
Metacomputation as a Tool
for Formal Linguistic Modeling

Robert Glück1 Andrei Klimov2

Department of Computer Science Keldysh Institute of Applied Mathematics
University of Copenhagen Russian Academy of Sciences

Universitetsparken 1 Miusskaya Square 4
 DK-2100 Copenhagen, Denmark 125047 Moscow, Russia

Abstract
We consider the principle “a new model is a model of an existing one” as the main
scheme for deriving new linguistic models by metacomputation. We derive the basic
requirements for metacomputation by a structural analysis of different model definitions,
and show that in order to automate the creation of linguistic models the following
operations on linguistic models have to be performed by metacomputation effectively
and efficiently: composition, inversion, and specialization of algorithms. This may also
serve as a unifying paradigm for different program transformation approaches.

1. INTRODUCTION

During the last decades we have witnessed tremendous technological breakthroughs in the
development and application of computers. The introduction of the computer was an
evolutionary step in the control of formal linguistic models, a metasystem transition
(MST). As a result the number of linguistic models created and used has significantly
increased.

The method of modern science is, in its essence, the creation of linguistic models
[1]. Informally, a model is a process which somehow mimics, or simulates, another
primary process. Using a model it becomes possible for a system S to predict and know
something about the primary process before it actually happens, or without performing it.
As does every branch of science, computer science has its own types of objects, namely
formal linguistic models, and the models of the models computer science creates itself.
Linguistic models that can be executed on a computer, at least in principle, are referred to
as algorithms, or programs.

The computer was really necessary before one could start to learn more about
formal linguistic modeling on a large scale (human beings are neither precise enough, nor
fast enough to carry out any but the simplest procedures). Just as mastering the general
principle of using tools gives rise to the creation of industrial systems, mastering the
principle of linguistic modeling gives rise to the creation of hierarchical systems of formal
languages (on which modern science is based).

1 Supported by the Austrian Science Foundation (grant no. J0780). On leave from the Univ. of Technology
Vienna, Inst. für Computersprachen, Argentinierstr. 8, A-1040 Vienna, Austria. E-mail: glueck@diku.dk.

2 Supported by the Russian Foundation for Fundamental Research (grant no. 93-012-628) and in part by the
‘Österr. Forschungsgemeinschaft’ (grant no. 06/1789). E-mail: And.Klimov@refal.msk.su.

The next evolutionary step in linguistic modeling is the control over the creation of
formal linguistic models by the computer. In this paper we consider the principle “a new
model is a model of an existing one” as the main scheme for the derivation of new
models. This is performed by a process referred to as metacomputation. This viewpoint
determines which operations metacomputation has to perform efficiently on formal
linguistic models in order to evolve linguistic modeling: composition, inversion, and
specialization of algorithms. Indeed, many known problems in computer science can be
placed in these categories.

2. LINGUISTIC MODELING AND METACOMPUTATION

In this paper, two aspects of linguistic modeling are studied (in both cases, control means
the automation / mechanization of the respective activity):

control of executing models = computation
control of creating models = metacomputation

The use of the computer to execute models was the first step in controlling linguistic
modeling, but it is not the last step. Indeed, the creation of linguistic models was not
directly affected by the introduction of the computer. At the beginning, this activity was
fully performed by the human (‘programming’). Later, computer science has developed
various methods to achieve more control over these activities, such as the development of
new language paradigms, the construction of tools for generating special-purpose
programs (e.g., scanners, parsers), and a variety of approaches for the verification,
transformation, and compilation of programs. However, the basic problem still exists:
how are we to achieve control over the creation of linguistic models, in general, and of
programs, in particular?

Our approach is to use the method of linguistic modeling itself. Metacomputation
is the creation of new models from existing models. This term underlines the fact that
model creation is one metasystem level higher than computation. From now on we will
refer to formal linguistic models as linguistic models, or simply as models.

