
New Generation Computing, 16 (1998) 075-096
OHMSHA, lTD. and Springer-Verlag |tw

(~) OHMSHA, LTD. 1998

On the Degeneration of Program Generators by Pro-
gram Composition*

Rober t GLLICK
Department of Computer Science,
University of Copenhagen,
Universitets parken 1
DK-2100 Copenhagen, Denmark.
Andre i K L I M O V
Keldysh Institute of Applied Mathematics,
Russian Academy of Sciences,
Miusskaya Square 4
R U-125047 Moscow, Russia.

Received 8 July 1996
Revised manuscript received 27 February 1997

Abstract One of the main discoveries in the seventies was that the
concept of a generating extension covers a very wide class of apparently
different program generators. Program specialization, or partial evaluation,
is powerful because it provides uniform techniques for the automatic imple-
mentation of generating extensions from ordinary programs. The Futamura
projections stand as the cornerstone of the development of program speciali-
zation.

This paper takes the idea of the Futamura projections further. Three
degeneration projections are formulated which tell us how to achieve the
reverse goal by program composition, namely turning a generating extension
into an ordinary program. The fact that program composition can invert the
effect of program specialization shows that these projections are dual in a
sense. The degeneration projections complete a missing link between pro-
grams and generating extensions and allow for novel applications of pro-
gram transformation.

This work was partly supported by the project "Design, Analysis and Reasoning about Tools"
funded by the Danish Natural Sciences Research Council. The first author was also supported
by an Erwin-Schr6dinger-Fellowship of the Austrian Science Foundation (FWF) under grant
J0780 & J0964; the second author partly by the Russian Basic Research Foundation grant
93-01-00628 & 96-01-01315, the US Office of Naval Research grant N00014-96-1-0800, and the
US Civilian Research and Development Foundation grant RMI-254.

76 R. Glfick, A. Klimov

Keywords: Programming Languages, Program Transformation, Partial Evalua-
tion, Program Specialization, Program Composition, Metacomputa-
tion.

w Introduction
One of the main discoveries in the seventies was that the concept of a

generating extension 1~ covers a very wide class of apparently different program
generators. This has the big advantage that program generators for diverse
applications such as parsing, translation, theorem proving, and pattern matching
can be implemented with uniform techniques. 2) Program specialization, or
partial evaluation, is powerful because it provides transformation techniques for
the automatic implementation of generating extensions? '4's) Program specializa-
tion can now be considered as one of the most advanced techniques for auto-
matic program transformation. The Futamura projections 6) stand as the corner-
stone of this development.

This paper takes the idea of the Futamura projections further. Three
degeneration projections are formulated which tell us how to reverse the effect
of the Futamura projections by program composition, namely how to turn a
generating extension into an ordinary program. The degeneration projections,
similar in structure to the Futamura projections but their inverse, complete a
missing link between programs and generating extensions. This is interesting in
its own right and allows for several novel applications of program specialization
and program composition. It is quite remarkable that, although program special-
ization has been used for some time to generate generating extensions, the reverse
operation, degeneration, has not been studied before.

In this paper we shall mainly be concerned with what can be achieved by
program composition, and not how it can be achieved. Although promising
results have been obtained for program composition, 7'8'9"1~ this method is still at
a research stage. The transformation problems presented here can be seen as test
cases for existing methods, and as challenging goals for future research.

Suppose P is a program with two arguments and let (P X, Y) denote the
application of program P to its input X, Y. Computat ion of P producing result
Out is described by

(P X, Y) ~ Out

A generating extension o f P is a program Gem, that takes one part of P's input,
say X, and produces another program Px, the specialization of P to that input.
The specialized program returns the same result when applied to the remaining
input Y as the original program P when applied to input X, Y. Computat ion
in two stages is described by

(Genp X) ~ Px
(Px Y) ~ Out

On the Degeneration of Program Generators by Program Composition 77

<P X, Y> <(Gene X> Y>
<Parser Grammar, Phrase> <<Parsergen Grammar> Phrase>
<Prover Axioms, Theorem> <(Provergen Axioms> Theorem>
<Matcher Pattern, String> <<Matchergen Pattern> String>
<Interpreter Program, Data> <<Translator Program> Data>

Fig. l Programs and their generating extensions.

Combining these two we obtain the equation

(P X , Y) = ((Genp X) Y)

one stage two stages

Many computational problems can be solved either by a one stage computation,
or by a two-stage computation. Some applications are illustrated in Fig. 1. A
two-stage computation can be advantageous if Y changes more frequently than
X. The second stage can often be optimized based on the input available in the

first stage.
The division of a computation into two (or more) stages has been studied

intensively in the area of partial evaluation. 3'4'5) Futamura 6) was the first who
saw the possibility to obtain generating extensions from general programs by
self-application of a program specializer. After a period of independent
insights, 6'u'1) the last decade has seen substantial progress both in theory and
practice of program specialization. Automatic tools for turning programs into
generating extensions now exist for various programming languages such as
Prolog, Scheme, and C (see Ref. 4)). This paper considers the reverse transforma-
tion using program composition.

Function composition and specialization (by fixing parameters) is classi-
cal mathematics. However, mathematics treats these operations extensionally,
paying no attention to the structure of definitions. On the other hand, program
composers and program specializers are software tools which modify the struc-
ture of programs with the purpose of optimizing some aspects of the programs
performance, e.g. time and space efficiency.

