
A Java Supercompiler and its Application
to Verification of Cache-Coherence Protocols

Andrei Klimov
Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

Co-authors of the JScp system
Arkady Klimov
Artem Shvorin

July 17, 2009
Perspectives of System Informatics, June 15-19, Novosibirsk, Russia

2

Outline

Theorem proving and program verification by
program optimization

Verification of protocol models by supercompilers
Modeling of protocols (due to G.Delzanno)
Encoding in Java and applying Java Supercompiler JScp

Overview of Java Supercompiler JScp

Discussion and Conclusion

Theorem Proving and Program Verification
by Program Optimization

4

Theorem proving by program optimization

Given
a computable predicate P(x) – a function in some programming
language

To prove or refute
∀x P(x) when P(x) terminates

Optimize the program P and conclude that
the statement is proven if the residual code looks like
P(x) = true
the statement is refuted and a counter example x = A is found
if the residual code looks like
P(x) = if x = A then false else …

In principle, any program optimizer can be used
The class of provable statements depends on the power of the
program optimizer
A nice test problem to compare specializers and other optimizers

5

Program verification by program optimization

Given
a program: F(x)
a postcondition: P(y) – a total function in the same language

To prove or refute
∀x P(F(x)) when F(x) terminates

Write the following program G:
G(x) = P(F(x))

Optimize (specialize, supercompile, etc) G and conclude
the program F is verified if the residual code looks like

G(x) = true

More practical:
… if the residual code contains return statements (in case of Java)
only of form return true (no return false and no return expression)

Verification of protocol models
by supercompilers

7

A Class of Verification Problems Soluble by Supercompilers

A.Nemytykh and A.Lisitsa has found a nice class of verification problems
soluble by supercompilers:

Verification of models of cache coherence protocols following
G.Delzanno and that of other similar parameterized automata

They performed successful experiments with the Refal Supercompiler
SCP4 developed by V.Turchin and A.Nemytykh

We reproduced the experiments with our Java Supercompiler JScp

All of the considered protocol models have been either verified, or
contain an error, which has been found by the supercompilers

This suggests ideas that
The result is based on the essence of supercompilation rather than
particular improvements and tricks
The models, pre- and postconditions belong to a class for which
it can be proven that the supercompilers successfully verify them

8

Modeling of Protocols (informally)

The behavior of a protocol is described by n identical finite automata
e.g., in the MOESI cache-coherence protocol the names of states are
invalid, exclusive, shared, modified, owned

Rules define when simultaneous state transition is allowed, e.g. in MOESI:
if some automaton is in invalid state

this invalid shared
all exclusive shared
all modified owned

if some automata is in exclusive state
this exclusive modified

if some automaton is in shared or owned state
this shared or owned exclusive
all other invalid

…

Condition for allowed initial states
e.g. in MOESI, all automata initially are in invalid state

Condition for “unsafe” states that must not be reached, e.g. in MOESI:
some automaton is in modified state and some automaton is in exclusive, shared or
owned state, or
some automaton is in exclusive state and some automaton is in shared or owned state, or
2 automata are in modified state, or 2 automata are in exclusive state

9

Modeling of Protocols (formally)
Due to G.Delzanno, a protocol model is an Extended Finite State Machine (EFSM)

The model state is a tuple of natural numbers (x1,…, xk), where
k is the number of automata states
xi is the number of automata in k-th state

e.g. in MOESI protocol
k = 5, the model state is (invalid, exclusive, shared, modified, owned) where
variables are named after respective automata states

Transition rules have form
if L then R where L is a conjunction of conditions of form xi = li or ∑xij ≥ li
R is a sequence of assignments of form xi’ = ri or xi’ = xi + ∑xij + ri

e.g. in MOESI protocol
if invalid ≥ 1 then invalid’ = invalid – 1, exclusive’ = 0, modified’ = 0,
shared’ = shared + exclusive + 1, owned’ = owned + modified
if exclusive ≥ 1 then exclusive’ = exclusive – 1, modified’ = modified + 1
if shared + owned ≥ 1 then …

Condition for allowed initial states of form xi = li or xi ≥ li, e.g. in MOESI:
invalid ≥ 1, exclusive = 0, shared = 0, modified = 0, owned = 0

