A Java Supercompiler and its Application
to Verification of Cache-Coherence Protocols

Andrei Klimov
Keldysh Institute of Applied Mathematics, Russian Academy of Sciences

Co-authors of the JScp system
Arkady Klimov
Artem Shvorin

July 17, 2009
Perspectives of System Informatics, June 15-19, Novosibirsk, Russia

Outline

Theorem proving and program verification by
program optimization

Verification of protocol models by supercompilers
= Modeling of protocols (due to G.Delzanno)
=« Encoding in Java and applying Java Supercompiler JScp

Overview of Java Supercompiler JScp

Discussion and Conclusion

Theorem Proving and Program Verification
by Program Optimization

Theorem proving by program optimization

= Given
= a computable predicate P(x) — a function in some programming
language
= TO prove or refute
= VX P(x) when P(x) terminates

= Optimize the program P and conclude that

= the statement is proven if the residual code looks like
P(X) = true

= the statement is refuted and a counter example x = A is found
If the residual code looks like
P(x) = if x = A then false else ...

= In principle, any program optimizer can be used

= The class of provable statements depends on the power of the
program optimizer

= A nice test problem to compare specializers and other optimizers
4

Program verification by program optimization

= Given
= a program: F(x)
= a postcondition: P(y) — a total function in the same language

= To prove or refute
= VX P(F(X)) when F(x) terminates

= Write the following program G:
= G(x) = P(F(x))

= Optimize (specialize, supercompile, etc) G and conclude
the program F is verified if the residual code looks like
s G(X) =true

= More practical:

= ... if the residual code contains return statements (in case of Java)
only of form return true (no return false and no return expression)

5

Verification of protocol models
by supercompilers

A Class of Verification Problems Soluble by Supercompilers

A.Nemytykh and A.Lisitsa has found a nice class of verification problems
soluble by supercompilers:

» Verification of models of cache coherence protocols following
G.Delzanno and that of other similar parameterized automata

They performed successful experiments with the Refal Supercompiler
SCP4 developed by V.Turchin and A.Nemytykh

We reproduced the experiments with our Java Supercompiler JScp

All of the considered protocol models have been either verified, or
contain an error, which has been found by the supercompilers

This suggests ideas that

= The result is based on the essence of supercompilation rather than
particular improvements and tricks

=« The models, pre- and postconditions belong to a class for which
it can be proven that the supercompilers successfully verify them

Modeling of Protocols (informally)

= The behavior of a protocol is described by n identical finite automata

= e.g., in the MOESI cache-coherence protocol the names of states are
invalid, exclusive, shared, modified, owned

= Rules define when simultaneous state transition is allowed, e.g. in MOESI:

= if some automaton is in invalid state
« this invalid = shared
« all exclusive = shared
« all modified > owned

= if some automata is in exclusive state
« this exclusive = modified

= if some automaton is in shared or owned state
« this shared or owned - exclusive
= all other - invalid

= Condition for allowed initial states
= e.g. in MOESI, all automata initially are in invalid state

= Condition for “unsafe” states that must not be reached, e.g. in MOESI:

= some automaton is in modified state and some automaton is in exclusive, shared or
owned state, or

= some automaton is in exclusive state and some automaton is in shared or owned state, or
= 2 automata are in modified state, or 2 automata are in exclusive state 3

Modeling of Protocols (formally)

Due to G.Delzanno, a protocol model is an Extended Finite State Machine (EFSM)

= The model state is a tuple of natural numbers (x,,..., x,), where
= Kk is the number of automata states
= X is the number of automata in k-th state

e.g. in MOESI protocol

= k =5, the model state is (invalid, exclusive, shared, modified, owned) where
variables are named after respective automata states

= Transition rules have form
= if Lthen Rwhere Lis a conjunction of conditions of form x; = |, or >x;; > |,
R is a sequence of assignments of form x;" = r, or X" = x; + 2x; + 1,
e.g. in MOESI protocol

= if invalid > 1 then invalid’ = invalid — 1, exclusive’ = 0, modified’ = 0,
shared’ = shared + exclusive + 1, owned’ = owned + modified

= if exclusive > 1 then exclusive’ = exclusive — 1, modified” = modified + 1
= if shared + owned > 1 then ...

