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We analyze metasystem transitions which may be observed, or are intentionally used, in com
puter science and mathematics. Various metasystem structures are present in their activities of 
executing, creating and manipulating formal linguistic models. The crucial role in automating 
the creation and manipulation of linguistic models is played by metacomputation, that is, 
computation over formal models. 

The manipulation oflanguages is one of the most essential problems oflinguistic modeling. 
In this paper we analyze different schemes for transforming language definitions by meta
system transition and metacomputation, and present _an example of ultra-metasystem transition . 
. We show that self-application of metacomputation, a special case of metasystem transition, plays 
a central role in linguistic modeling. These techniques may also be utilized for reducing 
hierarchies of mathematical definitions and for manipulating mathematical texts effectively. 
Finally, we discuss a direct approach to theorem proving using a constructive representation 
of mathematical knowledge. 

We derive the basic requirements for metacomputation by a structural analysis of different 
model definitions using a single concept, namely formal linguistic modeling, and show that 
three operations must be performed effectively and efficiently by metacomputation: composi
tion, inversion, and specialization of linguistic models. 

KEYWORDS: linguistic modeling, metacomputation, metasystem transition, self
application, program generation, theorem proving, program composition, program 
inversion, program specialization 

1. INTRODUCTION 

During the last decades we have witnessed tremendous technological break
throughs in the development and application of computers. The introduction of the 
computer was a revolutionary step in the execution of formal linguistic models, a 
metasystem transition (Turchin, 1977). As a result, the number of linguistic models 
constructed and used has significantly increased. But this is not the last step! The 
next metasystem transition is to achieve control over the creation and transformation of 
linguistic models. 
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One of the defining features of modern science is the use of languages to 
construct linguistic models of reality. Informally, a linguistic model is a symbolic process 
which somehow mimics, or simulates, another primary process. Using a model 
enables the user, e.g. the human, to know something about a primary process before 
it actually happens, or without performing the primary process. For example, an 
engineer may create a mathematical model-a formal linguistic model-of a bridge 
in order to predict its stability and safety under various conditions. Virtually all areas 
of modern society rely on methods of formal linguistic modeling, a development 
which has been and will be intensified by the computer. The ground for this 
development has been prepared gradually during the last centuries by the introduc
tion of formal methods in many areas of society, ranging from science and engineer
ing to industry and business. 

As does every branch of science, computer science and mathematics deal with 
their own type of objects, namely formal linguistic models, and the models of the 
models they create themselves. The computer was really necessary before one could 
start to learn more about formal linguistic modeling on a large scale (human beings 
are neither precise enough, nor fast enough to carry out any but the simplest 
procedures). Before the introduction of the computer, formal linguistic models 
were created, but had t.o be executed by hand and mind. Just as mastering the 
general principle of using physical tools gives rise to the creation of industrial 
systems, mastering the principle of linguistic modeling gives rise to the creation of 
hierarchical systems of languages and models. 

The essence of metacomputation is to consider linguistic models as objects that 
can be transformed and manipulated mechanically (only mathematics created 
something comparable: metamathematics, which treats mathematical theories and 
proofs as formal objects). We say that the next step in formal linguistic modeling, the 
next large-scale metasystem transition, is achieved if efficient linguistic models can 
be created automatically by the computer and it suffices for the human to make 
initial formal definitions. Only when non-algorithmic specifications are involved, 
the human has to deal with them. The ultimate goal is to make the analysis and 
transformation of formal models by metacomputation a practical tool. Since the 60s 
many solutions have been tried in order to gain more control over the process of 
software development, some progress has been achieved, but the essential problems 
remain open. 

In this paper we are especially interested in different schemes for metasystem 
transition and metacomputation, and their potential application in computer sci
ence and mathematics. Our aim is to show how metasystem transition over meta
computation may be applied to solve essential problems of linguistic modeling. 

The paper is organized as follows: in Section 2 we introduce basic concepts of 
linguistic modeling, metacomputation and metasystem transition. Prerequisites for 
effective metacomputation are discussed in Section 3. In Section 4 we show how 
multiple metasystem transition may be used to transform compilative and interpre
tive language definitions into each other and we give an example of ultra
metasystem transition. Section 5 is devoted to applications in mathemati<:;s: process
ing mathematical texts by converting compilers into interpreters, and theorem 
proving by metacomputation. 
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. 2. LINGUISTIC MODELING AND METACOMPUTATION 

In this section, we introduce the concepts of linguistic modeling, metacomputa
tion and metasystem transition, as well as the basic scheme for creating models. 

Computer as a Tool 

The computer is a unique tool in the history of science and technology. Unlike 
earlier special-purpose machines, the computer is a universal symbol manipulating 
device that can run complex linguistic models accurately and fast (and with negli
gible power consumption). Linguistic models that can be executed by a computer, at 
least in principle, are referred to as algorithms, or programs. 

The execution of a linguistic model is performed by a system consisting of two 
components: the computer hardware and the software. Each of the two components 
has its own impact on the evolution of linguistic modeling. Having different nature, 
hardware and software develop, to a large extent, independently, though they 
influence each other. Whereas advances in hardware technology result in quantita
tive changes (such as increasing processor speed, enlarging computer memory), the 
potential of software evolution is qualitative. In this paper we shall concern ourselves 
only with the latter. 

Dimensions of Linguistic Modeling 

We distinguish between two aspects of linguistic modeling (in both cases, control 
means the automation/mechanization of the respective activity): 

control of model execution = computation 
control of model creation = metacomputation 

The introduction of the computer was a revolutionary step in the execution of formal 
linguistic models, a metasystem transition (MST). As a result the number of linguistic 
models created and used has significantly increased [in accordance with Turchin's 
law of branching growth of the penultimate level (Turchin, 1977)]. But the creation 
of linguistic models was not directly affected by the use of computers. 

At the beginning, the creation of models was fully performed by the human 
("programming"). Later, computer science tried to achieve more control over these 
activities by developing new paradigms for programming languages, constructing 
generators for special-purpose programs, and studying various approaches for the 
verification and transformation of programs. However, the basic problem still exists: 
how are we to achieve better control over the activity of creating formal linguistic 
models? 

The approach discussed in this paper is to use linguistic modeling itself for the 
creation of new models and to repeatedly perform metasystem transitions over this 
process. We refer to the process of simulating analyzing and manipulating programs 
by programs as metacomputation, a term which underlines the fact that this activity is 
one level higher than ordinary computation (Fig. 1). From now on we will refer to 
formal linguistic models as linguistic models, or simply as models. 
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Figure I. Metasystem transition from computation to metacomputation. 

Computation 

The execution of an algorithmic model, say P ("program") is performed by the 
computer hardware, say M ("machine"). The program P is written in the formal 
language M understood by the machine M. To denote the execution of a model P 

on a machine M with x ranging over all possible inputs we write 

(Px)M =:::) y 

where, in order to emphasize the computation process, the result y is written after 
an arrow, rather than using an equality sign. Uppercase names denote constants 
(e.g., program P); lowercase names denote variables (e.g., variable x). We shall skip 
the language index M if it is clear from the context or not essential for the discussion. 

