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Introduction 

Since the discovery that self-application of a partial evaluator can lead to an 
automatic creation of compilers [2], [13], [7], self-applicability became one 
of the criteria of the usefulness of program transformers. Self-applicability, 
however, is but a special case of a more general phenomenon of metasystem 
transition, or MST [12] when a computing machine (or a cybernetic system 
of any kind) becomes an object of control and manipulation by another com- 
puting machine (cybernetic system). We are mainly interested in the case 
where this control and manipulation produces as its final result a program 
which is equivalent to the original machine, but is "better" in some sense - 
usually, works faster. 

Repeated metasystem tramitions create a hierarchy of machines where a 
machine a t  the level n + 1 is a metasystem with regard to the machine(s) on 
the level n. Several papers appeared lately where a metasystem transition 
which is not self-application was used to improve the techniques of program 
transformation ([16], [5]) and multiple metasystem transitions were explored 
(PI, [dl, [6I, [11). 

In this paper we consider metasystem hierarchies of abstract computing 
machines and propose a notation for them: MST schemes, also referred to 
as stairway schemes. Our main concern is to develop techniques for efficient 
computation at all levels of hierarchy, jumping from one level to another 
when this is possible and necessary for efficient computation. The techniques 
we have developed were implemented in the programming language Refal-5 
[15]; a supercompiler [Ill, [14] was used as the program transformer. We 
want to stress, however, that our techniques are language independent. We 



present them in the context of a certain language BFL (for 'Basic Functional 
Language') which is not completely specified. What we need of the language 
is only the notation of data structures and function calls. With the language 
fixed, the hierarchy of computing machines becomes a hierarchy of programs 
for identical machines which execute programs in that language. What 
the program of the level n + 1 does with the program on the level n may 
vary. Equivalent transformation is the main case. But this also can be 
interpretation (we give examples in Section 5 ) )  inversion, or some of more 
special problems, such as trying to  determine if a given function can ever 
take a given value. 

Speaking of program transformation we also speak of function trans- 
formation - we shall not make difference between the two. Function trans- 
formers and transformers of function transformers are known as higher-order 
functions, and there is a huge literature on this concept. The reader may be 
surprized to see in this paper no references to this literature. This is because 
our goals are quite different. Usually, people want higher-order functions in 
order to enhance programming, which creates a need for programming lan- 
guages which include this feature. Our aim in this paper is not to enhance 
programming, but to explore the operation of a hierarchy of computing 
machines each of which understands a fixed programming language, BFL, 
which, on top of it, is not fully specified. 

Actually, we completely ignore the usual set-theoretical definition of a 
function as a subset of a certain Cartesian product. With our computational 
approach to the problem, a function is a program in some fixed language 
- a string of characters which triggers a certain process of computation. 
With the set-theoretical definition, we have a hierarchy of functions where 
each next function type makes transformation of functions of the preceding 
type. If, e.g., the first-order functions are from N to N, then we have the 
hierarchy: 

. . . etc 
( ( N - + N ) + ( N + N ) ) + ( ( N + N ) + ( N + N ) )  

( N  + N )  + ( N  -, N )  
N + N  

We presented this hierarchy as growing upward, in order to conform with 
our definitions of the MST hierarchy. Nevertheless, it is not the same as 
our MST hierarchy. It is a hierarchy of set-theoretical function types, while 
our hierarchy is a hierarchy of the actual use of functions. In our approach, 
a "first-ordern function is, strictly speaking, any function, but in practice, a 



function which is not a function transformer. As for higher-order functions, 
i.e. function transformers, they all are of the same type. If we have two 
transformers, say F and G, nothing prevents us from using F to transform 
G, in which case F will be on top of G in the hierarchy, or using G to 
transform F ,  in which case the order will be opposite. No such tricks can 
be played on higher-order functions defined set-theoretically. 

In accordance with this constructivist approach, we consider symbols 
which are manipulated by the computing machine as just small pieces of 
matter, some of which are treated as identical. The variables which we 
see in computer programs are also nothing else but small pieces of matter 
different from symbols, but also used in a definite way by the computing 
machine. Then metavam'ables are symbols, or combination of symbols, of 
one machine which represent the variables of another machine which is found 
higher or lower in the MST hierarchy. The subject of the present paper is 
how to treat these representations for efficient computation a t  all levels. 

In many cases a program transformer must transform a function call 
which, in fact, can be fully or partially evaluated. Computation of a function 
call from the next metasystem level is program interpretation, and it is much 
slower than a direct execution of computation by the machine itself. One 
of our goals is to develop a method which would allow the system to jump 
from one level to another, in order to make computation direct whenever 
this is possible. 

In Section 2 we define the first-order language BFL, which is our not* 
tion of data structures and function calls. In Section 3 the basic concepts 
of metacode and metavariables are defined. In Section 4 we define the n* 
tation of MST schemes and the notion of an elevated variable. We further 
examine how it is possible to jump automatically from one MST level to 
another in pursuit of efficient computation. We find that we must introduce 
such objects as metavriables of negative degrees, even though by the initial 
definition the degree can be only positive. In Section 5 we give account 
of an implementation of our system in the computer. We find that allow- 
ing metasystem jumps can radically speed up the computation in program 
transformation. Finally, Section 6 sums up the results of the paper. 

2 First-order language 

In this section we define the Basic Functional Language (BFL) which is not, 
in fact a full programming language, because we leave both the syntax and 



semantics of programs not fully defined. For our purposes we only need a 
notation for data structures and function calls; the rest remains unspecified 
for the sake of generality of our results. 

A symbol in BFL is a syntactic element of data structures which is 
always treated as a whole. We leave unspecified the exact types of symbols, 
because they may be different in different languages. The minimal set of 
types should include: 

symbolic names; 

characters; 

whole numbers. 

A symbolic name, also referred to as an identifier is a sequence of char- 
acters which starts with a letter and can include letters, digits and hyphens 
-. A symbolic name used as a symbol of BFL must start with a capital 
letter. 

All printable characters can be used as symbols. To distinguish character- 
symbols from symbolic names, we put the former in quotes ' and '. Blanks, 
if not quoted, are used to separate lexical units whenever necessary. 

We need not put any restrictions on the textual representation of num- 
bers. 

The symbols of BFL correspond to atoms in Lisp. We need objects 
which would correspond to Lisp's s-expressions (lists, in particular). We 
shall call these objects just expressions. However, we want to preserve 
more generality in defining the basic data structures than we see in Lisp. 
We are interested, of course, in symbol manipulation data structures. All 
programming languages have their equivalents of symbols, but they differ 
in the ways of combining them into composite structures. In Lisp and most 
functional languages composite structures (lists) are binary trees. We shall 
make it possible to construct trees of arbitrary arity at  each node, as well 
as to use another familiar data structure: a string of symbols which can 
be read in both directions (unlike Lisp's lists). We achieve this by intro- 
ducing two basic constructions instead of one: concatenation and enclosure 
in parenthesis. A BFL1s expression can be defined as a sequence of sym- 
bols and parentheses where parentheses are correctly paired according to 
the well-known rules. More formally: an expression is a sequence of terms, 
while a term is either one symbol or an expression in parentheses. Now, 
'a+b' is a string (sequence) of three symbols: ' a',  '+' and ' b' . A tree 
with the subtrees El, Ez, . . . En can be represented in BFL as: 



If we drop the outermost parentheses, we have a forest. 
The number of constituting terms in an expression may be 0; such an 

expression is an empty string, just nothing. When the use of an empty string 
may lead to inconvenience or ambiguity, we shall use the notation [I for it, 
SO that 'a' [I is the same as 'a'. 