Conditions for “unsafe” states that must not be reached of form &(∑xij ≥ li), e.g.
exclusive + shared + owned ≥ 1 and modified ≥ 1, or
exclusive ≥ 1 and shared + owned ≥ 1, or
modified ≥ 2, or exclusive ≥ 2

10

Program model in Java of MOESI cache-coherence protocol
public boolean runModel(int[i] actions, int[] pars)

throws ActionNonapplicableException
{
// set and check initial state (precondition)
int invalid = pars[0], invalid_ = invalid;
int exclusive = 0, exclusive_ = exclusive;
int shared = 0, shared_ = shared;
int modified = 0, modified_ = modified;
int owned = 0, owned_ = owned;

require (invalid >= 1);

// execute actions
for (int i = 0; i < actions.length; i++) {

// execute one action
switch (action) {
...
default:
require(false);

}
invalid = invalid_;
exclusive = exclusive_;
shared = shared_;
modified = modified_;
owned = owned_;

}

// check final state (postcondition)
if (exclusive + shared + owned >= 1 && modified >= 1)

return false;
if (exclusive >= 1 && shared + owned >= 1) return false;
if (modified >= 2) return false;
if (exclusive >= 2) return false;
return true;

}

// definition of actions
case rm:
require (invalid >= 1);
invalid_ = invalid - 1;
exclusive_ = 0;
modified_ = 0;
shared_ = shared + exclusive + 1;
owned_ = owned + modified;
break;

case wh2:
require (exclusive >= 1);
exclusive_ = exclusive - 1;
modified_ = modified + 1;
break;

case wh3:
require (shared + owned >= 1);
shared_ = 0;
exclusive_ = 1;
modified_ = 0;
owned_ = 0;
invalid_ = invalid + modified +

exclusive + shared +
owned - 1;

break;

case wm:
require (invalid >= 1);
shared_ = 0;
exclusive_ = 1;
modified_ = 0;
owned_ = 0;
invalid_ = invalid + modified +

exclusive + shared +
owned - 1;

break;

To prove: never returns false
void require(boolean b) throws ModelException {

if (!b) throw new ModelException();
}

11

Program model in Java of MOESI cache-coherence protocol
public boolean runModel(int[i] actions, int[] pars)

throws ActionNonapplicableException
{
// set and check initial state (precondition)
int invalid = pars[0], invalid_ = invalid;
int exclusive = 0, exclusive_ = exclusive;
int shared = 0, shared_ = shared;
int modified = 0, modified_ = modified;
int owned = 0, owned_ = owned;

require (invalid >= 1);

// execute actions
for (int i = 0; i < actions.length; i++) {

// execute one action
switch (action) {
...
default:
require(false);

}
invalid = invalid_;
exclusive = exclusive_;
shared = shared_;
modified = modified_;
owned = owned_;

}

// check final state (postcondition)
if (exclusive + shared + owned >= 1 && modified >= 1)

return false;
if (exclusive >= 1 && shared + owned >= 1) return false;
if (modified >= 2) return false;
if (exclusive >= 2) return false;
return true;

} To prove: never returns false

12

Residual code of MOESI cache-coherence protocol model

13

Residual code of Synapse cache-coherence protocol model

14

Residual code of MSI cache-coherence protocol model

15

Residual code of MESI cache-coherence protocol model

16

Residual code of MOSI cache-coherence protocol model

17

Residual code of MOESI cache-coherence protocol model

18

Residual code of Illinois cache-coherence protocol model

19

Residual code of Berkley cache-coherence protocol model

20

Residual code of Firefly cache-coherence protocol model

21

Residual code of Futurebus cache-coherence protocol model

22

Residual code of Dragon cache-coherence protocol model

23

Residual code of JavaMetaLocking cache-coherence protocol

24

Residual code of ReaderWriter cache-coherence protocol

25

Residual code of German I cache-coherence protocol model

26

Residual code of German B cache-coherence protocol model

27

Residual code of DataRaceFreeSynchro cache-coherence
protocol model

Overview of Features
of the Java Supercompiler JScp

29

What is the Java Supercompiler?

