
Multi-result supercompilation as a
tool for program analysis

Ilya Klyuchnikov and Sergei A. Romanenko
(Keldysh Institute of Applied Mathematics, Moscow)

Luleå University of Technology, Sweden
April 28, 2011

Program analysis by supercompilation

Let SC be a semantics-preserving supercompiler:

 e' = SC[e] ⇨ e' ≅ e

The idea: instead of analyzing e, we may analyze SC[e].

SC[e] may be easier to understand than e.
Some hidden properties of e may become apparent in SC[e].

This is an instance of transformational approach to program
analysis. (In principle, any semantics-preserving program
transformer can be used.)

An example: proving that all values
returned by e satisfy p
Suppose that

e is an expression.
p is a predicate.
e and p are written in the same language.
SC is a semantics-preserving supercompiler.

How to prove that anything returned by e satisfies p?
Consider the program p e, and supercompile it!

If we are lucky, SC[p e] is just (the constant) True.
Thus, p e ≅ SC[p e] = True.

SC[p e] in action: the verification
of protocols

Alexei Lisitsa and Andrei P. Nemytykh. Reachability Analysis in
Verification via Supercompilation. International Journal of
Foundations of Computer Science, Vol. 19, No. 4 (2008) 953-969
Alexei Lisitsa and Andrei P. Nemytykh. Verification as
Specialization of Interpreters with Respect to Data. In
Proceedings of First International Workshop on Metacomputation
in Russia, META'2008. Pereslavl-Zalessky, Russia, 2-5 July 2008,
ISBN 978-5-901795-12-5, pp 94--112

SCP 4 : Verification of Protocols
http://refal.botik.ru/protocols/

http://refal.botik.ru/protocols/

Goals of supercompilation

"Efficiency" can be measured (in bytes and seconds).
"Understandability" is more difficult to measure and to
formalize.

A problem: how to explain the goal to an analyzing SC? What
is "good" and what is "bad"?

First-order vs. higher-order SC
SCP4 (Nemytykh, http://www.botik.ru/~scp/doc/docs.html)

Deals with Refal, a functional language.
First-order.
Call-by-value.
Does not preserve termination properties of programs.

HOSC (Klyuchnikov, http://code.google.com/p/hosc/)

Deals with HLL, a subset of Haskell.
Higher-order
Call-by-name.
Preserves the semantics of programs.

http://www.botik.ru/~scp/doc/docs.html
http://code.google.com/p/hosc/

Why higher-order & call-by-name?
A program is considered as a
specification/formalization/model of something.
A program is to be analyzed, rather than executed.

Higher-order:

Specifications/models can be written in DSLs, implemented
by combinators.
Higher-order logics (quantifiers over functions/predicates).

Call-by-name:

Termination properties are easier to preserve.
Infinite data structures are useful for writing specifications of
infinite processes.

Higher-order SC: Church numbers (1)
Notation: f0 x = x, fk x = f(fk-1 x) .

data Nat = Z | S Nat;

Peano numbers: Sk Z .
Church numbers: \s z -> sk z .

unchurch = \n -> n S Z;

foldn = \s z x -> case x of {
 Z -> z;
 S x1 -> s (foldn s z x1); };

church = \n -> foldn (\m f x -> f (m f x))(\f x -> x) n;

Higher-order SC: Church numbers (2)

add = \x y -> foldn S y x;
mult = \x y -> foldn (add y) Z x;

churchAdd = \m -> n -> \s -> \z -> m s (n s z);
churchMult = \m n f -> m (n f);

A problem: are the following expressions equivalent?

 (mult x y)
 unchurch(churchMult (church x) (church y))

Higher-order SC: Church numbers (3)
By supercompiling the expressions with HOSC

(mult x y)
(unchurch(churchMult (church x) (church y))

we get the same residual program (modulo a renaming)!

letrec
 f=(\s6->
 (\t6->
 case s6 of {
 Z -> Z;
 S u6 -> letrec g= \x7-> case x7 of {
 S v -> (S (g v));
 Z -> f u6 t6; }
 in (g t6);
 }))
in f x y

Proving the equivalence of expressions
by means of supercompilation (1)
Let ∀e, e ≅ SC[e], i.e. SC is semantics-preserving.

