 
greater than the interpretive program at the expense of the detailed instruc
tions. We can regulate the position of the metacomputed program on the 
interpretation-compilation axis by varying the set of basic configurations. The 
larger (more extensive) the basic configurations are, the more interpretive 
will be the program. When we partition basic configurations into more 
detailed configurations, the program becomes more compilative. Correspond
ingly, we can speak of more interpretive and more compilative strategies of 
metacomputation. Programs developed under varying strategies remain, of 
course, equivalent. By mechanizing metacomputation we can have a 
mechanized way of controlling the interpretation-compilation feature accord
ing to our needs. 

We shall now formulate two generally applicable, and very interpretive, 
strategies of metacomputation. 

The first strategy is generalization to functions. The set of basic con
figurations consists of all configurations of the form < F el > , where F is a 
function defmed in the program. Each active configuration is decomposed ac
cording to the inside-out principle, and the primary active subexpression is 
reduced to a basic configuration. It is easy to see that this strategy reproduces 
the Refal program; we saw an example above (function Fab). 

The second strategy is generalization to fonnats. The basic configurations 
have the form < F L > , where L is a pattern of the argument of F, an 
L-expression. Each active configuration is, again, decomposed using the 
inside-out principle, but L for each function is not given in advance; it is deter
mined in the process of metacomputation. We take the generalization of all 
left sides of the function defmition as the tentative basic configuration. When 
a call of F is met in driving, it is generalized, if necessary, with the tentative 
basic, and the generalization is taken as the new tentative basic. We do not 
discuss generalization here, because it will be discussed later in the book; a 
simple technique, analogous to the unification algorithm used in term
rewriting systems, will usually produce good results. 

To get an idea of the effect a strategy has on the resulting program, take 
this simple initial program: 

F{ 
(el)(A e2)(e3) = < F (el B)(e2)(e3) >; 
(el)()(e3) = e1 e3;} 

and compare the results of metcomputation with the two strategies we have 
defmed. With the generalization to functions the Refal graph is: 

(eO-> Q1) Q1 {(el-> (e2)(A e3)(e4)) ((e2 B)(e3)(e4) <- el) Q1 
+ (el-> (e2)()(e4)) (e2 e4 <- eO) 
} 
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With the generalization to formats it is: 

(eO-> Q2) Q2 { (e2 -> A e2) (e2 8 <- e2) Q2 
+ (e2 -> ) (el e3 <- eO) 
} 

(Q2) < F (el)(e2)(e3) > 

Since Q2 is a subset of Q1, the first graph is on the interpretive, while 
the second on the compilative, side. The second graph treats F as a function of 
three arguments, in agreement with the intuitive meaning of the definition. 
When one argument is checked or updated, there is no need to deal with the 
others. The first graph considers F as a function of one variable el, which is 
interpreted as a list of three subexpressions. At each step the three subexpres
sions are extracted from the value of el, then each is treated as necessary, and 
then they are assembled again, using parentheses, into a value for el. Clearly, 
this is much less efficient procedure. 

The straightforward Refal interpreter treats Refal functions as functions 
of one variable, as in the first graph above. Hence a substantial effort may go 
into assembling and disassembling of the argument in cases where different 
parts of it could be treated as distinct arguments. By transforming Refal 
programs into graphs using generalization to formats, and implementing such 
graphs, a more efficient implementation of Refal can be developed. 

In our example, all the advantages have been on the side of the compila
tive version, because Q2 contracts Q1, and no new configurations become 
necessary. We simply correct the excessively inflated basic configuration. 
Generally, however, making the basic configurations more precise increases 
their number. Then the graph becomes larger. 

3.9 Metacode 

To write Refal programs that deal with Refal programs (or graphs), we 
have to represent Refal programs as object expressions. Indeed, suppose we 
want to substitute F2 for Fl in every call of the function Fl. The sentence like 

< Subst21 < F1 el > e2 > = < F2 e1 > < Subst21 e2 > 

will not work. According to the syntax of Refal, active subexpressions cannot 
be used in the left side. But even if we extended Refal to allow such a use, the 
active subexpression < F2 el > in the right side would be understood as a 
process, not an object; the evaluation of this call would start before the further 
evaluation of Subst21, even though we did not want it. Likewise, we cannot 
use free variables as objects, because they are understood by the Refal 
machine as a signal to make substitution. 