JScp is a source-to-source program optimizer

JScp
“residual”

Java program
(.java files)

libraries
(.class files)

(part of)
a Java program

(.java files)

advice file
(.xml)

30

Driving: building process tree

Ordinary computation

...

...

if (y==1)if (y==1)

… x … y …… x … y …

… y … x …… y … x …

… 1… x …… 1… x … … y … x …… y … x …

… 2 … 5 …… 2 … 5 …

… 5 … 2 …… 5 … 2 …

… “abc” …… “abc” …

… 13 …… 13 …
z=x+1z=x+1 if (x==5)if (x==5)

… y … 5 …… y … 5 … … y … x …… y … x …

... ...
… x … z …… x … z …

……

... ...

Driving

some steps does not
run against variables
some steps does not
run against variables

a residualized if gives
rise to branching

a residualized if gives
rise to branching

a statement that
can’t be executed

is residualized

a statement that
can’t be executed

is residualized

A process tree is
a program

tim
e

xxxxxxconfigurationsconfigurations

31

The main notions of supercompilation

Configuration
a set of states = a generalized program state =
a state with variables

Driving
building a potentially infinite process tree

Configuration analysis
multiple transformations of a process graph
(starting with a tree) until in becomes finite

by reducing a configuration to an equivalent or wider one
by generalizing a configuration to a wider one
by cutting a configuration into parts

32

The notion of configuration for Java

Configuration
Stack of frames, each:

Control point
Operand stack
Local environment

Heap
mapping of reference variables
to object “abstractions”

Classes
static non-final variables

always unknown
static final variables

known after initialization

Wherever a ground value is allowed,
a configuration variable may occur

Note: one thread now;
many threads in future

Configuration variable
is

a parameter of a configuration
a residual local variable

has
identity (a unique number)
type
restriction (now: i ≥ k)

reference variable is
a key to the heap
was it produced by new
at supercompilation time?

“Abstract” object in heap
fields
type
is type exact or a super class?
is it unique or may be aliased?
may the reference be null?
etc

33

Configuration analysis of conditional statements

2 alternatives to continue after statements with multiple exits

if (C)if (C)

AA BB

DD

if (C’)if (C’)

A’A’ B’B’

D’D’

if (C’)if (C’)

A’A’ B’B’

D’1D’1 D’2D’2

Source code Residual code 1 Residual code 2

The choice is made by the human

Note the possibility of exponential growth of the residual program

34

Configuration analysis of loops (1)

How do configurations A and B relate?
B ⊆ A as sets, that is
B = ∆ A, where ∆ is a substitution
then loop-back with ∆ as an assignment

otherwise
either

continue driving from B forward
or

generalize A to some A’ such that
A = ∆ A’, where ∆ is a substitution
residualize ∆ as assignments
between configurations A and A’ ,
and
continue driving from A’

if (C)if (C)

BB

DD

Source code

Note the possibility of exponential time to construct the residual program

AA

if (C’)if (C’)

B’B’

A’A’

AA

CC BB

?

Driving…

…

35

Configuration analysis of loops (2)

How do configurations A and B relate?
B ⊆ A as sets, that is
B = ∆ A, where ∆ is a substitution
then loop-back with ∆ as an assignment

otherwise
either

continue driving from B forward
or

generalize A to some A’ such that
A = ∆ A’, where ∆ is a substitution
residualize ∆ as assignments
between configurations A and A’ ,
and
continue driving from A’

if (C)if (C)

BB

DD

Source code

Note the possibility of exponential time to construct the residual program

AA

A’A’

Driving…

AA

∆∆

…

36

Configuration analysis of loops (3)

How do configurations A and B relate?
B ⊆ A as sets, that is
B = ∆ A, where ∆ is a substitution
then loop-back with ∆ as an assignment

otherwise
either

continue driving from B forward
or

generalize A to some A’ such that
A = ∆ A’, where ∆ is a substitution
residualize ∆ as assignments
between configurations A and A’ ,
and
continue driving from A’

if (C)if (C)

BB

DD

Source code

Note the possibility of exponential time to construct the residual program

AA

if (C’’)if (C’’)

B’’B’’

A’’A’’

A’A’

C’C’ B’B’

?

