
Inform$ion
fg;cging

Information Processing Letters 62 (1997) 127-134

A regeneration scheme for generating extensions 1

Robert Gliick a,*, Andrei Klimov b,2
a DIKV. Department of Computer Science, University of Copenhagen, Vniversitetsparken I. DK-2100 Copenhagen 0, Denmark

b Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Miusskaya Square 4, RV-125047 Moscow, Russia

Received 8 November 1996; revised 26 February 1997
Communicated by H. Ganzinger

Abstract

A regeneration scheme is presented which shows how to change the computation staging of a generating extension by
a two-level metasystem structure using program specialization and program composition. From the results described in
this paper we can see that program generation and program degeneration are two extremes of the same transformation
dimension; this relates several well-known program transformations under a general scheme. @ 1997 Elsevier Science B.V.

Keywords: Programming languages; Program generation; Partial evaluation; Program composition; Metacomputation

1. Introduction

Generating extensions describe uniformly the func-
tioning of various program generators. This has the
big advantage that program generators can be imple-
mented with uniform techniques, including diverse ap-
plications such as parsing, translation, graphics, and

operating systems [11. Generating extensions are a
powerful concept because they capture the essence
of apparently different program generators. Automatic
tools for turning a general program into a generat-

* Corresponding author. Email: glueck@diku.dk.
’ Partly supported by the project “Design, Analysis and Rea-

soning about Tools” funded by tbe Danish Natural Sciences
Research Council. The first author was also supported by an
Erwin-Schrodinger-Fellowship of the Austrian Science Foundation
(lWF) grant JO780 & J0964; the second author partly by the
Russian Basic Research Foundation grant 93-01-00628 & 96-01-
01315, the US Office of Naval Research grant N00014-96-l-0800,
and the US Civilian Research and Development Foundation grant
RMl-254.

* Email: and.klimov@refal.ac.msk.su.

ing extension now exist for various programming lan-

guages, such as Prolog, Scheme, and C (see [81).
The division of a computation into two (or more)

stages has been studied intensively in the area of par-
tial evaluation [2,1,8]. However, a number of prob-
lems related to generating extensions has not been in-
vestigated systematically. This paper considers one of
them: the direct conversion of generating extensions
into generating extensions. In others words, the ob-
jective is to turn a staged computation into another
staged computation.

Let us introduce the regeneration problem first. A
generating extension of a program P is a program
Genp that takes a part of P’s input, and produces a
specialized program that returns the same result when
applied to the remaining input as program P when ap-
plied to all input. Suppose P is a program with four
arguments and let (P A, B, C, D) denote the applica-
tion of program P to its input A, B, C, D. Generating
extension Genp is defined such that for all A, B, C, D:

0020-0190/97/$17.00 @ 1997 Elsevier Science B.V. All rights reserved.
PIISOO20-0190(97)00055-O

128 R. Gliick, A. Klimov/Infonnation Processing Letters 62 (1997) 127-134

((Genp A, B) C, D) = (P A, B, C, D). (1)

The computation of P is performed in two stages:
Genp takes A, B as input, and generates a specialized
program that computes P’s result given C, D. Suppose
we are given Genp, but not P. The goal is to find a
new generating extension Genu of a program R such
that for all A, B, C, D:

((Gens A, C) B, D) = ((Genp A, B) C, 0). (2)

where (R A, C, B, D) = (P A, B, C, D). We call such a
problem the regeneration problem of Genp. Note that
B, C are consumed at different stages in Eq. (2). It is

clear that the regeneration problem stated here can be
generalized to multi-level generating extensions [51.

In this paper however, we focus on the two-level case.
It is well known that the Futamura projections

(FMP) [2] can turn a general program, say P, into
a generating extension, e.g. Genp, by program spe-
cialization (Eq. (1)). The question has been raised
whether, in principle, one can modify the staging of a

generating extension, say Genp, in a similar fashion
(Eq. (2)) . However, none of the existing projections
covers the latter case: neither the PMP, nor the spe-
cializer projections (SPP) [31, nor the degeneration
projections (DGP) [71 can be used. The projections
can be applied sequentially to achieve the effect of
regeneration in particular cases, but practical expe-
rience suggests that the generation of intermediate
programs is not (always) a good idea [51. Hence,
we are looking for a direct and general solution to
the regeneration problem.

