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Abstract 

A regeneration scheme is presented which shows how to change the computation staging of a generating extension by 
a two-level metasystem structure using program specialization and program composition. From the results described in 
this paper we can see that program generation and program degeneration are two extremes of the same transformation 
dimension; this relates several well-known program transformations under a general scheme. @ 1997 Elsevier Science B.V. 
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1. Introduction 

Generating extensions describe uniformly the func- 
tioning of various program generators. This has the 
big advantage that program generators can be imple- 
mented with uniform techniques, including diverse ap- 
plications such as parsing, translation, graphics, and 

operating systems [ 11. Generating extensions are a 
powerful concept because they capture the essence 
of apparently different program generators. Automatic 
tools for turning a general program into a generat- 
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ing extension now exist for various programming lan- 

guages, such as Prolog, Scheme, and C (see [ 81). 
The division of a computation into two (or more) 

stages has been studied intensively in the area of par- 
tial evaluation [ 2,1,8]. However, a number of prob- 
lems related to generating extensions has not been in- 
vestigated systematically. This paper considers one of 
them: the direct conversion of generating extensions 
into generating extensions. In others words, the ob- 
jective is to turn a staged computation into another 
staged computation. 

Let us introduce the regeneration problem first. A 
generating extension of a program P is a program 
Genp that takes a part of P’s input, and produces a 
specialized program that returns the same result when 
applied to the remaining input as program P when ap- 
plied to all input. Suppose P is a program with four 
arguments and let (P A, B, C, D) denote the applica- 
tion of program P to its input A, B, C, D. Generating 
extension Genp is defined such that for all A, B, C, D: 
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((Genp A, B) C, D) = (P A, B, C, D). (1) 

The computation of P is performed in two stages: 
Genp takes A, B as input, and generates a specialized 
program that computes P’s result given C, D. Suppose 
we are given Genp, but not P. The goal is to find a 
new generating extension Genu of a program R such 
that for all A, B, C, D: 

((Gens A, C) B, D) = ((Genp A, B) C, 0). (2) 

where (R A, C, B, D) = (P A, B, C, D). We call such a 
problem the regeneration problem of Genp. Note that 
B, C are consumed at different stages in Eq. (2). It is 

clear that the regeneration problem stated here can be 
generalized to multi-level generating extensions [ 51. 

In this paper however, we focus on the two-level case. 
It is well known that the Futamura projections 

(FMP) [2] can turn a general program, say P, into 
a generating extension, e.g. Genp, by program spe- 
cialization (Eq. ( 1) ). The question has been raised 
whether, in principle, one can modify the staging of a 

generating extension, say Genp, in a similar fashion 
(Eq. (2) ) . However, none of the existing projections 
covers the latter case: neither the PMP, nor the spe- 
cializer projections (SPP) [ 31, nor the degeneration 
projections (DGP) [ 71 can be used. The projections 
can be applied sequentially to achieve the effect of 
regeneration in particular cases, but practical expe- 
rience suggests that the generation of intermediate 
programs is not (always) a good idea [ 51. Hence, 
we are looking for a direct and general solution to 
the regeneration problem. 

Generally, it seems hard to reason about multiple 
levels of program transformers and to describe appli- 
cations that go beyond the self-application of the clas- 
sical IMP, such as the regeneration problem consid- 

ered here. This paper adopts the language-independent 
notions of [ 4,6], based upon Turchin’s metasystem 
transition [ lo], to achieve full formalization and clar- 

ity with minimal means. It helped us quite a bit in un- 
derstanding and describing symbolically the different 
kinds of objects and operations performed on them. 

This paper takes the idea of program transforma- 
tion by metasystem transition further. A regeneration 
scheme is formulated which shows how to modify 
the staging of a generating extension by a two-level 
metasystem structure using program specialization 
and program composition. Distinguishing between 

these two equivalence transformations allows us to 
identify certain abstract properties needed to solve 
the problem under consideration. 