An expression, as we have defined it, is a data  structure, a passive ob- 
ject on which the basic computing machine will work. We shall call such 
expressions object expressions to distinguish them from more general BFL 
expressions which may include variables and function calls. Parentheses give 
structure to the BFL objects, so we shall often call them structure brack- 
ets as distinguished from evaluation brackets which we shall introduce in a 
moment. 

In accordance with the syntax of its data  structures, BFL has two 
kinds of variables: symbol variables and expression variables; in short, 
s-variables and e-variables, respectively. S-variables take single symbols 
as their values; evariables may have as its value any expression. S-variables 
are represented by the prefix s . followed by its name which will be referred 
as the index. An index is either a lower-case symbolic name or a number, 
e.g. s . 1, or s . end. An e-variable is denoted by a prefix e . followed by an 
index, e.g. e. 1, or e .  arg-5. As a kind of syntax sugar, we can drop the 
prefix e .  of an &variable if the index is a symbolic name: arg-5. Such a 
variable is distinguished from a symbolic name representing a BFL symbol 
by starting with a lower case letter. 

BFL's variables may be used as terms in an  expression; such an expres- 
sion will be referred to a9 a pattern ezpression, or just pattern. In a pattern 
expression, variables are understood as free, i.e. free for the substitution of 
any syntactically admissible value. So, the pattern ' a ' e . t a i l  can be seen 
as representing the set of all object expressions which start with 'a ' ,  and 
e. 1 (e. 2) as the set of object expressions which end with a right parenthe 
sis. If there are several entries of the same variable in a pattern expression, 
they all must take the same value in substitution. 

Eualuation brackets < . . . > are used to  form function calls. <F E> 
is a call of function F with the argument E, where F is a symbolic name 
or an s-variable, and E a general BFL expression which can include both 
variables and function calls. 



Formally, all functions defined in BFL are functions of one argument, an 
object expression. But this argument may have a definite format, common 
to all calls of the function. For instance, it can be <F (El)  E2>, where El 
and E2 are some expressions. Then <F (El) E2> can be seen as a function 
F of two variables, with the values El and E2. Or we could use the formats 
<F E1(E2)>, or <F ( E l )  (Ez)>, with the same effect: a matter of taste. 

As a syntax sugar, we use commas to separate subexpressions in the 
argument. To unfold this notation, replace each comma with the inverted 
pair ) (, then add a left parenthesis a t  the beginning, and a right parenthesis 
a t  the end of the argument. Thus, <F x ,y ,z> stands for <F (x) (y) ( z )>  
(which, in its turn, stands for <F (e .  x) ( e  . y) (e .  z) >). 

Summary of  t h e  syntax of  BFL expressions 

An expression is a sequence of terms. A term is one of the following: 
a symbol, a variable, ( E ) ,  <E>, where E is an expression. 

An object expression may include only symbols and parentheses (struc- 
ture brackets). The domain and range of BFL functions are sets of 
object expressions. 

A pattern ezpression may include symbols, parentheses and free vari- 
ables, but no evaluation brackets. 

A general expression may include all elements listed above. 

An expression is active, if it includes a t  least one pair of evaluation 
brackets; otherwise it is passive. 

The BFL notation is, in essence, the one used in Refal. We abstract 
ourselves from the syntax of BFL programs and the way the BFL machine 
operates. But to read the BFL notation is, in fact, sufficient for being able 
to read Refal programs in the simplest version of this language. Here is 
an  example. Let function Pal be a recursive predicate which tells if its 
argument is a palindrom. The following is the definition of Pal in Refal (/* 
and */ enclose comments): 

<Pal [I > = True /* empty s t r i n g  */ 
<Pal s .  l> = True /* one symbol s t r i n g  */ 
<Pal s. 1 x s. l> = <Pal x> /* t he  same symbol a t  the 

b e g i ~ i n g  and end */ 
<Pal x> = False /* none of the above */ 



3 Program transformation 

When we write a program P' which transforms other programs, PI, P2 . . . 
etc, we make a metasystem transition. The BFL machine MI which runs 
P' is a metasystem with respect to the machine M which runs PI, P2 . . . etc. 
Program transformation, with the exception of trivial syntactic changes, is 
supposed to be based on the meaning of programs, and their meaning is 
defined by the work of the machine which executes them. To make meaning- 
ful program transformations, the machine MI must, in one way or another, 
observe, analyze, control and modify the operation of the machine M which 
runs the programs being transformed. That kind of a system is referred to 
as a metasystem. 

The metasystem transition from a BFL machine M that executes some 
programs to a BFL machine M I  that transforms those program can be 
repeated any number of times, producing a metasystem stairway: 

M,  MI ,  MI1, M"'. . . 

We shall assign whole numbers to the levels of this stairway; if the level of 
M is n, then the level of M' is n + 1. 

The domains of functions defined in BFL are sets of object expressions. 
BFL programs, however, may use most general BFL expressions, which in- 
clude evaluation brackets and free variables. Hence we cannot directly write 
BFL programs which manipulate BFL programs. To do this we must map 
the set of general BFL expressions on the set of object expressions and 
use the images of "hot" objects, i.e. free variables and evaluation brackets, 
instead of the objects themselves. 

We shall call this mapping a metacode, and denote the metacode trans- 
formation of E as p { E ) .  Obviously, metacoding must have a unique inverse 
transformation, demetacoding, so it must be injective: it is required that: 

For convenience of reading metacoded expressions we require that p{E1E2) 

= P{El)P{E21- 
Using metacode transformation we can model the behavior of one BFL 

machine on another BFL machine. We can write a BFL interpreter Int 
(often referred to as a meta-interpreter) such that if P is a BFL program 
defining function F and 



One can invent any number of metacodes, but for working with met* 
coded expressions conveniently, it is highly desirable that the image of an 
object expression be as close to the expression itself as possible. I t  would 
be nice, of course, to leave all object expressions unaltered under the met* 
code, but this is, unfortunately, impossible, because it contradicts to the 
requirement of injectivity. Indeed, suppose that p{Eo} = Eo for any ob- 
ject expression Eo. Take a general expression Eg which is not an object 
expression. Its metacode Egl  = p{Eg) is an object expression. Therefore, 
p{Eg I )  = Eg I ,  and Eg is the image of both Eg and Eg I ,  which are distinct. 
This vioIates injectivity. 

We distinguish two types of metacoding: internal and external. 

3.1 Internal metacode 

Let Sob be the set of all object expressions, and S,, the set of BFL expressions 
which are not object expression, i.e. include a t  least one variable or active 
subexpression (a function call). So, the total set of expressions is Sd U S,,. 
An internal metacode is defined as 

in accordance with the above definition of metacode tranformation. An 
internal metacode requires no extension of the set of object expressions 
we find in the basic first-order language; the images of expressions from 
Sva are not different from expressions used for any other purpose. The 
advantage of this method of metacoding is that it requires no alteration of 
the first-order language. One may be using a familiar language with a well 
established compiler, and be in no position to alter it as required by the 
external metacoding described in the next section. 