The remainder of this paper is organized as follows. Section 2 defines the
basic notions, Section 3 presents metacomputation, and Section 4 defines
program specialization and program composition. Section 5 reviews the genera-
tion of generating extensions by program specialization, and Section 6 studies
degeneration by program composition. Sections 7 and 8 discuss the correspond-
ing tools. Sections 9 and 10 investigate applications and related aspects. Section
11 gives certain optimality criteria and Section 12 summarizes the projections for
generation and degeneration.

w Basic Not ions
We now formulate the properties of generating extensions, program

78 R. Gl~ck, A. Klimov

specializers, and program composers more precisely. A precise notation is
necessary since more than one program may be involved at the same time and
programs play multiple roles: as active agents and as passive data.

Early notations for describing the interaction of interpreters and transla-
tors include the T-diagram. 12'13) In the area of partial evaluation, the Futamura
projections are often described using the mix-notation, 4) a formalism inspired by
both recursive function theory and Lisp. However, there are several other ways
of combining program transformers, such as the degeneration problem consid-
ered in this paper, for which the traditional notations are not sufficient. 15~ This
paper adopts the language-independent notions ~4'15~ based upon Turchin's
MST-schemes) 6)

2 .1 Data, Programs and Application
We assume a fixed set of data for input and output, and for representing

programs written in different languages. We shall assume nothing further about
data; we could choose symbol strings, Lisp lists etc.

To express syntactically the application of an L-program to its input we
use angular brackets <...>L (we omit the language index L when it is not
essential). Computat ion (reduction) of an application expression is denoted by
~ . For example, <P X , Y>L ~ Out is the reduction of program P with input
X, Y to output Out. Capitalized names, e.g. P, X, Y, stand for literal constants
which represent arbitrary elements of the data domain.

Two application expressions ,,4, /3 are computationally equivalent, ,4 =
/3, if they can be reduced to identical data elements, or both sides are undefined.

Definition 1 (interpreter)
A B-program Int is an A/B-interpreter if for every A-program P and every input
X:

<Int P, X>B = <P X>A

Definition 2 (self-interpreter)
A self-interpreter for A is an A/A-interpreter.

Definition 3 (translator)
An M-program Trans is an A- 'B/M-translator if for every A-program P and
every input X:

<<Trans P>M X>B = <P X>A

Definition 4 (generating extension)
An M-program Genp is a B/M-generating extension of an A-program P if for
every input X, Y:

<<Gene X>M Y>B = <P X, Y>A

An interpreter defines a source language A by actions in another language

On the Degeneration of Program Generators by Program Composition 79

B, while a translator defines a source language A by translation to a target
language B where the translation is described in a meta-language M. A self-
interpreter interprets the same language it is written in. A generating extension
allows to perfrom a computat ion in two stages, while the original program
performs the same computat ion in one stage. The two-level generating exten-
sions defined here can be generalized to multi-level generating extensions. 17)

w Metacomputation
We refer to any process of simulating, analyzing and transforming

programs by means of programs as metacomputation. Programs that carry out
these tasks, are metaprograms. The metacomputat ion formulas used here are
collectively referred to as MST-formulas (MST = metasystem transition18)).

3.1 Abstraction
To represent application expressions without specifying all data elements,

we introduce variables. An applicat ion expression including variables, called
configuration, 7) is an abstraction which represents a set of applicat ion expres-
sions. A variable ranges over the whole data domain. We use lower case names
to denote variables. For instance, the following expression is a configuration

where y is a variable:

(P X, y)

3.2 Encoding
To represent configurations as data, we assume an injective mapping,

called metacoding, from configurations into the data domain (necessary since
variables are not elements of the data domain).* We are not interested in a
specific way of metacoding and write a horizontal line above a configuration to
denote its metacode. This allows a metacode-invariant representation, e.g. the

following is a metacoded configuration:

(P X, y)

3.3 Metacomputation
It follows from our notat ion that (Meta (P X, y)) ~ Out denotes

metacomputation on a metacoded configuration (P X, y) by metaprogram
Meta. This characterization of metacomputat ion states nothing about its con-
crete nature, except that it involves a metaprogram that operates on a metacoded
configuration. For better readability, we move metacoded expression one line
down for each metacoding (this two-dimensional notation, called MST-
schemes, was suggested by V. Turchin):

* Metacoding in metacomputation corresponds to the G6del numeration in logics where state-
ments about a theory are encoded in the theory itself.

80 R, Glfick, A. Klimov

(Meta .) ~ Out
<P X, y>

3.4 Hierarchy of Metaprograms
When we abstract from a metacoded subexpression, we interrupt the

horizontal line denoting the metacode. We assume that the metacode is
composit ional, i.e. changing a subcomponent does not entail a change in the
enclosing metacode. For example,

(Meta x)
(P ~, y)

is a configuration where variable x abstracts from constant X. The distance
between the variable and position $ defines how many times the value of a
variable has to be metacoded upon substitution (here x 's value needs to be
metacoded once in order to obtain X). The metacode of the above configuration
can be passed, again, to a metaprogram.

