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1. INTRODUCTION 

One of the defining features of modern science is the use of languages, 
both informal and formal, to const;ruct linguistic models of reality [11 J. 
The introduction of the computer was a revolutionary step in the execu­
tion of formal linguistic models and, as a result, the number of linguistic 
models created and used has significantly increased in all branches of 
science during the last decades. Computer science, as we see it, is lay­
ing the foundations and developing the research paradigm and scientific 
method of formal linguistic modeling. Linguistic models that can be per­
formed by a computer, at least in principle, are referred to as programs, 
or algorithms. 

Languages and their definitions play a central role in all forms of lin­
guistic modeling. Already in the late fifties the fast growing number 
of languages and their increasing complexity was felt as "one of the 
fundamental problems facing the computer profession" [10]. A modern 
approach in computer science for solving wide-spectrum problems is to 
devise application-oriented languages that make it easy for the user to 
express computational tasks in a particular area. Such languages are 
often defined by using several interpreters, or by translating -them to a 
ground language via a series of intermediate languages. But hierarchies of 
languages are not a simplification in terms of the underlying designation 
process, but increase computational complexity: a statement of a higher 
level language is usually defined by a sequence of actions (or phrases) 
on a lower, more elementary level. Effective and efficient reduction of 
language hierarchies is a prerequisite for formal linguistic modeling on a 
large scale. 

This contribution addresses the problem of systematically reducing the 
computational costs of language hierarchies by two forms of metacompu­
tation: program composition and program specialization. We shall not be 
concerned how, but what has to be achieved by metacomputation. The 
presented problems can be seen a~ltest cases for existing methods and as 
a guideline for future work. More specifically, we study the reduction of 
homogeneous hierarchies, i.e., hierarchies of translators or interpreters 
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only, as well as heterogeneous hierarchies in which translative and inter­
pretive definitions may occur in any order. For the sake of completeness, 
we also summarize two approaches for converting translators into inter­
preters and vice versa. From now on we shall refer to formal languages 
simply as languages. 

This work belongs to a line of research which aims at a better un­
derstanding of metacomputation and the use of metasystem transition, 
e.g., [4, 5, 6, 7, 11, 12, 13, 14]. In the remainder of this paper we adopt 
the language-independent formalization of [5] based upon [12, 4, 7]. 

2. HIERARCHIC AL SYSTEMS 0 F LANGUAGES 

Data, programs and application We assume a fixed set of data D 
for input and output, and to represent programs written in different 
languages. We shall assume nothing further about data; we could choose 
symbol strings, Lisp lists etc. To express the application of an L-program 
Pgm E D to its input Input E D we use angular brackets ( ... ) and 
denote computation by writing (Pgm Input)L =? Output. We omit the 
language index L when it is not essential. Capitalized names denote 
arbitrary elements of the data domain, e.g., Pgm ED. Two expressions 
in the application language are computationally equivalent, a = b, if 
they can be reduced to identical elements of D (or both expressions are 
undefined). 

Language definitions We know of exactly two forms of language defi­
nitions: interpretive and translative. An interpreter defines a source lan­
guage A by actions in another language B, while a translator defines 
a source language A by translation to a target language B where the 
translation is described in a meta-language M. 

Definition 1 (Interpretation). AB-program IntAB is an A/B-interpre­
ter if for every A-program PED and every input XE D 

(P X) A = (IntAB P, X)B 

Definition 2 (Translation). An M-program TransAB is an A----+B-trans­
lator if 

1. ( TransAB P)M EB-programs for all A-programs PED, and 
2. ( ( TransAB P)M X)B = (PX) A for all A-programs P E D and every 

input XE D. 

The following shorthand notation is sometimes used to denote an A---+ B­
translator written in M: A---+ B. 

M 
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Language hierarchies A hierarchical system of languages is a series of 
consecutive definitions where each definition is either an interpreter, or 
a translator. The hierarchy starts with a language N on the highest level 
and ends at a ground language 0. This is illustrated below where Defi 
is either an I/J-interpreter or an I---+J-translator (written in some lower 
language). 