One convenient metacode, which is used in the latest implementation of 
Refal, is defined by Table 1, where S is any symbol, and i the index of a 
variable. 

This metacode leaves strings of symbols unaltered, but adds an asterisk 
to every pair of parentheses. The internal metacode used in [IS] takes the 
opposite approach: parentheses are not changed, but one character, namely 
' * '  becomes ' *V' when metacoded. 



Table 1: An internal metacode. 

A few examples of metacoding: 

,u{e.x} = ('eJX) 

,u{~egin(s.l)) = Begin('*'('sJl)) 

,u{<Fun (<Fun (25)>)>} = ( ' !  'Fun('*'('! 'Fun ('*'25)))) 

p2{e.3 <F (A) B>) = ,u{('eJ3)('!'F ( ' * ' A )  B)) 

= ('*eJ3)('*!'F ('**'A) B) 

When the metacode transformation is applied to an object expression, 
its result can be computed by a function definable in BFL. We shall call 
this function Dn (read: Down). It simply adds an asterisk after every left 
parenthesis. In Refal the definition of Dn is: 

The inverse function Up demetacodes an object expression (when this is 
possible) by taking away one asterisk following after each parenthesis: 

<Up ('*'x) y> = (<Dn x>) <Dn y> 
cup 9.1 x> = s.1 <up x> 
<up C1 > = [I 
If Up meets an expression which could not have been formed by met% 

coding an object expression (e.g. if a left parenthesis is followed by 's' or 
' e ' ), then an abnormal stop takes place: the function is undefined. 

Note the difference between <Dn E> and p{E). The former is an active 
Refal expression, the latter is not part of Refal but part of a metalanguage: 
a notation we use to speak about Refal expressions. 



Although the result of metacoding is always an object expression and 
thus includes no free variables, the programmer can create patterns which 
express abstraction from some features of the expressions subject to met& 
coding. Thus, ( ' e ' s . i) is the metacode of an e-variable with some index 
s. i. This idea could not be expressed in BFL without metacoding. 

3.2 External metacode 

We call a metacode external if it requires an extension of the set Sd of 
object expressions of the basic first-order language. Let the extended set of 
object expressions, which includes all results of metacoding, be Smd. The 
following properties are required: 

Vexp(exp E Sob + p{exp)  = exp) 
~ { S v a )  Smob 

~ { S m d )  C Smd 

Such a metacode does not change those object expressions which belong 
to the original first-order language, but the price paid for that is an extension 
of this set by including images of metacoding, which now must be declared 
object expressions (otherwise we would not be able to deal with them). 

Below we describe the external metacode implemented in the language 
Flac, which is, basically, a version of Refal specialized for algebraic com- 
putation [9]. The reason for using an external metacode is that it makes 
it possible to jump between the levels of a metasystem stairway more effi- 
ciently, as discussed in Sec. 5. The Flac metacode is summarized in Table 2. 

The set of Refal expressions is extended by including a potentially infinite 
set of special signs called metacoders. They differ from each other by their 
degree, which is a whole number - positive, zero, or negative. In this paper 
a metacoder of the degree d will be denoted as #td. A metacoder, on its 
own, is not a legitimate Refal symbol. I t  makes an object expression only if 
immediately followed by a left parenthesis. The syntax of extended object 
expressions can be described by adding one more type of a term: 

term ::= #d(exFession) 

A s  one can see from Table 2, metacoding raises the degree of each met& 
coder by 1. The expression in the parentheses that follow a metacoder may, 
in its turn, include metacoders, in which case these metacoders are treated 
according to the same rule. 



Table 2: An external metacode. S is any symbol. 

One consequence of the external metacode is that the functions Dn and 
Up, which with the internal metacode can be defined in BFL, now must 
be built into the system. Dn adds 1 to  the degree of every metacoder, Up 
subtracts 1. Otherwise, both functions leave the argument unchanged. 

One can see from Table 2 that only positive values of the degree d can 
appear from the metacoding of first-order expressions. But we extend the 
set of metacoders by allowing non-positive degrees d. The meaning and the 
use of non-positive values of d will be discussed later. Note that in contrast 
to the internal metacode, the demetacoding function Up is always defined. 
When a free variable, say e .I, is metacoded and then demetacoded, the 
result is not a free variable, but an object expression, namely, #O('e ' I ) .  
Thus we have two repreqentations of the same concept. The form e. 1 is 
used in programs; the form #O( ' e J  1) appears in metasystem jumps (see 
Sec. 4.3). 

3.3 Metavariables 

A metavariable is an object obtained as ,ud{v), where v is a free variable 
and d a whole number, called its degree. Free variables, like s .5 and e .x 
are metavariables of degree 0. With the external metacode of Table 2 the 
degree of a metavariable is the degree of its metacoder. With the metacode 
of Table 1, it is n + 1, where n is the number of asterisks between the 
opening parenthesis and the type symbol ' s J  or ' e ' .  Thus, ( 's '5) is a 
symbol metavariable of degree 1; ( ' **e ' s . y) is an expression metavariable 
of degree 3. 

We did not include metavariables of negative degrees in either table 
defining a metacode, because they are not used in programs, but may appear 
automatically during the computation, as we discuss in Sec 4.3. Actually, 



it is possible to extend the language by allowing metavariables of negative 
degrees in programs, but we did not see much sense in i t  a t  the present stage 
of research. It  is quite possible, though, that such use of metavariables will 
be found in time. 

4 Metasystem stairway 

4.1 MST schemes 

We start with an example. Consider the well-known procedure of converting 
an interpreter for some language into a compiler by partial evaluation (see 
[2], [ll], [7]). Let L be an interpreter for some language L written in BFL 
with the format <L program, data>, where program and da t a  are free vari- 
ables. In order to use the interpreter we substitute some specific program 
P and data D for the corresponding variables, then we run the call in the 
BFL machine. Its result is the result of applying P to D. 

Let PE be a partial evaluator for BFL written in BFL and having BFL 
as the target language, i.e. producing a BFL program a t  the output. At 
this time we could use a partial evaluator with any target language L', but 
as we shall see below, for further construction of metasystem staircases we 
need that the target language be the same as the input language. 

PE requires two arguments: the metacoded function call to evaluate, 
and the metacoded program defining the function(s) in the call. We apply 
partial evaluation PE to the call of L where some program P is substituted 
for program, while data  remains free. This call is <L P,data>.  Let us use 
the internal metacode of Table 1. Then the metacode of this call is 

( '  ! 'L p{P) ,  ( ' e 'da ta ) )  

The metacode of the program P can be obtained by using Dn on P. 
Thus, the call of PE we want is: 

CPE ( ' !  ' L  cDn P > ,  ( ' e ' d a t a ) ) ,  def(L)> 

where def(L) is the metacoded BFL program which defines L. (A remark 
on notation: L is an abstract reference to a language; L is an identifier, an 
arbitrary name for the function which interprets programs like P written in 
L; def(L) is the program in BFL which defines L). 

For a clearer view of this expression, we present it as an MST scheme1: 

'This notation was first used by one of the present authors (VT) in lectures at the 



Such a scheme is a representation of BFL expressions according to the 
rule: whenever a subexpression has the form EL,u{E~)E~,  the metacoded 
part is moved one level down and replaced by dots on the main level: 

The parts of the overall BFL expression which belong to different met& 
system levels are put on different lines. BFL expressions on the bottom 
level are written the same way as if they were on the top level; metacoding 
is implicit and is indicated by putting them one line down. To convert a 
stairway scheme into an executable BFL expression, we must metxode each 
level as many times as long is its distance from the top. We shall refer to 
this conversion as the folding of an MST scheme. 