= Condition for allowed initial states of form x, = |, or x; = |, e.g. in MOESI:
= invalid = 1, exclusive = 0, shared = 0, modified = 0, owned = 0

= Conditions for “unsafe” states that must not be reached of form &(Zxij > 1), e.qg.
= exclusive + shared + owned > 1 and modified > 1, or
= exclusive > 1 and shared + owned = 1, or
= modified > 2, or exclusive > 2 9

Program model in Java of MOESI cache-coherence protocol

public boolean runModel (int[i] actions, int[] pars) // definition of actions
throws ActionNonapplicableException case rm:
{ require (invalid >= 1);
// set and check initial state (precondition) éz\é?:;(ij;e = (|)r_1vaI|d - 1:
int invalid = pars[0], invalid_ = invalid; modified _ 0-
int exclusive = 0, exclusive_ = exclusive; shared_ = shared + exclusive + 1
int shared =0, shared_ = shared; owned_ = owned + modified;
int modified =0, modified_ = modified; break:
int owned =0, owned_ = owned;
case wh2:
require (invalid >= 1); require (exclusive >= 1);
exclusive_ = exclusive - 1;
// execute actions modified_ = modified + 1;
for (int 1 = 0; 1 < actions.length; i++) { break;
_ case wh3:
// execute one action require (shared + owned >= 1);
switch (action) { . shared_ = 0;
| exclusive_ = 1;
default: : modified_ = O;
require(false); owned_ =0 .
3} invalid_ = invalid + modified +
invalid - invalid - exclusive + shared +
S =7 owned - 1;
exclusive = exclusive_; break:
shared = shared_;
modified = modified ; case wm:
owned = owned_; require (invalid >= 1);
} shared_ = 0;
exclusive_ = 1;
// check final state (postcondition) modu:ued_ = of
if (exclusive + shared + owned >= 1 && modified >= 1) ownec_ B 0; S
return false- invalid_ = |nv?llg + mod;fleg +
- - ? exclusive + shared +
if (exclusive >= 1 && shared + owned >= 1) return false; owned - 1:
if (modified >= 2) return false; break:
if (exclusive >= 2) return fTalse;
return true; void require(boolean b) throws ModelException
} To prove: never returns false) if (!b) throw new ModelException();

Program model in Java of MOESI cache-coherence protocol

public boolean runModel (int[i] actions, int[] pars)
throws ActionNonapplicableException

{
// set and check initial state (precondition)
int invalid = pars[0], invalid_ = invalid;
int exclusive = 0, exclusive = exclusive;
int shared =0, shared = shared;
int modified = 0, modified = modified;
int owned =0, owned_ = owned;

require (invalid >= 1);

// execute actions
for (int 1 = 0; 1 < actions.length; i++) {

// execute one action
switch (action) {

default:

require(false);
}
invalid = invalid_;
exclusive = exclusive_;
shared = shared_;
modified = modified ;
owned = owned_;

}

// check final state (postcondition)

if (exclusive + shared + owned >= 1 && modified >= 1)
return false;

if (exclusive >= 1 && shared + owned >= 1) return false;

if (modified >= 2) return false;

if (exclusive >= 2) return fTalse;

return true;

} [To prove: never returns false]

Residual code of MOESI cache-coherence protocol model

@) oD

< LA
- is
<O <O

39
s

12

Residual code of Synapse cache-coherence protocol model

-
<
<
O @
o 5 (@}
O QAR <@
.b g <
<O & ©£ @ O
X
D@

13

Residual code of MSI cache-coherence protocol model

14

Residual code of MESI cache-coherence protocol model

e
’:\@) ©/:§
.:\.Q‘IQ W
O @ <> O < < >
<O < CORS;