Repeated use of abstraction, encoding, and metacomputa t ion leads to a
hierarchy of metaprograms. For example,

(Meta" .) ~ Out"
(Meta x__)

(P ~, y)

is a hierarchy of two metaprograms. The construction of each next level in a
metasystem hierarchy is referred to as metasystem transition. 18~ We speak of
self-application if a metaprogram is applied to a copy of itself, i.e. if programs
Meta and Meta" are identical.

w Equivalence Transformers
We are now in the position to define an important class of metaprograms,

namely equivalence transformers, and to specify two transformation tasks. An
equivalence transformer modifies the structure of programs with the purpose of
optimizing some aspects of the programs performance while preserving the
programs functionality. Two important types of equivalence transformers are
program specializers and program composers. A specializer constructs a special-
ized program given a program P together with part of its input X. A composer
transforms the composi t ion of two programs P, Q into a single program. The
meta-notation C o to denote the result of applying substitution o to
configuration C.

Definition 5 (equivalence transformer)
A program Meta is an equivalence transformer if for all substitutions a : (xi
~-~ X1 xn~-' Xn} where xl xn are all variables that occur free in a
configuration C :*

* Assume Meta uses a fixed order for free variables, e.g. by occurrence from left to right.

On the Degeneration of Program Generators by Program Composition

< <Meta C> X1...Xn> = C G

8/

Definition 6 (program specializer)
An equivalence transformer Spec written in M is an A--,B/M-specializer if for
every A-program P, every input X, Y:

<<Spec_ >M Y>B -- <P X, Y>A
<P X, y>A

Definition 7 (program composer)
An equivalence transformer Comp written in M is an A-,B/M-composer if for all
A-programs P, Q, every input X, Y:

<<Comp >M X, Y>B = <P <Q x>A, Y>A
<P <Q x>a, y>A

Although the above definitions state nothing about the quality of the
transformers, we expect them to be non-trivial since the practical value of
specialization and composition depends on their actual transformation power.
A non-trivial specializer recognizes which of P's computations can be
precomputed at specialization time and which must be delayed until run-time,
so as to yield an efficient specialized program. A non-trivial composer generates
an efficient composit ion of P, Q by removing redundant computations, interme-
diate data structures, and other interface code which exact a cost at run-time. We
shall not fix a specific transformation method and refer to Refs. I), 2), and 4) for
specialization methods and to Refs. 7), 8), 9), 10), and 19) for composition
methods.

w Program Generation by Specialization
The three Futamura projections (FMP) tell us if we write a self-

applicable specializer we get much more than just a specializer: we get the
possibility to convert programs into generating extensions, and to produce a
generator of generating extensions. We now fromalize the first two FMP as
MST-schemes in order to compare them directly with the degeneration projec-
tions defined later. To focus on the essence of program generation, we assume
that all specializers are source-to-source transformers written in the source
language; for multi-language specialization see Ref. 20).

Let Spec be a source-to-source specializer and let P be a program with
input X, Y. Assume that input X is available before input Y. Program P can
be converted into an (efficient) generating extension using the 2nd FMP which
follows from the 1st FMP.

1st FMP
Given P, X define a specialized program Px such that

82 R. Gliick, A. Klimov

<Px Y> = <P X , Y> (1)

for all Y. For every P, X there exists a (trivial) program Px as shown construc-
tively by the definition

def <Px y> ~= <P X, y>

A (more efficient) program Pk can be obtained by specializing the definition of
Px using Spec. The 1st FMP is defined by

<Spec > ~ ek (2)
<P X, y>

According to Definition 6 we have for P~- the equation:

<e~: Y> = <P X, Y> (3)

Program P~-can often be optimized by Spec based on the input available at
specialization time. The transformed program is faithful to the original program,
but is often significantly faster. Optimization is achieved by changing the times
at which computations are performed.

2nd FMP
Given P define a generating extension Gene such that

<<Genp X> Y> = <P~ Y> (4)

for all X, Y. For every P there exists a (trivial) generating extension Gem, by
abstracting from constant X in the 1st FMP:

tlef <Genp x> ~- <Spec x >
<P ~, y>

A (more efficient) generating extension Gent, can be obtained by specializing the
definition of Genv using Spec. The 2nd FMP is defined by

<Spec > ~ Gen~ (5)
< Spec x >

<P 4, y>

The correctness of the projection follows from the correctness of the specializer.
Note that program Gen;, is obtained by self-appliation of Spec, According to
Definition 6 we have for Gen;, the equation:

<<Gen'p X> Y> = <P/r Y> (6)

The generating extension Gen~ obtained by the 2nd FMP produces a specialized
program often significantly faster than Genv that uses the 1st FMP because Gent,
is a specializer specialized with respect to P. Using Gent, often speeds up
specialization by a factor of three to four compared with Gene using the Ist
FMP. zl)

A well-known application of the 2nd FMP is the conversion of an

On the Degeneration of Program Generators by Program Composition 83

interpreter into a translator. 6) Interpreted programs run typically an order of
magnitude slower than those which are translated: a difference large enough to
be worth reducing by converting an interpreter into a translator.

Example 1 (translator generation)
Let IntBC be a B/c-interpreter. Given a C---,C/C-specializer Spec, the B/C-
interpreter can be converted into a B---*C/C-translator TransBC such that
((TransBC P)c D)c = (IntBC P, D)c.