In our twelevel scheme the call of L, which is submitted for partial 
evaluation by PE, is a function of data only, since the value of program is 
fixed at a specific program P. After PE performs all operations which can be 
performed because the program P is known, it outputs the residual program 
which is nothing but the translation of the program P into BFL. Function 
PE works as a compiler. 

4.2 Multilevel MST schemes. Elevated variables 

Even though the result of the partial evaluation according to the two-level 
stairway scheme may be an efficient compiled program, the process of com- 
pilation itself is still less efficient than it could be. This process depends on 
two arguments: the program P and the definition of the language def(L). 
We can make the program variable, while keeping the definition of the lan- 
guage k e d ;  this will provide a job for the partial evaluator, which in this 
way will be applied to itself. 

How should we modify our scheme? If we simply replace P by the 
variable program: 

<PE . . . . . . . . . . . . . . . . . . , def(L) > 
<L program, data> 

University of Copenhagen in 1985. Ever since, its various versions were used in seminars on 
Refal and metacornputation in Moscow and New York. In a published form it first appeared 
in 131. 



we do not get what we want. Here program is treated in the same way 
as data. Partial evaluation is applied to  the function L of two arguments. 
Therefore, the function which results from PE is, again, a function of two 
variables, an interpreter of L. 

The value of program, even though i t  is an argument of L, must be 
provided on the level of PE, so that when L is running (being driven by PE), 
the program is fixed. We represent this situation by raising program to the 
top level, and leaving the bullet in the place where this variable originated 
on the bottom level: 

<PE .. program ....., def(L)> 
CL • ,data> 

We shall call such variables as program elevated. Even though program 
is used by L, it is not free for it; it is free on the level of the partial evaluation 
function PE; to run PE we must first substitute some specific program for 
program. Hence L always receives a fixed program. The result of PE will be 
a transformed (partially evaluated) function L, which now depends only on 
the variable data. 

The formal meaning of an MST scheme is defined, of course, by its 
conversion into a normal, executable BFL expression. The way elevated 
variables must be converted can be seen from the following reasoning. Let 
program take some specific value P. I t  is positioned as indicated by the 
sign 0, i.e. on the bottom level. When we fold the MST scheme into a BFL 
expression, P will become p { P ) ,  which may be computed by <Dn P>. Thus, 
program must be finally replaced by <Dn program>. The stairway scheme 
converts to the expression: 

CPE ( ' !  'L CDn program>, ( ' e l d a t a ) ) ,  def(L)> 

This function call includes as one of its arguments an object expression 
that is fixed and may be quite bulky, namely, def(L). Hence there is a good 
chance that partial evaluation of PE will produce a more efficient program 
than when this function is run directly in the BFL machine. So we submit 
this function, without any alterations, to  PE: 

<PE ................................ def(PE)> 
cPE .. program ...... ,def(L)> 

<L ,data> 

The folding of this stairway scheme into an expression is: 



We see here that those parts of the expression which come from the 
bottom level, such as the variable da ta ,  are metacoded twice. This call of 
PE, when executed, produces a program which is a (compiled) compiler for 
the language L. 

Constants (object expressions) also can be raised or lowered in MST 
schemes. When we raise a constant in the same manner as we raise variables, 
i.e. leaving a bullet in the place of origination, then we simply copy it and 
put at the desired level. These two fragments of MST schemes are equivalent: ............ 

.... const .. 
and 

.... const . . .  

Indeed, how do we execute the second scheme? We take const, metacode 
it, and put in the place of origination marked by the bullet. In the first 
scheme const is already in the same place, and and its degree in metacode 
is one unit greater than if it were on the upper level. Thus the schemes are 
equivalent. 

We also can move constants without leaving the bullet, but then we must 
not forget to adjust the metacode degree. When raised to the next upper 
level, the constant must be metacoded, because it loses one degree of implied 
metacoding. The fragment ............. 

.... const .... 
is equivalent to 

A shorter version of the MST notation is often preferable. Instead of 
putting explicitly the definition of the function being transformed as one 
of the arguments of the transformer, we can understand the name of the 
function as the program which defines it. This is how the three-level scheme 
above looks under this agreement: 

<PE ........................ > 
<PE .. program ....... > 

<L , data> 

Whenever the definition of a function being transformed is absent from the 
MST scheme, it should be understood that the function name is standing 
for it. 



4.3 Jumping between metasystem levels 

I t  often happens that a program transformer must transform a function call 
which, in fact, can be simply evaluated. The argument may include no 
free variables or yet uncomputed function calls or, if there are some, they 
may not be consulted at any stage of evaluation. Even more frequent is a 
situation where such independence of unknown data holds for a part of the 
evaluation process, even though not for the whole length of it. 

Consider our twwlevel scheme of compilation: 

<PE . . program . . . ,def(L)> 
<L a ,data> 

The interpreter L operates on a known program and unknown data. On 
some stretches of computation L will work on the program, but without 
consulting the data. An obvious example is syntax parsing of the program. 
Further, if the language L includes go-to statements with jumps to  a label, 
then it may be necessary to examine a big piece of program in search of the 
needed label. The work of the function PE in this part of computation will 
be nothing else but simulation of the work of L, which, of course, will take 
much more time (sometimes, by two orders of magnitude), than a direct run 
of the function L. 

Consider the evaluation of PE when a certain program P is given to it 
as the value of program: 

The implementation of BFL must be able to demetacode the bottom 
level of the MST scheme converting an object expression to a function call, 
and pass control to this function call. The bottom level of our scheme is (we 
use Table 1): 

After demetacoding: 

How should the BFL machine handle ,u-'{('e'data))? Formally it is 
e .  data,  a free variable. It is not an object expression, so i t  cannot enter the 
domain of function L. It  is an unknown entity, a "hole" in the data. The 
BFL machine must carry on computation of L as long as its course does 



not depend on the unknown data represented by p-'{('e'data)). When 
such a dependency is discovered, the current configuration on the bottom 
level must be metacoded and turned back to  PE with an indication that 
computation has been suspended. Then the computation on the top level 
must be resumed. If the computation was successfully completed without 
noticing the whole e .data, the value of the call of L must be passed back to 
the top level with an indication that the computation has been completed. 
This is what we refer to as rnetasystem jumps. 

We observe here two different uses of free variables, which warrants 
treating them as two distinct kinds of entities: free variables proper, and 
metavariables of the degree 0. The former are used in programs but can- 
not be used as data. The latter cannot be used in programs but emerge 
in demetacoding and are used behind the scene as unknown data, if the 
implementation of BFL allows for metasystem jumps. 

I t  is easy to see that if we allow for MST schemes of arbitrary height, 
we need the whole spectrum of metavariables of non-positive degrees, not 
just of degree 0, because the function which is demetacoded and activated, 
may, in its turn, cause a jump down and activate a function call lower in 
the hierarchy. 