“%

Residual code of MOSI cache-coherence protocol model

16

Residual code of MOESI cache-coherence protocol model

O) <D

SR
- ge
O <

3
s

17

Residual code of Illinois cache-coherence protocol model

18

Residual code of Berkley cache-coherence protocol model

19

Residual code of Firefly cache-coherence protocol model

20

esidual

code of Futurebus cache-coherence protocol model

LI
. +
e
-~
s oa J
0 -
.
.o e
» *
»
s ' .
. LY |
i
PR | R
' '
% U S
J
i
s
3

x
-
.
T
—
o L
- s v — - -
T 1 =
Py
T A e - - *
- - v
[l LI t
o - - T
oL o ¥
P PN - L] P o]
1 3 i . v 3
. . I - 5 . - » £t
Tt e L8 5 i
s I} " . . " N ERR # EAR -
T T T 2 0 I T
FL it
] . s v . . 'y ' . P]]
< T ' P
W - 4
P P] - P]) " s] s ox .
. .
3 Ny g) ! s x o s x v LY "
W
v, = ! s . - - B L £
. v -
P P L s ox s LI st 3 .
< T T T v v T T 3
" ' £y L
. . - T
i
LIRS LI
T v
P A

21

Residual code of Dragon cache-coherence protocol model

,,,,,,,

22

Residual code of JavaMetalocking cache-coherence protocol

4N

. B \
OO
[-
(<f

Va
¢ 9

20

&
s

(:j’

O

[=

A -~ \
¢ @

O3
S——
Vaup U
fa

V
O
9
o
(/\,
S

&
oy
)
Cl
@’ N y
O
@
&

{ =/

O
o=
R _
& v@
£k
¢
(_ e
(=)
L2
)
=0,
©
e
Y
0=0C
|@|
O
@ ¢

/00— 0—0—0—¢ &

Residual code of ReaderWriter cache-coherence protocol

24

Residual code of German I cache-coherence protocol model

25

Residual code of German B cache-coherence protocol model

26

Residual code of DataRaceFreeSynchro cache-coherence
protocol model

27

Overview of Features
of the Java Supercompiler JScp

What is the Java Supercompiler?

JScp iIs a source-to-source program optimizer

(.java files)

libraries
(.class files)

JScp

advice file
(.xml)

“residual”
Java program
(.java files)

29

Driving: building process tree

Driving A process tree is

Ordinary computation a program

ouwi

The main notions of supercompilation

= Configuration

= a set of states = a generalized program state =
a state with variables

= Driving
= building a potentially infinite process tree

= Configuration analysis
« multiple transformations of a process graph
(starting with a tree) until in becomes finite
= by reducing a configuration to an equivalent or wider one
= by generalizing a configuration to a wider one
= by cutting a configuration into parts

31

The notion of configuration for Java

Configuration
= Stack of frames, each:
= Control point
= Operand stack
= Local environment

= Heap

= Mmapping of reference variables
to object “abstractions”

= Classes
« static non-final variables
always unknown
= static final variables
known after initialization

Wherever a ground value is allowed,
a configuration variable may occur

Note: one thread now;
many threads in future

Configuration variable
= IS
= a parameter of a configuration
= a residual local variable
= has
= identity (a unique number)
« type
= restriction (now: i = k)
= reference variable is
= a key to the heap

= was it produced by new
at supercompilation time?

“Abstract” object in heap
= fields
= type
= is type exact or a super class?
= IS it unique or may be aliased?
= may the reference be null?
m etc 32

Configuration analysis of conditional statements

= 2 alternatives to continue after statements with multiple exits

Source code Residual code 1 Residual code 2
A B A B’ Y B’
| .] | T | 1 1
D D’ D’1 D’2
v v v v

The choice is made by the human

Note the possibility of exponential growth of the residual program
33

Configuration analysis of loops (1)

Source code Driving... How do configurations A and B relate?

J @7“ = B S Aassets, that is
A < T B = A A where A is a substitution
X | then loop-back with A as an assignment
@) | otherwise
: = either
B | = continue driving from B forward
. B’ | = Or
v : - generalize Ato some A’ such that
D C%) I A= A A/ where A is a substitution
\ - 1 = residualize A as assignments

between configurations 4 and A7,
and

= continue driving from 4”7

Note the possibility of exponential time to construct the residual program
34

Configuration analysis of loops (2)

Source code Driving... How do configurations A and B relate?

