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Abstract One of the main discoveries in the seventies was that the 
concept of a generating extension covers a very wide class of apparently 
different program generators. Program specialization, or partial evaluation, 
is powerful because it provides uniform techniques for the automatic imple- 
mentation of generating extensions from ordinary programs. The Futamura 
projections stand as the cornerstone of the development of program speciali- 
zation. 

This paper takes the idea of the Futamura projections further. Three 
degeneration projections are formulated which tell us how to achieve the 
reverse goal by program composition, namely turning a generating extension 
into an ordinary program. The fact that program composition can invert the 
effect of program specialization shows that these projections are dual in a 
sense. The degeneration projections complete a missing link between pro- 
grams and generating extensions and allow for novel applications of pro- 
gram transformation. 
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w Introduction 
One of  the main discoveries in the seventies was that the concept of  a 

generating extension 1~ covers a very wide class of apparently different program 
generators. This has the big advantage that program generators for diverse 
applications such as parsing, translation, theorem proving, and pattern matching 
can be implemented with uniform techniques. 2) Program specialization, or 
partial evaluation, is powerful because it provides transformation techniques for 
the automatic implementation of generating extensions? '4's) Program specializa- 
tion can now be considered as one of  the most advanced techniques for auto- 
matic program transformation. The Futamura projections 6) stand as the corner- 
stone of  this development. 

This paper takes the idea of  the Futamura projections further. Three 
degeneration projections are formulated which tell us how to reverse the effect 
of the Futamura projections by program composition, namely how to turn a 
generating extension into an ordinary program. The degeneration projections, 
similar in structure to the Futamura projections but their inverse, complete a 
missing link between programs and generating extensions. This is interesting in 
its own right and allows for several novel applications of  program specialization 
and program composition. It is quite remarkable that, although program special- 
ization has been used for some time to generate generating extensions, the reverse 
operation, degeneration, has not been studied before. 

In this paper we shall mainly be concerned with what can be achieved by 
program composition, and not how it can be achieved. Although promising 
results have been obtained for program composition, 7'8'9"1~ this method is still at 
a research stage. The transformation problems presented here can be seen as test 
cases for existing methods, and as challenging goals for future research. 

Suppose P is a program with two arguments and let ( P  X, Y) denote the 
application of  program P to its input X, Y. Computat ion of  P producing result 
Out is described by 

(P X, Y)  ~ Out 

A generating extension o f  P is a program Gem, that takes one part of  P's input, 
say X, and produces another program Px, the specialization of  P to that input. 
The specialized program returns the same result when applied to the remaining 
input Y as the original program P when applied to input X, Y. Computat ion 
in two stages is described by 

(Genp X )  ~ Px 
(Px Y)  ~ Out 
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<P X, Y> <(Gene X> Y> 
<Parser Grammar, Phrase> <<Parsergen Grammar> Phrase> 
<Prover Axioms, Theorem> <(Provergen Axioms> Theorem> 
<Matcher Pattern, String> <<Matchergen Pattern> String> 
<Interpreter Program, Data> <<Translator Program> Data> 

Fig. l Programs and their generating extensions. 

Combining these two we obtain the equation 

( P  X ,  Y )  = ( (Genp  X )  Y )  

one stage two stages 

Many computational problems can be solved either by a one stage computation, 
or by a two-stage computation. Some applications are illustrated in Fig. 1. A 
two-stage computation can be advantageous if Y changes more frequently than 
X. The second stage can often be optimized based on the input available in the 

first stage. 
The division of a computation into two (or more) stages has been studied 

intensively in the area of partial evaluation. 3'4'5) Futamura 6) was the first who 
saw the possibility to obtain generating extensions from general programs by 
self-application of a program specializer. After a period of independent 
insights, 6'u'1) the last decade has seen substantial progress both in theory and 
practice of program specialization. Automatic tools for turning programs into 
generating extensions now exist for various programming languages such as 
Prolog, Scheme, and C (see Ref. 4)). This paper considers the reverse transforma- 
tion using program composition. 

Function composition and specialization (by fixing parameters) is classi- 
cal mathematics. However, mathematics treats these operations extensionally, 
paying no attention to the structure of definitions. On the other hand, program 
composers and program specializers are software tools which modify the struc- 
ture of programs with the purpose of optimizing some aspects of the programs 
performance, e.g. time and space efficiency. 