From the results described in this paper, we can see 
that program generation and program degeneration, 
which superficially seem very different, are two ex- 
tremes of the same transformation dimension. Indeed 
the standard projections for program generation and 
degeneration, FMP, SPP and DGP, can all be shown 

to be instances of the regeneration scheme. Finally, it 
appears that an understanding of some of the deeper 
issues underlying metasystem structures in program 
transformation is beginning to emerge. 

We assume familiarity with the basic notions of par- 

tial evaluation, in particular the Futamura Projections 
and self-application (a good source is [ 81). 

2. Preliminaries 

We now formulate the properties of generating ex- 

tensions, program specializers and program composers 
more precisely; see [ 41 for details. 

Data, programs and application. We assume a fixed 
set of data for input and output, and for representing 
programs written in different languages. To express 
syntactically the application of an L-program to its in- 
put we use angular brackets (. . .)L (we omit the lan- 
guage index L when it is not essential). Computation 
(reduction) of an application expression is denoted by 
+. For example, (P X, Y)L =S Out is the reduction of 
program P with input X, Y to output Out. Two appli- 
cation expressions A, I3 are computationally equiva- 
lent, A = B, if they can be reduced to identical data 
elements, or both sides are undefined. 

Definition 1 (interpreter). A C-program Znt is an 
A/C-interpreter if for every A-program P and every 

input X: (Znt P,X)c = (P X),. 

Definition 2 (translator). A C-program Trans is an 
A-+B/C-translator if for every A-program P and ev- 
ery input X: ((Trans P)c X)B = (P X)A. 

Definition 3 (generating extension). A C-program 
Genp is a B/C-generating extension of an A-program 
P ifforeveryinputX,Y: ((Genp X)c Y)B = (PX,Y)*. 
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3. Equivalence transformation as 
metacomputation 

Abstraction. An application expression including 
variables, called conjgurution [ 93, is an abstraction 
which represents a set of application expressions. 
A variable ranges over the whole data domain. We 
use lower case names to denote variables. For in- 
stance, (P X, y) is a configuration where y is a 

variable. 

Encoding. To represent configurations as data, we as- 
sume an injective mapping, called metacoding, from 

configurations into the data domain. We are not inter- 
ested in a specific way of metacoding and write a hor- 

izontal line above a configuration to denote its meta- 
code. This allows a metacode-invariant representation, 
e.g. (P X, y) is a metacoded configuration. 

Metaprograms. It follows from our notation that 
(Meta (P X, y)) + Out denotes metacomputation on 
a metacoded configuration by metaprogram Meta. We 
refer to any process of simulating, analyzing or trans- 

forming programs by means of programs as metacom- 
putation. For better readability, we move metacoded 

expression one line down for each metacoding (called 

MST-schemes; first suggested by Turchin) : 

(Meta_ 
(P x, y)) * Out. 

Hierarchy of metaprograms. When we abstract 

from a metacoded subexpression, we interrupt the 
horizontal line denoting the metacode. We assume 
that the metacode is compositional, i.e. changing a 

subcomponent does not entail a change in the enclos- 
ing metacode. For example, 

(Meta+_). 
(P A,Y) 

is a configuration where variable x abstracts from con- 

stant X. The distance between the variable and the po- 
sition & defines how many times the value of a vari- 
able has to be metacoded upon substitution (here x’s 
value needs to be metacoded once in order to obtain 
52). Repeated use of abstraction, encoding, and meta- 
computation leads to a hierarchy of metaprograms. For 
example, 

(Meta’ 
(Me?-_) 

) =+ out’. 

(P 4,) 

We are now in the position to define an important class 

of metaprograms, namely equivalence transformers, 
and to specify two transformation tasks. The meta- 
notation Ca denotes the result of applying substitution 
u to configuration C. 