J = B<S Aas sets, that is
A e B = A A where A is a substitution
A then loop-back with A as an assignment

4@) otherwise
= either

B = continue driving from B forward
—— = OF

v = generalize Ato some A’ such that
5 A= A A’ where A is a substitution

= residualize A as assignments
between configurations 4 and A7,
and

= continue driving from 4”7

Note the possibility of exponential time to construct the residual program
35

Configuration analysis of loops (3)

Source code Driving... How do configurations A and B relate?

= residualize A as assignments
between configurations 4 and A7,
and

= continue driving from 4”7

BII

L%

Note the possibility of exponential time to construct the residual program

24, = B S Aas sets, that is
A e T B = A A, where A is a substitution
A I then loop-back with A as an assignment
@) I otherwise
?-(-l = either

B » I = continue driving from B forward
 — z : m Or
v I = generalize A to some A’ such that
D | A= A A’ where A is a substitution
¥ |

|

|

|

|

36

When to terminate loop unrolling?

= Supercompilers (like many other formal system transformers)
usually use well-quasi-orders (WQO) of configurations to
terminate and forcedly generalize configurations

= A pre-order < (reflexive transitive relation) is a well-quasi-order if in any
infinite sequence {x;} there exist x; and x;, i < j, such that x; <x;

= The author of a supercompiler has to chose some reasonable
WQO on configurations and generalize one of configurations
C and G, (found on one path in graph) such that C, < C,

= Most popular WQO — homeomorphic embedding of terms: roughly,
t, < t, if the text representation of t; can be obtained from that of t,
by cleaning some of its parts

= In JScp
= for integers: i, <i, ifi; <i,
= for restrictions on integer configuration variables:

VvV, 2 i) (v, 2i0,)ifiy <i
(1 1) (2 2) 1 2 37

Discussion and conclusion

The main reason why the supercompilers verify the considered protocol
models is that the transition rules are monotonic with respect to the WQO:

= forintegers: i, < i, ifi; <,
= for restrictions on integer configuration variables:
(v i) a(v, 20y if iy <,

Based gn results on decidability of the reachability problem by P.Abdulla
and K.Cerans for similar class of systems

= Systems with monotonic (with respect to a WQO) transition rules are referred
to as well-structured

G.Delzanno and others used backward analysis (from postcondition to
precondition), while supercompilers use forward analysis (prom
precondition to postcondition)

= The backward analysis solves the reachability problem for a larger class of
well-structured systems than backward analysis

= Subtleties lie in pre- and postconditions

The main difference between ours and Delzanno’s work is that he used a
special-purpose verification system, while supercompilers are universal
tools that can do much more than verify this particular class of programs

38

The end

Thank you!
Questions?

Andrei Klimov
klimov@keldysh.ru

39

Spare slides

Finding a counter example
for an erroneous protocol model

Residual Code of Erroneous Version of Dragon protocol

o\
4

Protocol Dragon Incorrect (-nolca -bol -|0)

43

Protocol Dragon Incorrect (-nolca -bol -|1)

44

Protocol Dragon Incorrect (-nolca -bol -12)

&
&
1N
@ %
<"”{ >
.
E/l}D [Q[jl Z:)

45

Protocol Dragon Incorrect (-nolca -bol -13)

-

46

Protocol Dragon Incorrect (-nolca -bol -|4)

O
&

&

@ O

<5
®; &

s

/ ™~
.
@
ﬁ:é 38

47

Protocol Dragon Incorrect (-nolca -bol -I5)

48

switch (((java.lang.Integer)iter.next()).intValue())

‘/M

‘ final int invalid__ 29 = pars 0- 1;

case 5
if (liter.hasNext())
rue “fa

se 3

final int invalid__34 = pars_0- 1; ‘

final int invalid__81 = invalid__29- 1; ‘

final int invalid__96 = invalid__29- 1;

if (liter.hasNext()
Tue 2

case 4

alse

flnal int pars_0 = pars[0];

if (pars_0 < 1) == false
/ switch (((java.lang.Integer)iter.next()).intValue())
case 3:

final intinvalid 34 =pars 0 - 1;

switch (((Java.lang.Integer)iter.next()).intValue())
ase 4.