The remainder of this paper is organized as follows. Section 2 defines the 
basic notions, Section 3 presents metacomputation, and Section 4 defines 
program specialization and program composition. Section 5 reviews the genera- 
tion of generating extensions by program specialization, and Section 6 studies 
degeneration by program composition. Sections 7 and 8 discuss the correspond- 
ing tools. Sections 9 and 10 investigate applications and related aspects. Section 
11 gives certain optimality criteria and Section 12 summarizes the projections for 
generation and degeneration. 

w Basic  Not ions  
We now formulate the properties of generating extensions, program 



78 R. Gl~ck, A. Klimov 

specializers, and program composers more precisely. A precise notation is 
necessary since more than one program may be involved at the same time and 
programs play multiple roles: as active agents and as passive data. 

Early notations for describing the interaction of  interpreters and transla- 
tors include the T-diagram. 12'13) In the area of  partial evaluation, the Futamura 
projections are often described using the mix-notation, 4) a formalism inspired by 
both recursive function theory and Lisp. However, there are several other ways 
of combining program transformers, such as the degeneration problem consid- 
ered in this paper, for which the traditional notations are not sufficient. 15~ This 
paper adopts the language-independent notions ~4'15~ based upon Turchin's 
MST-schemes) 6) 

2 .1  Data, Programs and Application 
We assume a fixed set of  data for input and output, and for representing 

programs written in different languages. We shall assume nothing further about 
data; we could choose symbol strings, Lisp lists etc. 

To express syntactically the application of  an L-program to its input we 
use angular brackets <...>L (we omit the language index L when it is not 
essential). Computat ion (reduction) of  an application expression is denoted by 
~ .  For example, <P X ,  Y>L ~ Out is the reduction of program P with input 
X, Y to output Out. Capitalized names, e.g. P, X, Y, stand for literal constants 
which represent arbitrary elements of  the data domain. 

Two application expressions ,,4, /3 are computationally equivalent, ,4 = 
/3, if they can be reduced to identical data elements, or both sides are undefined. 

Definition 1 (interpreter) 
A B-program Int  is an A/B-interpreter if for every A-program P and every input 
X: 

<Int P, X>B = <P X>A 

Definition 2 (self-interpreter) 
A self-interpreter for A is an A/A-interpreter. 

Definition 3 (translator) 
An M-program Trans is an A- 'B/M-translator if for every A-program P and 
every input X: 

<<Trans P>M X>B = <P X>A 

Definition 4 (generating extension) 
An M-program Genp is a B/M-generating extension of an A-program P if for 
every input X, Y: 

<<Gene X>M Y>B = <P X, Y>A 

An interpreter defines a source language A by actions in another language 
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B, while a translator defines a source language A by translation to a target 
language B where the translation is described in a meta-language M. A self- 
interpreter interprets the same language it is written in. A generating extension 
allows to perfrom a computat ion in two stages, while the original program 
performs the same computat ion in one stage. The two-level generating exten- 
sions defined here can be generalized to multi-level generating extensions. 17) 

w Metacomputation 
We refer to any process of  simulating, analyzing and transforming 

programs by means of programs as metacomputation. Programs that carry out 
these tasks, are metaprograms. The metacomputat ion formulas used here are 
collectively referred to as MST-formulas (MST = metasystem transition18)). 

3.1  Abstraction 
To represent application expressions without specifying all data elements, 

we introduce variables. An applicat ion expression including variables, called 
configuration, 7) is an abstraction which represents a set of  applicat ion expres- 
sions. A variable ranges over the whole data domain. We use lower case names 
to denote variables. For  instance, the following expression is a configuration 

where y is a variable: 

( P  X, y )  

3.2  Encoding 
To represent configurations as data, we assume an injective mapping, 

called metacoding, from configurations into the data domain (necessary since 
variables are not elements of  the data domain).* We are not interested in a 
specific way of  metacoding and write a horizontal line above a configuration to 
denote its metacode. This allows a metacode-invariant representation, e.g. the 

following is a metacoded configuration: 

( P  X, y )  

3.3  Metacomputation 
It follows from our notat ion that (Meta (P X, y ) ) ~  Out denotes 

metacomputation on a metacoded configuration ( P  X, y )  by metaprogram 
Meta. This characterization of metacomputat ion states nothing about its con- 
crete nature, except that it involves a metaprogram that operates on a metacoded 
configuration. For  better readability, we move metacoded expression one line 
down for each metacoding (this two-dimensional notation, called MST- 
schemes, was suggested by V. Turchin): 

* Metacoding in metacomputation corresponds to the G6del numeration in logics where state- 
ments about a theory are encoded in the theory itself. 
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(Meta .) ~ Out 
<P X,  y> 

3.4  Hierarchy of Metaprograms 
When we abstract from a metacoded subexpression, we interrupt the 

horizontal line denoting the metacode. We assume that the metacode is 
composit ional,  i.e. changing a subcomponent  does not entail a change in the 
enclosing metacode. For  example, 

(Meta x ) 
(P  ~, y )  

is a configuration where variable x abstracts from constant X.  The distance 
between the variable and position $ defines how many times the value of  a 
variable has to be metacoded upon substitution (here x 's  value needs to be 
metacoded once in order to obtain X).  The metacode of the above configuration 
can be passed, again, to a metaprogram. 