Modeling 

The basic method of modeling, often referred to as the modeling scheme, is as 
follows (Fig. 2). Let an object o be in some state, characterized by the information 
x 0 , and suppose the object performs an action. The information about the ensuing 
state is denoted by y 0 = (F 0 x 0 ). (We do not assume that these actions are determinis
tic; (F 0 x 0 ) denotes any of the possible states after an action.) Suppose we want to 
make a prediction about y 0. Modeling introduces another object m, a model, for 
making predictions about the object o, considering the model "similar," in a sense, 
to the object o. A model mis an abstraction of the object o, that is, a model contains 
less information than the object. 

The mappings Hin and Hout are two abstraction functions that map the informa
tion x 0 , y 0 about the object o to the information~' Ym in the model m (since we 
consider only linguistic models, we can safely assume that the functions Hin.' Hout .do 
not interfere with the behavior of the object o). Having full information x 0 , y 0 , we 
can deduce the corresponding information ~' y m in the model, but not vice versa. 
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Figure 2. Modeling scheme. 

Having information y m' we cannot, in general predict an exact fact y 0 about the 
object, but only that (Hout y 0 ) = Ym· The predicted outcome belongs to the set 
{y 0 I (Hout y 0 ) = y m}. Thus, by using Fm one can predict, to some extent, the state of 
the object resulting from F 0 : 

Ym =(Fm (Hin xo)) =(Hout (Fox)) (2.1) 

Creating Models from Models 

Let the object o itself be a model and assume that we want to create a new model m 
that is a model of o. Initially we are given the object o, that is, a description of the 
domains X 0 and Y0 over which x 0 and y 0 range, and a description of the function F 0 : 

XO ---t Yo. We need to define the domains xm and ym which xm and y m range over, and 
the function Fm: Xm ---t Ym of the new model m. 

What can be automated in the definitions of a new model? The choice of the 
information used for building the new model is a creative step that depends on the 
goals of the user. Hence, we will not address the problem of how to choose mappings 
Hin and Hout; this choice is left to the user. 

The main goal is to automate the construction of the new function Fm of model m. 
The statement (2.1), as well as the modeling scheme (Fig. 2), specify the function Fm: 

find some x 0 such that (Hin x 0 ) = xm (if it exists) and then compute Ym by evaluating 
(Hout (F 0 x 0 )). We obtain the following definition of Fm using F 0 , Hin -l and Hout 

(where Hin - 1 is an inverse of Hin): 

(2.2) 

We use the syntax def ... = ... for definitions. The function on the left hand side, Fm 

with the argument xm, is defined by the expression on the right-hand side. 

Metacomputatton Schemes 

Although the definition (2.2) fully specifies the new model Fm' in general it will 
not be efficient enough to execute it by the computer (or practically infeasible, as 
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often in the case of the inverse mapping Hin - I). The goal of metacomputation is to 
derive new models which are "better" in some sense (e.g., more efficient with 
respect to run time and/or space consumption). We don't fix a specific set of 
metacomputation techniques at this level of discussion, as these may depend on the 
specific purpose and goal of metacompution. However, in section 3 we give three 
basic requirements for metacompution and in the sections 4 and 5 we show different 
applications that require techniques of different transformation power. 

We now introduce a notation for metacomputation schemes. Let us denote the 
process of performing metacomputation by Mc. To express symbolically that meta
computation Mc is a metaactivity with respect to the model definition, we move the 
expression defining the model downwards (filling the remaining space with a line): 

(Mc ) :::::? F' 
(Hout (F o (Hin -l xm))) m 

(2.3) 

We say that the expression on the lower level is metacoded: the free variables in the 
original definition of the model(~ in our case) become objects of the metacompu
tation process Mc (they are not replaced with values before the execution of Mc). 
The result of metacomputation is a program F' m that is functionally equivalent to Fm: 

applying F 'm to a constant X produces the same result as Fm· 

(2.4) 

Performing metacomputation is a metasystem transition, and this is why formulas 
such as (2.3) are referred to as an MST{ormulas [the two-dimensional notation was 
suggested byTurchin; see also (Gluck, 1991)]. Note thatametacomputation process 
Mc is always applied to the definition (text) of a program rather than to its mathe
matical denotation (we consider linguistic models as our primary matter). 

j 

Multiple Metasystem Transition 

A metaevaluator performing metacomputation, being itself just a formal linguistic 
model, may become the object of metacomputation. Since the number of such 
MST's is potentially unlimited, the repeated application of metacomputation may 
give rise to a hierarchy of metacomputation processes (Fig. 3). Consider metacom
puting the expression (F X, y) where X is a constant and y a variable: 

(Mc ) :::::? F 
(FX,y) x 

(2.5) 

Assume that we want to define the metacomputation process (2.4) for any constant 
(not only for constant X). That is, we want to replace the constant X with a free 
variable x. Since a variable under the top level (e.g., y) is an object of the metaevalua
tor Mc rather than a parameter of the formula, we have to raise the constant X to the 
top level in the MST-formula, denoting its original position by a bullet •. 

Note that moving constants up and down in an MST-formula does not change the 
result as long as their original position is clearly identified. The expression on the 
left side of (2.6) is read as follows: take constant X and metacode it one~ before 
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219 

moving it down to its original position; the right side denotes the same: constant Xis 
metacoded once. 

(Mc _x_ ) = (Mc ) 
(F • I y) (F x I y) 

(2.6) 

The class of computation processes parameterized by x is then defined by replacing 
constant X on the top level by variable x. Note that the variables x and y belong to 
different levels: x is free on the top level, while y is an object for Mc. 

def (McF x) = (Mc __x_) 
(F • I y) 

(2.7) 

Variables that are raised from their original position, such as x, are called e/,evated. To 
analyze and manipulate the metacomputation process defined by McF, we make it 
the object of another metacomputation process, say Mc' (thereby we obtain a three
level MST-formula). The result is a program McF' which is functionally equivalent to 
McF. 

(Mc' ) = (Mc' ) => McF' 
(McF x) (Mc __x_) 

(F • I y) 

(2.8) 

If the metaevaluator Mc' is identical to the metacomputed system Mc, that is, Mc' 
= Mc, we speak of self-application. 
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3. SELECTED PROBLEMS OF METACOMPUTATION 

Starting from a single concept, namely linguistic modeling, we consider different 
possible model definitions and determine three basic operations on linguistic 
models (Gluck and Klimov, 1994): composition, inversion and specialization (the latter 
being a special, though important, case of composition). Various program transfor
mation paradigms in computer science are motivated by one or more of these 
metacomputation tasks. 

3.1. Problem of Program Composition 

The problem of program composition arises when we abstract only the output in 
the model definition. Consider the case when the information x 0 on the object 
model o is identical to the information xm on the new model m (Fig. 4). That is, the 
mapping Hin is the identity function: (Hin x 0 ) = x 0 • The function of the new model 
is then defined as 

def (Fm~) = (Hout (F 0 ~)) 

Assume that we are interested in a small part of the output y 0 • To define the new 
model, we provide the mapping Hout selecting the parts ofy0 we are interested in. 
However, directly computing the above definition of the new model does not 
decrease the amount of computer resources needed to obtain the result y m· In this 
case it might pay off to create a new model by metacomputatipn: 

(Mc ) ~ F'm 
(Hout (F o x)) 

One would expect that redundant computations in F 0 are removed during meta
computation, and only those computations that are needed to produce the informa
tion selected by Hout are present in Fm· The importance of effectively metacomput
ing the composition of programs is hard to overestimate. Composition is one of the 
main methods of constructing complex programs from simpler ones. This is why 
supercompilation (Turchin, 1986), a powerful method for metacomputation, was 
directed to the problem of program composition from the beginning. The deriva
tion of programs by abstracting output information has been studied in connection 
with program slicing (Weiser, 1984). 