Generally, it seems hard to reason about multiple
levels of program transformers and to describe appli-
cations that go beyond the self-application of the clas-
sical IMP, such as the regeneration problem consid-

ered here. This paper adopts the language-independent
notions of [4,6], based upon Turchin’s metasystem
transition [lo], to achieve full formalization and clar-

ity with minimal means. It helped us quite a bit in un-
derstanding and describing symbolically the different
kinds of objects and operations performed on them.

This paper takes the idea of program transforma-
tion by metasystem transition further. A regeneration
scheme is formulated which shows how to modify
the staging of a generating extension by a two-level
metasystem structure using program specialization
and program composition. Distinguishing between

these two equivalence transformations allows us to
identify certain abstract properties needed to solve
the problem under consideration.

From the results described in this paper, we can see
that program generation and program degeneration,
which superficially seem very different, are two ex-
tremes of the same transformation dimension. Indeed
the standard projections for program generation and
degeneration, FMP, SPP and DGP, can all be shown

to be instances of the regeneration scheme. Finally, it
appears that an understanding of some of the deeper
issues underlying metasystem structures in program
transformation is beginning to emerge.

We assume familiarity with the basic notions of par-

tial evaluation, in particular the Futamura Projections
and self-application (a good source is [81).

2. Preliminaries

We now formulate the properties of generating ex-

tensions, program specializers and program composers
more precisely; see [41 for details.

Data, programs and application. We assume a fixed
set of data for input and output, and for representing
programs written in different languages. To express
syntactically the application of an L-program to its in-
put we use angular brackets (. . .)L (we omit the lan-
guage index L when it is not essential). Computation
(reduction) of an application expression is denoted by
+. For example, (P X, Y)L =S Out is the reduction of
program P with input X, Y to output Out. Two appli-
cation expressions A, I3 are computationally equiva-
lent, A = B, if they can be reduced to identical data
elements, or both sides are undefined.

Definition 1 (interpreter). A C-program Znt is an
A/C-interpreter if for every A-program P and every

input X: (Znt P,X)c = (P X),.

Definition 2 (translator). A C-program Trans is an
A-+B/C-translator if for every A-program P and ev-
ery input X: ((Trans P)c X)B = (P X)A.

Definition 3 (generating extension). A C-program
Genp is a B/C-generating extension of an A-program
P ifforeveryinputX,Y: ((Genp X)c Y)B = (PX,Y)*.

R. G&k, A. Klimov/lnformation Processing Letters 62 (1997) 127-134 129

3. Equivalence transformation as
metacomputation

Abstraction. An application expression including
variables, called conjgurution [93, is an abstraction
which represents a set of application expressions.
A variable ranges over the whole data domain. We
use lower case names to denote variables. For in-
stance, (P X, y) is a configuration where y is a

variable.

Encoding. To represent configurations as data, we as-
sume an injective mapping, called metacoding, from

configurations into the data domain. We are not inter-
ested in a specific way of metacoding and write a hor-

izontal line above a configuration to denote its meta-
code. This allows a metacode-invariant representation,
e.g. (P X, y) is a metacoded configuration.

Metaprograms. It follows from our notation that
(Meta (P X, y)) + Out denotes metacomputation on
a metacoded configuration by metaprogram Meta. We
refer to any process of simulating, analyzing or trans-

forming programs by means of programs as metacom-
putation. For better readability, we move metacoded

expression one line down for each metacoding (called

MST-schemes; first suggested by Turchin) :

(Meta_
(P x, y)) * Out.

Hierarchy of metaprograms. When we abstract

from a metacoded subexpression, we interrupt the
horizontal line denoting the metacode. We assume
that the metacode is compositional, i.e. changing a

subcomponent does not entail a change in the enclos-
ing metacode. For example,

(Meta+_).
(P A,Y)

is a configuration where variable x abstracts from con-

stant X. The distance between the variable and the po-
sition & defines how many times the value of a vari-
able has to be metacoded upon substitution (here x’s
value needs to be metacoded once in order to obtain
52). Repeated use of abstraction, encoding, and meta-
computation leads to a hierarchy of metaprograms. For
example,

(Meta’
(Me?-_)

) =+ out’.

(P 4,)

We are now in the position to define an important class

of metaprograms, namely equivalence transformers,
and to specify two transformation tasks. The meta-
notation Ca denotes the result of applying substitution
u to configuration C.

