
A Java Supercompiler and its Application to
Verification of Cache-Coherence Protocols

Andrei V. Klimov?

Keldysh Institute of Applied Mathematics
Russian Academy of Sciences

4 Miusskaya sq., Moscow, 125047, Russia
klimov@keldysh.ru

Abstract. The Java Supercompiler (JScp) is a specializer of Java pro-
grams based on the Turchin’s supercompilation method and extended
to support imperative and object-oriented notions absent in functional
languages.
The results of successful application of the Java Supercompiler for verifi-
cation of a number of parameterized models of cache-coherence protocols
are reported. Protocols are modeled in Java following the known method
by G. Delzanno and experiments by A. Lisitsa and A. Nemytykh on ver-
ification of protocol models by means of the Refal Supercompiler SCP4.
The part of the supercompilation method relevant to the protocol veri-
fication is described. It deals with an imperative subset of Java.
Keywords: specialization, verification, supercompilation, object-oriented
languages, Java.

1 Introduction

Program specialization methods—partial evaluation [14], supercompilation [31–
34], mixed computation [10], partial computation [12], etc.—have been first de-
veloped for functional and simplified imperative languages. Later the time has
come for specialization of more complex practical object-oriented languages.

There are already a number of works on (off-line) partial evaluation of object-
oriented languages [2, 1, 29, 5, 18]. However, to the best of our knowledge, our
work is the first one on supercompilation of a practical object-oriented language
[13, 15, 17].

The research on supercompilation for the Java language was started in 1996
together with Larry Wittie and Valentin Turchin under support by an ONR US
grant (No. 00014-96-1-080).

In 1999–2003 the main part of work on construction of the first version of
a Java supercompilation system was done by the author together with Arkady
Klimov and Artem Shvorin under support by Supercompilers, LLC, and our

? Supported by Russian Foundation for Basic Research projects No. 08-07-00280-a and
No. 09-01-00834-a and Russian Federal Agency of Science and Innovation project
No. 2007-4-1.4-18-02-064.



partners Ben Goertzel and Yuri Mostovoy who helped identify important appli-
cations for Java program specialization by supercompilation. As result, the first
Java Supercompiler JScp has emerged [13, 15, 17].

During the last two years, inspired by far-reaching results by Alexei Lisitsa
and Andrei Nemytykh on verification of protocol models by means of the Refal
Supercompiler SCP4 [21, 23–26, 22], we extended the Java Supercompiler with
the elements of the supercompilation method that were absent in it at that time,
but were needed to reproduce the results in Java [16].

It is impossible to present the whole of the supercompilation method for
object-oriented languages in a short conference paper. Specialization of opera-
tions on objects in JScp is discussed in another paper [15]. Since objects are not
used in the protocol models coded in Java following G. Delzanno [8, 6], in this
paper we describe supercompilation of the imperative subset of Java.

A novelty of this part of the supercompilation method implemented in JScp
is that breadth-first unfolding of the graph of configurations and recursive con-
struction of the residual code of a statement from the residual codes of nested
statements is used rather than depth-first traversal of configuration as in other
known supercompilers. This allowed us to elaborate the subtleties of each control
statement one by one and simplify stepwise development of JScp. The method
is applicable to many imperative languages with a sophisticated set of control
statements.

Another contribution of this paper is reproduction of the results of the ex-
periment on verification of protocols by another supercompiler (JScp instead of
SCP4) for a rather different language (the object-oriented Java instead of the
functional Refal). This confirms the result is based on the essence of supercom-
pilation rather than on technical implementation details. As a consequence of
the experiment the part of supercompilation method relevant to verification of
protocols has been uncovered.

This paper is organized as follows. In Section 2 the part of the Java super-
compilation method that is relevant to verification of protocols is described. In
Section 3 the results of an experiment on verification of protocol models are
shown. In Section 4 we conclude.

2 Java Supercompilation

2.1 The Notion of a Configuration

While an interpreter runs a program on a ground data, a supercompiler runs
the program on a set of data. The later process is referred to as driving in the
theory of supercompilation. A representation of a subject program state in a
supercompiler is referred to as a configuration. We follow the general rule of
construction of the notion of a configuration in a supercompiler from that of the
program state in an interpreter that reads as follows: add configuration variables
to the data domain, and allow the variables to occur anywhere where an ordinary
ground value can occur. A configuration represents the set of states that can be
obtained by replacing configuration variables with all possible values.