Repeated use of  abstraction, encoding, and metacomputa t ion  leads to a 
hierarchy of  metaprograms. For  example, 

(Meta" .) ~ Out" 
(Meta x__) 

(P ~, y)  

is a hierarchy of  two metaprograms. The construction of  each next level in a 
metasystem hierarchy is referred to as metasystem transition. 18~ We speak of 
self-application if a metaprogram is applied to a copy of  itself, i.e. if  programs 
Meta and Meta" are identical. 

w Equivalence Transformers 
We are now in the position to define an important  class of  metaprograms, 

namely equivalence transformers, and to specify two transformation tasks. An 
equivalence transformer modifies the structure of  programs with the purpose of  
optimizing some aspects of  the programs performance while preserving the 
programs functionality. Two important  types of  equivalence transformers are 
program specializers and program composers. A specializer constructs a special- 
ized program given a program P together with part of  its input X. A composer 
transforms the composi t ion of two programs P, Q into a single program. The 
meta-notation C o to denote the result of  applying substitution o to 
configuration C. 

Definition 5 (equivalence transformer) 
A program Meta is an equivalence transformer if for all substitutions a : (xi 
~-~ X1 . . . . .  xn~-'  Xn} where xl . . . . .  xn are all variables that occur free in a 
configuration C :* 

* Assume Meta uses a fixed order for free variables, e.g. by occurrence from left to right. 
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< <Meta C> X1...Xn> = C G 

8/ 

Definition 6 (program specializer) 
An equivalence transformer Spec written in M is an A--,B/M-specializer if for 
every A-program P, every input X, Y: 

<<Spec_ >M Y>B -- <P X,  Y>A 
<P X, y>A 

Definition 7 (program composer) 
An equivalence transformer Comp written in M is an A-,B/M-composer if for all 
A-programs P, Q, every input X, Y: 

<<Comp >M X,  Y>B = <P <Q x>A, Y>A 
<P <Q x>a, y>A 

Although the above definitions state nothing about the quality of  the 
transformers, we expect them to be non-trivial since the practical value of 
specialization and composition depends on their actual transformation power. 
A non-trivial specializer recognizes which of P's computations can be 
precomputed at specialization time and which must be delayed until run-time, 
so as to yield an efficient specialized program. A non-trivial composer generates 
an efficient composit ion of  P, Q by removing redundant computations, interme- 
diate data structures, and other interface code which exact a cost at run-time. We 
shall not fix a specific transformation method and refer to Refs. I), 2), and 4) for 
specialization methods and to Refs. 7), 8), 9), 10), and 19) for composition 
methods. 

w Program Generation by Specialization 
The three Futamura projections (FMP) tell us if we write a self- 

applicable specializer we get much more than just a specializer: we get the 
possibility to convert programs into generating extensions, and to produce a 
generator of generating extensions. We now fromalize the first two FMP as 
MST-schemes in order to compare them directly with the degeneration projec- 
tions defined later. To focus on the essence of  program generation, we assume 
that all specializers are source-to-source transformers written in the source 
language; for multi-language specialization see Ref. 20). 

Let Spec be a source-to-source specializer and let P be a program with 
input X, Y. Assume that input X is available before input Y. Program P can 
be converted into an (efficient) generating extension using the 2nd FMP which 
follows from the 1st FMP. 

1st FMP 
Given P, X define a specialized program Px such that 
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<Px Y> = <P X ,  Y> (1) 

for all Y. For every P, X there exists a (trivial) program Px as shown construc- 
tively by the definition 

def <Px y> ~= <P X, y> 

A (more efficient) program Pk can be obtained by specializing the definition of  
Px using Spec. The 1st FMP is defined by 

<Spec > ~ ek  (2) 
<P X, y> 

According to Definition 6 we have for P~- the equation: 

<e~: Y> = <P X, Y> (3) 

Program P~-can often be optimized by Spec based on the input available at 
specialization time. The transformed program is faithful to the original program, 
but is often significantly faster. Optimization is achieved by changing the times 
at which computations are performed. 