To be more specific, consider this scheme, where T is some function 
transformer, and C a function: 

<PE ............ > 
<T ....... e .1  > 

CC 'abcJ > 

In the strict BFL it is: 

After PE passes control to T the activated call is: 

Since T is also a function transformer, it may pass control even down to C: 

Suppose we use only one type of "holes" in data, i.e. identify pW1{e. 1) 
with e .  1. Suppose function C finds that it can do no single step of computa- 
tion and returns control, with metacoding, to T, and then, with metacoding 



agan,  to PE. 'l'hen e.  1 will return as ( ' *e ' 1) , instead of ( ' e ' 1) : an er- 
ror. If we keep our metavariable as having the degree -1, the result will be 
correct. Suppose G is defined so that 

Then the call of G will be evaluated with the result ' c  ~ ~ - l { e .  1). After 
two metasystem jumps up, the call of PE will be evaluated as ' c J  ( ' e ' l ) .  
We must not forget that program transformers return metacoded programs 
(and could not do otherwise, because programs in BFL are not object ex- 
pressions). Therefore, this output must be understood as a program which, 
given e. 1, returns ' c J e .  I. 

4.4 Relativization of levels 

By our initial definition of an MST scheme, i ts top level is the level on which 
we have evaluation brackets and free variables; the expressions on the lower 
levels are all metacoded at least once, so they are object expressions. But 
with jumps from one level to another a generalization is needed. When the 
metamachine M' passes control down to M, i t  is on the level of M that the 
evaluation takes place, while the upper part of the scheme is temporary ig- 
nored. We shall call the reference level the level on which the BFL machine 
is working. Thus, the reference level is the level at  which the variables are 
free and evaluation brackets active. By the absolute level of an expression 
in a scheme we shall understand its distance from the bottom. 

If the reference level on the absolute scale is r ,  and the absolute level of an 
expression is md, then m,d = m,b, -r  will be referred to as the expression's 
relative level. Relative levels below the reference level are negative, above 
it positive. 

Jumps from one level to another are always accompanied by the cor- 
responding metacode transformations. Therefore, the number of times an 
expression is metacoded in the executable BFL expression represented by 
an MST scheme, is equal to its distance down from the reference level, i.e. 
its relative level with the minus sign (this is because we count levels from 
the bottom up, and degrees of metacoding from the top down). 

With a purely functional BFL, it is only the relative level of an expression 
that matters. We can choose and change the absolute scale at our conve- 
nience. This is the principle of invariance with regard to metasystem level: 
all operations and relations remain the same from one level to another. 

When we construct a metasystem staircase, we start with a function call 
on the ground level which usually is "first-order" function, not a function 



transformer. We do not expect to  meet in the arguments of such a function 
any expressions obtained by metacoding variables or function calls. 

The function call of such a function as PE which transforms the first- 
order function may include expressions metacoded once, but no more than 
once. When we go on constructing the metasystem staircase, each new 
level increases by one the maximal degree of metacoding. Therefore, the 
maximal degree of metacoding to be met in the function call represented 
by the scheme will always be equal to the absolute index md, of the top 
level in a staircase scheme. This helps read expressions obtained by folding 
MST schemes, but does not exclude, with an internal metacode, the possi- 
bility that the first-order function can deceive us into thinking that we see 
a metacode, while in fact we do not. Thus, with the metacode in Table 1, 
the first-order function may use the combination ( ' s' 1) for some purpose, 
not meaning p{s .  1). With an  external metacode, though, such deception 
will not be possible. 

4.5 Bound variables and parameters 

We refer to metavariables of the relative level -1 as bound variables. The 
meaning of this notion is exactly the same as in mathematics and formal 
logic: a variable is bound if it runs over its domain of values and thus is not 
free for substitution; such are the variables of integration in calculus and 
quantified variables in logic. Indeed, look a t  the way the variables program 
and data are used in the MST scheme of compilation: 

<PE . . program . . . . . . , def(L) > 
, CL a , data> 

Function PE which transforms function L is a function of the second 
order. When it is active it does not deal with any specific value of data,  but 
transforms the whole function L with da t a  running over the whole set of its 
possible values. It is a free variable for (one of the arguments of) function 
L, but a bound variable for PE. 

As discwed in Sec. 4.1, for PE to perform partial evaluation with a given 
program, the variable program must be elevated to the level of PE, where 
it becomes free. Elevated variables are characterized by two levels. We call 
the definition level of a variable the level a t  which it is free. The usage 
level of a variable is the level where it is uqed as a variable of some function, 
i.e. where its value is, normally, examined. In stairway schemes an elevated 
variable is placed on the definition level. Under it, at  one of the lower levels 
which we refer to as the usage level, a bullet a is placed. The difference 



between the definition level and the usage level is the elevation h of the 
variable. In the scheme above the definition level (absolute) of p r o g r a m  is 
1, the usage level is 0, the elevation 1. 

More than one entry of the same variable may be found in a stairway 
scheme. Their usage levels and, therefore, elevations, may be different. The 
definition level of a variable is, of course, the same for all entries, because 
identical identifiers on different levels represent different variables. There 
can be no confusion: variable9 on different levels take their values a t  different 
times. 

An elevated variable may be free or bound. In the scheme above, p r o g r a m  
is free. If we add one more level it will be bound with regard to the new top 
level, but will remain free for the level a t  which it is defined. All c h a r m  
terizations of variables as free or bound are relative to some reference level. 
The elevation index is an absolute characteristic, because it is the differ- 
ence between two levels. I t  does not change in metacoding and equals 0 for 
non-elevated variables. 

While metavariables of the relative level -1 have been known in mathe- 
matics as bound variables, elevated metavraibles represent another familiar 
concept: they are parameters. Indeed, how do we distinguish between a 
function of two arguments f ( p ,  x) and a family of functions f,(z) with the 
parameter p? Computationally, it is the same function in both cases, because 
both x and p must be given for making the computation. The difference a p  
pears only when a higher metasystem level appears. This level may be a 
human being who, e.g. , draws a series of functions of x with a few selected 
values of p, instead of drawing a two-dimensional surface. A parameter is 
a variable which is controlled on the metasystem level, as by the person 
who picks up a value of p, performs computation, then picks another p, etc. 
The same relation we observe in partial evaluation: the variable p r o g r a m  
is free as long as the reference level r is 1; we say that it is free for PE. 
However, when the reference level becomes 0, actually or for the purpose of 
analysis and discussion, p r o g r a m  becomes a parameter; so we say that it is 
a parameter for L. 

To sum up the hierarchy of metavariables: 

The variables on the reference level (relative level 0) are free. 

The variables on the relative level -1 are metacoded once. They are 
bound variables. 

The variables on the relative levels below -1 are metacoded a t  least 



twice. As long as there is no metasystem transition to raise them, they 
are just pieces of data which are compared as ordinary object symbols 
and expressions. 

The variables of positive relative levels are metavariables of negative 
degrees which emerge in demetacoding. They are not object expres- 
sions and cannot be used in programs. 

Elevated variables are parameters for the functions that use them; 

4.6 The rule of two levels 

When functions at all non-zero levels in a staircase scheme are equivalent 
function transformers, the rule of two levels can be used in order to see 
clearly what to expect from the computation of the expression represented 
by the scheme. It  goes as follows. 

The  variables o n  the top level (free) are the variables of the function to 
compute; some specific values must be substituted for them. The vari- 
ables on  the next level down (bound) are the variables of the function 
whose definition (the program for i t )  results from the computation on  
the top level. 