Below we shall consider particular applications of program composition: the 
conversion of compilers to interpreters (Section 4.1) and the reduction of hier
archies of mathematical definitions (Section 5.1). A special, but important case of 
program composition is program specialization (Section 3.3). 

3.2. Problem of Program Inversion 

The problem of program inversion arises when we abstract only the input in the 
model definition. Consider the case of deriving a new model when the output 
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Figure 4. D_eriving a model by abstracting only the output information . 

.information y 0 on the object model is identical to the output information y rn on the 
new model (Fig. 5). That is, mapping Hout is the identity function: (Hout y) = y 0. The 
function F rn of the model is then defined as follows: 

def (F rn xrn) = (F 0 (Hin -l xrn)) 

As in the case of composition, one may use metacomputation to derive a new model 
F' rn that is functionally equivalent to F rn' but potentially more efficient: 

(Mc ) ::::} F' 
(F o (Hin -1 xrn)) rn 

In this case a combination of composition and inversion is used. We want to derive a 
new model that can be used to make a prediction y rn using the partial information xrn 
about x 0 • The mapping Hin defines what is to be known about x 0 : xrn = (Hin x 0 ). In 
some instances, the partial information xrn will be sufficient to produce y rn· Then 
(F rn x) should return it. However, generally xrn does not define y rn exactly. In this case, 
one is interested either in an existential solution (one of the possible results), or in 
an universal solution (all possible results). These two choices result in two different 
types of inversions. 

The problem of constructing an inverse relation is interesting in its own right, 
since many mathematical problems are formulated in the following way: given the 

Model m 

Object o 

Figure 5. Deriving a model by abstracting only the input information. 
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description P of the properties of an object, find (at least one) object x such that 
(P x) = True. This is referred to as the inversion problem. 

The inversion of programs is a fundamental problem, and a large branch of computer 
science, logi,c programming, has been based_ on solutions emerging from logic and 
proof theory (Kowalski, 1979). Logic programming may be considered as a particular 
case of inverse problem solving (Abramov, 1991). Direct methods for inverting algo
rithms have also been developed (Turchin, 1972; Harrison, 1988; Romanenko, 1991). 

Inversion Solver as a Metasystem 

Let Search be a program that takes the definition of a model F and an output 
value Y (e.g., True) and executes (F x) for all possible input values. (We deal with 
linguistic, rather than set-theoretical objects. Since the former are denumerable, the 
process of running through all possible objects is well defined.) The program stops if 
and only if for some x: (F x) = Y and returns the first value found for x. This is a 
simple, but rather inefficient method for solving the inversion problem. The program 
Search is actually a metasystem over models. It takes a model F as input and per
forms some form of control over its execution. This is expressed by the MST-formula 

(Search ) 
(Equal (F x), Y) 

where Equal tests the equality of two values. Note that F and Y are constants and 
that x is a variable whose value is sought. A simple, but universal algorithm for 
solving the inversion problem, i.e. for an arbitrary model and any output, is then 
defined as 

def (Solve f y) = (Search f __ y_) 
(Equal(• x), •) 

Given an algorithm solving the inversion problem, e.g. Solve, one may produce the 
inverse model F-1 by metacomputing Solve with respect to a given F: 

(Mc ) ~ F-1 
(Solve F ,y) 

Similar MST schemes can be defined for other solvers that are not so trivial as the 
one defined above. Different inverse models F-1 may be generated from the same 
model F byvarjing the solver Solve and/or the metaevaluator Mc. 

3.3. Problem of Program Specialization 

Automatic inversion by metacomputation is a hard problem, and hence it is 
important to consider special cases of the modeling scheme not requiring it. This 
leads to the problem of program specialization. Instead of solving the inversion 
problem, the inverse mapping, say G, ~s supplied by the user: (G xm) =(Hin - 1 xm). This 
corresponds to changing the direction of the arrow labeled with Hin (cf. Fig. 5 and 
Fig. 6). The function Fm of the new model is then defined as 

def (Fm xm) = (F 0 (G xm)) 
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The metacomputation problem in this definition has the same structure as the 
problem of composition (Section 3.1). However, since the modeling function F 0 is 
usually much more complex than the mappings Hout' Hin' and G, there is a differ
ence between the two cases: in Section 3.1, the outer function Hout is simpler, and 
here, the inner function G is simpler. Hence, different methods of metacomputation 
may be advantageous in each case. The problem of program specialization falls into 
the second class. 

Specialization 

The problem of specialization arises when the domain for which a model o is used 
is restricted. The function of the specialized model is the same as the function F 0 of 
the original model o, but its input ranges only over a part of the original domain. 
Having defined the specialized model, we can metacompute its definition to remove 
redundant computations which may be present in the original model F 0 but are not 
necessary for computations within the narrowed domain S. In fact, any function G 

defines some restricted input domain S E X 0 : 

S = {(G xm) I xm E Xm} 

However, restricted forms of G are preferred in practice in order to simplify the task 
of metacomputation. The function G can be defined as filter (Turchin, 1980a), i.e. as 
the identity function for all elements of S and undefined otherwise: 

def (G x) = x if x E S, undefined otherwise 

Another example is the specialization of F 0 with respect to parameterized, non
recursive descriptions of the subset S. Consider a subset S containing triples of the 
form [A, x, x], where the first component is a constant A and the second and third 
component are identical. Then the function G can be defined as 

def (G x) = [A, x, x] 

Having identified the problem of specialization as a case of program composition, 
we can apply metacomputation methods developed for program composition and 
perform specialization of F 0 with respect to the subset defined by G as follows: 

(Mc ) ~ F' 
(Fo (G xm)) m 

Object o 

Figure 6. Deriving a model by restricting the input information. 
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Partial Evaluation 

The problem of specialization can be simplified even more if the input of the 
original model o consists of several arguments and some of the arguments are fixed 
to constants. Let F 0 be a function of three arguments, e.g. (F 0 x 1 , x 2 , x). Assume 
that the first argument is equal to a constant A. Then the specialized model is 
defined as 

def (Fm x 2 ,x3 ) = (F0 A,x2 ,x3 ) 

A more efficient model Fm can be obtained by metacomputing the definition of the 
specialized model. 

(Mc ) ~ F' 
(F o A' X2 ' X3) m 

This can give substantial savings if a significant part of F's computations depends 
only on the first argument. 

To show the relation between metacomputation and partial evaluation, we define 
a program specializer through a metaevaluator. Let Spec be a program specializer 
with two arguments, a program p and data x. Given the program p and part of its 
input data x, the specializer Spec produces a specialized program Px that, when 
applied to the remaining input y, returns the same result as the original program p 

when applied to x and y: 

(Spec p, x) ~ Px such that (px y) = (p x, y) 

Then the program specializer Spec can be defined through the metaevaluator Mc: 

•def (Spec p, x) = (Mc _p_x__) 
< •• 'y) 

This case of program specialization gave rise to a research area called partial 
evaluation which has been developing rapidly during the last decade (Jones et al., 
1993). Surprisingly many problems in computer science can be reduced to partial 
evaluation, including the central problem of metacomputation: the problem of self
applying metacomputation. It was found (Futamura, 1971) that the solution to the 
problem of generating compilers from interpreters requires neither composition, 
nor inversion of programs, just fixing some of the arguments is sufficient (Section 
4.2). Although the problem of specialization is as a special case of program composi
tion, it is worth considering it separately, because of the large number of practical 
problems that require only methods of program specialization. 