(Spec)c ~ TransBC D
(Spec = p _ _) c

(IntBC t, d>c

w Program Degeneration by Composition
Consider the reverse goal: turning a generating extension into an ordinary

program. We call this the degeneration of a generating extension. In other
words, a two-stage computation is turned into a one-stage computation.

Let Comp be a source-to-source composer and let Genp be a source-to-
source generating extension. Suppose a self-interpreter Sint for the source
language is given. We now present the 1st degeneration projection (DGP) for
finding an (efficient) one-stage program given the generating extension.

1st DGP
Given Gene define a program P such that

(P X, Y) = ((Genp X~ Y) (7)

for all X, Y. For every generating extension Gene there exists a (trivial)
program P as shown constructively by the definition

def (P x, y) ~- (Sint (Gene x) , y)

where P's computat ion is performed in two stages: first by producing a special-
ized program using Gene, then interpreting the new program with Sint. For
practical reasons, such a trivial degeneration of Genp is uninteresting.

A (more efficient) program P ' can be obtained by applying the composer
Comp to P's definition in order to remove the computational overhead caused
by the generation and subsequent interpretation of a specialized program. The
1st DGP is defined by

(C o r n p .) ~ P' (8)
(Sint (Gene x) , y)

The correctness of P ' follows from the correctness of the composer. According
to Definitions 2 and 7 we have for P ' the equation:

(P" X, Y) = ((Gene X) Y) (9)

Similar to specialization, we expect that a non-trivial composer generates a

84 R. Glfick, A. Klimov

program P ' that is significantly faster than the (trivial) P defined above. On the
other hand, even though Comp may be powerful enough to reduce all interpre-
tive overhead caused by Sint, P" may not run faster than the program from
which Genp was generated, e.g. by the 2nd FMP, unless this program is
inefficient and can be optimized.

So if we are given a composer and a self-applicable specializer we have
the possibility to convert generating extensions into ordinary programs and vice
versa. The degeneration scheme can be applied to all generating extensions,
including those shown in Fig.l.

degeneration by composition
<

P Gene
)

generation by specialization

An application of the 1st DGP is the conversion of a translator into an
interpreter. 14> Although interpretive language definitions are often preferable,
e.g. when a new language is defined from scratch, it may be convenient to define
language extensions by translation into elementary constructs (cf. bootstrapping
compilers, macro expanders). In this situation the need for converting a transla-
tor into an interpreter may arise.

Example 2 (translator degeneration)
Let TransBC be a B---,C/C-translator, and Sint be a self-interpreter for C. Given
a c---~C/C-composer Comp, the B---,C/C-translator can be converted into a
B/c-interpreter IntBC" such that ((TransBC P)c X)c = (IntBC" P, X)c.

(>c ~ IntBC'
C~ (TransBC p>c, X>c

Note that the degeneration of a generating extension does not, in contrast
to the generation of a generating extension, require self-application, only a
single metasystem level. Degeneration is conceptually simpler, but technically
not necessarily easier than the generation of a generating extension by self-
application of a specializer. In fact, all three FMP give good results in practice, l)
while the computat ional realization of the DGP is still an open problem.

w A Generator of Generating Extensions
We review the 3rd FMP which allows us to produce a stand-alone tool

for program generation, namely a generator o f generating extensions. It can be
obtained by double self-application of a specializer.

3rd F M P

Let Genl, be the generating extensions of P defined in Equation (6). Define a
generator of generating extension Gegen such that

((Gegen P) X) = (Gen~ X) (10)

On the Degeneration of Program Generators by Program Composition 85

for all P, X. For every specializer Spec there exists a (trivial) generator Gegen
by abstracting from P in the 2nd FMP:

def <Gegen p) ~- <Spec<spe c pl~____~>
<~ ~, y>

A (more efficient) program Gegen" can be obtained by specializing the definition
of Gegen using Spec for the third time. The 3rd FMP is defined by

< Spec > ~ Gegen" (11)
< Spee p >

<Spec -I_x >
<~, y>

According to Definition 6 we have for Gegen" the equation:

<<Gegen" P> X> = <Gent, X> (12)

Example 3 (translator generation revisited)
Returning to Example 1, the B/c-interpreter IntBC can be transformed into a
translator TransBC by Gegen:

<Gegen lntBC> ~ TransBC []

w A Degenerator of Generating Extensions
We now present a stand-alone tool for program degeneration, namely a

degenerator of generating extensions, and show how it can be obtained from
a specializer and a composer. This section introduces the 2nd and 3rd DGP.