Definition 4 (equivalence transformer). A program 

Meta is an equivalence transformer if for all substitu- 

tions (+ = {X,HXi,... ,~~+-+X~}wherexi,...,x, 
are all variables that occur free in a configuration C: 3 

((Metu ??) Xl...X,J = Ca. 

Definition 5 (program specializer) . An equivalen- 

ce transformer Spec written in C is an A--+B/C- 
specializer if for every A-program P, every input X, Y: 

( (Spec 
lp xvY)A 

>C y)B = (p x,Y)A. 

Definition 6 (program composer). An equivalence 
transformer Comp written in C is an A+B/C- 
composer if for every A-program P,Q, every input 
x. Y: 

Wow 
(p (Q x)Aq dA 

)C x,y)B = (p (Q X)A,Y)A. 

The two definitions reveal the close connection be- 
tween program specialization and program composi- 
tion: composition of a program P with a constant pro- 
gram Q, that is (Q) =S X, amounts to specialization. 
On the other hand, we do not expect a specializer to 
perform (non-trivial) composition of programs. 

4. The regeneration scheme 

The regeneration scheme which we will define now 
tells us how to change the computation staging of a 

generating extension by specialization and composi- 
tion. It shows that a generating extension expecting 
one part of the input early, can be regenerated to pro- 
duce a new generating extension expecting another 

3 Meta uses a fixed order for free variables, e.g. by occurrence 

from left to right. 
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MST-formula 

(Spec )E + Genk 
(Comp---lz__l: ----\I3 

(Znt (Gew 1, b>c, 4 d)c 

Fig. 1. The regeneration scheme for Genp. 

part of the input early. The general case of multi- 

language regeneration is considered. 
(i) Suppose we are given a B/C-generating ex- 

tension Genp of an A-program P and a B/C- 
interpreter Znt. Hence, for all input A, B, C, D: 

(Znt (Genp A, B)c, C, D)c 

= (P A, B, C, D)A. (3) 

(ii) Assume further two equivalence transformers, 
a C-+F/D-composer Comp and a D-+G/E- 
specializer Spec. 

The objective is to find an (efficient) F/G-generating 
extension Genk of a program R such that for all input 

A,B,C,D: 

((Genk A, C)G B, D)F 

= ((Gew A, B)c C,D)B. (4) 

We present the regeneration scheme for finding Gen;. 
( 1) Given A, C define a specialized program PAC 

such that 

(PAC B, D)c = ((Genp A, B)c C D)B (5) 

for all B, D. For every Genp, A, C there exists a (triv- 

ial) C-program P,JC as shown constructively by the 
definition 

def (PAC b,d)c g (Znt (Genp A,b)c,C,d)c, 

where PAC ‘s computation is performed in two stages: 

first by producing a program using Genp, then inter- 
preting the new program with Znt. In other words, Znt 
provides an interpretation of Genp’s output. The two 
stages together recover P’s original functionality. A 
(more efficient) program Pit can be obtained by ap- 
plying the composer Comp to PAC’S definition in or- 
der to remove the computational overhead caused by 
the generation and subsequent interpretation of an in- 
termediate program: 

(Cov 
(Znt (Genp A, b)c, C, d)c 

>D =+ pit 

From Definition 6 we have equation 

(Pie B, D)F = (PAC B, D)c. (6) 

(2) Define a generating extension GenR such that 

((GenR A, C)D B, D)F = (P& B, D)F. (7) 

for all A, B, C, D. For every Genp there exists a (triv- 
ial) D-program GenR as shown constructively by the 
definition 

def (GenR a, C)D 

2 (Comp____a___c- 
(Znt (Genp h, b)c,h d)c 

) D . 

A (more efficient) generating extension Gen; can be 
obtained by applying the specializer Spec to GenR’S 

definition in order to specialize the composer Comp 
with respect to Znt and Genp. The new scheme, which 
we call the regeneration scheme, is shown in Fig. 1. 
From Definition 5 we have 

(Genk A, C)G = (GenR A, C)D. (8) 

Theorem 7. Program Genk obtained by the regen- 
eration scheme (Fig. 1) using the programs specified 
in (i) and (ii) is an F/G-generating extension such 
that Eq. (4) holds for all A, B, C, D. 