We require that each language hierarchy is closed in the sense that the 
meta-languages of the translators can always be reduced to the ground 
language. For the sake of simplicity, let all translators in a hierarchy be 
written in the same language M which is identical to the ground lan­
guage 0. Otherwise, every meta-language can be reduced to the ground 
language 0 using the methods shown later in this paper. 

DefN Def1 
N __, N-1 1 __, 0 

Correct hierarchies Language hierarchies, being sequences of inter­
preters and translators, obey certain typing rules. Let us denote by * a 
join operation for building a language hierarchy. For example, Def A * 
DefB *Def c is a three-level hierarchy constructed from three language 
definitions, where A is defined by B and B is defined by C. The follow­
ing rules hold for any pair of adjacent definitions in a correct hierarchy, 
where-/- is an interpreter, _---+_a translator, and A, B, Care languages. 
In case (1) and (2) we speak of a homogeneous hierarchy, and in case (3) 
and ( 4) of a heterogeneous hierarchy. 

(1) A---+B * B---+C 
(2) A/B * B/C 

(3) A/B * B---+C 
(4) A---+B * B/C 

Complexity of hierarchies Abstraction by means of language hier­
archies is not a simplification in terms of time and space complexity. 
On the contrary, a statement of a higher level language is usually de­
fined by a sequence of actions (or phrases) on a lower, more elementary 
level. Generally speaking, the computational costs grow exponentially 
with the height of the interpreter hierarchy, and the size of a translated 
text grows exponentially with the height of the translator hierarchy. For 
instance, efficiency problems in interpreter hierarchies are due to the 
multiple interpretive overhead, each interpretive level multiplying com­
putation time. 

The ultimate goal is to minimize the complexity involved in language 
hierarchies. A hierarchy of formal language definitions is just a 'compli­
cated program' composed from a 'Series of interpreters and translators. 
Hence, methods of program transformation and optimization can be used 
to reduce its complexity. 
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3. MET ACOMPUT ATION 

We refer to any process of simulating, analyzing and transforming pro­
grams by means of programs as metacomputation, a term that underlines 
the fact that this activity is one level higher than ordinary computation. 
Programs that carry out these tasks are metaprograms. We shall use 
the term metacomputation in a general way, independent of a specific 
transformation paradigm. 
Abstraction To represent application expressions without specifying all 
data elements, we introduce variables. We refer to an application expres­
sion possibly including variables as configuration. A variable ranges over 
the whole domain D. We use lower case names to denote variables, e.g., 
x, y,p. A configuration represents the set of all application expressions 
obtained by replacing variables by elements of D. 
Encoding In order to manipulate configurations by means of programs, 
we define an injective mapping, called metacoding, from configurations 
into the data domain D (this is necessary because application symbols 
and variables are not elements of D). We write a horizontal line above 
an expression to denote its metacode. For example, (PX, y) is a meta­
coded configuration where P, X E D, and y is a variable. Metacoding 
in metacomputation corresponds to a Godel numeration in logics where 
statements about a theory are encoded in the theory itself. 
Metacomputation Let Meta E D be some metaprogram. It follows 
from our notation that (Meta (PX, y)) =? Output denotes metacompu­
tation on a metacoded configuration by a metaprogram Meta. We say, a 
variable is bounded by metacoding, and it behaves under metacomputa­
tion as a universally quantified variable. For better readability, we move 
metacoded expression one line down for each metacoding: 

(Meta ) =} Output 
(PX, y) 

This characterization of metacomputation states nothing about its con­
crete nature, except that it involves a metaprogram that operates on 
a metacoded expression. In this paper, we use two cases of metacom­
putation to reduce language hierarchies, namely program composition 
and program specialization (see, e.g., [12, 15, 9, 2]). We will not fix a 
particular technique for metacomputation, but specify these two meta­
computation tasks equationally. 