Since the top function is supposed to do an  equivalent transformation 
of the program, the program resulting from computation is equivalent to 
the definition by the stairway scheme in which the top level is taken off. 
Therefore, we can again use the rule of two levels on this decapitated scheme, 
and go on like this until we arrive at  the bottom level. 

As an example, consider the four-level scheme of compiler compiler (com- 
piled generator of compilers), which is obtained from the three-level scheme 
of compiler generation by the following procedure: replace the definition of 
the language def(L) (which has been treated as a constant until now) by a 
variable, then raise that variable to the next level, and add one more PE as 
the new top level: 

<pE3 ............................................ def(pE2) > 
< P E ~  ..................... language, d e f ( ~ E ' )  > 

.. ......, <PE' program > 
<L ,data> 

At the bottom (level 0) we see the goal of computation; all other levels 
make program transformation using PE, with a superscript indicating the 



function's absolute level. The goal is this: given the interpreter of a language 
L defined by the program def(L), a program P in that language, and a data 
D for that program, compute the result P (D)  of running P on D. Instead 
of making the computation directly in the interpretation mode, L(P, D) = 
P(D)  we make the following steps. 

Step 1. Evaluate the function represented by the scheme. On the top 
level (level 3) there are no variables; only the definition of P E ~ ,  which is a 
constant. Therefore, we do this computation once for all times. The result, 
according to the rule of two levels, is some function which depends on the 
variable language. We denote it as Compgen, since, as we shall see below, 
it is a compiler generator. 

Step 2. Compute Compgen(def(L)). The result will be the same as 
that of running pE2 with language=def(L) , because pE3 is an equivalence 
transformation. It is a function of the variable p rogram.  We call it Comp; 
I t  is a compiler for L. 

Step 3. Compute Comp(P). The result will be the same as that of run- 
ning P E ~  with p rogram = P, because P E ~  is an equivalence transformation. 
It is a function of data, which we shall call Prog. 

Step 4. Compute Prog(D). The result will be the same as running L, 
because PE' is an equivalence transformation, i.e. L(P, D)  = P(D). To sum 
up : 

PE3()  = Compgen 
Compg en(de f(L) ) = Comp 
Comp(P) = Prog 
Prog(D) = L(P, D) = P(D) 

With a shorter version of our notation the MST scheme is: 

< P E ~  ............................. > 
........... < P E ~ .  .. .language. .> 

.... <PE' I p r o g r a m  .> 
< ,da ta>  

Note that the bullet for language on the bottom level is a BFL program, 
not a BFL program in metacode, as it was in the original MST scheme 
where language was to be replaced by such expressions as def(L), which is, 
by our definition, the &st metacode of the program for L, and it could not 
be otherwise because it is an argument of the next-level function, hence an 
object expression. This explains why the variable language is now elevated 
by two levels, while it was elevated by one level in the original version. 



4.7 Two ways to treat elevated variables 

There are two ways of treating elevated variables. Consider some elevated 
variable t .i on the level where it is free. A direct approach is to understand 
t .i as taking any value it may be assigned on the input. Since each step 
down in the metasystem stairway indicates metacoding, the vaIue of a free 
variable with the elevation index h must be metacoded h times before being 
actually used. A free variable t . i with the elevation h is <Ilnh t . i>. A 
metavariable of degree m (relative level -m) with elevation h is obtained 
from this expression by using the metacode m times: 

For instance, if we use the internal metacode of Table 1, then the metavari- 
able e. 7 of degree 2 with the elevation 3 is rendered by the expression: 

( ' * I  'Dn ( ' * !  'Dn ('*! 'Dn ( ' * e ' 7 ) ) ) )  

We shall say that a variable used like that is downed at use. 
We can use another method of treating elevated metavariables. Consider 

again the scheme of compilation by partial evaluation: 

<PE' . . program . . . . . , def(L) > 
<L ,data> 

It  stands for the expression: 

<PE' ( ' ! 'L <Dn program>, ( ' e 'data) , def(L)> 

If we simply submit this expression for transformation by P E ~ ,  then the 
call of Dn will be frozen in the metacode together with the variable and passed 
further in this form, waiting for the moment when it will be activated (if a t  
all) and used on the value of program. This would be what we called above 
for a variable to be downed a t  use. Instead, we can make the metacoding 
of the value of program immediately by introducing a new variable which 
takes on the metacoded value of program: 

programl = <Dn program> 

This is the method we have actually used. We call it downing at input. 
Now the call of pE2 becomes: 

<pE2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,def(PE1)> 
< P E ~  ( '  ! 'L programl, ( ' eJdata ) )  , def(L)> 



There are no references to Dn now, which makes things much simpler. 
However, in the process of program transformation by P E ~  we must remem- 
ber that programl cannot take as its value any expression, but only such 
that may result from metacoding an object expression; in other words, 
metavariables of degree 1 cannot enter its value. If the metacode of Table 1 
is used, this means that every left parenthesis must be immediately followed 
by an asterisk. 

Computation of P E ~  results in a program which defines a certain function 
Cornpl which depends on programl. If the variable program takes program 
P as its value, then the value of programl  must be taken as <Dn P>. Then 
function Compl will produce the translation of P: 

Comp(P) = Compl(Dn(P)) = Prog 

In the four-level scheme of Sec. 4.6 we can treat language also as an 
elevated variable downed at input. Then the use of this scheme can be 
summarized as follows: 

PE3() = Compgenl 
Compgen(def(~)) = Compgenl (Dn(def (~) ) )  = Compl 
Comp(P) = Compl(Dn(P)) = Prog 
Prog(D) = L(P,  D) = P(D) 

Introduction of elevated variables creates a hierarchy of object expres- 
sions. Let 9 be the set of all object expressions. Let Shf l be the set of all 
expressions which can be obtained by metacoding some expression from sh. 
Then 

We shall say that an object expression E has the degree h if E E Sh and 
E @ Sh+'. An object expression of degree h can be demetacoded up to h 
times, but no more if the result is to remain in the set of object expressions. 
With the internal metacode of Table 1, the degree of an expression can be 
determined by examining all left parentheses and counting the number of 
asterisks following each of them. The minimal of these numbers is the degree 
h. Functions of elevation h have sh a s  their domain. 

We used renaming of variables and functions as a way to explain the 
downing at input. Actually, this renaming is not necessary. We extend 
the metacode, as in Table 1, by providing representation of metavariables 
with non-zero elevations. In our implementation (see the next chapter) the 



metacode of an e-variable with elevation h is represented by inserting h  
between the index i and the closing parenthesis: ( ' e 'i h) .  All functions 
dealing with an elevated variable must take into account that its domain is 
not the total set of all object expressions, but only sh. At the final stage 
of work we return to each variable, which are now free for substitution, its 
initial meaning as having its real, not yet metacoded, value. Then we must 
metacode this value h times before applying the function: 

Replace: Func(. . . var . . .) Func(. . . ~ n ~ ( v a r ) .  . .) 
where Func is the function resulting from transformation. 

Ignoring elevation of variables, i.e. treating them all as if they were of 
elevation 0, is an error, because it is assumed in program transformation that 
a variable can take values which in reality it cannot take. How this error 
manifests itself depends on the semantics of BFL and its implementation. 
In special cases it may remain hidden. In our experience, self-application 
of a program transformer (supercompiler) is impossible without the correct 
usage of elevated variables. We have done this simple experiment. In a 
successful self-application of the supercompiler we changed the elevation of 
a key variable from 1 to 0. Then instead of giving out the correct result, the 
program went into an apparently infinite loop. 