Proof. The correctness of the regeneration scheme 
follows from its construction above. Eq. (9) follows 

from Eqs. (5) and (6). From Eqs. (7) and (8) we 
have Eq. (10). Combining both equations it follows 
that Genk is the F/G-generating extension we are 
looking for in Eq. (4). 

(P& B, D)F = ((Gew A,B)c C,D)B, (9) 

((Genk A, C)G B, D)F = (P& B, D)F. 0 (10) 

Note that the regeneration scheme does not use self- 
application as does the 2nd IMP, but a more general 
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Conversion MST-formula 

a Trans + Mix (Spec )E =k- Mix 

(Camp P---)D 
(Sint (Trans A),, k,y)c 

b Mix -+ Trans (Spec )E * Trans 

(Camp P >D 
(Sinf (Mix A, x)c, y)c 

Fig. 2. Direct regeneration: translator to specializer and vice versa. 

Type of equation Characterization Example 

a ((Genp A) C) = ((GenR A,C)) Full generation - 

b ((Genp A) C, D) = ((GenR A, C) D) Partial generation FMP, SPP 

C ((Genp A) D) = ((GenR A) D) Identity regeneration - 

d ((Genp A, B) 0) = ((GenR A) B,D) Partial degeneration - 

e ((Gem B) 0) = ((Gem) B,D) Full degeneration DGP 

Rg. 3. Characterization of Genp’s five regeneration problems. 

metasystem structure of equivalence transformers and 
abstractions. The difference is that regeneration uses 
a composer to transform the composition of Znt and 
Genp, while the 2nd FMP requires “only” the trans- 
formation power of a specializer, and uses a simpler 
abstraction pattern (it does not involve a generating 
extension Genp; see Proposition lo), 

The program Geni is an F/G-generating extension 
which inherits its target language F from the composer 
and its implementation language G from the special- 
izer. The languages B, C, D, and E are arbitrary in the 
regeneration scheme: they disappear during the trans- 
formation process. 

5. A regeneration problem 

It is known that translators and specializers are gen- 
erating extensions of interpreters [ 2,3]. We now con- 
sider a regeneration problem, namely the conversion 
of a translator into a specializer, and vice versa. 

Suppose we have two C-programs, an A-K/C- 
translator Trans and a C/C-interpreter Sink Hence, for 
every A-program P and every input X, Y: 

(Sint (Trans P)c, X, Y)c = (P X, Y),. (11) 

The objective is to find an A--K/C-special&r Mix 
such that 

((Mix P, X)c Y)c = ((Trans P)c X, Y)c. (12) 

It is easy to see that the generating extensions Mix and 
Trans in Eq. ( 12) correspond to the generating exten- 
sions GenR and Genp in Eq. (4)) respectively. Thus, 
the problem under consideration can be solved by the 
regeneration scheme: specializing the composition of 
the translator and the interpreter. Since we have B = 
C = F = G for the languages in Eq. (4)) the follow- 
ing two transformers are needed: a C-K/D-composer 
Comp and a D--C/E-specializer Spec. Languages D, 
E are arbitrary and, thus, two source-to-source trans- 
formers may be used instead by letting C = D = E. 
Fig. 2(a) shows the conversion of Trans into Mix us- 
ing the regeneration scheme where a E p, c E x, d 3 
y (and omitting b). Similarly, Fig. 2(b) shows the 
conversion of Mix into Trans. 