Definition 3 (Program composition). A,n M-program Comp is an A-+B­
composer if for all A-programs'?, QED, every input X, YE D: 

(Comp )M =? R 
(P (Q x)A, Y)A 
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such that 

Definition 4 (Program specialization). An M-program Spec is an A-;B­
specializer if for every A-program PED, every input X, Y: 

(Spec )M ==> R such that (R Y)B = (P X, Y) A 
(PX, Y)A 

Note that these definitions say nothing about the quality of the meta­
computation process, but we expect that the transformations performed 
are more than trivial program composition or trivial program specializa­
tion since the success of reducing the complexity of language hierarchies 
depends on the power of the metacomputation methods. The formulas 
used here are collectively referred to as MST-formulas (MST=metasys­
tem transition [11]). 

4. C 0 NV ER TING D E FIN IT I 0 NS T 0 THEIR DU AL F 0 RM 

Language definitions in mathematics usually take the translative form 
stated in some meta-language (an excellent example is [1]), while lan­
guage definitions in computer science are often interpretive. Mathemat­
ics is an example of a linguistic activity where it is more convenient to 
define language extensions stepwise by translation into more elementary 
phrases than by defining the whole extended language interpretively. On 
the other hand, when defining a new language from scratch, as is often 
the case in computer science, it is usually easier to give its definition by 
an interpreter rather than by a translator. However, in both situations 
the need may arise for converting translators into interpreters, and vice 
versa. We summarize two approaches for converting language definitions 
into their dual form. 
Converting translators to interpreters [7], [8] Let TransAB be an 
A-;B-translator written in C, and let B be defined by a B/C-interpreter 
IntBC. This is a two-level language hierarchy of the form TransAB * 
IntBC. The A-;B-translator can be converted into an A/C-interpreter by 
program composition as follows. 

First, define an inefficient A/C-interpreter IntAC that performs A­
programs in two stages: by translating an A-program pinto B and then 
by interpreting the B-program wit);( input x. 

def (IntAC p, x)c = (IntBC (TransAB P)c, x)c 
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Second, the intermediate language B is removed by applying the C-+C­
composer to this definition, and a more efficient A/C-interpreter IntAC' 
is thus obtained: 

(Comp ) =? IntA C' 
(IntBC ( TransAB P)c, x)c 

Converting interpreters to translators [3] Let IntBC be an B/C­
interpreter and let Spec be a C-+C-specializer written in C. The B/C­
interpreter can be converted into an B-+C-translator by program spe­
cialization as follows. 

Let P be a B-program, and define a C-program R such that (R X)c = 

(P X)B for all XE D: 

def (R x)c = (IntBC P, x)c 

First MST. An efficient C-program R' may be obtained by specializing 
the definition of R: 

(Spec ) =? R' 
(IntBC P, x)c 

Second MST. An B-+C-translator TransBC, such that 
(( TransBC P) X)c = (R' X)c, can be defined by replacing the meta­
coded program P by a free variable pin the first MST-formula: 

def ( TransBC P)c = (Spec P--)c 
(IntBC •, x)c 

The distance between the variable and position • defines now how many 
times the value of the variable has to be metacoded upon substitution 
(here p's value needs to be metacoded once in order to obtain P). An 
efficient B-+C-translator TransBC' may be obtained by specializing the 
definition of TransBC: 

(Spec' ) =? TransBC' 
(Spec P--)c 

(IntBC •, x)c 

5. REDUCING LANGUAGE HIERARCHIES 

This section addresses the problem of reducing homogeneous and het­
erogeneous language hierarchies. We will see that two metacomputation 
tasks, namely program specialization and program composition, are suf­
ficient to reduce all forms of language hierarchies. 
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5.1. Homogeneous Hierarchies of Languages 

We consider homogeneous language hierarchies and state their reduction 
for the two-level case. The same methods can be used for homogeneous 
hierarchies of arbitrary height. Recall that in both cases the translator 
and interpreter resulting from the reduction of the hierarchy can be 
converted to its dual definition as explained in Section 4. 
Translator hierarchies Let each language in a two-level hierarchy be 
defined by a translator. A text in the top language A is translated by 
the translator TransAB into a text in the lower language B which is 
translated by TransBC into a text written in the ground language C. 
The language hierarchy has the form TransAB * TransBC. The goal of 
metacomputation is to remove the construction of intermediate phrases 
between the translators. For simplicity, we assume that both translators 
are defined in the same meta-language M. 