2nd FMP 
Given P define a generating extension Gene such that 

<<Genp X> Y> = <P~ Y> (4) 

for all X, Y. For  every P there exists a (trivial) generating extension Gem, by 
abstracting from constant X in the 1st FMP: 

tlef <Genp x> ~- <Spec x > 
<P ~, y> 

A (more efficient) generating extension Gent, can be obtained by specializing the 
definition of Genv using Spec. The 2nd FMP is defined by 

<Spec > ~ Gen~ (5) 
< Spec x > 

<P 4, y> 

The correctness of  the projection follows from the correctness of the specializer. 
Note that program Gen;, is obtained by self-appliation of  Spec, According to 
Definition 6 we have for Gen;, the equation: 

<<Gen'p X> Y> = <P/r Y> (6) 

The generating extension Gen~ obtained by the 2nd FMP produces a specialized 
program often significantly faster than Genv that uses the 1st FMP because Gent, 
is a specializer specialized with respect to P. Using Gent, often speeds up 
specialization by a factor of three to four compared with Gene using the Ist 
FMP. zl) 

A well-known application of  the 2nd FMP is the conversion of an 
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interpreter into a translator. 6) Interpreted programs run typically an order of 
magnitude slower than those which are translated: a difference large enough to 
be worth reducing by converting an interpreter into a translator. 

Example 1 (translator generation) 
Let IntBC be a B/c-interpreter. Given a C---,C/C-specializer Spec, the B/C- 
interpreter can be converted into a B---*C/C-translator TransBC such that 
((TransBC P)c  D)c  = (IntBC P, D)c. 

(Spec )c ~ TransBC D 
( Spec = p _ _ )  c 

(IntBC t, d>c 

w Program Degeneration by Composition 
Consider the reverse goal: turning a generating extension into an ordinary 

program. We call this the degeneration of  a generating extension. In other 
words, a two-stage computation is turned into a one-stage computation. 

Let Comp be a source-to-source composer and let Genp be a source-to- 
source generating extension. Suppose a self-interpreter Sint for the source 
language is given. We now present the 1st degeneration projection (DGP) for 
finding an (efficient) one-stage program given the generating extension. 

1st DGP 
Given Gene define a program P such that 

(P X,  Y )  = ((Genp X~ Y)  (7) 

for all X, Y. For  every generating extension Gene there exists a (trivial) 
program P as shown constructively by the definition 

def (P  x, y)  ~- (Sint (Gene x) ,  y)  

where P's computat ion is performed in two stages: first by producing a special- 
ized program using Gene, then interpreting the new program with Sint. For 
practical reasons, such a trivial degeneration of Genp is uninteresting. 

A (more efficient) program P '  can be obtained by applying the composer 
Comp to P's definition in order to remove the computational overhead caused 
by the generation and subsequent interpretation of  a specialized program. The 
1st DGP is defined by 

( C o r n p . )  ~ P' (8) 
(Sint (Gene x) ,  y)  

The correctness of  P '  follows from the correctness of the composer. According 
to Definitions 2 and 7 we have for P '  the equation: 

(P" X,  Y)  = ((Gene X )  Y)  (9) 

Similar to specialization, we expect that a non-trivial composer generates a 
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program P '  that is significantly faster than the (trivial) P defined above. On the 
other hand, even though Comp may be powerful enough to reduce all interpre- 
tive overhead caused by Sint, P" may not run faster than the program from 
which Genp was generated, e.g. by the 2nd FMP, unless this program is 
inefficient and can be optimized. 

So if we are given a composer and a self-applicable specializer we have 
the possibility to convert generating extensions into ordinary programs and vice 
versa. The degeneration scheme can be applied to all generating extensions, 
including those shown in Fig.l. 

degeneration by composition 
< 

P Gene 
) 

generation by specialization 

An application of  the 1st DGP is the conversion of  a translator into an 
interpreter. 14> Although interpretive language definitions are often preferable, 
e.g. when a new language is defined from scratch, it may be convenient to define 
language extensions by translation into elementary constructs (cf. bootstrapping 
compilers, macro expanders). In this situation the need for converting a transla- 
tor into an interpreter may arise. 

Example 2 (translator degeneration) 
Let TransBC be a B---,C/C-translator, and Sint be a self-interpreter for C. Given 
a c---~C/C-composer Comp, the B---,C/C-translator can be converted into a 
B/c-interpreter IntBC" such that ((TransBC P)c X)c  = (IntBC" P, X)c. 