Definition 4 (equivalence transformer). A program

Meta is an equivalence transformer if for all substitu-

tions (+ = {X,HXi,... ,~~+-+X~}wherexi,...,x,
are all variables that occur free in a configuration C: 3

((Metu ??) Xl...X,J = Ca.

Definition 5 (program specializer) . An equivalen-

ce transformer Spec written in C is an A--+B/C-
specializer if for every A-program P, every input X, Y:

((Spec
lp xvY)A

>C y)B = (p x,Y)A.

Definition 6 (program composer). An equivalence
transformer Comp written in C is an A+B/C-
composer if for every A-program P,Q, every input
x. Y:

Wow
(p (Q x)Aq dA

)C x,y)B = (p (Q X)A,Y)A.

The two definitions reveal the close connection be-
tween program specialization and program composi-
tion: composition of a program P with a constant pro-
gram Q, that is (Q) =S X, amounts to specialization.
On the other hand, we do not expect a specializer to
perform (non-trivial) composition of programs.

4. The regeneration scheme

The regeneration scheme which we will define now
tells us how to change the computation staging of a

generating extension by specialization and composi-
tion. It shows that a generating extension expecting
one part of the input early, can be regenerated to pro-
duce a new generating extension expecting another

3 Meta uses a fixed order for free variables, e.g. by occurrence

from left to right.

130 R. Gltick, A. Klimov/lnfonnation Processing Letters 62 (1997) 127-134

MST-formula

(Spec)E + Genk
(Comp---lz__l: ----\I3

(Znt (Gew 1, b>c, 4 d)c

Fig. 1. The regeneration scheme for Genp.

part of the input early. The general case of multi-

language regeneration is considered.
(i) Suppose we are given a B/C-generating ex-

tension Genp of an A-program P and a B/C-
interpreter Znt. Hence, for all input A, B, C, D:

(Znt (Genp A, B)c, C, D)c

= (P A, B, C, D)A. (3)

(ii) Assume further two equivalence transformers,
a C-+F/D-composer Comp and a D-+G/E-
specializer Spec.

The objective is to find an (efficient) F/G-generating
extension Genk of a program R such that for all input

A,B,C,D:

((Genk A, C)G B, D)F

= ((Gew A, B)c C,D)B. (4)

We present the regeneration scheme for finding Gen;.
(1) Given A, C define a specialized program PAC

such that

(PAC B, D)c = ((Genp A, B)c C D)B (5)

for all B, D. For every Genp, A, C there exists a (triv-

ial) C-program P,JC as shown constructively by the
definition

def (PAC b,d)c g (Znt (Genp A,b)c,C,d)c,

where PAC ‘s computation is performed in two stages:

first by producing a program using Genp, then inter-
preting the new program with Znt. In other words, Znt
provides an interpretation of Genp’s output. The two
stages together recover P’s original functionality. A
(more efficient) program Pit can be obtained by ap-
plying the composer Comp to PAC’S definition in or-
der to remove the computational overhead caused by
the generation and subsequent interpretation of an in-
termediate program:

(Cov
(Znt (Genp A, b)c, C, d)c

>D =+ pit

From Definition 6 we have equation

(Pie B, D)F = (PAC B, D)c. (6)

(2) Define a generating extension GenR such that

((GenR A, C)D B, D)F = (P& B, D)F. (7)

for all A, B, C, D. For every Genp there exists a (triv-
ial) D-program GenR as shown constructively by the
definition

def (GenR a, C)D

2 (Comp____a___c-
(Znt (Genp h, b)c,h d)c

) D .

A (more efficient) generating extension Gen; can be
obtained by applying the specializer Spec to GenR’S

definition in order to specialize the composer Comp
with respect to Znt and Genp. The new scheme, which
we call the regeneration scheme, is shown in Fig. 1.
From Definition 5 we have

(Genk A, C)G = (GenR A, C)D. (8)

Theorem 7. Program Genk obtained by the regen-
eration scheme (Fig. 1) using the programs specified
in (i) and (ii) is an F/G-generating extension such
that Eq. (4) holds for all A, B, C, D.

Proof. The correctness of the regeneration scheme
follows from its construction above. Eq. (9) follows

from Eqs. (5) and (6). From Eqs. (7) and (8) we
have Eq. (10). Combining both equations it follows
that Genk is the F/G-generating extension we are
looking for in Eq. (4).