Modeling The common notion of modeling, often referred to as the modeling scheme,
is as follows (Fig. 1). Let an object o be in some state, which is characterized by the in-
formation xo, and suppose the object performs an action. We shall denote by yo = Fo(xo)
the information about the ensuing state.3 Suppose we want to make a prediction about yo.
Modeling introduces another object m, a model, for making predictions about the object o,
considering the model ‘similar’, in some sense, to the object. A model m is an abstraction
of the object o, that is, a model contains less information than the object.[1]

The mappings Hin and Hout are two abstraction functions, often referred to as
homomorphisms. They map the information xo, yo about the object o to the information
xm, ym in the model m (since we consider only linguistic models, we may safely assume
that the functions Hin, Hout do not interfere with the behavior of the object o). Having full
information xo, yo, we can deduce the corresponding information xm, ym in the model, but

3 We do not assume that these actions are deterministic. Fo(xo) denotes any of the possible states after some
action. We can think of Fo as a non-deterministic function, or a relation.

xo
Fo

y
Fm

m

Object o

Model m

yo

xm

HoutHin

Fig. 1. Modeling scheme.

not vice versa. Having information ym, we cannot, in general, predict a precise fact yo
about the object, but only that Hout(yo) = ym. That is, the possible outcome belongs to a
set {yo | Hout(yo) = ym}. Thus by using Fm one can predict, to some extent, the state of the
object resulting from Fo:

ym = Fm(Hin(xo)) = Hout(Fo(xo))

Creating models from models Let the object o itself be a model and assume that we
want to create another model m being a model of the first model o. Initially we are provid-
ed with the object o: that is, a description of the domains Xo and Yo over which xo and yo
range, and a description of the function Fo: Xo → Yo. We need to define the domains Xm
and Ym which xm and ym range over, and the function Fm: Xm → Ym of the derived model m.

What can be automated in the creation of a new model? The choice of the informa-
tion available for building the new model is a creative step that depends on the external
goals of the user. Consequently, we will not address the problem of how to choose
homomorphisms Hin and Hout; this choice will be left to the user.

The main task is to automate the construction of the new function Fm. From the
modeling scheme (Fig. 1) we see that Fm can be defined by using the mappings Hin-1 and
Hout (where Hin-1 is an inverse of Hin). A full definition of Fm is provided by Fo, Hin-1 and
Hout:4

ddddeeeeffff Fm(xm) = Hout(Fo(Hin
-1(xm)))

Metacomputation The goal of metacomputation is to derive new models from such
formal definitions. Let us denote the process of performing metacomputation by Mc. In
order to express that metacomputation is applied to the textual definition of the model
rather than to its denotation, we move the expression downwards (filling the remaining
space with a line):

Mc(__________________) ⇒ Fm
 Hout(Fo(Hin

-1(xm)))

4 To distinguish definitions from statements and equations, we use the keyword ddddeeeeffff. The function on the left
hand side (e.g. Fm) is defined by the expression on the right-hand side.

We refer to such a formula as MST-formula because it describes the activity of creating
models, which is a meta-activity as compared with just executing them. The essence of
metacomputation is considering models as material that can be transformed and manipu-
lated in various ways.

Requirements for metacomputation Two operations are involved in this formula:
• composition: Fo composed with Hin-1, Hout composed with Fo
• inversion: Hin-1

If metacomputation is capable of deriving efficient models defined by these operations,
then the creation of formal linguistic models is automated to a large extent. In other
words, performing these operations effectively and efficiently is a prerequisite for a
successful application of metacomputation.

3. SELECTED PROBLEMS OF METACOMPUTATION

3.1 Problem of Program Composition

Consider the case when the information xo on the object model o is identical to the
information xm on the new model m (Fig. 2). That is, the homomorphism Hin is the identity
function: xm = Hin(xo) = xo. The function of the new model is then defined as:

ddddeeeeffff Fm(xm) = Hout(Fo(xm))

Assume that we are interested in a small part of the output yo. To define the new model,
we provide the homomorphism Hout selecting the parts of yo we are interested in.
However, directly computing the above definition of the new model does not decrease the
amount of computer resources needed to obtain the result ym. In this case it might pay off
to create a new model by metacomputation:

Mc(___________) ⇒ Fm
 Hout(Fo(x))

The new model may be more efficient and drastically reduced in size. One would expect
that redundant computations in Fo are removed during metacomputation, and only those
computations that are needed to produce the information selected by Hout are present in Fm.
This problem has been studied in connection with program slicing [2].