2nd DGP
Let P ' be the program defined in Equation (9). Define a degenerator of generat-
ing extensions Degen such that

<<Degen Genv> X, Y> = <P' X, Y> (13)

for all Gene X, Y. Given self-interpreter Sint, there exists a (trivial) degenerator
Degen for every composer Comp by abstracting from Genp in the Ist DGP:

fief <Degen gen> ~ < C o m p _ _ g e n >
<Sint ~ x>, y)

A (more efficient) degenerator Degen" can be obtained by applying specializer
Spec to Degen's definition in order to specialize the composer with respect to
Sint. The 2nd DGP is defined by

<Spec_ > ~ Degen' (14)
< C o m p _ _ g e n _ >

<Sint <~ x>, y>

According to Definition 6 we have for Degen" the equation:

<(Degen' Gene> X, Y> = <P" X, Y> (15)

86 R. Gh~ck, A. Klimov

Note that the 2nd DGP does not use a self-applicable specializer as does the 2nd
FMP, but a metasystem structure consisting of a composer and a specializer. The
2nd DGP exhibits the underlying metasystem structure of the degenerator
problem and tells us what can be achieved given powerful enough composers
and specializes. It allows us to identify certain abstract properties needed to
obtain a degenerator. In practice, a transformer may, of course, be powerful
enough to serve both as a non-trivial specializer and a non-trivial composer. 7~

Example 4 (degenerator)

Continuing Example 2, we can convert the translator TransBC into an inter-
preter IntBC" using the degenerator Degen:

(Degen TransBC) ~ IntBC'

3rd DGP

Finally, one can obtain a generator of degenerators as follows. Define a genera-
tor of degenerators Gedegen such that

((Gedegen Sint) Genp) = (Degen" Gent) (16)

for all Sint, Gene. Given Sint, Gedegen produces a new degenerator which is
then applied to the generating extension Genv. For every Comp, Spec there
exists a (trivial) degenerator generator Gedegen by abstracting from Sint in the
2nd DGP:

def (Gedegen sint) ~= <Spec sint_ .)
(Comp_J_gcn

(6 ~6 x), y)

A (more efficient) degenerator generator Gedegen" can be obtained by specializ-
ing Gedegen's definition using Spec. The 3rd DGP is defined by

(Spec(~nec-~ sint)) ~ Gedegen' (17)

(Comp l_gen)
(~ (I x), y>

According to Definition 7 we have for Gedegen' the equation:

((Gedegen' Sint) Genp> = (Degen' Genp) (18)

A degenerator generator may be used to produce different degenerators by
modifying the self-interpreter. This is similar to the methods for achieving
different transformation effects by instrumenting interpreters, called the interpre-
tive approach, zz,2~ In general, Sint need not even be a self-interpreter but can be
any interpreter as long as it is written in the source language of the composer.
This may be useful for producing degenerators with different source languages
from a generic specializer and a generic composers, a method which is similar
to the generation of specializers with different source languages from a generic
specializer. 2~

On the Degeneration of Program Generators by Program Composition 87

w A Degenerat ing Interpreter
We have seen that a degenerator can be obtained by specializing a

composer. It is remarkable that there exists yet another method to obtain a
degenerator, namely by viewing a degenerator Degen as a generating extension
of a degenerating interpreter Dint. This suggests the existence of a generation/
degeneration relation between these two programs which allows us to obtain a
degenerator from a degenerating interpreter using the FMP, and to degenerate a
degenerator using the DGP.

degeneration

Dint Degen

generatmn

9 .1 Degenerating Interpreter
Consider an interpreter of generating extensions, call it Dint, which

satisfies the equat ion

(Dint Gene, X, Y) = (P X, Y) (19)

for all generating extensions Gene and all input X, Y. The interpreter Dint
returns the same result when applied to P ' s generating extension Gene and input
X, Y as program P applied to X, Y. The existence of Dint, which we call
degenerating interpreter, is shown constructively by the definition

def (Dint gen, x, y) ~- (Sint (Sint gen x), y)

A consequence of Equations (15) and (19) is the equation

(Dint Gene, X, Y) -- ((Degen Gene) X, Y) (20)

which suggests that a degenerator is a generating extension of a degenerating
interpreter, just as translators and specializers are generating extensions of
ordinary interpreters (considering Gene as 'first' and X, Y as 'second' argument
of Dint).

In fact, Dint can be seen as a non-standard semantics of generating
extensions. 23) It provides the semantics of Gene's implementat ion language, as

well as the semantics of Gene's target language.

9 .2 Generation of a Degenerator
Viewing a degenerator as a generating extension of a degenerating inter-

preter Dint means that a degenerator Degen' can be obtained from Dint using
the program generator Gegen from Section 7:

(Gegen Dint) ~ Degen"

This is remarkable because one does not need a "universal" composer, but can

88 R. Glfick, A. Klimov

resolve the composit ion problem already in the (manual) construction of Dint.
In other words, conventional specialization is sufficient to obtain a degenerator.
It may be easier to write Dint than to design a general composer that specializes
well with respect to (arbitrary) interpreters. This is one more example of
generating a transformer from an interpreter (cf. Section 8).

9.3 Degeneration of a Degenerator
On the other hand, a degenerating interpreter can be obtained by

degenerating a degenerator:

(Degen Degen'> ~ Dint'

It can easily be verified that Dint' is a degenerating interpreter by combining
Equations (19) and (15):

(Dint" Gene, X, Y> = (Dint Gent,, X, Y)

A possible application is testing of a new degenerator Degen' by verifying the
correctness of Dint'.