Proof technique:

SC[e1] ≡ SC[e2] ⇨ e1 ≅ e2

Justification (close to a tautology):

e1 ≅ SC[e1] ≡ SC[e2] ≅ e2

A problem: SC may fail to guess, which versions of residual
programs to produce, in order for them to be identical (modulo
a renaming).

Proving the equivalence of expressions
by means of supercompilation (2)

Alexei Lisitsa and Matt Webster. Supercompilation for
Equivalence Testing in Metamorphic Computer Viruses
Detection. In Proceedings of First International Workshop on
Metacomputation in Russia, META'2008. Pereslavl-Zalessky,
Russia, 2-5 July 2008, ISBN 978-5-901795-12-5, pp 113-118.

Restrictions:

All functions must be total (since SCP4 does not preserve
termination properties).
First-order logic (no quantifiers over functions/predicates,
since Refal is a first-order language).
No infinite data structures (Refal is a call-by-value
language).

Proving the equivalence of expressions
by means of supercompilation (3)

Ilya Klyuchnikov and Sergei Romanenko. Proving the
Equivalence of Higher-Order Terms by Means of
Supercompilation. In: Proceedings of the Seventh International
Andrei Ershov Memorial Conference: Perspectives of System
Informatics. LNCS 5947, 2009.

The technique was shown to work even if

Functions may non-terminate.
Free variables may be of functional types.
Data may be infinite.

How? By constructing HOSC, a supercompiler that is really
capable of "catching the mice".

Another example: Proving the
equivalence of small-step & big-step
abstract machines

Olivier Danvy and Kevin Millikin. 2008. On the equivalence
between small-step and big-step abstract machines: a simple
application of lightweight fusion. Inf. Process. Lett. 106, 3 (April
2008), 100-109. PDF http://dx.doi.org/10.1016/j.ipl.2007.10.010

An example of transformational approach to program analysis.

A manual proof by Danvy & Millikin: a non-trivial sequence of
program transformations from the first program to the second one.

A proof by supercompilation: just supercompile two programs by
HOSC to get the same residual program! (See live.)

http://www.brics.dk/RS/07/16/BRICS-RS-07-16.pdf
http://dx.doi.org/10.1016/j.ipl.2007.10.010
http://hosc.appspot.com/test?key=agRob3NjcjILEgZBdXRob3IiGnNlcmdlaS5yb21hbmVua29AZ21haWwuY29tDAsSBFRlc3QYgfoBDA

Tuning SC for program analysis (1)
Ilya Klyuchnikov. Supercompiler HOSC 1.0: under the hood.
Preprint 63. Keldysh Institute of Applied Mathematics, Moscow,
2009. http://pat.keldysh.ru/~ilya/

Gives a refined definition of homeomorphic embedding taking
into account the difference between free and bound variables.

HOSC 1.0 does not terminate for some input programs (an
example)!

Ilya Klyuchnikov. Supercompiler HOSC 1.1: proof of
termination. Preprint 21. Keldysh Institute of Applied
Mathematics, Moscow, 2010.

HOSC 1.1 always terminates.

http://pat.keldysh.ru/~ilya/
http://hosc.appspot.com/view?key=agRob3NjcjQLEgZBdXRob3IiGnNlcmdlaS5yb21hbmVua29AZ21haWwuY29tDAsSB1Byb2dyYW0YiScM
http://hosc.appspot.com/view?key=agRob3NjcjQLEgZBdXRob3IiGnNlcmdlaS5yb21hbmVua29AZ21haWwuY29tDAsSB1Byb2dyYW0YiScM

Extended homeomorphic embedding
Classic embedding

Extended embedding

Variables Diving

Coupling

Variables Diving Coupling

Variables Diving

Coupling

Extended embedding is well-quasi-
order
Theorem (Kruskal, Higman). For any infinite sequence of
expressions e1, e2, ... en, ..
there are i<j, such that
ei ◃ ej

Extended whistle doesn't blow for ANY sequence!

Theorem (Klyuchnikov). For any infinite sequence of
expressions e1, e2, ... en, .., appearing on a branch of partial
process tree t, there are i<j, such that
ei ◃

* ej

The proof of the pudding is in the
eating
HOSC 0, using the
"classic" homeomorphic
embedding, proved
only 6 of 25 equivalences (from the
first chapter).

HOSC 1, using "extended"
homeomorphic embedding, is able to
prove 25 of 25 equivalences.