4. MANIPULATING LANGUAGE DEFINITIONS 

Languages and their definition play a central role in all forms of linguistic 
modeling. In this section we consider two basic schemes for converting formal 
language definitions into each other, namely interpretive to compilative definitions, 
and vice versa. Upon introducing interpretive and compilative language definitions, 
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we show how metacomputation and multiple MST can be used for their transforma
tion, and conclude with an example of ultra-MST. 

Languages and Linguistic Modeling 

A characteristic feature of linguistic modeling is that one deals with a variety of 
languages created for a wide range of applications. As new problems arise, existing 
languages are modified and new languages are created. A language suited for one 
problem is not necessarily the best for another problem and we need to be able to 
choose whatever forma_lism is adequate for describing and solving a problem. But 
one can never be sure of finding what is needed among those formalisms that have 
already been applied to previous problems (e.g., when Newton found his law of 
gravitation, he needed to invent the differential calculus and the concept of the 
second derivative). We conclude this short discussion in the hope the reader has 
been convinced that the ability to define and freely manipulate language definitions 
is a necessary prerequisites for effective linguistic modeling. 

Language Definitions 

For a language to have semantics, meaning, there must exist an agent-be it a 
machine or the human-that understands the language. This understanding is 
demonstrated by performing activities expressed ("controlled") by the language. If 
the available languages are expressive enough, one may start defining new languages 
in terms of existing ones. Thus, the world of languages can be extended by its own 
means. This gives rise to hierarchical systems of formal languages and linguistic 
models. Executable languages form the foundation of this world of languages. We 
know exactly two forms of language definitions: compilative and interpretative 

• Compilation is the process of translating expressions from one language, say N, to 
another language, say L. The new language N is defined in terms of the language L 
where n and 1 are expressions in N and L, respectively: 

(Comp n)M ~ 1 

The languages N and Lare referred to as source and target languages, respectively. The 
compilation is defined in the language M, the metalanguage. 

The result of the activity performed by an agent that understands language L is 
the same, when given the target program 1, as that of an agent that understands 
language N. when given the corresponding source program n: 

(n x)N = ((Comp n)M x)L 

• Interpretation amounts to performing the activity implied by a program, say n, using 
another universal program, say Int, called the interpreter. 

(n x)N =(Int n,x)M 

The result of the activity performed by the interpreter Int is the same as the result 
returned by an agent that understands the language N directly. The source language 
N is defined directly through actions in the metalanguage M. 
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Converting Language Definitions 

Generally speaking, the need for converting compilers into interpreters may arise 
when a particular language is gradually extended. In this case it may be easier to 
define the extensions by a translation into simpler expressions than by an interpre
tive definition. However, when a new language is defined from scratch, it is usually 
easier to define the language by means of an interpreter rather than a compiler. 
In this case, the opposite problem may arise: the conversion of an interpreter to a 
compiler. 

It is interesting to note that mathematics mainly deals with the former case, while 
in computer science the latter is more frequent. In Section 5.1 we shall return to this 
topic and demonstrate the need for converting compilative definitions into interpre
tive definitions in mathematics. Now we discuss both problems from the perspective 
of computer science, because some constructive results have already been achieved 
in computational practice. 

4.1. Converting Co~pilers to Interpreters 

Let CompNL be an N~L-compiler and let IntL be an L-interpreter. Then the 
execution of an N-program can be performed in two steps: (i) translate the N-pro
gram into language L using the N~L-compiler; (ii) interpret the new L-program 
with the L-interpreter: 

(IntL (CompNL n),x) => y 

A new N-interpreter, IntN, can be defined as 

def (IntN p, x) = (IntL (CompNL p), x) (4.1.1) 

However, the step via an intermediate language is sometimes rather inefficient (in 
Section 5.1 we shall see an example where compilation before interpretation is 
practically impossible). 

First MST 

A more efficient N-interpreter IntN' may be obtained by metacomputing the 
definition ( 4.1.1), that is, by performing an MST over the composition of IntL and 
CompNL. 

(Mc ) => In tN' 
(IntL (CompNL p), x) 

(4.1.2) 

This MST-formula defines the process of generating an N-interpreter IntN' from 
the N~L-compiler CompNL. Since there are two variables, p and x, below the level of 
the metaevaluator Mc, the generat€d program IntN' accepts two arguments: 

(IntN' n, x) => y 
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Second MST 

To define the metacomputation process ( 4.1.2) for compilers with different 
source languages, we replace the compiler CompNL with a variable, say comp, and lift 
the variable to the top level where it becomes free (recall that if a variable is at the 
level under the metacomputation process Mc, it becomes an object of that process): 

def· (IntGen comp) = (Mc comp __ ) 
· (IntL( • p),x) 

(4.1.3) 

This MST-formula defines the process of generating an N-interpreter from an N~L
compiler, where N is an arbitrary source language and Lis the fixed target language. 
To make this process more efficient we metacompute its definition: 

(Mc ) ~ IntGen' 
(Mc comp __ ) 

(IncL ( • p),x) 

(4.1.4) 

The result of this two-level MST-formula is a program whose arguments are deter
mined by the variables below the level of the top metaevaluator Mc. Since there is 
only one variable at this level, comp, the generated program IntGen' accepts one 
argument (i.e., a compiler). From the next lower level we can determine that the 
result of executing IntGen' is a program which takes two arguments (i.e., p and x). 
The new program performs the function defined through the program IntL. 
Therefore, the program IntGen' can be regarded as interpreter generator: 

(IntGen' CompNL) ~ IntN' 

Third MST 

To define the metacomputation process ( 4.1.4) for compilers with target lan
guages different from L, we make one more MST. First, we replace the L-interpreter 
IntL with a variable, say int: 

def (IntGenGen int)= (Mc __ int ) 
(Mc -1-comp __ ) 

( • ( • p), x) 

(4.1.5) 

This MST-formula defines the process of producing interpreter generators for 
different target languages. Second, we metacompute the definition to make the 
defined process more efficient: 

(Mc ) ~ IntGenGen' 
(Mc __ int ) 

(Mc -1-comp __ ) 
( • ( • p), x) 

(4.1.6) 

The result of this three-level MST-formula is a program IntGenGen' that takes as 
argument an interpreter (see variable int under the top level). From the next lower 
level we can determine that the result of IntGenGen' is a program which takes one 
argument, a compiler comp, which in turn produces a program whose arguments 
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are determined by the variables at the next lower level, p and x. Therefore, the 
program IntGenGen' can be regarded as a generator of interpreter generators: 

(IntGenGen IntL) ~ IntGen' 

4.2. Converting Interpreters to Compilers 

Let In tN be an N-interpreter written in the language M. Given an M-machine, an 
N-program PN can be executed using the N-interpreter IntN, where x stands for 
some input for the program PN: 

( 4.2.1) 

However, the repeated interpretation of the same N-program PN with varying input 
may be rather inefficient. 