9 .4 Self-Degeneration
Finally, as a special case, Degen can be applied to a copy of itself. We call

this self-degeneration:

(Degen Degen> ~ Dint"

This suggests an interesting test for degenerators, namely that a degenerator must
be strong enough to degenerate itself into an efficient degenerating interpreter
(this corresponds to the requirement 4~ that a specializer is self-applicable if it is
strong enough to produce an efficient specialization of itself).

w An Application of Incremental Degeneration
It is known that a specializer can be seen as a generating extension of an

interpreter, and that a generator of generating extensions can be seen as a
generating extension of a specializer, z~ We conclude the discussion with an
example of incremental degeneration, namely the degeneration of a generator
Gegen into a specializer Mix, and the degeneration of M/x into an interpreter
Int2. The generation direction is described by the specializer projections, z~ and
practical results have been achieved for the conversion from Int2 to Mix, and
from Mix to Gegen. 171

degeneration degeneration

In t2 Mix Gegen
generation generation

On the Degeneration of Program Generators by Program Composition 89

10.1 Generator Degeneration
Let Gegen be a generator of generating extensions as specified by Equa-

tion (12). Consider equation

((Gegen P) X) -- (Mix P, X) (21)

which follows from the 3rd FMP and the definition of a specializer MIX:

def (Mix p, x) ~= (Spec_p X)
y)

The specializer Mix returns the same result when applied to program P and its
first input X as P's generating extensions (produced by generator Gegen from P)
applied to X. The equation suggests, cf. Equation (9), that a generator Gegen is
a generating extension of a specializer Mix and, hence, both can be transformed
into each other by generation and degeneration:

(Degen Gegen) ~ Mix'
(Gegen Mix'> ~ Gegen"

An interesting property is that Gegen is self-generating, i.e. (Gegen Mix>
Gegen, if Gegen is the result of the 3rd FMP using the same specializer Spec as
in the definition of Mix above (this property was first proven in Ref. 2)).

10.2 Specializer Degeneration
Let Mix be the specializer defined above. Consider equation

((Mix P, X> Y) = <Int2 P, X , Y) (22)

which follows from the definition of Mix and the specification of an interpreter
Int2 of two-argument programs:

(Int2 P, X, Y) : (P X, Y)

The interpreter Int2 applied to program P and input X, Y returns the same
result as P's residual program (produced by Mix from P, X) applied to the
remaining input Y. The equation suggests, cf. Equation (9), that a specializer
Mix is a generating extension of an interpreter Int2 and that both can be
generated/degenerated into each other:

(Degen2 Mix) ~ Int2'
(Gegen2 Int2") ~ Mix"

where Degen2 and Gegen2 handle the arguments P, X together as 'first' argu-
ment.

w Two Tests for Generators and Degenerators
As noted earlier (Section 4), the quality of the programs resulting from

generation and degeneration depends on the transformations and strategies

90 R. Glfick, A. Klimov

employed in the corresponding transformer.

The development of transformation tools requires certain test procedures
to ensure that the tools are correct and 'strong enough'. I f a collection of tools
allows us to perform some operations and their inverse, we have a possibility to
check their correctness w.r.t, each other. In our case: a program supplied to a
specializer gives a generating extension of the program, which degenerated by a
composer and a self-interpreter provides a program equivalent to the original
one. The power of program transformers can also be tested this way: if the
resulting program is at least as good as the original one, then the tools are strong
enough w.r.t, this test.

The projections for generation and degeneration suggest excellent tests
for program specializers and program composers. From the equations of genera-
tor Gegen (12) and degenerator Degen (15) it follows that they are inverse to
each other:

<Degen < Gegen P> > ~ P'
<Gegen <Degen Genp>> ~ Gen~

This suggests two natural goals: (i) that P ' be at least as efficient as P and (ii)
that Gen;, be at least as efficient as Genp. Achieving the former goal implies that
a degenerator Degen can remove all overhead introduced by a generator;
achieving the second goal implies that the generator Gegen reintroduces effective
staging in any degenerated program. In each case, one could reasonably say that
Degen or Gegen is "opt imal" .

The following tests for Degen and Gegen are stated w.r.t, a given genera-
tor and degenerator, respectively. It would be too much to ask that the Degen
or Gegen in question yields opt imal degeneration and generation for all
possible generators and degenerators. To describe the tests more precisely, let
tp(D) be the time to compute <P D>.

Definition 8 (degeneration test)
A degenerator Degen is optimal w.r.t, generator Gegen provided

tp,(X, Y) <_ tp(X, Y)

for all P, X, Y, where

<Degen <Gegen P>> ~ P '

Definition 9 (generatinn test)
A generator Gegen is optimal w.r.t, degenerator Degen provided

tG~,~(X) <_ tc~A X)

for all Genp, X, where

<Gegen <Degen Genp>> ~ Gen'e

On the Degeneration of Program Generators by Program Composition 91

w Summary
Figure 2 summarizes the projections for program generation and degener-

ation discussed in Sections 5 to 8. Let all programs be written in language C
(hence, we omit the languages indices). All projections can be performed given
two C-+C/C-transformers: a specializer Spec and a composer Comp.