An A--tC-translator TransAC is defined by application of the two trans­
lators to an A-program p: 

def ( TransAC P)M = ( TransBC ( TransAB p)M)M 

A more efficient A--tC-translator TransAC' that translates A directly 
into C without the intermediate translation into B can be derived by 
metacomputation of this program composition: 

(Comp ) =? TransA C' 
. (TransBC (TransAB P)M)M 

Interpreter hierarchies Let each language in a two-level hierarchy be 
defined by an interpreter. A text in the top language A is interpreted by 
the interpreter IntAB written in the lower language B which in turn is 
interpreted by the interpreter IntBC described in the language C. The 
language hierarchy has the form IntAB * IntBC. The goal of metacom­
putation is to remove intermediate actions between the interpreters. 

An A/C-interpreter, which applies an A-program p to its input x, is 
defined as follows: 

def (IntAC p, x)M = (IntBC IntAB, (p, x))c 

A more efficient A/C-interpreter IntAC' that interprets A directly in C 
without the intermediate interpretation of B can be obtained by special­
ization of the interpreter IntBC with respect to IntAB: 

(Spec / ) ==> IntAC' 
(IntBC IntAB, (p, x))c 
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5.2. Heterogeneous Hierarchies of Languages 

We now consider the general case of heterogeneous hierarchies that con­
sist of translative and interpretive definitions in an arbitrary order and 
show that all heterogeneous hierarchies can be reduced in three steps ei­
ther to an interpreter or a translator. A heterogeneous hierarchy contains 
at least an interpreter and a translator. 
(1) Interpreter over translators First, each subhierarchy of the form 
'interpreter over translator' is reduced to a single interpreter that re­
places both definitions. Assume that the language A is interpreted by 
an A/B-interpreter IntAB which in turn is defined by a B-+C-translator. 
Thus, the language hierarchy has the form IntAB * TransBC. An A/C­
interpreter IntAC which interprets A directly in C can be obtained by 
ordinary computation: by translating the interpreter IntAB into C. 

( TransBC IntAB) = IntAC 

By repeatedly using this reduction, any subhierarchy of the form 

... IntL * Trans __ * ... * Trans_] ... 

interpreter over translators 

where I is the top language and J the ground language, can be reduced 
to a single I/ J-interpreter. 
(2) Translators over interpreters It is easy to verify that the hierar­
chy resulting from exhaustively applying step (1) consists of exactly two 
homogeneous subhierarchies: a sequence of translators followed by a se­
quence of interpreters. In other words, all translators 'under' interpreters 
disappeared. 

TransN_ * ... * Trans_!* IntL * ... * Jnt_O 

translative part interpretive part 

Further reduction requires metacomputation over each subhierarchy. The 
two homogeneous subhierarchies can be reduced to a translator (by a 
program composer) and to an interpreter (by a program specializer), 
respectively, using the methods explained in Section 5.1. 
(3) Two-level hierarchy After step (2) the language hierarchy is re­
duced to a two-level hierarchy consisting of one translator TransNI and 
one interpreter IntIO. 

TransNI * IntIO 

two levels 
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The final reduction to a single interpreter can be obtained using a 0-tO­
composer Comp as shown in Section 4 (recall that we assumed that the 
meta-language of translators can be reduced to the ground language 0): 

(Comp ) ~ IntNO' 
(IntIO ( TransNI P)o, x)o 

As a result, the heterogeneous hierarchy consisting of translative and 
interpretive definitions in an arbitrary order has been reduced to a single 
interpreter. If necessary, the interpreter IntNO' can be converted to an 
N-tO-translator TransNO (Section 4). 

6. SUMMARY 

Table 1 summarizes the reduction formulas stated in the previous sec­
tions. In each case a pair of interpreters/translators is transformed into 
a single definition. 