(P& B, D)F = ((Gew A,B)c C,D)B, (9)

((Genk A, C)G B, D)F = (P& B, D)F. 0 (10)

Note that the regeneration scheme does not use self-
application as does the 2nd IMP, but a more general

R. Gliick, A. Klimov/lnfownation Processing Letters 62 (1997) 127-134 131

Conversion MST-formula

a Trans + Mix (Spec)E =k- Mix

(Camp P---)D
(Sint (Trans A),, k,y)c

b Mix -+ Trans (Spec)E * Trans

(Camp P >D
(Sinf (Mix A, x)c, y)c

Fig. 2. Direct regeneration: translator to specializer and vice versa.

Type of equation Characterization Example

a ((Genp A) C) = ((GenR A,C)) Full generation -

b ((Genp A) C, D) = ((GenR A, C) D) Partial generation FMP, SPP

C ((Genp A) D) = ((GenR A) D) Identity regeneration -

d ((Genp A, B) 0) = ((GenR A) B,D) Partial degeneration -

e ((Gem B) 0) = ((Gem) B,D) Full degeneration DGP

Rg. 3. Characterization of Genp’s five regeneration problems.

metasystem structure of equivalence transformers and
abstractions. The difference is that regeneration uses
a composer to transform the composition of Znt and
Genp, while the 2nd FMP requires “only” the trans-
formation power of a specializer, and uses a simpler
abstraction pattern (it does not involve a generating
extension Genp; see Proposition lo),

The program Geni is an F/G-generating extension
which inherits its target language F from the composer
and its implementation language G from the special-
izer. The languages B, C, D, and E are arbitrary in the
regeneration scheme: they disappear during the trans-
formation process.

5. A regeneration problem

It is known that translators and specializers are gen-
erating extensions of interpreters [2,3]. We now con-
sider a regeneration problem, namely the conversion
of a translator into a specializer, and vice versa.

Suppose we have two C-programs, an A-K/C-
translator Trans and a C/C-interpreter Sink Hence, for
every A-program P and every input X, Y:

(Sint (Trans P)c, X, Y)c = (P X, Y),. (11)

The objective is to find an A--K/C-special&r Mix
such that

((Mix P, X)c Y)c = ((Trans P)c X, Y)c. (12)

It is easy to see that the generating extensions Mix and
Trans in Eq. (12) correspond to the generating exten-
sions GenR and Genp in Eq. (4)) respectively. Thus,
the problem under consideration can be solved by the
regeneration scheme: specializing the composition of
the translator and the interpreter. Since we have B =
C = F = G for the languages in Eq. (4)) the follow-
ing two transformers are needed: a C-K/D-composer
Comp and a D--C/E-specializer Spec. Languages D,
E are arbitrary and, thus, two source-to-source trans-
formers may be used instead by letting C = D = E.
Fig. 2(a) shows the conversion of Trans into Mix us-
ing the regeneration scheme where a E p, c E x, d 3
y (and omitting b). Similarly, Fig. 2(b) shows the
conversion of Mix into Trans.

6. Characterization of regeneration problems

It is characteristic for regeneration that GenR’s
staging is different from Genp’s staging. For clarity
we used four arguments in the regeneration scheme,

132 R. Gliick, A. Klimov/lnformation Processing Letters 62 (1997) 127-134

Step Conversion MST-formula Note

1 Mix -+ In/ (Camp)c =S- mt’ 1st DGP
(Sint (Mix p, x>c, y)c

2 In/ + Trans (gpec)c + Trans 2nd FMP

Fig. 4. Indirect regeneration: specializer to translator.

but it is easy to see that each of them, say A, can
be replaced by a (possibly empty) sequence, e.g.

Al,.. . , A,, (n 2 0). Consequently, GenR may have
more or less arguments than Genp, i.e. some input
will be consumed “earlier” or “later”, respectively.
This leads us to a characterization of five regenera-
tion problems (Fig. 3). Moreover, we shall now see
that the standard projections, FM& SPP, and DGP, are
instances of the regeneration scheme.

We say that P is a constant program if it has no
input, that is (P) = C. A program Genp is a constant
generating extension of a program P if Genp is a
constant program and for all X: ((Get+) X) = (P X).