invalid__ 34 < 1) == false

rue fa
switch (((java.lang.Integer)iter.next()).intValu
‘/M

final int invalid__ 29 = pars 0- 1; ‘

final int invalid__350 = invalid__34 - 1; ‘ final int invalid__365 = invalid__34 - 1; ‘

final int invalid__96 = invalid__29- 1; ‘ @ .
if (liter.hasNext()) if (liter.hasNext()
Tue false rue false

final int invalid__81 = invalid__29- 1; ‘

If (pars[0] >= 2)
((java.lang.Integer)iter.next()).intValue() ==
((java.lang.Integer)iter.next()).intValue() ==

switch (((java.lang.Integer)iter.next()).intValue())
‘/M se 3

final int invalid__ 29 = pars 0- 1; ‘ final int invalid__34 = pars_0- 1; ‘

case 5
if (liter.hasNext())
rue “fa

final int invalid__96 = invalid__29- 1; ‘

final int invalid__81 = invalid__29- 1; ‘ final int invalid__350 = invalid__34 - 1; ‘ final int invalid__365 = invalid__34 - 1; ‘

Short History of Supercompilation

1974

1980s

1980s —

—1990s

1990s

1993 —

— 2000s

1998 —
— 2000s

Valentin Turchin presented supercompilation to a group of students at
seminars in Moscow

Valentin Turchin developed first supercompilers for the functional
language Refal (CUNY, New York)

A series of papers by Valentin Turchin on supercompilation of Refal

Works on supercompilation for simplified languages in Copenhagen
University by Robert Gllick and Morten Sgrensen in collaboration with us

Andrei Nemytykh (IPS RAS, Pereslavl-Zalessky) continued work on
Turchin’s supercompiler and completed it

Java Supercompiler by Andrei Klimov, Arkady Klimov and Artem Shvorin
(Keldysh Institute of Applied Mathematics, RAS, Moscow)

52

Java Supercompiler Project Sites

2 Supercompilers, LLC on the web - |E)
File Edit View Favoriles Tools Help ©GBack v o~ = @ | #v |Links |

Address |@j hitp:#supercompilers.com/ j >

Supercompilers, LLC

JScp Working site

http://supercompilers.com

2 Java Supercompiler - IE
Eile Edit View Favorites Tools Help GBack = & ~ - & s

\\‘ WMC»OM\M
o

Supercompilers, LLC

Imagine a magic "Java program rewriting" box
sitting on your desktop. You throw your Java
program into it, it crunches and munches for a
little while, and then it spits out a shiny new
Java program, which does exactly the same
thing as the old one, but looks totally different,
and does it a whole |ot faster. Say, 5 to 50

SEE times faster, depending on the situation.

* Links ” [

Address |§J http:/isupercompilers._ru/

‘] &ce (It sounds like a programmer's fantasy -- but this

Working site of the

Java Supercompiler download

httD://SU percom D”ers- FU | . yscp ver. 0.1.99 alpha

o JScp-080503-0.1.99-bin.zip (~300K)
o README
o Help returned by jscp.exe

Latest news

£ | Done intern

JVer Project:
Verification of Java Programs by
means of the JScp Supercompiler

http://pat.keldysh.ru/jver

Java Supercompiler Project

nroiect currantlv in broareass at Sunarcomnilars

| Owemet

jl is exactly the goal of the Java Supercompiler

A Npoekt JVer - IE _ ol x|
File Edit View Favorites Tools Help ©Back v o ~ 2 | ”|Links ”]|
Address Iej hitp:#pat keldysh.rujver/ j EGo

MpoekT JVer:
Bepudukauua nporpamm
Ha f3blKe Java ¢ noMoulbio
cynepkomMmnunaropa JScp

Mpoekr JVer BeinonHancg s 2007-2008 rogax npu
nogaepire GefepansHOro areHTcTBa Mo Hayke W
WHHOBaLUAM (PocHayka) No rocy4apcTBeHHOMY KOHTPaKTy
Ne 02.514.11.4049 MHCTUTYTOM NporpaMmMHbIX CUCTEMA
PAH, r. MNepecnaenb-3anecckuid (ronoBHag opraHusayus) 1
MHCTUTYTOM NpuKknagHon matemaTtnkn nm. M.B. Kengoiwa
PAH, r. Mockea (coMcnonHuTens).

|
|€] Done T T [[[@internet Y