Formulas 1 and 2 describe the two homogeneous cases, while Formu­
las 3 and 4 describe the two heterogeneous cases. Formula 5 describes 
the conversion of an interpreter into a translator. The conversion of a 
language definition into its dual form is covered by Formulas 4 and 5. 
Note that no direct conversion of a translator into an interpreter exists; 
an additional interpreter for the target language must be provided in 
Formula 4. Only one reduction (Formula 3) can be achieved by ordinary 
computation. All other cases require metacomputation. 

We list only the simple cases in the table: a translator is produced 
in Formula 1 and an interpreter in Formulas 2-4. If the dual form 
of a definition is needed, it can be obtained by the second step: the 
A -t C-translator produced in Formula 1 can be converted into an A/M-

M 
interpreter given a B/M-interpreter according to Formula 4, and the in-
terpreters produced in, Formulas 2-4 can be converted into the corre­
sponding translators according to Formula 5. 

The formulas presented in Table 1 can be seen as test cases for exist­
ing metacomputation methods and as a guideline for further research: 
they state what has to be achieved by metacomputation. We see that a 
program composer must be capable of 

- fusing two translators for non-trivial languages into a single trans­
lator (Formula 1), 

- fusing a translator and an interpreter into an interpreter (Formula 
4). . ~ ,,., 

A program specializer must be capable of 

- fusing two interpreters (Formula 2) 
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converting an interpreter into a translator (Formula 5). 

Practical progress has been achieved with the problems stated in For­
mula 2 and 5 (cf. [9]), while more powerful method program composers 
are still under development (cf. [12, 15, 2]). 

TABLE I 
Summary of reduction formulas for language hierarchies 

I Type of red'Uction I MST-form'Ula Note 

1 A->B*B->C=?A--+C (Comp ) =? TransAC 
M M M (TransBC (TransAB P)M)M 

2 A/B*B/C =?A/C (Spec ) =? IntAC 
(lntBC IntAB, (p, x))c 

3 A/B*B--+ C=?A/C ( TransBC IntAB) =? IntAC ordinary 
M computation 

4 A->B*B/M =?A/M (Comp ) =? IntAM translator to 
M (lntBM (TransAB P)M, x)M interpreter 

5 B/C =?B->C (Spec' ) =? Trans BC interpreter to 
M (Spec ___ p __ )c translator 

(lntBC •, x)c 

7. CONCLUSION 

We studied the structure of language hierarchies and showed that two 
metacomputation tasks, namely program specialization and program 
composition, are sufficient to reduce all language hierarchies constructed 
from interpreters and translators. We argued that a practical solution to 
this problem is a prerequisite for formal linguistic modeling on a large 
scale. 

It is instructive to compare today's view about programming languages 
with the dream of the sixties-an aim sometimes still pursued-that 
one universal language would be sufficient to satisfy all programming 
needs. In the meantime, it became clear that new languages emerge 
as new problems are attacked. A language suited for one purpose is 
not necessarily the best for another problem. One can never be sure of 
finding what is needed to solve a problem among those formalisms that 
have already been created. The creation of a variety of languages is the 
very nature of linguistic modeling. 

A substantial amount of work in computer science has been devoted 
to the development of high-level formalisms, while searching for ways 
to produce efficient implementations. Some progress has been achieved, 
but the needs are still far beyond the actual achievements. 
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The approach advocated in this paper is the development of a set of 
universal tools for metacomputation, instead of singular solutions for 
particular (classes of) languages. Metacomputation tools are needed to 
deal with languages as material, to manipulate languages definitions, and 
to reduce the complexity of language hierarchies. The problem is how to 
deal with a large variety of languages, and not how to find one universal 
ground language. Indeed, what is needed most are powerful metapro­
gramming languages that allows the construction of metacomputation 
tools. As explained in [7], three main metacomputation tasks must be 
performed efficiently: program composition, program specialization, and 
program inversion. 

To what extent the metacomputation approach will be realized, can 
only be seen in the future. But one thing is for sure, if we are not able to 
reduce the complexity and costs of language hierarchies, we will never 
be able to master linguistic modeling to its full extent and achieve the 
next metasystem transition: mastering the creation of linguistic models 
on a large scale. 
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