The following equations hold for every program P, every generating
extension Gene of P, every c-self-interpreter Sint, and every input X, Y.
Composing Equations (3), (6), and (12), we obtain:

<P X, Y> = <P~ Y>
= (<Gen'~ X> Y>
= <<(Gegen" P> X> Y> (23)

Composing Equations (9), (15), and (18), we obtain:

<P X, Y> = (P ' X, Y>

= <<Degen" Genv> X , Y>
= <(<Gedegen" Sint> Gem,> X , Y) (24)

Generation Result
1st FMP <Spec(p > ~ Pj specialized

X, y> program
2nd FMP <Spec) ~ Gen'p

< Spec x >
7-P-~(y>

3rd FMP (Spec > ~ Gegen'
< S p e c ~ _ >

<Spec I x >
7J,-,~, y >

generating
extension

generator of
gen. extensions

Degeneration
Ist DGP < Comp. > ~ P"

(Sint (Genp x) , y)

2nd DGP <Spec.) ~ Degen'
(Comp gen.)

(Sint (~ x) , y)

3rd DGP <Spec. > ~ Gedegen'
(Spec sin t _ _ >

< Comp [_gen >

Result

program

degenerator

generator of
degenerators

Fig. 2 MST-schemes for generation and degeneration.

Figure 3 summarizes applications of generation and degeneration. Let
Gegen and Degen be a generator and degenerator of generating extensions,
respectively. The programs produced as output, e.g. P' in case (a), are marked
with a prime because, in general, they are not textually identical to the programs
given as input, e.g. P (but they are computationally equivalent). Beside the
application to the examples in Fig. 1, summarized in the generic case (a), the
following four application are note-worthy:

92 R. GlOck, A. Klimov

a

b
C

d
e

Fig. 3

Generation Degeneration
(Gegen P) ~ Gene (Degen G e n e) ~ P"

(Gegen lnt) ~ Trans (Degen Trans> ~ lnt"
(Gegen2 Int2> ~ Mix (Degen2 Mix) ~ lnt2"

(Gegen Mix) ~ Gegen (Degen Gegen) ~ Mix"
(Gegen Dint) ~ Degen <Degen Degen) ~ Dint"

Summary of generator and degenerator applications.

(b) the conversion between an interpreter Int and a translator Trans (Sec-
tions 5 and 6),

(c) the conversion between an interpreter Int2 for two-argument programs
and a specializer Mix (Section 10),

(d) the conversion between a specializer Mix and a generator of generating
extensions Gegen (Section 10), and

(e) the conversion between a degenerating interpreter Dint and a degenerator
Degen (Section 9).

The projections presented in this paper can be generalized in two
directions without changing the underlying principles:

Multi-language transformers. The projections for generation and degen-
eration were formulated assuming source-to-source transformers. It is
clear that they can be generalized to multi-language transformers for
appropriate languages; for multi-language specialization see Ref. 20).
Multi-level generating extensions. The Ist DGP and the 2nd FMP are the
basic building blocks for a class of formulas that generate and degenerate
multi-level generating extensions (Gent, is a two-level generating exten-
sion). All multi-level formulas can be performed by incremental genera-
tion and degeneration (Section 10), although in practice a direct conver-
sion may have certain technical advantages. A multi-level generator based
on off-line partial evaluation was designed and implemented. 17)

w Conclusion
While certain aspects of the software development process are likely never

to be fully automated, the technology of building tools that treat programs as
data objects is very powerful. This paper studied two fundamental operations on
programs, namely program specialization and program composition, which are
both equivalence transformations, and showed that both are essential for a wide
spectrum of transformation tasks. Function specialization and function compo-
sition are fundamental operations in Mathematics, and, not surprisingly, the
same is true for Computer Science. We showed that their full realization in
practice may have far reaching consequences for the automatic development of
software by software.

As often, particular methods can solve specific transformation tasks better

On the Degeneration of Program Generators by Program Composition 93

and more efficiently. Nevertheless, the main challenge remains: the development
of transformation methods that optimize not just special, but general cases of
equivalence transformation problems. Program specialization, one of the best
developed methods, was the first step. We believe that program composition is
the next step on the research agenda. The transformation problems presented in
this paper may serve as test cases for existing methods, and as challenging
problems for future research.

A widely known application of the Futamura projections is the conver-
sion of interpreters into translators. Respectively, the degeneration projections
convert translators into interpreters. The need of the latter application may not
be so evident as that of the former, since interpreters are usually easier to
construct than translators and translated programs are faster than interpreted
programs. However, there exist cases where the conversion of translators to
interpreters may be necessary.

(I) Often it is easier to read and verify an interpretive program than a
program transformer. Degeneration can convert a transformer into an
interpreter. Verifying the interpreter can guarantee the correctness of
certain aspects of the transformer (provided the degenerator is correct,
which has to be shown only once). For instance, this can help to verify
the correctness of a hand-written translator.

(2) Language definition by interpretation is not always simpler than by
translation. If a language is extended gradually, defining language exten-
sions by translation into more elementary constructs is often easier than
writing a new interpretive definition for the full language (e.g., macrosys-
tems exploit this feature).

(3) Another remarkable example, although not from a programming perspec-
tive, are formal languages developed by mathematics: mathematical
definitions are, in general, nothing else but translative definitions, similar
to macros. (A corresponding approach to manipulation of mathematical
theories is discussed in Refs. 7) and 14)).

Ackno wledgements
Thanks to the anonymous referees for their constructive comments.

References
1) Ershov, A. P., "On the Essence of Compilation," in Formal Description of Program-

ming Concepts (E. J. Neuhold, ed.), North-Holland, pp. 391-420, 1978.
2) Futamura, Y., "Partial Computation of Programs," in RIMS Symposia on Software

Science and Engineering (E. Goto, K. Furukawa, R. Nakajima, 1. Nakata, and A.
Yonezawa, eds.), Springer-Verlag, pp. 1-35, 1983.