First MST 

A more efficient version of the N-program PN may be obtained, if we compile it 
into an equivalent M-program that can be executed directly by the M-machine. This 
can be achieved by metacomputing the definition (4.2.1): 

(Mc ) ~ P' M ( 4.2.2) 
(IntN PN,x) 

This MST-formula defines the compilation of the N-program P N to an M-program 
P' M" The new program P' Mis equivalent to P N' but often much more efficient because 
it can be executed directly by the M-machine: 

(PM x)M = (IntN PN' x)M 

Second MST 

To define the metacomputation process ( 4.2.2) for arbitrary N-programs, rather 
than for a particular N-program P N' we replace P N with a variable, say p, a1.1d lift it to 
the top-level: 

def (CompNL p) = (Mc __ p_) 
(IntN •, x) 

(4~2.3) 

This MST-formula defines the process of compiling N-programs into M-programs. 
To make this process more efficient we metacompute its definition: 

(Mc ) ~ CompNL' 
(Mc p_) 

(IntN • ,x) 

(4.2.4) 

The result, CompNL', is a program which, given an N-program PN, returns an 
equivalent program written in the language M. Therefore CompNL' can be regarded 
as an N~M-compiler: 
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Third MST 

To define the metacomputation process ( 4.2.4) for any interpreter, rather than 
for a particular IntN, we replace the interpreter IntNwith a variable, say int, and 
make one more MST: 

def (CoGen int) = (Mc __ int __ ) 
. (Mc _l_p_) 

' ( O O Ix) 

(4.2.5) 

This MST-formula defines the process of generating N~M-compilers from N-inter
preters. To make this process more efficient we metacompute its definition: 

(Mc ) => CoGen' ( 4.2.6) 
(Mc __ int--,+ 

(Mc_j_p_) 
( O O Ix) 

The result, CoGen', is a program which, when applied to an interpreter IntN for 
some language N, returns an N~M-compiler. The MST-formula ( 4.2.6) can be read 
from top to bottom: CoGen' .is a program, which takes one argument (variable int) 
and produces a program, which takes one argument (variable p) and produces a 
program, which takes one argument (variable x) and produces a result equivalent to 
(int p, x}. Therefore the program CoGen' can be regarded as a compiler genera
tor: 

(CoGen' IntN) => CompNM 

Reduction to Partial Evaluation 

Each of the metacomputation layers in the formula ( 4.2.6) fits the format of 
partial evaluation. That is, each of the three MSTs can be expressed by using the 
specializer Spec (Section 3.3): 

Initial formula: 

First MST: 

Second MST: 

Third MST: 

def (Spec p, x) = (Mc -;P_x_) 
< 0 0 I y) 

(IntN PN,x) 

(Mc ) 
(IntN PN,x) 

= (Spec IntN, PN) 

(Mc . ) 
(Spec IntN, p) 

= (Spec Spec, IntN) => CompNL' 

(Mc ) 
(Spec Spec, int) 

= (Spec Spec, Spec) => CoGen' 

The same principle-replacing the value of the second argument by a variable and 
metacomputing the new expression-can be used to perform the fourth MST. 
However, the fourth MST reproduces the CoGen' from the third MST, as pointed 
out in (Futamura~ 1983): 

Fourth MST: (Mc ) = (Spec Spec, Spec) => CoGen' 
(Spec Spec, spec) 
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This is an example of a degeneration of a series of MSTs which is performed 
according to a formalized scheme without adding new knowledge. In the next 
section, we shall discuss this effect in more detail and show how to avoid degenera
tion by supplying new knowledge. 

Conclusion 

We should stress that the MST-formulas assert nothing about .the quality of the 
generated programs. The efficiency of the generated programs depends on the 
particular metacomputation techniques applied by the metaevaluator. The MST
formulas are high-level schemes for formulating and defining metacomputation 
tasks. 

The conversion of interpreters to compilers was first described in (Futamura, 
1971). These formulas are known as Futamura projections. The first compilers accord
ing to this MST scheme were produced using partial evaluation techniques Qones 
et al., 1985). Many problems of compiler construction are not solved by these MST
formulas, e.g. the problem of code generation. But it is a noteworthy step towards 
the automatic constru~tion of compilers and the transformation of interpretive 
programs. 

Recently an approach to improve program transformation by inserting inter
preters in MST-formulas has been developed (Turchin, 1993; Gliick and J0rgensen, 
1994). Related work also includes MST-schemes for multiple and incremental meta
system transition (Gliick, 1991) and an MST-scheme for generating program spe
cializers from interpreters ( Gliick, 1994). The difficulty in printiple of self-applying 
metaevaluators was identified as a consequence of Ashby's law of requisite variety in 
(Gliick, 1992). 

4.3. An Ultra-Metasystem Transition 

An ultra-metasystem is a broader system which provides and maintains conditions 
for a series of MSTs (Turchin, 1977). If we are able to formalize a system that 
possesses the internal potential for development by MST, then we can perform an 
ultra-MST due to the staircase effect. In the previous sections we showed how to 
perform a series of MSTs where each successive MST was formed from the preceding 
one according to a certain scheme. When such a scheme is established, new MSTs 
can be performed mechanically. In this section we consider an example of ultra-MST 
based on the scheme developed in the previous sections. We use this ultra-MST to 
illustrate an interesting effect of degeneration of a series of MSTs, when, after some MST 
is performed, no new system is generated. 

The MST series in the previous sections are constructed according to the same 
procedure. They start with the defi:nition of an initial computation process, e.g. 
(IntL (CompNL p), x) (Section 4.1), or (IntN PN, x) (Section 4.2), and then MSTs 
are performed repeatedly. 
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MST Scheme 

(0) Start with a formula defining an initial process. 
( 1) Define a new parameterized formula by replacing some parts of the given 

formula with variables x 1 ... xn (in order to express that the variables are 
free, they are lifted to the top level). The parameterized formula defines a 
class of computation processes. 

(2) Add'a new metacomputation level over the parameterized formula (de
noted by (Mc __ )). The free variables now become objects of the 
metacomputation process. The result of metacomputation is a program 
that accepts arguments corresponding to the variables x 1 ..• xn and has the 
same function as the original process defined in (1). 

(3) The steps (1) and (2) can be repeated until all constant parts of the initial 
formula have been replaced with variables. 

Indeed, the three MSTs (Sections 4.1 and 4.2) abstract step by step all parts of the 
basic formula. In principle, one could choose another order ofintroducingvariables 
in the MSTs, but in our case these variations have only minor significance. 

Can further MSTs be performed? Having formulated the above MST scheme 
which controls a series ofMSTs, we can try to perform an ultrametasystem transition. 
Note that at each MST step of the above procedure a new constant, the metaevalu
ator Mc, is added which may be replaced with a variable in one of the next steps: an 
MST over metaevaluators is performed. 

Thus, the fourth MST formula ( 4.3.1) can be defined by replacing the innermost 
metaevaluator in ( 4.2.6) with a variable, say me', and adding a new metacomputation 
level. The result of metacomputing the new formula is a compiler-generator genera
tor CoGenG that produces a compiler-generators given a metaevaluator. The fifth 
MST formula ( 4.3.2) is obtained from the fourth MST by replacing the next meta
evaluator with a variable, say me". The result is a compiler generator CoGenGG that 
generates a CoGenG given a metaevaluator; and so forth. 