(a) Full generation: Gens is a generating extension
which, given all input, returns a constant program.

(b) Partial generation: GenR has more arguments
than Genp, but does not return a constant program.
In other words, some input is consumed earlier. The
conversion of a translator into a specializer is such a
case (cf. Eq. (12)). Moreover, the FMP and SPP are
special cases of partial generation as shown below.

(c) Identity regeneration: GenR has the same input
as Genp. This case covers, among others, the trans-
formation of an A+B/C-translator into an A+F/C-
translator by letting C = G in Eq. (4) (“retargeting”),
and the transformation of a B/C-generating extension
into a B/C-generating extension by letting B = F, C =
G. Depending on the programs used for regeneration,
the latter transformation may modify the intensional
behavior of a generating extension while leaving its
extensional behavior unchanged.

(d) Partial degeneration: GenR has fewer argu-
ments than Genp, but Gens is not a constant generat-
ing extension. In other words, some of Genp’s input
is consumed later. The conversion of a specializer into

a translator is such a case (cf. Eq. (12)).
(e) Full degeneration: GenR has no arguments, i.e.

GenR is a constant generating extension, (Germ) = R.

The conversion of a translator or a specializer into
an interpreter is such a case (cf. Example 9). As we
shall see below, the DGP are a special case of full
degeneration.

Proposition 8. The regeneration scheme (Fig. 1) re-
duces to thefirst DGP [71 if Genk is a constant gen-
erating extension of an F-program R.

Proof. To ensure that Genk is a constant gen-
erating extension, we omit variables a, c from
the regeneration scheme. In the resulting scheme,

spec operates on a ground configuration (no free
variables) and can be removed since by Def. 4
we have ((Spec c)) = Q for all ground con-
figurations 9. The resulting scheme is the 1st
DGP:

(Gomp
(Tnt (Genp b)c, d)c

)o+R. Cl

Example 9. Consider the conversion of an A-C/C-

specializer Mix (Eq. (12)) into an A/C-interpreter
Znt’ such that (Znt’ PX, Y)c = ((Mix PX)c Y)c.
Assume a C-C/C-composer Comp and a C/C-
interpreter Sint. Full degeneration of Mix into Znt’
according to the 1st DGP is shown in Fig. 4(1) .

Proposition 10. The regeneration scheme (Fig. 1)
reduces to the second FMP [21 if Genp is a constant
generating extension of a C-program P

Proof. To ensure that Genp is a constant generating
extension, we omit variables a, b from the regener-
ation scheme. Since Genp is a constant generating
extension of a C-program P we have (P C, D)c =
(Znt (Genp)c, C, D)c for all C, D. Using this equality
from right to left, we resolve the composition prob-

R. G&k, A. Klimov/tnformation Processing Letters 62 (1997) 127-134 133

lem at the lowest level. 4 Thus, Comp can be replaced
by a (simpler) equivalence transformer: a specializer
Spec’. The resulting scheme is the 2nd FMP (self-
application of Spec requires C = D = E, F = G):

(Spec E+=-Genk. 0

Example 11. Consider the conversion of an A/C-
interpreter Znt’ (Example 9) into an A-+C/C-
translator Trans. Assume further a (self-applicable)
source-to-source transformer, namely a C+C/C-
specializer Spec. Partial generation of In/ into Truns
according to the 2nd FMP is shown in Fig. 4(2).
Schemes (1) and (2) applied sequentially achieve
the effect of partial degeneration, namely the conver-
sion of Mix into Trans (Section 5), but in contrast to
the regeneration scheme this transformation requires
two separate steps.

Proposition 12. The regeneration scheme (Fig. (1))
reduces to the second SPP [33 if Genp is a constant
generating extension of a C-program P and c is split
into two parts.

Proof. Follows the proof of Proposition 10, resulting
in the 2nd SPP:

7. A regenerator as generating extension

We complete the presentation, noting that the re-
generation scheme suggests the existence of a regen-
erator, a tool for changing the computation staging of
a generating extension.

Definition 13 (regenerator). A program Regen is a
regenerator of generating extensions if for every gen-
erating extension Genp of P, every input A, B, C, D:

(((Regen Genp) A, C) B, D) = ((Genp A, B) C, D).