The mapping of all Refal object on a subset of object expressions will be 
referred to as a metacode. This mapping must, of course, be injective, i.e. the 
images ('the metacodes') of distinct Refal objects must be distinct, so that 
there is a unique inverse transformation. We regard the metacode transfor-
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mation as the lowering of the metasystem level of the object: indeed, from a 
controlling device it becomes an object of work. Therefore, when we apply the 
metacode transformation to an expression E, we shall say that we downgrade 
it to the metacode; applying the inverse transformation we shall say that we 
upgrade E from the metacode. When we actually write Refal programs dealing 
with Refal programs, we must choose a certain concrete metacode transfor
mation. But when we speak about downgrading and upgrading expressions, 
we often want a notation allowing us to leave these transformations un
specified. Thus downgrading to the metacode will be represented by a 
downward arrow, or the underlined combination .dD (for 'down'); for upgrad
ing we reserve the upward arrow, or Jm. When the range of the operation ex
tends to the end of the current subexpression, we simply put .dD or Jm in front 
of it If it is necessary to delimit the range, we shall use braces. For example, 
the concatenation of the downgraded£1 with the unchanged£2 is {.dDE1 }E~, 
while <dD E1 )E2 is the same as ( {.dD E1} )E2. Obviously, Jm .dD E = E; and if 
.JmE exists, then .dDwE =E. 

The purpose of metacoding is to map activation brackets and free vari
ables on object expressions. It would be nice to leave object expressions un
changed in the metacode transformation. Unfortunately, this is impossible, 
because of the requirement of injectivity. Indeed, suppose that we have such a 
metacode. Then .dD .dD e1 must be equal to .dD el, because .dD e1 is an object 
expression. It follows that two different objects, e1 and .dD el, have identical 
metacodes. 

We can, though, m;n;mize the difference between an object expression 
and its metacode. The metacode we are using in this book singles out one 
symbol, namely the asterisk '*', which changes in the metacode transforma
tion. All other symbols and object brackets (parentheses) are mapped into 
themselves. The following table defmes our metacode when used on Refal ex
pressions: 

Expression E 

sl 
tl 
el 
<FE> 
(E) 
E1E2 
• 

its metacode .dD E 

*Sl 
*Tl 
*El 
*(F,dDE) 
(.dDE) 

{.dDE,}.dD£2 
•v 

S (distinct from *) s 

As mentioned before, we use Refal programs as objects of work in the 
form of Refal graphs. The braces we use in graphs will not be considered for
mally different from the usual parentheses; this distinction serves only the 
purpose of visual convenience. In programming, when we need to distinguish 
between these two kinds of brackets for the reasons of syntax, we pu tin front 
of the left bracket a characteristic symbol; thus {E} will be replaced by 
Braces(£), or Graph·sum(E), or just G(E), etc. The same technique is used 
for other varieties of brackets, like Begin and End in programming languages, 
etc. 
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When the metacode transformation is applied to an object expression, its 
result can be computed by calling the Refal function Dn: 

Dn {* e1 = * V < Dn e1 >; 
slel = sl <Dnel>; 
(el)el = (<Dnel>) <Dnel>; 
=;} 

For any object expression E 

<OnE> = = .dgE 

The inverse to Dn function is Up: 

Up {*Vel = V <Upel>; 
*(sF el)el = < Mu sF e1 > < Up e2 >; 
* e1 = < Undefined>; 
sl e1 = sl <Up el>; 
(el)el = (<Upel>) <Upel> 
= ; } 

This function, unlike Dn, is not applicable to any object expression, but only to 
such that could be obtained by downgrading a ground expression. The asterisk 
may be followed only by V or a left parenthesis. The function Undefined can 
be thought of as just non-existing in the program, so that when it is called the 
Refal machine comes to an abnormal stop. In programming, the Refal system 
will not allow us to call an undefmed function. Thus Undefined must be given 
any definition with which the empty argument will cause an abnormal stop, 
e.g. 

Undefined {X = X;} 

If E is in the domain of Up, the following relation holds: 

<Up£> = = 1U2E 

Unlike the analogous relation for Dn, this is a relation between processes, not 
object expressions. E here can be the metacode of any ground, not necessarily 
object (i.e. passive ground) expression. Let £9r be an active ground expres
sion. It stands for a process. We downgrade it to an object expression E = 
dn £9r. Then we can upgrade E back to the process £9r. The evaluation of 
<Up E > will be a simulation of the evaluation of &r, as one can see from 
the definition of Up. This function converts the 'frozen' function calls in E into 
their active form, and does this in exactly the same order as the Refal machine 
--the inside-out order. Thus we have the relation: 

The difference between .d!! and lUl. on one hand, and Dn and Up, on the 
other hand, must be kept in mind. The former are just metasymbols used to 
denote certain Refal objects; they are not Refal objects themselves. The latter 
are function names of regular Refal functions. 
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The time required for downgrading or upgrading an object expression is 
proportional to its length. It is often desirable to delay the actual metacoding 
of an expression till the moment when its downgraded form is, in fact, used, 
because it well may happen that the whole expression or its part will be later 
upgraded back to its origianl self. Then by delaying the metacoding we would 
avoid the unnecessary two-way transformation. We shall use the expression 

to represent a delayed metacoding. This does not violate the uniqueness of 
the inverse transformation Up, because a new symbol,'!', follows the asterisk. 
For Up to handle delayed metacoding, we must add to its definition, in an ap
propriate position, the sentence: 

<Up *!(el) e2> = e1 <Up e2> 
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