6. Characterization of regeneration problems 

It is characteristic for regeneration that GenR’s 
staging is different from Genp’s staging. For clarity 
we used four arguments in the regeneration scheme, 
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Step Conversion MST-formula Note 

1 Mix -+ In/ (Camp )c =S- mt’ 1st DGP 
(Sint (Mix p, x>c, y)c 

2 In/ + Trans (gpec )c + Trans 2nd FMP 

Fig. 4. Indirect regeneration: specializer to translator. 

but it is easy to see that each of them, say A, can 
be replaced by a (possibly empty) sequence, e.g. 

Al,.. . , A,, (n 2 0). Consequently, GenR may have 
more or less arguments than Genp, i.e. some input 
will be consumed “earlier” or “later”, respectively. 
This leads us to a characterization of five regenera- 
tion problems (Fig. 3). Moreover, we shall now see 
that the standard projections, FM& SPP, and DGP, are 
instances of the regeneration scheme. 

We say that P is a constant program if it has no 
input, that is (P) = C. A program Genp is a constant 
generating extension of a program P if Genp is a 
constant program and for all X: ((Get+) X) = (P X). 

(a) Full generation: Gens is a generating extension 
which, given all input, returns a constant program. 

(b) Partial generation: GenR has more arguments 
than Genp, but does not return a constant program. 
In other words, some input is consumed earlier. The 
conversion of a translator into a specializer is such a 
case (cf. Eq. ( 12)). Moreover, the FMP and SPP are 
special cases of partial generation as shown below. 

(c) Identity regeneration: GenR has the same input 
as Genp. This case covers, among others, the trans- 
formation of an A+B/C-translator into an A+F/C- 
translator by letting C = G in Eq. (4) (“retargeting”), 
and the transformation of a B/C-generating extension 
into a B/C-generating extension by letting B = F, C = 
G. Depending on the programs used for regeneration, 
the latter transformation may modify the intensional 
behavior of a generating extension while leaving its 
extensional behavior unchanged. 

(d) Partial degeneration: GenR has fewer argu- 
ments than Genp, but Gens is not a constant generat- 
ing extension. In other words, some of Genp’s input 
is consumed later. The conversion of a specializer into 

a translator is such a case (cf. Eq. ( 12) ). 
(e) Full degeneration: GenR has no arguments, i.e. 

GenR is a constant generating extension, (Germ) = R. 

The conversion of a translator or a specializer into 
an interpreter is such a case (cf. Example 9). As we 
shall see below, the DGP are a special case of full 
degeneration. 

Proposition 8. The regeneration scheme (Fig. 1) re- 
duces to thefirst DGP [ 71 if Genk is a constant gen- 
erating extension of an F-program R. 

Proof. To ensure that Genk is a constant gen- 
erating extension, we omit variables a, c from 
the regeneration scheme. In the resulting scheme, 

spec operates on a ground configuration (no free 
variables) and can be removed since by Def. 4 
we have ((Spec c)) = Q for all ground con- 
figurations 9. The resulting scheme is the 1st 
DGP: 

(Gomp 
(Tnt (Genp b)c, d)c 

)o+R. Cl 

Example 9. Consider the conversion of an A-C/C- 

specializer Mix (Eq. ( 12) ) into an A/C-interpreter 
Znt’ such that (Znt’ PX, Y)c = ((Mix PX)c Y)c. 
Assume a C-C/C-composer Comp and a C/C- 
interpreter Sint. Full degeneration of Mix into Znt’ 
according to the 1st DGP is shown in Fig. 4( 1) . 

Proposition 10. The regeneration scheme (Fig. 1) 
reduces to the second FMP [ 21 if Genp is a constant 
generating extension of a C-program P 

Proof. To ensure that Genp is a constant generating 
extension, we omit variables a, b from the regener- 
ation scheme. Since Genp is a constant generating 
extension of a C-program P we have (P C, D)c = 
(Znt (Genp)c, C, D)c for all C, D. Using this equality 
from right to left, we resolve the composition prob- 
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lem at the lowest level. 4 Thus, Comp can be replaced 
by a (simpler) equivalence transformer: a specializer 
Spec’. The resulting scheme is the 2nd FMP (self- 
application of Spec requires C = D = E, F = G): 