Example A particular application of the metacomputation of composition is deriving an
efficient interpreter from a compiler. Compilation is the process of translating programs
from one language, say L, to another language, say M, where pL and pM are programs
written in L and M respectively:

CompLM(pL) ⇒ pM

Interpretation is performing the activity implied by a program, say pM, using another,
universal program, say IntM, called the interpreter (below x is the initial information used
in pM, and y is the result):

IntM(pM,x) ⇒ y

yo
Fo

y

Fm

m

Object o

Model m
Hout

xmxo =

Fig. 2. Deriving a model by abstracting only the output information.

Assume that an L→M-compiler CompLM and an M-interpreter IntM are given. Then we can
execute a program pL in two stages: first by translating pL into M, and then by interpreting
the M-program:

IntM(CompLM(pL),x) ⇒ y

That is, a new interpreter, IntL, may be defined by the composition of CompML and IntM:

ddddeeeeffff IntL(p,x) = IntM(CompLM(p),x)

However, the step via the intermediate language M may be rather inefficient. If we meta-
compute this definition, we may obtain a more efficient interpreter.

Mc(__________________) ⇒ IntL
 IntM(CompLM(p),x)

This is a metasystem transition over the computation process defined by the composition.
The importance of effectively metacomputing the composition of models is hard to
overestimate, since composition is one of the basic methods for building new models
from existing ones.

3.2 Problem of Program Inversion

Consider the case of deriving a new model when the output information yo on the object
model is identical to the output information ym on the new model (Fig. 3). That is, the
homomorphism Hout is the identity function: ym = Hout(yo) = yo. The function Fm of the
model is then defined as follows:

ddddeeeeffff Fm(xm) = Fo(Hin
-1(xm))

As in the case of composition, one may derive a new model Fm by metacomputation:

Mc(_____________) ⇒ Fm
 Fo(Hin-1(xm))

In this case a combination of composition and inversion is used. We want to derive a new
model that can be used to make a prediction ym using the partial information xm about xo.
The homomorphism Hin defines what is to be known about xo: xm = Hin(xo). In some
instances, the partial information xm will be sufficient to produce ym. Then Fm(x) should

xo
Fo

Fm

Object o

Model m

xm

yo = ym

Hin

Fig. 3. Deriving a model by abstracting only the input information.

return it. However, generally xm does not define ym precisely. In this case, one is
interested either in one of the possible results, or in the set of all possible results. These
two choices correspond to two different kinds of inversions.

The problem of constructing an inverse relation is interesting in its own right,
since many mathematical problems are stated in the following way: given the description P
of some properties of objects, find (at least one) object x such that P(x) holds. This is
referred to as the inversion problem. The predicate P may be formulated as an algorithm
checking the linguistic object x.

The inversion of programs is a fundamental problem, and a large branch of
computer science has been based on solutions emerging from logic and proof theory
[3,4]. Direct methods for inverting algorithms have been developed [5-7]. By varying the
metaevaluator Mc and the method for solving the inverse problem different linguistic
models can be generated by MST-formulas involving composition and inversion.

3.3 Problem of Program Specialization

Automatic inversion by metacomputation is a hard problem, and hence it is important to
consider variants of the modeling scheme without inversion. This leads us to the problem
of specialization of models.

The relation of xo and xm may be established not only by a homomorphism from xo
to xm, but by a mapping, say G, from some information xm, given in the model, to xo. That
is, the inverse mapping G(xm) = Hin-1(xm) is supplied by the user. This corresponds to
changing the direction of the arrow marked with Hin (Fig. 3). The function Fm of the new
model is then defined by:

ddddeeeeffff Fm(xm) = Fo(G(xm))

The problem in this definition has the same structure as the problem of composition.
However, since the modeling function Fo is usually much more complex than the
mappings Hout and G, there is a difference between the two cases: in Section 3.1, the outer
function is simpler, and here, the inner function is simpler. Different methods of
metacomputation may be advantageous in each case. The problem of specialization falls
into the second case.

xo
Fo

Fm

Object o

Model m
G

xm

yo = ym

Fig. 4. Deriving a model by restricting the input information.

The problem of specialization arises when the domain for which a model is used is
restricted (Fig. 4). The function Fs of the specialized model is the same as the function Fo
of the model o, but the input ranges only over a part of the domain of model o:

ddddeeeeffff Fs(x) = Fo(x) iiiiffff x ∈ S, where S is a subset of the domain of model o

Although the definitions of Fs and Fm above are not formally equivalent, in the majority of
the cases, the definition of Fs can be replaced by one, where the mapping G(xm) is a
representation of the set S: S = {G(xm) | xm ∈ Xm}.