In the early work on partial evaluation by N.Jones with co-workers [8] 
it was stated that in order to achieve good results in self-application, a pre- 
liminary binding time analysis ("off-line") was necessary. However, R.Gliick 
[3] showed that with a correct use of metacoding - which in terms of the 
present paper amounts to the correct treatment of elevated variables - 
partial evaluation is self-applicable without the binding time analysis: "on 
line". 

5 Implementation and testing 

5.1 Refal-5 and Freezer 

We have tested our concept of metavariables and the effect of jumping be- 
tween metasystem levels on performance time using a supercompiler for 
flat Refal-5 as the program transformer (the supercompiler for Refal-Flac 
is still under development). The implementation of Refal-5 (see [15]) was 
modified to accomodate for a metacode which handles metavariables of dif- 
ferent elevations downed a t  input. This metacode is as in Table 1, except 
that p{e.i) now is ( ' e ' i  h ) ,  where h is the elevation. The metacode ,u{s.i) 



of a symbol variable remains ( ' s ' i) , because symbols do not change under 
transformation by this metacode, so all s-variables are treated the same way, 
independently of their elevations. (Note that the degree of an s-variable still 
makes a difference, since it defines the position of the variable in the MST 
scheme.) 

We have described the metacode as seen by the user, a part of the lan- 
guage. Now we briefly describe the representation of data in the computer. 
Refal expressions are repesented as doubly linked lists of certain basic struc- 
tures referred to as pieces. A piece stands for one of: a symbol, a structure 
bracket (parenthesis), an evaluation bracket. A symbol keeps two references: 
to the preceding and the following piece; brackets have those too, plus a ref- 
erence to the matching bracket. Evaluation brackets also have a system of 
references which make up a stack of function calls. The type of a piece is 
kept in a special field. This data structure represents the work field of the 
abstract Refal machine. 

As long as we do not allow jumping between levels, the above is all we 
need for execution of Refal programs. Metavariables of non-positive degrees 
cannot be found in the view field; metavariables of positive degrees are 
legitimate Refal expressions and are represented as such (recall that this is 
an internal metacode). For instance, the second metacode of s .5 will be 
represented by five pieces which make up the expression ( ' *s'5). To make 
jumping possible, we introduce one more type of a linked piece called an 
unknown. It  represents a metavariable of a degree d 0. A piece of this 
type has two references as a symbol and an information field which includes: 
(1) the type of the variable (s or e), (2) its index, (3) its elevation, (4) its 
degree, thus 

In the Refal-5 system the program is first translated into what is referred 
to as the Refal assembly language, which is then interpreted. The assembly 
language consists of about twenty basic operations on doubly linked piecw, 
such as chop off the first or the last symbol of an expression or, conversely, 
link up a symbol to an expression at its beginning or end. The type of each 
link is checked in operations, of course. If an unknown piece prevents further 
execution of the current step of the Refal machine, this step is called off, 
and a metasystem jump up is performed, as required by our definition of 
jumps in Section 4.3. 

The interaction between metasystem levels takes place through the con- 
cept of a freezer. 



Let a function transformer T, such as PE or the supercompiler, face the 
task of transforming a call of function F. In the metacode of Table 1 it is 
( '  ! 'F Eg), where Eg is the metacode of the argument of F, which may 
include free variables and calls of other functions; so it is a general Refal 
expression. Before doing anything else, T demetacodes the call of F and 
passes it as the argument to the special function Freezer: 

The job of the freezer is to catch the moment when the computation 
requires the value of an unknown and freeze the process, i.e. convert the 
contents of Freezer into metacode, and pass control back to T. Then T will 
continue with its method of transformation, knowing that whatever could 
be done by direct evaluation, has been done. 

Freezer is a service function which can be used only in combination 
with the function Up, as above. Actually, in the current implementation of 
Refal-5 the user cannot call Freezer,  but only the built-in function Ev-met 
('evaluate in metacode') which works as if it were defined by the sentence: 

When computation takes place inside of the freezer, its last stage is 
modified. Instead of just returning the value of the function call as its 
result, the process ends with one of the following three outputs. 

1. The execution reaches a successful end with some result E which is a 
passive expression (but still may include unknowns). Then the call of 
the freezer is replaced by 0 p { E ) .  

2. At a certain stage of the execution, when the expression in the freezer 
is E, the next step becomes impossible either because of an interfering 
unknown, or because E is a call of the special function Residue, which 
must not be computed, but translated into a call of some residual 
function in the final program. Then a freeze takes place. First the 
enclosing call of Freezer is found. If there are more than one, the 
innermost call is taken; if there are none, an error condition occurs. 
Then the call of the freezer is replaced by: 1 p{E). 

3. At a certain stage of the execution, when the expression in the freezer 
is E ,  an abnormal stop (recognition impossible) occurs. Then the call 
of the freezer is replaced by: 2 p{E}. 



problem no jumps jumps speed-up 

1. Pat 7 5 1.4 
2. Spas 17 2.5 6.8 
3. Metfab 13 3 4.3 
4. Metpat 112 14 8 
5. Metpatl 747 33 23 

Table 3: The effect of metasystem jumping. 

The described method of doing partial evaluation a t  every metasystem 
level has one drawback: before treating each of the function calls, demeta, 
coding is necessary, and it is followed by metacoding after the end of evalu- 
ation. Both procedures are linear with the size of the processed expressions, 
and this work is done even in those cases when i t  turns out that not a single 
step of computation can be made. 

In Section 5.3 we discuss how this drawback can be eliminated using an 
external metacode. 

5.2 Effect of jumping 

The use of jumping may result in a very significant gain in efficiency when 
partial evaluation is a substantial part of the job assigned to the program 
transformer, as we illustrate by the following examples. 

Table 3 presents the computation times (in seconds) of running the su- 
percompiler on PC1486 in two versions: without (co1.2) and with (co1.3) 
metasystem jumps; co1.4 records the speed-up factor. 

In line 1 the problem 'Pat' was to make the transformation defined by 
the following MST scheme: 

cscp ..................... > 
<Patrec 'aabaac' , e .  s> 

where (Patrec p ,  s> is a straightforward pattern recognition function; it 
finds a pattern p in a string s by comparing p with the prefix of s and 
shifting the pattern by one symbol when a disagreement is found. Scp 
is the supercompiler. The result of transformation is a pattern recognizer 
specialized to look for the b e d  pattern 'aabaac' in an arbitrary string s. In 
this way we obtain automatically the algorithm of string pattern matching 
described in [lo]. Here we see only a small speed-up. 



Problem 2 is a compilation by partial evaluation which we discussed 
above. In the role of PE we have the supercompiler Scp, and the language 
L is a language we have called Spas (Small PAScal). I t  includes reals and 
integers, arithmetic and logical expressions, assignments, if-then condition- 
als and while loops. The program compiled was iterative factorial. Here we 
have a significant speed-up, it runs almost 7 times faster. 

Problem 3 ('Metfab': computation of Fab in the metasystem) is a three 
level scheme: 

cscp ......... > 

Here Fab is a simple function which changes, in its argument, every 'a '  
into 'b'; Function In t  is an interpreter of the language in which Fab is 
written. The variable x is elevated by one level. If we take off the top level 
in the scheme, what remains would describe the computation of <Fab x> 
with an arbitrary x by interpretation of the program for Fab. This function 
is equivalent to Fab but works much slower. Transforming it by Scp returns 
an equivalent efficient program, which is, as it should be expected, an exact 
copy of the original program for Fab. 