3) Bj~rner, D., Ershov, A. P., and Jones, N. D. (eds.), Paritial Evaluation and Mixed

gd R. Glfick, A. Klimov

Computation, North-Holland, 1988.
4) Jones, N. D., Gomard, C. K., and Sestoft, P., Partial Evaluation and Automatic

Program Generation, Prentice-Hall, 1993.
5) Danvy, O., Glfick, R., and Thiemann, P. (eds.), Partial Evaluation, volume 1110 of

Lecture Notes in Computer Science, Springer-Verlag, 1996.
6) Futamura, Y., "Partial Evaluation of Computing Process--An Approach to a

Compiler-Compiler," Systems, Computers, Controls, 2, 5, pp. 45-50, 1971.
7) Turchin, V. F., "The Concept of a Supercompiler," Transactions on Programming

Languages and Systems, 8, 3, pp. 292-325, 1986.
8) Wadler, P., "Deforestation: Transforming Programs to Eliminate Trees," Theoretical

Computer Science, 73, pp. 231-248, 1990.
9) Fegaras, L., Sheard, T., and Zhou, T., "Improving Programs Which Recurse over

Multiple Inductive Structures," in ACM SIGPLAN Workshop on Partial Evaluation
and Semantics-Based Program Manipulation, Orlando, Florida, pp. 21-32, 1994.

10) Takano, A. and Meijer, E., "Shortcut Deforestation in Calculational Form," in
Conference on Functional Programming Languages and Computer Architecture,
ACM Press, pp. 306-313, 1995.

11) Turchin, V. F., "Ehkvivalentnye preobrazovanija rekursivnykh funkcij na Refale
(Equivalent transformations of recursive functions defined in Refal)," in Teorija
Jazykov i Metody Programmirovanija (Proceedings of the Symposium on the Theory
of Languages and Programming Methods), pp. 31-42, 1972. [In Russian]

12) Bratman, H., "An Alternate Form of the 'UNCOL Diagram,'" Communications of the
ACM, 4, 3, p. 142, 1961.

13) Earley, J. and Sturgis, H., "A Formalism for Translator Interactions," Communications
of the ACM, 13, 10, pp. 607-617, t970.

14) Gl/ick, R. and Klimov, A. V., "Metasystem Transition Schemes in Computer Science
and Mathematics," World Futures, 45, pp. 213-243, 1995.

15) Glfick, R., "On the Mechanics of Metasystem Hierarchies in Program Transformation,"
in Logic Program Synthesis and Transformation, volume 1048 of Lecture Notes in
Computer Science (M. Proietti, ed.), Springer-Verlag, pp. 234-251, 1996.

16) Turchin, V. F., "Metacomputation : Metasystem Transitions plus Supercompilation,"
in Partial Evaluation, volume 1110 of Lecture Notes in Computer Science (O. Danvy,
R. Glfick, and P. Thiemann, ed.), Springer-Verlag, pp. 481-509, 1996.

17) Glfick, R. and JCrgensen, J., "Efficient Multi-Level Generating Extensions for Program
Specialization," in Programming Languages: Implementations, Logics and Programs
(PL1LP'95) (M. Hermenegildo and S. D. Swierstra, eds.), volume 982 of Lecture Notes
in Computer Science, Springer-Verlag, pp. 259-278, 1995.

18) Turchin, V. F., The Phenomenon of Science, Columbia University Press, New York,
1977.

19) Torte, M., Compiler Generators, volume 19 of EATCS Monographs on Theoretical
Computer Science, Springer-Verlag, 1990.

20) G10ck, R., "On the Generation of Specializers," Journal of Functional Programming,
4, 4, pp. 499-514, 1994.

21) Bondorf, A., "Automatic Autoprojection of Higher Order Recursive Equations,"
Science of Computer Programming, 17, 1-3, pp. 3-34, 1991.

22) Turchin, V. F., "Program Transformation with Metasystem Transitions," Journal of
Functional Programming, 3, 3, pp. 283-313, 1993.

23) Abramov, S. M., Metavychislenija i ikh prilozhenija (Metacomputation and its Applica-
tions), Nauka, Moscow, 1995. [In Russian]

On the Degeneration of Program Generators by Program Composition 95

Robert Glfiek: He is an associate professor of Computer Science at
the University of Copenhagen. He received his M. Sc. and Ph.D.
degrees in 1986 and 1991 from the University of Technology in Vienna,
where he also worked as assistant professor. He was research assistant
at the City University of New York and twice received the Erwin-
Schr6dinger-Fellowship of the Austrian Science Foundation. His
research interests include advanced programming languages, theory and
practice of program transformation, and metaprogramming.

Andrei V. Klimov: He is a senior researcher at the Keldysh Institute
of Applied Mathematics, the Russian Academy of Sciences. After
receiving his M.Sc. degree from Moscow State University in 1976, he
worked in a research institute in electronic industry, where developed
software for microprocessors. Since 1983, when he changed to Keldysh
Institute, his main research interests are functional programming, the-
ory and methods of program transformation and optimization, and
their application to practical programming languages and problems.