Example Consider a model whose function Fo has several arguments, such as Fo(x1,x2)
(formally it takes a tuple). Then the mapping G may return a tuple in which parts of the
arguments are fixed to some information. Assume that x1 is always mapped to the same
information I. Then x2 is the remaining parameter, and G(x2) = (I,x2):

ddddeeeeffff Fm(x2) = Fo(I,x2)

As usually, one may derive a more efficient model Fm by metacomputing the definition:

Mc(________) ⇒ Fm
 Fo(I,x2)

The motivation to metacompute the definition of a model whose input domain is restricted
is to remove redundant computations that may be present in the object model but are not
necessary for the narrowed domain. This can give substantial savings, e.g., when one
parameter, say x1, changes less frequently than another.

Surprisingly, many problems in computer science reduce to the problem of
specialization, including the central problem of metacomputation: the problem of self-
applying metacomputation. It was found [8] that the solution to the problem of generating
compilers from interpreters requires neither composition nor inversion of programs, just
fixing some of the arguments is sufficient (as in the example above).

Although the problem of specialization is a special case of the problem of
composition, it is worth considering it separately because of the large number of practical
problems that require specialization. This gave rise to a new branch in computer science,
called partial evaluation, which has been developing rapidly during the past decade due to
advances achieved both in theory and practice [9].

4. CONCLUSION

Computer science, as compared to other disciplines, appears as a rather diverse field lack-
ing a clear focus and a notion of what has to be achieved. In this contribution we tried to
emphasize common roots of different problems. We discussed how the notion of linguis-
tic modeling may serve as a unifying viewpoint and derived the requirements for meta-
computation by a structural analysis of the problem. We saw that to solve the problem of
linguistic modeling, metacomputation must perform the following operations efficiently:
composition, inversion, and specialization (the latter being a special, though important,
case of composition). This task may serve as a clear guideline for research in meta-
computation.

The goal is to make the automatic derivation of models by metacomputation a
practical tool. Since the 60s many solutions have been tried and some progress has been
achieved, but the basic problems still remain open. We say that the next evolutionary step
in formal linguistic modeling, the next large-scale metasystem transition, is achieved if
efficient linguistic models can be created by the computer and it suffices for the human to
make initial formal definitions. The ultimate goal is to achieve the ability for an arbitrary
series of metacomputations over linguistic models to be just an ordinary, mechanical
process. In this sense, we are actually working towards the next metasystem transition in
linguistic modeling. We believe that this is one of the most challenging tasks of computer
science.

REFERENCES

1. V. F. Turchin, The Phenomenon of Science. Columbia University Press: New York
(1977).

2. S. Horwitz, T. Reps and D. Binkley, “Interprocedural slicing using dependence
graphs”, ACM TOPLAS 12, 26-60 (1990).

3. R. Kowalski, “Algorithm = logic + control”, Communications of the ACM 22, 424-
436 (1979).

4. S. M. Abramov, “Metacomputation and logic programming”, Programmirovanie (3),
31-44 (1991), in Russian.

5. V. F. Turchin, “Equivalent transformations of recursive functions defined in Refal”,
Teorija Jazykov i Metody Programmirovanija (Proceedings of the Symposium on the
Theory of Languages and Programming Methods), 31-42, (1972), in Russian.

6. A. Y. Romanenko, “Inversion and metacomputation”, Proceedings of the Sympo-
sium on Partial Evaluation and Semantics-Based Program Manipulation, 12-22,
ACM Press (1991).

7. P. G. Harrison, “Function inversion”, D. Bjørner, A. P. Ershov and N. D. Jones
(ed.), Partial Evaluation and Mixed Computation, 153-166, North-Holland (1988).

8. Y. Futamura, “Partial evaluation of computation process - an approach to a compiler-
compiler”, Systems, Computers, Controls 2, 45-50 (1971).

9. N. D. Jones, C. K. Gomard and P. Sestoft, Partial Evaluation and Automatic Pro-
gram Generation. Prentice Hall International Series in Computer Science. Prentice
Hall: New York, London, Toronto (1993).

— Dedicated to the memory of Alexander Romanenko —