( >c ~ IntBC' 
C~ (TransBC p>c, X>c 

Note that the degeneration of  a generating extension does not, in contrast 
to the generation of  a generating extension, require self-application, only a 
single metasystem level. Degeneration is conceptually simpler, but technically 
not necessarily easier than the generation of  a generating extension by self- 
application of a specializer. In fact, all three FMP give good results in practice, l) 
while the computat ional  realization of  the DGP is still an open problem. 

w A Generator of  Generating Extensions 
We review the 3rd FMP which allows us to produce a stand-alone tool 

for program generation, namely a generator o f  generating extensions. It can be 
obtained by double self-application of  a specializer. 

3rd F M P  

Let Genl, be the generating extensions of  P defined in Equation (6). Define a 
generator of generating extension Gegen such that 

((Gegen P) X)  = (Gen~ X)  (10) 
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for all P, X. For  every specializer Spec there exists a (trivial) generator Gegen 
by abstracting from P in the 2nd FMP: 

def <Gegen p) ~- <Spec<spe c pl~____~> 
<~ ~, y> 

A (more efficient) program Gegen" can be obtained by specializing the definition 
of Gegen using Spec for the third time. The 3rd FMP is defined by 

< Spec > ~ Gegen" (11) 
< Spee p >  

<Spec -I_x > 
<~, y> 

According to Definition 6 we have for Gegen" the equation: 

<<Gegen" P> X> = <Gent, X> (12) 

Example 3 (translator generation revisited) 
Returning to Example 1, the B/c-interpreter IntBC can be transformed into a 
translator TransBC by Gegen: 

<Gegen lntBC> ~ TransBC [] 

w A Degenerator of Generating Extensions 
We now present a stand-alone tool for program degeneration, namely a 

degenerator of  generating extensions, and show how it can be obtained from 
a specializer and a composer. This section introduces the 2nd and 3rd DGP. 

2nd DGP 
Let P '  be the program defined in Equation (9). Define a degenerator of generat- 
ing extensions Degen such that 

<<Degen Genv> X, Y> = <P' X,  Y> (13) 

for all Gene X,  Y. Given self-interpreter Sint, there exists a (trivial) degenerator 
Degen for every composer Comp by abstracting from Genp in the Ist DGP: 

fief <Degen gen> ~ < C o m p _ _ g e n  > 
<Sint ~ x>, y)  

A (more efficient) degenerator Degen" can be obtained by applying specializer 
Spec to Degen's definition in order to specialize the composer with respect to 
Sint. The 2nd DGP is defined by 

<Spec_ > ~ Degen' (14) 
< C o m p _ _ g e n _  > 

<Sint <~ x>, y> 

According to Definition 6 we have for Degen" the equation: 

<(Degen' Gene> X, Y> = <P" X, Y> (15) 
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Note that the 2nd DGP does not use a self-applicable specializer as does the 2nd 
FMP, but a metasystem structure consisting of  a composer and a specializer. The 
2nd DGP exhibits the underlying metasystem structure of  the degenerator 
problem and tells us what can be achieved given powerful enough composers 
and specializes. It allows us to identify certain abstract properties needed to 
obtain a degenerator. In practice, a transformer may, of  course, be powerful 
enough to serve both as a non-trivial specializer and a non-trivial composer. 7~ 

Example 4 (degenerator) 

Continuing Example 2, we can convert the translator TransBC into an inter- 
preter IntBC" using the degenerator Degen: 

(Degen TransBC) ~ IntBC' 

3rd DGP 

Finally, one can obtain a generator of  degenerators as follows. Define a genera- 
tor of degenerators Gedegen such that 

((Gedegen Sint) Genp) = (Degen" Gent) (16) 

for all Sint, Gene. Given Sint, Gedegen produces a new degenerator which is 
then applied to the generating extension Genv. For every Comp, Spec there 
exists a (trivial) degenerator generator Gedegen by abstracting from Sint in the 
2nd DGP: 

def (Gedegen sint) ~= <Spec sint_ .) 
( Comp_J_gcn 

(6 ~6 x), y )  

A (more efficient) degenerator generator Gedegen" can be obtained by specializ- 
ing Gedegen's definition using Spec. The 3rd DGP is defined by 

(Spec( ~nec-~ sint )) ~ Gedegen' (17) 

( Comp l_gen ) 
(~ (I x), y> 

According to Definition 7 we have for Gedegen' the equation: 

((Gedegen' Sint) Genp> = (Degen' Genp) (18) 