Tuning SC for program analysis (2)
Ilya Klyuchnikov. Supercompiler HOSC 1.5: homeomorphic
embedding and generalization in a higher-order setting.
Preprint 62. Keldysh Institute of Applied Mathematics, Moscow,
2010. http://pat.keldysh.ru/~ilya/

HOSC 1.5 is a revised (and simplified) version of HOSC 1.1.

The first published algorithm for finding a most specific
generalization for expressions with bound variables.

The definition of homeomorphic embedding should take into
account the possibility of the following generalization!

 Unlike x and S x,
 there is no embedding for λx.x and λx.S x !

http://pat.keldysh.ru/~ilya/

"Higher-level" supercompilation?
An idea:

The power of "ordinary" ("basic"?, "ground"?) is limited.
Let us consider supercompilation as a "primitive operation"
and construct a "metasystem" (in V.F. Turchin's terms).

The "ground" supercompilers are controlled by the metalevel
(which, eventually, may be a supercompiler as well).

Examples of higher-level SC
Futamura projections: SC3[SC2[SC1]].

SC2 simulates the execution of SC1, and this is controlled
by SC3.

Proving the equivalence of expressions.
SC[e1] ≡ SC[e2].

Proving improvement lemmas (e1, e2).
SC[e1] ≡ SC[e2] and tick annotations in SC[e1] are
embedded in tick annotations in SC[e2].

Two-level supercompilation.
The "upper" supercompiler applies improvement lemmas
checked by means of the "ground" supercompiler.

Distillation (Hamilton, ...).

Checking improvement lemmas (1)
Ilya Klyuchnikov and Sergei Romanenko. Towards Higher-Level
Supercompilation. In Second International Workshop on
Metacomputation in Russia (Proceedings of the second
International Workshop on Metacomputation in Russia. Pereslavl-
Zalessky, Russia, July 1-5, 2010). A. P. Nemytykh, Ed. - Pereslavl-
Zalessky: Ailamazyan University of Pereslavl, 2010, 186 p. ISBN
978-5-901795-21-7, pages 82-101. http://pat.keldysh.ru/~ilya/

The idea:

Mark in the residual program with "ticks" (the points where
there has been an unfolding step during driving).
Check two residual expressions for "homeomorphic
embedding" with respect to "ticks".

http://pat.keldysh.ru/~ilya/

Checking improvement lemmas (2)
Annotating a partial process tree with "ticks"

Propagating "ticks" into the residual program
letrec f=*\v → case v of { Z → True;
 S p → *case p of { Z→ (letrec g = *\w → case w of {
 Z → False;
 S t → * case t of {Z → True; S z → g z;};} in g n;
 S x → f x;};} in f n

Checking improvement lemmas (3)

Ilya Klyuchnikov. Towards effective two-level supercompilation.
Preprint 81. Keldysh Institute of Applied Mathematics, Moscow.
2010. http://pat.keldysh.ru/~ilya/

What is new:

An explicit algorithm for generating the residual program
annotated with ticks from a partial process tree.
An improved algorithm for comparing tick annotations based
on normalization of ticks.

http://pat.keldysh.ru/~ilya/

Two-level supercompilation (1)
The goal is to avoid generalization!

The whistle blows for α and β.
α (or β?) has to be generalized.
A generalization is an evil, as it causes some loss of
information.

Two-level supercompilation (2)
The goal is to avoid generalization!

Let γ be an expression such that
(β, γ) is an improvement lemma;
the whistle is silent for α and γ.

By replacing β with γ, we can avoid generalization!

Two-level supercompilation (3)
def scp0(e) = {
...
if whistle(e1, e2)
 abstract(e1, e2)
...
}

def scp1(e) = {
...
if whistle(e1, e2)
 e3 = findEquiv(e1)
 if e3 != null
 replace(e1, e3)
 else
 abstract(e1, e2)
...
}
def findEquiv(e1) = {
 for c <- candidates(e1)
 if scp0(e1) == scp0(c)
 return c
 return null
}

scp1 is simplified (no
check for improvement).

Two-level supercompilation (4)
How to speed up the search for lemmas and make the lemmas
"friendlier"?

Ilya Klyuchnikov. Towards effective two-level
supercompilation. Preprint 81. Keldysh Institute of Applied
Mathematics, Moscow. 2010. http://pat.keldysh.ru/~ilya/

Some tricks related to

finding improvement lemmas by inspecting and
manipulating the expressions that have already appeared in
the partial process tree;
extracting "human-friendly" (and more abstract) lemmas
from the lemmas produced automatically (which are often
cumbersome and too specific).

http://pat.keldysh.ru/~ilya/

Two-level supercompilation (5)
Theorem (Sørensen, 1994). Classical positive supercompiler for
a call-by-name language cannot improve the asymptotic of a
program.