Fourth MST 

Fifth MST 

(Mc ) => CoGenG 
(Mc __ me' ) 

(Mc -1-int __ ) 
( • -1-P-) 

( • • 'x) 

(Mc ) => CoGenGG 
(Mc __ me" ) 

(Mc -1-mc' ) 
( • -1-int __ ) 

( • -1-P-) 
( • • 'x) 

( 4.3.1) 

(4.3.2) 
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Sixth MST 

(Mc ) ~ CoGenGGG 
(Mc __ me"' ) 

(Mc _l_mc" ) 
( • -1-mc' ) 

( • -1-int __ ) 
( • -1-P-) 

• ( e e Ix) 

(4.3.3) 

Applying CoGenG, CoGenGG, and CoGenGGG to a metaevaluator Mc' different from 
Mc, produces the following new compiler generators: 

(CoGenG Mc') ~ CoGen' 
((CoGenGG Mc') Mc') ~ CoGen" 

(((CoGenGGG Mc') Mc') Mc')~ CoGen"' 

(4.3.4) 
(4.3.5) 
(4.3.6) 

What is their difference? This can easily be seen after substituting Mc' into the 
definitions of CoGenG, CoGenGG, and CoGenGGG (4.3.1-3): 

(Mc ) = CoGen' 
(Mc __ int __ ) 

· (Mc' -1-P-) 
( e e Ix) 

(4.3.7) 

(Mc ) = CoGen" 
(Mc' __ int __ ) 

(Mc'-1-P-) 
( e e f x) 

(4.3.8) 

(Mc' ) = CoGen"' 
(Mc' __ int __ ) 

' (Mc' -1-P-) 
( e e f x) 

(4.3.9) 

Provided that the newmetaevaluatorMc' is "better," in some sense, than the original 
metaevaluator Mc, each of the new compiler generators is "partially improved" as 
compared to a compiler generator CoGen produced from the original metaevalua
tor Mc. The compiler generator CoGen' generates a compiler that performs deeper 
transformation of a program p, but the compiler itself and CoGen' are of the 
previous quality. The compiler generator CoGen" generates a compiler which works 
with the quality provided by Mc', but has the quality of the old Mc. Finally, the 
compiler generator CoGen"' generates a compiler of the best quality, corresponding 
to the quality of the new metaevaluator Mc'. 

We see two interesting points in the series of MSTs: the third MST ( 4.2.6) which 
produces a compiler generator from a given metaevaluator Mc, and the sixth MST 
(4.3.3) which produces the compiler generator CoGenGGG, which, when applied 
to Mc' as in (4.3.5), produces the same compiler generator CoGen"' that is ob
tained by the third MST using the new Mc'. Using CoGenGGG (4.3.6) may be more 
efficient than generating the compiler generator from scratch (4.3.9). However, 
generating CoGenGGG requires computer resources as well, but may be advan
tageous ifCoGen"' has to be generated several times (e.g., during the deveiopment 
of a new metaevaluator). 
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From a Compiler Generator to a Compiler-Generator Generator 

In fact, there is no need to generate CoGenGGG by the sixth MST, since the CoGen 
produced by the third MST can be used for the same purpose. Let us consider this in 
more detail to illustrate the effect of degeneration of an ultra-MST and how it may be 
avoided. Recall that CoGen is applied as follows: 

(((CoGen int) p) x) ==> y 

Indeed, the compiler generator CoGen can be applied not only to interpreters, but 
to any program of two arguments, e.g. the specializer Spec (Section 3.3). Let the 
specializer Spec' be defined through the new metaevaluator Mc': 

def (Spec' p, x) = (Mc'_p_..x.__) 
(. • 'y) 

The compiler generator CoGen applied to the specializer Spec', produces the 
"partially improved" compiler generator, CoGen', which, when applied to the 
Spec' once more, produces the "more improved" CoGen", which applied to the 
Spec' for the third time produces the renewed compiler generator, CoGen"': 

(CoGen Spec') =(Mc __ Spec' __ ) 
(Mc_l_p_) 

( • • 'x) 

= (Mc ) = CoGen' 
(Mc __ p __ ) 

(Mc' -1-P-) 
( • • 'y) 

(CoGen' Spec') = (Mc ) = CoGen" 
(Mc' __ p __ ) 

(Mc' -1-P-) 
( •• 'y) 

(CoGen" Spec') = (Mc' ) = CoGen"' 
·(Mc' __ p __ ) 

(Mc' -1-P-) 
( •• 'y) 

So, we see that the compiler generator CoGen"' can be generated from a new 
metaevaluator Mc' by an existing compiler generator CoGen, using an intermediate 
definition of Spec' (Klimov and Romanenko, 1987). Thus, we have expressed the 
fourth and higher MSTs by applying the result of the previous MSTs (a compiler 
generator) to the metaevaluator in the form of Spec'. 

(CoGen Spec') ==> CoGen' 
((CoGen Spec') Spec') ==> CoGen" 

(((CoGen Spec') Spec') Spec') ==> CoGen"' 

Degeneration of Ultra-MST 

The fourth and the subsequent MSTs above return the same compiler generator 
as the third MST ( 4.2.6) if applied to the same metaevaluator Mc: CoGen = 
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(CoGen Spec), and the series ofMSTs comes to a fixed point. This is an instance of 
the general effect of degeneration of an MST series, which usually occurs when an 
ultra-MST is performed by a formal scheme without adding new information ("cre
ative knowledge") at each step: then, in a finite number of steps, it comes either to a 
fixed point, or to a state in which the scheme is not applicable. On the other hand, if 
new information is added, then the MST series does not degenerate. This can be 
seen from the example of ultra-MST. above. If we apply the compiler generator 
CoGen to a new metaevaluator Mc', given in the form of a specializer, a compiler 
generator CoGen' with new qualities is generated. 

MST Over Ultra-MST 

If the MST scheme of an ultra-MST becomes the object of metacomputation, then 
this is an activity which is one MST level higher than the ultra-MST. An example of 
such an activity can be shown in our case. Indeed, applying the MST scheme to the 
same metaevaluator Mc' several times, one can perform three steps before the ultra
MST degenerates. So, we can construct the corresponding MST-formula for a 
compiler-generator generator CoGenGen, which, when given an arbitrary Mc, pro
duces the fixed point of CoGen in one step. Here, the where clause is introduced 
because the same specializer spec is used three times: 

def (CoGenGen me) = 
(((CoGen spec) spec) spec) where spec = (me _me ) <. -,P__x_) 

" <. e e I y) 

As usual, metacomputing this definition generates a compiler-generator generator 
CoGenGen' which, given a metaevaluator Mc, immediately produces a new fixed point: 

(Mc ) 
(((CoGen spec) spec) spec) where spec = (me _me ___ -+ <. _p__x_) <. • 'y) 

Now, one step of the new ultra-MST corresponds to three steps of the original ultra
MST. We have compressed three MSTs into a single one. 

5. APPLICATIONS TO MATHEMATICS 

This section is devoted to applications of MST-schemes to linguistic modeling in 
mathematics. Upon considering the problem of manipulating hierarchies of mathe
matical definitions, which is closely related to the conversion of compilers into 
interpreters, we show how metacomputation can be used for proving mathematical 
theorems. 

5.1. Reducing Hierarchies of Mathematical Definitions 

An illustrative example which requires the conversion of compilative definitions 
to interpretive ones can be found in mathematics. Definitions provided in mathe-
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matical textbooks are compilative. they define the formal meaning of a new notion in 
terms of existing ones. The meaning of a new term is determined by replacing it with 
the terms used in its definition, that is, by compiling. Of course, such translations are 
not actually performed by mathematicians; instead they use informal images, or 
mental interpretation while working with these extended languages. But, formally, 
mathematical theories are hierarchies of compilative definitions. 