A degenerator generator may be used to produce different degenerators by 
modifying the self-interpreter. This is similar to the methods for achieving 
different transformation effects by instrumenting interpreters, called the interpre- 
tive approach, zz,2~ In general, Sint need not even be a self-interpreter but can be 
any interpreter as long as it is written in the source language of  the composer. 
This may be useful for producing degenerators with different source languages 
from a generic specializer and a generic composers, a method which is similar 
to the generation of  specializers with different source languages from a generic 
specializer. 2~ 
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w A Degenerat ing Interpreter 
We have seen that a degenerator can be obtained by specializing a 

composer. It is remarkable that there exists yet another method to obtain a 
degenerator, namely by viewing a degenerator Degen as a generating extension 
of a degenerating interpreter Dint. This suggests the existence of  a generation/ 
degeneration relation between these two programs which allows us to obtain a 
degenerator from a degenerating interpreter using the FMP, and to degenerate a 
degenerator using the DGP. 

degeneration 

Dint Degen 

generatmn 

9 .1  Degenerating Interpreter 
Consider an interpreter of  generating extensions, call it Dint, which 

satisfies the equat ion 

(Dint Gene, X, Y)  = (P X, Y)  (19) 

for all generating extensions Gene and all input X, Y. The interpreter Dint 
returns the same result when applied to P ' s  generating extension Gene and input 
X, Y as program P applied to X, Y. The existence of Dint, which we call 
degenerating interpreter, is shown constructively by the definition 

def (Dint gen, x, y)  ~- (Sint (Sint gen x),  y)  

A consequence of  Equations (15) and (19) is the equation 

(Dint Gene, X, Y)  -- ( (Degen Gene) X, Y)  (20) 

which suggests that a degenerator is a generating extension of  a degenerating 
interpreter, just as translators and specializers are generating extensions of  
ordinary interpreters (considering Gene as 'first' and X, Y as 'second'  argument 
of  Dint). 

In fact, Dint can be seen as a non-standard semantics of  generating 
extensions. 23) It provides the semantics of  Gene's implementat ion language, as 

well as the semantics of  Gene's target language. 

9 .2  Generation of a Degenerator 
Viewing a degenerator as a generating extension of  a degenerating inter- 

preter Dint means that a degenerator Degen' can be obtained from Dint using 
the program generator Gegen from Section 7: 

(Gegen Dint) ~ Degen" 

This is remarkable  because one does not need a "universal" composer, but can 
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resolve the composit ion problem already in the (manual) construction of Dint. 
In other words, conventional specialization is sufficient to obtain a degenerator. 
It may be easier to write Dint than to design a general composer that specializes 
well with respect to (arbitrary) interpreters. This is one more example of  
generating a transformer from an interpreter (cf. Section 8). 

9.3  Degeneration of a Degenerator 
On the other hand, a degenerating interpreter can be obtained by 

degenerating a degenerator: 

(Degen Degen'> ~ Dint' 

It can easily be verified that Dint' is a degenerating interpreter by combining 
Equations (19) and (15): 

(Dint" Gene, X, Y> = (Dint Gent,, X,  Y)  

A possible application is testing of  a new degenerator Degen' by verifying the 
correctness of  Dint'. 

9 .4  Self-Degeneration 
Finally, as a special case, Degen can be applied to a copy of  itself. We call 

this self-degeneration: 

(Degen Degen> ~ Dint" 

This suggests an interesting test for degenerators, namely that a degenerator must 
be strong enough to degenerate itself into an efficient degenerating interpreter 
(this corresponds to the requirement 4~ that a specializer is self-applicable if it is 
strong enough to produce an efficient specialization of  itself). 

w An Application of Incremental  Degeneration 
It is known that a specializer can be seen as a generating extension of  an 

interpreter, and that a generator of  generating extensions can be seen as a 
generating extension of  a specializer, z~ We conclude the discussion with an 
example of incremental degeneration, namely the degeneration of  a generator 
Gegen into a specializer Mix, and the degeneration of M/x into an interpreter 
Int2. The generation direction is described by the specializer projections, z~ and 
practical results have been achieved for the conversion from Int2 to Mix, and 
from Mix to Gegen. 171 

degeneration degeneration 

In t2 Mix Gegen 
generation generation 
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10.1 Generator Degeneration 
Let Gegen be a generator of generating extensions as specified by Equa- 

tion (12). Consider equation 

((Gegen P) X )  -- (Mix P, X )  (21) 

which follows from the 3rd FMP and the definition of a specializer MIX: 

def (Mix p, x)  ~= (Spec_p X ) 
y)  

The specializer Mix returns the same result when applied to program P and its 
first input X as P's generating extensions (produced by generator Gegen from P) 
applied to X. The equation suggests, cf. Equation (9), that a generator Gegen is 
a generating extension of a specializer Mix and, hence, both can be transformed 
into each other by generation and degeneration: 

(Degen Gegen) ~ Mix' 
( Gegen Mix'> ~ Gegen" 

An interesting property is that Gegen is self-generating, i.e. (Gegen Mix> 
Gegen, if Gegen is the result of the 3rd FMP using the same specializer Spec as 
in the definition of Mix above (this property was first proven in Ref. 2)). 