Driving…

AA

∆∆

?

37

When to terminate loop unrolling?

Supercompilers (like many other formal system transformers)
usually use well-quasi-orders (WQO) of configurations to
terminate and forcedly generalize configurations

A pre-order ⊴ (reflexive transitive relation) is a well-quasi-order if in any
infinite sequence {xi} there exist xi and xj, i < j, such that xi ⊴ xj

The author of a supercompiler has to chose some reasonable
WQO on configurations and generalize one of configurations
Ci and Cj (found on one path in graph) such that Ci ⊴ Cj

Most popular WQO – homeomorphic embedding of terms: roughly,
t1 ⊴ t2 if the text representation of t1 can be obtained from that of t2
by cleaning some of its parts

In JScp
for integers: i1 ⊴ i2 if i1 < i2
for restrictions on integer configuration variables:
(v1 ≥ i1) ⊴ (v2 ≥ i2) if i1 < i2

38

Discussion and conclusion

The main reason why the supercompilers verify the considered protocol
models is that the transition rules are monotonic with respect to the WQO:

for integers: i1 ⊴ i2 if i1 < i2
for restrictions on integer configuration variables:
(v1 ≥ i1) ⊴ (v2 ≥ i2) if i1 < i2

Based on results on decidability of the reachability problem by P.Abdulla
and K.Ĉerāns for similar class of systems

Systems with monotonic (with respect to a WQO) transition rules are referred
to as well-structured

G.Delzanno and others used backward analysis (from postcondition to
precondition), while supercompilers use forward analysis (prom
precondition to postcondition)

The backward analysis solves the reachability problem for a larger class of
well-structured systems than backward analysis
Subtleties lie in pre- and postconditions

The main difference between ours and Delzanno’s work is that he used a
special-purpose verification system, while supercompilers are universal
tools that can do much more than verify this particular class of programs

39

The end

Thank you!
Questions?

Andrei Klimov
klimov@keldysh.ru

Spare slides

Finding a counter example
for an erroneous protocol model

42

Residual Code of Erroneous Version of Dragon protocol

43

Protocol Dragon Incorrect (-nolca -bol -l0)

44

Protocol Dragon Incorrect (-nolca -bol -l1)

45

Protocol Dragon Incorrect (-nolca -bol -l2)

46

Protocol Dragon Incorrect (-nolca -bol -l3)

47

Protocol Dragon Incorrect (-nolca -bol -l4)

48

Protocol Dragon Incorrect (-nolca -bol -l5)

49

Protocol Dragon Incorrect (-nolca -bol -l3)

50

Protocol Dragon Incorrect (-nolca -bol -l3)
final int pars_0 = pars[0];
if (pars_0 < 1) == false
switch (((java.lang.Integer)iter.next()).intValue())
case 3:
final int invalid__34 = pars_0 - 1;
switch (((java.lang.Integer)iter.next()).intValue())
case 4:
if (invalid__34 < 1) == false

51

Protocol Dragon Incorrect (-nolca -bol -l3)
if (pars[0] >= 2)
((java.lang.Integer)iter.next()).intValue() == 3
((java.lang.Integer)iter.next()).intValue() == 4

52

Short History of Supercompilation

1974 Valentin Turchin presented supercompilation to a group of students at
seminars in Moscow

1980s Valentin Turchin developed first supercompilers for the functional
language Refal (CUNY, New York)

1980s – A series of papers by Valentin Turchin on supercompilation of Refal
– 1990s

1990s Works on supercompilation for simplified languages in Copenhagen
University by Robert Glück and Morten Sørensen in collaboration with us

1993 – Andrei Nemytykh (IPS RAS, Pereslavl-Zalessky) continued work on
– 2000s Turchin’s supercompiler and completed it

1998 – Java Supercompiler by Andrei Klimov, Arkady Klimov and Artem Shvorin
– 2000s (Keldysh Institute of Applied Mathematics, RAS, Moscow)

53

Java Supercompiler Project Sites

Supercompilers, LLC
http://supercompilers.com

JScp Working site
http://supercompilers.ru

JVer Project:
Verification of Java Programs by
means of the JScp Supercompiler

http://pat.keldysh.ru/jver