Problem 4 is similar to 'Metfab' but here the bottom-level program is 
pattern recognizer and has two variables: 

cscp .............. > 
<Int  ..... P S >  

<Patrec 0 ,  a> 

The result, again, reproduces the initial definition of Patrec 
The greatest gain in speed was achieved when interpretation and partial 

evaluation were combined in Problem 5: 
cscp ...................... > 

<Int  ..... 'aabaac' s > 

(we dropped here the metacode transformation of the constant 'aabaac' 
because symbols do not change in the metacode used). The result here is 
the efficient pattern recognizer specialized for 'aabaac'. 

We have also tested our system in a successful self-application of the 
supercompiler, but this will be described elsewhere. 



5.3 Making degrees relative 

Doing program transformation it often makes sense to use for object pro- 
grams a maximally simplified programming language, into which programs 
written in a more convenient language can be automatically translated. 
Even though Refal is a pretty simple language, our latest version of the 
supercompiler works with programs written in a subset of Refal we refer to 
as flat Refal. Generally, we call a language flat if it does not include syn- 
tactic means to directly represent the composition of functions. Flat Refal 
allows only such sentences the right side of which is either passive (no func- 
tion calls) or consists of a single function call with a passive argument (no 
nested calls). Still flat Refal is universal, which easy to understand recalling 
that the language of Turing machines is also flat. Moreover there is a simple 
algorithm which translates a program from the basic version of Refal into a 
flat form, and there is only a limited growth of volume in this translation: 
the flat language remains practicable, if not very practical. 

There is something else, though, that we allow in flat Refal: calls of 
external functions, i.e. functions which are not subject to transformation. 
They break down in two kinds: computable and residual. Calls of com- 
putable functions are evaluated in the course of program transformation; 
they may be nested inside transformable functions or, a t  any depth, inside 
their own kind. Residual function calls move into the output program. We 
do not go here into technical details concerning external functions. 

In this section we present an idea of how to further improve the technique 
of metasystem jumping, limiting ourselves to such languages as flat Refal. 

As mentioned in Sec.5.1, the method of jumping between metasystem 
levels described there requires a pass through the whole function call during 
demetacoding, and then a pass through the result to convert it back to 
metacode. Apparently, this is inevitable if an internal metacode is used. 
Using an external metacode and restricting the language to flat Refal way, we 
can avoid these passes, which makes jumping between levels more efficient. 

We use the metacode of Table 2 extended by addition of metacoders 
of negative degreees. At any moment in time the reference degree Aef 
for metacoders is being kept. It is a whole number which is equal to the 
distance from the top of the stairway down to the current reference level. 
We also can put it in this way: since the degrees of metacoders are also 
counted down from the top level, dTef i. the degree of the metacoders on 
the reference level. Now, the treatment of a metacoder is based not on 
its degree dl but on its relative degree with regard to the reference level: 



4d = d - dTef. Instead of increasing the absolute degrees of all metacoders 
in the metacode transformation, we simply decrease the reference degree 
&,f, which raises the reference level. To demetacode an expression we have, 
according to our original definition, to decrease all degrees by one. Instead 
of that, we increase &, i.e. lower the reference level. 

When a program in Refal is written, the reference degree is, by definition, 
0. Therefore, the absolute degrees of metacoders are a t  the same time their 
relative degrees. Accordingly, the initial value of the reference degree 4,f 
is always 0. 

Except for making metacoder degrees relative, the jumps up and down 
the metasystem stairway remain the same as described in Sec. 4.3; control 
can freely travel throughout all levels. The cost of a metasystem transition 
is constant and negligeable. 

It should be noted that without the restriction to flat BFL, it is, a p  
parently, impossible to completely avoid the examination of the expression 
in the freezer. This is due to the fact that when a function call <F E> is 
deme tacoded, E may include nested function calls. In the implementation 
of Refal-5, control over evaluation of functions is carried out, as usual, by 
maintaining a stack. When a function call with nestings given in the met* 
coded form is demetacoded, it is converted into a piece of stack which is 
added to the main stack of the Refal system. This allows to start evaluation 
in the applicative order, as required by the semantics of Refal-5. Conversely, 
when the result is metacoded, and is still active, the function calls which 
were put in stack after Freezer are taken from the stack and converted 
into an expression. Relative degrees of metacoders do nothing to avoid this 
expense. 

6 Conclusion 

1. We have considered hierarchies of abstract computing devices, BFL m a -  
chines, where a machine on the level n i5 examined, run, modified, or other- 
wise controlled by a machine on the level n+ 1. We refer to the construction 
of each next level in such a hierarchy a5 a metasystem transition. In this view 
of computation, variables are but certain elements, details of the machinery 
which take part in computation playing their specific roles. 

2. We have introduced the concept of a metavan'able as a constant 
representative of a variable of one machine in another machine on a different 
metasystem level. A metavariable is characterized by a whole number called 



its degree d. A metavariable with d = 0 is the usual free variable. A 
metavariable with a positive degree represents a variable of a machine on 
a lower level; if a variable's degeree is negative it represents a variable of a 
machine which is higher in the hierarchy. 

3. A metacode is some mapping of a machine a t  a certain level n onto 
the data structures of the machine a t  the level n + 1. We have distinguished 
two kinds of metacode: internal, which does not require any changes in the 
language as seen by the user (implementation needs adjustment, though, 
if we want to use metasystem jumps); and external, which introduce3 new 
features to the language. The programs in which we implemented out tech- 
niques were using an internal metacode. 

4. We have introduced MST schemes which use the vertical dimension 
in order to provide a convenient visual representation of the hierarchy of 
computing machines. 

5. We introduced a hierarchy of elevated (meta)variables which have 
domains restricted by repeated metacoding. We have shown that for a 
successful self-application of a supercompiler it is necessary to take into 
account that variables may have different elevations. 

6. It  often happens that a program transformer must transform a func- 
tion call which, in fact, can be fully or partially evaluated. We have devel- 
oped a technique which allows the transformer to jump one or more levels 
down the metasystem stairway and to let the corresponding machine to make 
the computation directly, instead of making evaluation in the interpretation 
mode. We have shown that for this technique to work it is necessary to 
extend into the negative region the set of possible degrees of metavariables, 
which by the initial definition could only be positive. 

7. We have implemented the technique of metasystem jumps with the 
supercompiler as the program transformer, and the Refal-5 system as the 
implementation of Refal (the necessary modifications were made in the sys- 
tem). We have shown that metasystem jumps can drastically cut down the 
computation time, in some cases by a factor greater than twenty. These 
savings take place when the transformation is carried out according to a 
three-level MST scheme. In case of schemes of higher orders one can ex- 
pect even greater savings, which may transform an unfeasible problem into 
a feasible one. 

8. Finally, we have found that it is possible to improve the efficiency of 
metasystem jumps even further by using an external metacode and making 
all computing operations dependent solely on the current level relative to 
a certain reference level stored in the machine. Then jumping between 



metasystem levels (at least, in the case of a flat functional language) can 
be achieved by simply changing the reference, without scanning the whole 
function call, as is done with an internal metacode. 
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