10.2 Specializer Degeneration 
Let Mix be the specializer defined above. Consider equation 

( (Mix  P, X> Y)  = <Int2 P, X ,  Y )  (22) 

which follows from the definition of Mix and the specification of an interpreter 
Int2 of two-argument programs: 

(Int2 P, X,  Y)  : (P X,  Y )  

The interpreter Int2 applied to program P and input X, Y returns the same 
result as P's residual program (produced by Mix from P, X) applied to the 
remaining input Y. The equation suggests, cf. Equation (9), that a specializer 
Mix is a generating extension of an interpreter Int2 and that both can be 
generated/degenerated into each other: 

(Degen2 Mix) ~ Int2' 
( Gegen2 Int2") ~ Mix" 

where Degen2 and Gegen2 handle the arguments P, X together as 'first' argu- 
ment. 

w Two Tests for Generators and Degenerators 
As noted earlier (Section 4), the quality of the programs resulting from 

generation and degeneration depends on the transformations and strategies 
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employed in the corresponding transformer. 

The development of  transformation tools requires certain test procedures 
to ensure that the tools are correct and 'strong enough'.  I f  a collection of  tools 
allows us to perform some operations and their inverse, we have a possibility to 
check their correctness w.r.t, each other. In our case: a program supplied to a 
specializer gives a generating extension of  the program, which degenerated by a 
composer and a self-interpreter provides a program equivalent to the original 
one. The power of  program transformers can also be tested this way: if the 
resulting program is at least as good as the original one, then the tools are strong 
enough w.r.t, this test. 

The projections for generation and degeneration suggest excellent tests 
for program specializers and program composers. From the equations of  genera- 
tor Gegen (12) and degenerator Degen (15) it follows that they are inverse to 
each other: 

<Degen < Gegen P> > ~ P' 
<Gegen <Degen Genp>> ~ Gen~ 

This suggests two natural  goals: (i) that P '  be at least as efficient as P and (ii) 
that Gen;, be at least as efficient as Genp. Achieving the former goal implies that 
a degenerator Degen can remove all overhead introduced by a generator; 
achieving the second goal implies that the generator Gegen reintroduces effective 
staging in any degenerated program. In each case, one could reasonably say that 
Degen or Gegen is "opt imal" .  

The following tests for Degen and Gegen are stated w.r.t, a given genera- 
tor and degenerator, respectively. It would be too much to ask that the Degen 
or Gegen in question yields opt imal  degeneration and generation for all 
possible generators and degenerators. To describe the tests more precisely, let 
tp(D) be the time to compute <P D>. 

Definition 8 (degeneration test) 
A degenerator Degen is optimal w.r.t, generator Gegen provided 

tp,( X, Y) <_ tp(X, Y) 

for all P, X, Y, where 

<Degen <Gegen P>> ~ P '  

Definition 9 (generatinn test) 
A generator Gegen is optimal w.r.t, degenerator Degen provided 

tG~,~( X) <_ tc~A X) 

for all Genp, X, where 

<Gegen <Degen Genp>> ~ Gen'e 



On the Degeneration of Program Generators by Program Composition 91 

w Summary  
Figure 2 summarizes the projections for program generation and degener- 

ation discussed in Sections 5 to 8. Let all programs be written in language C 
(hence, we omit the languages indices). All projections can be performed given 
two C-+C/C-transformers: a specializer Spec and a composer Comp. 

The following equations hold for every program P, every generating 
extension Gene of P, every c-self-interpreter Sint, and every input X, Y. 
Composing Equations (3), (6), and (12), we obtain: 

<P X, Y> = <P~ Y> 
= (<Gen'~ X> Y> 
= <<(Gegen" P> X> Y> (23) 

Composing Equations (9), (15), and (18), we obtain: 

<P X, Y> = (P '  X, Y> 

= <<Degen" Genv> X ,  Y> 
= <(<Gedegen" Sint> Gem,> X ,  Y )  (24) 

Generation Result 
1st FMP <Spec(p > ~ Pj  specialized 

X, y> program 
2nd FMP <Spec ) ~ Gen'p 

< Spec x > 
7-P-~( y> 

3rd FMP (Spec > ~ Gegen' 
< S p e c ~ _  > 

<Spec I x > 
7J,-,~, y > 

generating 
extension 

generator of 
gen. extensions 

Degeneration 
Ist DGP < Comp. > ~ P" 

(Sint (Genp x) ,  y )  

2nd DGP <Spec. ) ~ Degen' 
( Comp gen. ) 

(Sint (~ x) ,  y)  

3rd DGP <Spec. > ~ Gedegen' 
( Spec sin t _ _  > 

< Comp [_gen > 

Result 

program 

degenerator 

generator of 
degenerators 

Fig. 2 MST-schemes for generation and degeneration. 