However, as shown in

Ilya Klyuchnikov. Towards effective two-level
supercompilation. Preprint 81. Keldysh Institute of Applied
Mathematics, Moscow. 2010. http://pat.keldysh.ru/~ilya/

an O(n2) parser corresponding to the grammar
 p = a p a | empty.
can be transformed by a 2-level supercompiler to an O(n)
parser corresponding to the grammmar:
 p' = a a p' | empty.

http://pat.keldysh.ru/~ilya/

O(n2) ⇨ O(n): source parser

Complexity: O(n2)

data Symbol = A | B;
data List a = Nil | Cons a (List a);
data Option a = Some a | None;

match doublea word where

match = \p i -> p (eof return) i;
return = \x -> Some x;
doublea = or nil (join a (join doublea a));
or = \p1 p2 next w -> case p1 next w of { Some w1 -> Some w1;
 None -> p2 next w;};
nil = \next w -> next w;
join = \p1 p2 next w -> p1 (p2 next) w;
a = \next w -> case w of { Nil -> None;
 Cons s w1 -> case s of { A -> next w1; B -> None;};};
b = \next w -> case w of { Nil -> None;
 Cons s w1 -> case s of { A -> None; B -> next w1;};};
eof = \next w -> case w of { Cons s w1 -> None; Nil -> next Nil;};

O(n2) ⇨ O(n): residual parser

Ordinary SC, complexity O(n2)

case word of {
 Cons y9 t5 ->
 case word of { Cons w13 w9 ->
 case w13 of {
 A -> (letrec f=(\r21-> (\s21-> case r21 of { Cons r3 y5 ->
 case r3 of { A -> case (s21 y5) of { Some z7 -> (Some z7);
 None ->
 ((f y5)
 (\s8->
 case s8 of {
 Cons z5 s18 -> case z5 of { A -> (s21 s18); B -> None; };
 Nil -> None;
 }));
 };
 B -> None;
 }; Nil -> None;}))
 in
 ((f w9) (\v16-> case v16 of { Cons t6 w2 -> None; Nil -> (Some Nil); })));
 B -> None;
 }; Nil -> None;
 };Nil -> (Some Nil);
}

O(n2) ⇨ O(n): residual parser

2-level SC, complexity O(n)

letrec
 f=(\s14->
 case s14 of {
 Cons z12 y8 ->
 case z12 of {
 A -> case y8 of {
 Cons s3 s2 -> case s3 of { A -> (f s2); B -> None; };
 Nil -> None; };
 B -> None; };
 Nil -> (Some Nil);
 }
in
 f word

Supercompilation relation
 e' = SC[e] ⇨ e SCrel e'

Andrei V. Klimov. A Program Specialization Relation Based on
Supercompilation and its Properties. In First International
Workshop on Metacomputation in Russia (Proceedings of the first
International Workshop on Metacomputation in Russia. Pereslavl-
Zalessky, Russia, July 2-5, 2008). A. P. Nemytykh, Ed. - Pereslavl-
Zalessky: Ailamazyan University of Pereslavl, 2008, 108 p. ISBN
978-5-901795-12-5, pages 54-77. http://pat.keldysh.ru/~anklimov/
Ilya Klyuchnikov. Supercompiler HOSC: proof of correctness.
Preprint 31. Keldysh Institute of Applied Mathematics, Moscow,
2010. http://pat.keldysh.ru/~ilya/

The purpose: theoretical (proofs of correctness).
Klyuchnikov: HOSC0 ⊇ HOSC1/2 ⊇ HOSC.

http://pat.keldysh.ru/~anklimov/
http://pat.keldysh.ru/~ilya/

Deterministic vs. nondeterministic SC

A taxonomy of supercompilation

Deterministic SC:
e' = SC[e]
an operation (a single e').
Nondeterministic SC:
e SC e'
a relation (one or more e').
Multi-result SC:
MSC[e] ⊆ { e' | e SC e' } & MSC[e] ≠ ∅
an operation (a non-empty set of residual programs).

For practical purposes, it is desirable for MSC[e] to be finite.