4 In fact, it is already a specialization problem since Genp is a
constant program.

How can one obtain a regenerator? We know of two
construction methods using equivalence transformers
(beside hand-writing a regenerator). First, similar to
the 3rd FMP, a regenerator can be obtained by abstract-
ing from program Genp in the regeneration scheme
(Fig. 1) and applying a specializer to the new config-
uration. Second, we can view a regenerator as a gener-
ating extension of a program Dint, called degenerating
interpreter [71, satisfying (Dint Genp, A, B, C, D) =
(P A, B, C, D) for all generating extensions Genp of
P. It follows that

(((Regen Genp) A, C) B, D)

= (Dint Genp, A, B, C, D).

This suggests that a regenerator Regen is a three-level
generating extension of a degenerating interpreter Dint
and, thus, Regen can be obtained from Dint using
(multi-level) specialization [51. This is remarkable
because one does not need a “universal” composer,
but can resolve the composition problem already in
the (manual) construction of Dint. It may be easier to

write Dint than to design a general composer that spe-
cializes well with respect to (arbitrary) interpreters.
In other words, specialization is sufficient to obtain
Regen from Dint.

8. Discussion

When a generating extension is constructed, it is vi-
tal to know which part of the input will be supplied
early, and which late. We have shown that the compu-
tation staging of a generating extension can be changed
by the regeneration scheme using three programs: an
interpreter, a specializer, and a composer.

Several points about the regeneration scheme must
be made. The scheme says nothing about the qual-
ity of the generated programs. It exhibits the underly-
ing metasystem structure of the problem and tells us
what can be achieved given (strong enough) special-
izers and composers. Both are equivalence transform-
ers and thus, from an extensional view, are exchange-
able. However, they are software tools and may be
targeted towards different applications. For instance,
it has been shown that partial evaluation techniques,
based on aggressive constant propagation, are power-
ful enough to cover a large field of important applica-
tions [81, while they are not good enough to achieve

134 R. G&k, A. Klimov/lnfotmurion Processing Letters 62 (1997) 127-134

non-trivial program composition as in [9,11]. Thus
it is not only conceptually productive to distinguish
between these transformation tasks. It allows to iden-
tify certain abstract properties needed to solve a spe-
cific transformation problem (e.g. the layers of com-
position and specialization). Finally, note that the full
computational realization of the regeneration scheme
is still an open problem - although partial solutions
already exist, namely for the FMP and SPP [8,5].

References

[I] AI Ershov, On the essence of compilation, in: E.J. Neuhold,
ed., Formal Description of Programming Conceph (North-
Holland, Amsterdam, 1978) 391-420.

[2] Y. Futamura, Partial evaluation of computing process -
An approach to a compiler-compiler, Systems, Computers,

Conrrols 2 (5) (1971) 45-50.
[3] R. Gliick, On the generation of specializers, Functional

Programming 4 (4) (1994) 499-514.

[4] R. Gliick, On the mechanics of metasystem hierarchies in
program transformation, in: M. Proietti, ed., L,ogic Program

Synthesis and Transformation, Lecture Notes in Computer
Science, Vol. 1048 (Springer, Berlin, 1996) 234-251.

[5] R. Gliick and J. Jflrgensen, Efficient multi-level generating
extensions for program specialization, in: M. Hermenegildo
and SD. Swierstra, eds., Programming Languages:
Implemenrarions, Logics and Programs, Lecture Notes in
Computer Science, Vol. 982 (Springer, Berlin, 1995) 259-
278.

[61

[71

[81

[91

[lOI

Ill1

R. Gliick and A.V. Klimov, Metasystem transition schemes
in computer science and mathematics, World Futures 45

(1995) 213-243.

R. Gliick and A.V. Klimov, On the degeneration of program
generators by program composition, New Generadon
Compubng, to appear.
N.D. Jones, C.K. Gomard and P. Sestoft, Partial Evaluation
and Automatic Program Generation (Prentice-Hall, New
York, 1993).
V.F. Turchin, The concept of a supercompiler, Trans.

Programming Languages Systems 8 (3) (1986) 292-325.
V.F. Turchin, Metacomputation: Metasystem transitions
plus supercompilation, in: 0. Danvy, et al., eds., Partial
Evaluation, Lecture Notes in Computer Science, Vol. 1110
(Springer, Berlin, 1996) 481-509.
P Wadler, Deforestation: Transforming programs to eliminate
trees, Theoret Comput. Sci. 73 (1990) 231-248.