Figure 3 summarizes applications of generation and degeneration. Let 
Gegen and Degen be a generator and degenerator of generating extensions, 
respectively. The programs produced as output, e.g. P' in case (a), are marked 
with a prime because, in general, they are not textually identical to the programs 
given as input, e.g. P (but they are computationally equivalent). Beside the 
application to the examples in Fig. 1, summarized in the generic case (a), the 
following four application are note-worthy: 
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a 

b 
C 

d 
e 

Fig. 3 

Generation Degeneration 
(Gegen P ) ~  Gene (Degen G e n e ) ~  P" 

(Gegen lnt)  ~ Trans (Degen Trans> ~ lnt" 
(Gegen2 Int2> ~ Mix (Degen2 Mix) ~ lnt2" 

(Gegen Mix) ~ Gegen (Degen Gegen) ~ Mix" 
(Gegen Dint) ~ Degen <Degen Degen) ~ Dint" 

Summary of generator and degenerator applications. 

(b) the conversion between an interpreter Int and a translator Trans (Sec- 
tions 5 and 6), 

(c) the conversion between an interpreter Int2 for two-argument programs 
and a specializer Mix (Section 10), 

(d) the conversion between a specializer Mix and a generator of  generating 
extensions Gegen (Section 10), and 

(e) the conversion between a degenerating interpreter Dint and a degenerator 
Degen (Section 9). 

The projections presented in this paper can be generalized in two 
directions without changing the underlying principles: 

Multi-language transformers. The projections for generation and degen- 
eration were formulated assuming source-to-source transformers. It is 
clear that they can be generalized to multi-language transformers for 
appropriate languages; for multi-language specialization see Ref. 20). 
Multi-level generating extensions. The Ist DGP and the 2nd FMP are the 
basic building blocks for a class of  formulas that generate and degenerate 
multi-level generating extensions (Gent, is a two-level generating exten- 
sion). All multi-level formulas can be performed by incremental genera- 
tion and degeneration (Section 10), although in practice a direct conver- 
sion may have certain technical advantages. A multi-level generator based 
on off-line partial evaluation was designed and implemented. 17) 

w Conclusion 
While certain aspects of the software development process are likely never 

to be fully automated, the technology of  building tools that treat programs as 
data objects is very powerful. This paper studied two fundamental operations on 
programs, namely program specialization and program composition, which are 
both equivalence transformations, and showed that both are essential for a wide 
spectrum of transformation tasks. Function specialization and function compo- 
sition are fundamental operations in Mathematics, and, not surprisingly, the 
same is true for Computer  Science. We showed that their full realization in 
practice may have far reaching consequences for the automatic development of 
software by software. 

As often, particular methods can solve specific transformation tasks better 
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and more efficiently. Nevertheless, the main challenge remains: the development 
of transformation methods that optimize not just special, but general cases of 
equivalence transformation problems. Program specialization, one of the best 
developed methods, was the first step. We believe that program composition is 
the next step on the research agenda. The transformation problems presented in 
this paper may serve as test cases for existing methods, and as challenging 
problems for future research. 

A widely known application of  the Futamura projections is the conver- 
sion of  interpreters into translators. Respectively, the degeneration projections 
convert translators into interpreters. The need of the latter application may not 
be so evident as that of  the former, since interpreters are usually easier to 
construct than translators and translated programs are faster than interpreted 
programs. However, there exist cases where the conversion of  translators to 
interpreters may be necessary. 

(I) Often it is easier to read and verify an interpretive program than a 
program transformer. Degeneration can convert a transformer into an 
interpreter. Verifying the interpreter can guarantee the correctness of  
certain aspects of the transformer (provided the degenerator is correct, 
which has to be shown only once). For  instance, this can help to verify 
the correctness of a hand-written translator. 

(2) Language definition by interpretation is not always simpler than by 
translation. If a language is extended gradually, defining language exten- 
sions by translation into more elementary constructs is often easier than 
writing a new interpretive definition for the full language (e.g., macrosys- 
tems exploit this feature). 

(3) Another remarkable example, although not from a programming perspec- 
tive, are formal languages developed by mathematics: mathematical 
definitions are, in general, nothing else but translative definitions, similar 
to macros. (A corresponding approach to manipulation of  mathematical 
theories is discussed in Refs. 7) and 14)). 
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