From determinism to non-determinism

Non-determinism is popular in the field of model-checking.

A model is produced by throwing away "irrelevant" details.

A typical situation:

 if p then e1 else e2

By abstracting away the condition p , we get

 choice { e1; e2; }

A tree of possible states at run-time (instead of a sequence).

Nondeterministic SC
The supercompilation relation SC can be formulated as a
nondeterministic program:

t = e0
while incomplete(t) do
 beta = unprocessedLeaf(t)
 t = choice{
 drive(t, beta);
 generalize(t, beta);
 fold(t, beta);
 fail; }
end

In this way we abstract away the whistle and the strategies.
But they come back in a multi-result MSC!

Problems with MSC
How to make MSC[e] finite?

An answer: by killing partial process trees that make a
whistle blow.

How to (automatically) reduce the size of MSC[e]?
An answer: by "normalizing" residual programs and
mergin ones with "insignificant" differences.
An answer: by analyzing residual programs and throwing
away ones that are "dull" and/or "uninteresting".

MSC opens a new area of research (rather than gives a "final
solution" to a problem).

A simple implementation of MSC (the branch "multi"):
https://github.com/ilya-klyuchnikov/spsc-lite-scala

https://github.com/ilya-klyuchnikov/spsc-lite-scala

Proving equivalences by means
of MSC

Let e' ∈ MSC[e] ⇨ e' ≅ e, i.e. a multi-result
supercompiler MSC is semantics-preserving.

Proof technique:

∃ e' ∈ MSC[e1] ⋂ MSC[e2] ⇨ e1 ≅ e2

Justification (close to a tautology):

e' ∈ MSC[e1] ⋂ MSC[e2] ⇨
 e' ∈ MSC[e1] & e' ∈ MSC[e2] ⇨
 e' ≅ e1 & e' ≅ e2 ⇨ e1 ≅ e2

Proving equivalences by transitivity

The principle: e1 ≅ e2 & e2 ≅ e3 ⇨ e1 ≅ e3

Proof technique:

Suppose we have failed to proof e1 ≅ e3 .
Let us pick up an expression e2 .
Suppose we are able to prove both e1 ≅ e2 and e2 ≅ e3 .
Then we conclude that e1 ≅ e3 .

Le us check ≅ by means of MSC!

How to use MSC for proving
equivalences by transitivity?
 An implementation:

Suppose MSC[e1] ⋂ MSC[e3] = ∅ .
Let us pick up an expression e2.
If there are
 e' ∈ MSC[e1] ⋂ MSC[e2]
 e'' ∈ MSC[e2] ⋂ MSC[e3],
then e1 ≅ e3.

A deterministic SC is unable to prove
e1 ≅ e3, if SC[e1] ≢ SC[e3] !

SC[e1] ≡ SC[e2] ≢ SC[e3]

SC[e1] ≢ SC[e2] ≡ SC[e3]

Just a speculation. No interesting examples yet. :-(
But they are bound to be found by our new postgraduates. :-)

MSC and 2-level supercompilation

Some interesting possibilities:

MSC instead of SC at the lower level.
More lemmas can be found.

MSC instead of SC at the upper level.
Several different lemmas can be tried at the same node.

An idea. Residual programs can be ranked according to their
"non-triviality".

The more improvement lemmas have been applied during
2-level supercompilation, the less trivial is the residual
program!

MRSC: a framework for creating multi-
result supercompilers

Ilya Klyuchnikov and Sergei Romanenko. Multi-Result
Supercompilation as Branching Growth of the Penultimate Level in
Metasystem Transitions. Accepted for Ershov Informatics
Conference 2011. http://pat.keldysh.ru/~ilya/

Parameterized over

the object language;
the language of configurations;
driving, whistle, generalization.

Provides a number of combinators to produce multi-result and
two-level supercompilers from ordinary ones.

http://pat.keldysh.ru/~ilya/

Conclusions

Supercompilation can be treated as a "primitive operation"
in order to build more complex system. This is an instance
of "metasystem transition" (in terms of V.F. Turchin).
By abstracting away the whistle and the strategies, we get
nondetermistic supercompilation (a supercompilation
relation).
By "rehabilitating" the whistle and the strategies, we remove
some nondeterminism to come to multi-result
supercompilation (MSC).
MSC is more powerful in solving certain problems than
deterministic one.
MSC is a new area of research. Not much is done yet...

Thank you!