An excell~n t exampl,e is provided by the treatise E/,ements of Mathematics (Bourbaki, 
1960), whose first volume, in the first chapter, defines a basic language for the whole 
of mathematics and the notion of correct proofs. The later is defined through an 
algorithm that checks whether a given text t written in the basic language is a correct 
proof. We shall call this algorithm BasicProof: 

(BasicProof t) ~ True or False 

The text of Bourbaki's treatise is a sequence of definitions and proofs expressed in 
terms of defined notions and prnof patterns, which are abbreviations of phrases in 
the basic languages. This sequence of definitions, say D, is actually a compiler 
description which, given as input to an algorithm that expands definitions, say 
Expand, translates a text t into a text t' in the basic language: 

(Expand D, t) ~ t' 

A text t is considered to be a correct proof, if the text t' obtained by compiling t to 
the basic language is a correct proof: 

(BasicProof (Expand D, t)) ~True or False 

So, we have two kinds of language definitions: an interpreter BasicProof that 
assigns the meaning, True or False, to a text in the basic language, and a compiler 
Expand that translates a text in the extended language defined by D to the basic 
language (terms not defined by Dare left unchanged). 

Why not perform the expansion and the basic proof checking by a computer? An 
attempt was made in 1969 by V. Turchin and S. Romanenko to expand the first texts 
of the first chapter of Bourbaki's treatise into the basic language. But the experiment 
failed! It was found that any realistic computer memory will be immediately ex
hausted, if not with the texts of the first chapter then with the texts of the following 
chapters, simply because the size of the expanded text grows exponentially with the 
height of the hierarchy of definitions. This indicates that it is practically impossible 
to verify Bourbaki's mathematical treatise directly. 

Is there any chance to verify the text by a computer? Mathematicians check the 
text by interpreting it in their minds without first compiling it to the basic language. 
But these interpretation rules are not explicated in the treatise. This is not acciden
tal: when a language is gradually extended by adding new notions step by step, it is 
usually much simpler to define formal rules for translating them into existing 
notions than to define rules for interpreting a text in the extended language. 

Thus, there is a need to derive a new interpreter Proo fD for the extended language, 
given the interpreter BasicProof for the basic language and the compiler Expand 
which is parameterized with respect to the definitions D. In principle, a special 
interpreter could be constructed by hand in order for mathematical texts written in 
an extended language to be interpreted more efficiently. But, as argued above, the 
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possibility of introducing new definitions at any time is an essential feature of 
linguistic modeling which can only be achieved if the manipulation of linguistic 
processors is fully mechanized. 

5.1.1. Generation of Proof-Checkers 

The First MST 

The interpreter ProofD is fully specified by 

def (ProofD t) = (BasicProof (Expand D, t)) (5.1.l) 

In order to obtain a more efficient interpreter, the definition is metacomputed. If 
metacomputation is powerful enough, the interpreter ProofD' is what is needed: 

(Mc ) => ProofD' 
(BasicProof (Expand D, t)) 

(5.1.2) 

The Second MST 

Now let us use the scheme of Section 4 and vary the definition of the compiler. 
This is actually what Bourbaki's formalization of mathematics requires: after each 
new definition, the compilation process changes and a new proof-checker is re
quired. We replace D with a variable, say d, to define a parameterized MST formula 
and metacompute it: 

(Mc ) => ProofGen' 
(Mc ' a____) 

(BasicProof (Expand •, t)) 

(5.1.3) 

The result, Proo fGen, is a generator of interpreters for mathematical texts. It is an 
algorithm which, given definitions D, produces an algorithm, ProofD, which checks 
whether a given mathematical text using the notions defined in D, is a correct proof: 

(ProofGen D) => ProofD, (ProofD t) => True or False 

5.1.2. Extending the Basic Language 

Although the basic language used in Bourbaki's treatise does not change, the 
language is extended after each definition Dn and can be considered as a new basic 
language for defining the next language extended by definition Dn+r Therefore, the 
corresponding proof-checker Proofn+l can be generated from the previous proof
checker Proofn: 

~c )=>P~o~+i 
(Proo fn (Expapd Dn+l' t)) 

(5.1.4) 

One may expect that the incremental generation of the proof-checkers is faster than 
producing Proofn from the basic language interpreter: 
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(Mc ) ~ Proofn+l 
(BasicProof (Expand Dl" .. Dn Dn+l' t)) 

(5.1.5) 

However, this may be either faster, or slower than using the proof-checker generator 
ProofGen depending on the complexity of the definition list Dr··Dn Dn+i= 

(ProofGen Dr··Dn Dn+i> ~ Proofn+l 

By analogy with the formula (5.1.3), the incremental generator of proof-checkers 
can be constructed, if a mathematical theory defined as Proofn is extended in 
different ways: 

(Mc · ) ~ ProofGen 
(Mc a__) n 

(Proofn (Expand • , t)) 

(5.1.6) 

The result algorithm, ProofGenn, applied to definitions, Dn+l' produces the ex
tended proof-checker Proofn+i= 

(Proofn+l t) ~ True or False 

The Third MST 

We can define tl\e process (5.1.6) for an arbitrary proof-checker Proofn (we lift it 
up and replace with a variable, p) and perform the following metacomputation: 

(Mc ) ~ ProofGenGen 
(Mc --P-------+ 

(Mc -1 d__) 
( • (Expand • , t)) 

(5.1.7) 

The result is a the generator of incremental generators of proof-checkers, which, 
applied to a proof-checker Proofn, produces the same incremental generator as 
that produced by the formula (5.1.6): 

(ProofGenGen Proofn) ~ ProofGenn 
(ProofGenn Dn+i> ~ Proofn+l 

(Proofn+l t) ~ True or False 

5.1.3. Incremental Generation of Proof-Checkers 

The series of MSTs appears to be deterministic. However, the development was 
determined by our own choice. Considering the process of incrementally generating 
a proof-checker (5.1.4), we can vary not just one Dn+l' but both Proofn and Dn+i 
(they are replaced with variables p and d respectively): 

(Mc _p d_) ~ p' 
( • (Expand • , t)) 

(5.1.8) 

and then, performing the second MST, produce the incremental proof-checker 
generator: 
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(Mc ) ::::} ProofincGen 
(Mc -P d.._) 

( • (Expand • , t)) 

(5.1.9) 

The result ProofincGen applied to a proof-checker Proofn and a new definition 
Dn+l' generates the proof-checker for the extended language, Proofn+l: 

(ProofincGen Proofn, Dn+i> ::::} Proofn+l 

Conclusion 

All MST-formulas considered above are based on the following metacomputation 
operations: program composition, specialization, and self-application of metacom
putation. If the metacomputation methods are powerful enough to reduce hier
archies of mathematical definitions, then they will be useful for solving a variety of 
other, non-mathematical problems. The main difficulty is the repeated metacom
putation of program composition. We also saw that MSTs are not restricted to a 
single MST series, as different schemes can be defined, provided that one can vary 
several parts of the initial formula. In the case of definition hierarchies, a series of 
languages is produced by step-wise extensions. MST-formulas can be used to formal
ize a variety of other problems, but this is beyond the scope of this paper. 

5.2. Theorem Proving by Metacomputation 

The axiomatic method of representing mathematical knowledge is not always 
adequate for manipulation by metacomputation. Instead of defining axioms that 
state properties of objetts and functions, and then giving an algorithm of verifying 
proofs, mathematical objects can be represented directly as linguistic expressions, 
and predicates and functions as programs. This is the essence of the constructive 
approach as opposed to the formal axiomatic one. Indeed, a certain class of mathemati
cal theorems can be proven directlybymetacomputation (Turchin, 1977; 1980b), a 
goal that has driven the development of supercompilation (Turchin, 1986). 