(Spec E+=-Genk. 0 

Example 11. Consider the conversion of an A/C- 
interpreter Znt’ (Example 9) into an A-+C/C- 
translator Trans. Assume further a (self-applicable) 
source-to-source transformer, namely a C+C/C- 
specializer Spec. Partial generation of In/ into Truns 
according to the 2nd FMP is shown in Fig. 4(2). 
Schemes ( 1) and (2) applied sequentially achieve 
the effect of partial degeneration, namely the conver- 
sion of Mix into Trans (Section 5), but in contrast to 
the regeneration scheme this transformation requires 
two separate steps. 

Proposition 12. The regeneration scheme (Fig. ( 1) ) 
reduces to the second SPP [ 33 if Genp is a constant 
generating extension of a C-program P and c is split 
into two parts. 

Proof. Follows the proof of Proposition 10, resulting 
in the 2nd SPP: 

7. A regenerator as generating extension 

We complete the presentation, noting that the re- 
generation scheme suggests the existence of a regen- 
erator, a tool for changing the computation staging of 
a generating extension. 

Definition 13 (regenerator). A program Regen is a 
regenerator of generating extensions if for every gen- 
erating extension Genp of P, every input A, B, C, D: 

(((Regen Genp) A, C) B, D) = ((Genp A, B) C, D). 

4 In fact, it is already a specialization problem since Genp is a 
constant program. 

How can one obtain a regenerator? We know of two 
construction methods using equivalence transformers 
(beside hand-writing a regenerator). First, similar to 
the 3rd FMP, a regenerator can be obtained by abstract- 
ing from program Genp in the regeneration scheme 
(Fig. 1) and applying a specializer to the new config- 
uration. Second, we can view a regenerator as a gener- 
ating extension of a program Dint, called degenerating 
interpreter [ 71, satisfying (Dint Genp, A, B, C, D) = 
(P A, B, C, D) for all generating extensions Genp of 
P. It follows that 

(((Regen Genp) A, C) B, D) 

= (Dint Genp, A, B, C, D). 

This suggests that a regenerator Regen is a three-level 
generating extension of a degenerating interpreter Dint 
and, thus, Regen can be obtained from Dint using 
(multi-level) specialization [ 51. This is remarkable 
because one does not need a “universal” composer, 
but can resolve the composition problem already in 
the (manual) construction of Dint. It may be easier to 

write Dint than to design a general composer that spe- 
cializes well with respect to (arbitrary) interpreters. 
In other words, specialization is sufficient to obtain 
Regen from Dint. 

8. Discussion 

When a generating extension is constructed, it is vi- 
tal to know which part of the input will be supplied 
early, and which late. We have shown that the compu- 
tation staging of a generating extension can be changed 
by the regeneration scheme using three programs: an 
interpreter, a specializer, and a composer. 

Several points about the regeneration scheme must 
be made. The scheme says nothing about the qual- 
ity of the generated programs. It exhibits the underly- 
ing metasystem structure of the problem and tells us 
what can be achieved given (strong enough) special- 
izers and composers. Both are equivalence transform- 
ers and thus, from an extensional view, are exchange- 
able. However, they are software tools and may be 
targeted towards different applications. For instance, 
it has been shown that partial evaluation techniques, 
based on aggressive constant propagation, are power- 
ful enough to cover a large field of important applica- 
tions [ 81, while they are not good enough to achieve 
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non-trivial program composition as in [9,11]. Thus 
it is not only conceptually productive to distinguish 
between these transformation tasks. It allows to iden- 
tify certain abstract properties needed to solve a spe- 
cific transformation problem (e.g. the layers of com- 
position and specialization). Finally, note that the full 
computational realization of the regeneration scheme 
is still an open problem - although partial solutions 
already exist, namely for the FMP and SPP [ 8,5]. 
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