Consider the representation of the natural numbers in the unary number system, 
where the number n is a string consisting of the symbol 0 followed by n quotes (e.g., 3 
is represented as O"'). Instead of using the Peano axioms for formal arithmetic, the 
arithmetic operations are defined as algorithms. For example, addition and equality 
of two natural numbers are defined as (sentences ordered by priority) 

def (Add x, 0) = x 
(Add x I y') = (Add x I y)' 

def (Eq 0, 0) = True 
(Eq x', y') = (Eq x, y) 
(EQ x, y) = False 

The predicate expressing the commutativity of addition 

x+y=y+x 

is defined as a program Comm: 

def (Comm x, y) = (Eq (Add x, y), (Addy, x)) (5.2.1) 
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Then, the theorem that addition is commutative can be formulated as the statement 
that the program Comm returns the value True for all natural numbers x and y. As 
long as the predicate P is defined algorithmically, any theorem of the form 

Vx,y, ... ,z: P(x,y, ... ,z) 

can be expressed in the same way. To prove such a theorem, the predicate P is 
metacomp~ted 

(Mc ) ~ P' 
(P x,y, ... , z) 

(5.2.2) 

If the algorithm P' obtained by metacomputation has a certain form, from which it is 
clear that P' always returns True, then we conclude that the theorem holds. The 
simplest case is obviously a program of the form 

def. (P x, y, ... , z) = True 

which immediately returns True. If the algorithm P' does not fit into the required 
form, the theorem is not necessarily false, but is merely means that the theorem 
could not be proven by metacomputation. In other words, the power of the meta
computation method was insufficient to reduce P. 

Metasystem Structure of the Two Approaches 

The axiomatic representation of mathematical knowledge has two parts: a set of 
axioms (or axiom schemes) and a deductive system. They are organized as a meta
system with the former being at the object level and the latter at the control level. 
Traditionally, mathematics expresses the majority of its knowledge by axioms at the 
object level. The deductive system is minimal and consists of a few deductive rules, 
e.g. the Modus Ponens: 

P, P implies Q 

Q 

-two statements which were already proven 

-the statement which is then proven 

In the constructive approach all functions and predicates are defined as algo
rithms at the object level rather than as axioms. Instead of deduction rules, the con
trol lies in the metaevaluator: the "division of labor" is inverse. Although the 
definitions at the object level are usually similar to the axioms (see above), the 
control level is much richer. Moreover, it is not fixed, it evolves. No metaevaluator Mc 

can prove all theorems because this is an algorithmically unsolvable problem, but 
every new metaevaluator Mc can achieve more and more. Besides, a metaevaluator 
includes some of the mathematical knowledge that is traditionally represented by 
axioms. The induction principle is a good example to illustrate such knowledge. 

Principle of Induction 

The principle of induction is usually formulated in form of an axiom scheme. 
Although the idea behind the induction principle is the same for all theories, the 
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axiom scheme has to be defined for each theory anew. Consider the induction 
principle for natural numbers: 

For any predicate P, 
if P ( 0) and for all numbers n: P (n) implies P (n + 1) 
then P (n) for all numbers n. 

This definition relies on the particular constructors of the data domain, 0 and n + 1. 
In another theory which uses a different data domain, the antecedent takes another 
form. 

In the axiomatic approach one can not formalize the general principle of induc
tion: if the data domain is built by repeated application of constructors (liken +1) 
starting from atomic data (like 0), and ifa property (like P) holds for all atomic data 
and is preserved by application of any constructor, then the property holds for all 
data .. As pointed out by Turchin, the principle of induction is a meta-principle, 
rather than a special axiom scheme that has to be added to each theory. 

In the constructive approach the induction principle can be formalized at the 
metalevel for all theories. As shown above, proving theorems by metacomputation 
takes two steps: 

(1) metacomputation of the predicate which is asserted to be always True; 
(2) recognition that the resulting program has such a form that it obviously can 

return only True. 
The power of theorem proving can be increased by improving either tJie metacom
putation, or the recognition. Some improvements are easier to formalize in meta
computation, others in recognition. The induction principle is the latter case. 

So, the principle of induction is the following rule for recognition: if all terminal 
points in the resulting program are True, then the program always returns True. 
Let Induction be the algorithm that performs this check. It returns True for a 
program with terminal nodes being True; otherwise the answer is NotProved: 

(Induction "a program with terminal nodes being True")=> True 

Then the process of proving a theorem P by induction is defined as 

(Induction (Mc )) 
(P x,y, ... ,z) (5.2.3) 

Example 

Consider a special case of proving the commutativity of addition, where y = 1: 

x+l=l+x (5.2.4) 

Even a simple supercompiler transforms the definition of the corresponding predi
cate (where O' is 1) 

def (Comml x) = (Eq (Add x, O'), (Add O', x)) . (5.2.5) 

into the form: 
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def (Comml 0) = True 
(Comml x') = (Comml x) 
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The latter is a program with one terminal point which is True; that is, the program 
returns True for all natural numbers. Thus, the commutativity theorem (5.2.4) is 
proven. 

Second M$T 

As in the previous sections, the MST-formula (5.3.3) can be metacomputed to 
make the process of theorem proving more efficient. Assume that the varying part is 
the definition of the predicate P. Again, we express this by lifting P, and replacing it 
with a variable, say p: 

(Mc ) ~ IndProver 
(Induction (Mc _p )) 

(• x,y, ... ,z) 

The result ofmetacomputation is an inductive theorem prover IndProver. Given the 
definition of a predicate, it tries to prove that the predicate is True for all argu
ments. 

The MST-formula above requires metacomputation of composition of the In -
duction and Mc. The expected advantage of the generated IndProver over 
computing the formula (5.2.3) is that the process of metacomputation over p can be 
aborted as soon as one of the terminal nodes is not True. 

Conclusion 

Metacomputation can be used to define what it means that a statement is proven, 
as well as to directly prove statements by the computer. The class of provable 
statements grows while the methods of metacomputation evolve. In our view, the 
constructive approach to theorem proving is more promising in the long run than 
the traditional approach based on the search of proofs in deductive systems. 

6. CONCLUSION 

While large software systems are used to solve problems with less human effort and 
intervention, computer science not been able to fully cope with the problem of 
software development. This mirrors the fact that the control of executing models has 
been achieved, while the control over the creation oflinguistic models has not been 
affected directly by the introduction of the computer. 

We analyzed metasystem transitions, which may be observed, or are intentionally 
organized, in computer science and mathematics. In this paper we were especially 
interested in different schemes for metasystem transition and metacomputation, 
and potential applications. We say that the next step in formal linguistic modeling, 
the next large-scale metasystem transition, is achieved. if efficient linguistic models 
can be created by the computer and it suffices for the human to make initial formal 
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definitions. The ultimate goal is to achieve the ability for an arbitrary series of 
metasystem transitions over linguistic models to be just an ordinary, mechanical 
process, where only high-level decisions are taken by the human. 

In cybernetics one says that a purposive system has some knowledge, if it has a 
model of some part of the world in which the system finds itself. Hence, mastering 
the method of linguistic modeling means providing new tools for steering and 
improving the development oftmowledge. But it also means advancing the scientific 
method-with all its consequences. · 
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