In the Java virtual machine, a program state consists of global variables
(static fields of Java classes), a representation of threads and a heap.

In the Java Supercompiler, non-final global variables are not represented
in a configuration, since at supercompilation time they are considered unknown
and no information about them is kept. One the other hand, the values of final
static fields are evaluated only once at the initialization stage and may be (par-
tially) known at supercompilation time. Since they do not change after initial-
ization and behave as constants, one copy of them is kept for all configurations.

The current version of JScp does not specialize multi-threaded programs.
Hence a configuration contains only one thread now.

Like a program state in a Java virtual machine, a call stack in JScp consists
of frames comprised of local variables (“environment”), an evaluation stack and
a somehow represented program point (“program counter”).

According to the general rule mentioned above, global variables, local vari-
ables and evaluation stack can contain configuration variables in addition to
ground values.1 Each configuration variable is identified by a unique integer
index and carries the type of values it stands for: either one of the Java prim-
itive types, or the reference type along with a class name and some additional
information (which we don’t discuss in this paper), or the string type.2

This is the minimum configuration stuff sufficient to implement a reasonable
Java Supercompiler. However we have found this is not enough to verify proto-
col models coded in Java following the G. Delzanno’s method. The models are
parameterized by integers, and verification of the class of models considered by
G. Delzanno requires propagation of restrictions on integer parameters of form
v ≥ n, where v is an integer parameter (a configuration variable in a supercom-
piler), n an integer constant, n ≥ 0. To meet this class of applications, the notion
of a configuration has been extended with restrictions of such kind.

Thus, the definition of a configuration in the current JScp is as follows:

– a configuration is a triple (thread, restrictions, heap);
– a thread is a call stack, that is, a sequence of frames;
– a frame is a triple (local environment, evaluation stack, program point);
– a local environment is a mapping of local variables to configuration values;
– an evaluation stack is a sequence of configuration values;
– the representation of a program point does not matter. It is sufficient to

assume it allows us to resume supercompilation from the point;
– a configuration value is either a ground value, or a configuration variable.

Each configuration variable carries a Java type;
– restrictions are a mapping Restr of configuration variables to predicates on

their values. If a configuration variable v is not bound by the mapping,
1 To distinguish configuration variables, which are elements of configurations, from

global and local variables, which are elements of programs, we refer to the latter as
program variables when it is not clear from the context which kind of the variable
is meant.

2 For inessential technical reasons, our representation of strings and string configura-
tion variables differs from the general representation of reference values and variables.



Restr(v) = λx.true. In the current version of JScp only restrictions of form
Restr(v) = λx.(x ≥ n), where n is an integer, on variables of the integral
types of the Java language are implemented;

– we leave the notion of a heap unspecified here, since this paper does not deal
with supercompilation of programs with objects.

JScp performs an equivalent transformation of one or more methods of a Java
program. The supercompiled methods replace the original ones. Supercompila-
tion of a method is started from an initial configuration that consists of one call
stack frame with the formal parameters bound to fresh configuration variables.

A characteristic feature of supercompilation is that configuration variables
become local variables of the residual program.

2.2 Operations on Configurations

The following three operations on configurations are used in the supercompiler.

Comparison of configurations for set inclusion represented by a substitution: we
consider C1 ⊆ C2 if there exist a substitution δ that binds configuration values
to configuration variables such that C1 = δC2 (application of substitution δ to
configuration C2 gives configuration C1).

The substitution respects types and restrictions: for each binding v 7→ x,
Vals(x) ⊆ Vals(v), where Vals(v) is the subset of values of the type of a config-
uration variable v, satisfying Restr(v); Vals(x) = {x} if x is a ground value.

Generalization of configurations:

– a configuration G is a generalization of a configuration C if C ⊆ G (that is,
∃δ : C = δG);

– a configuration G is the most specific generalization of two configurations C1

and C2 if C1 ⊆ G and C2 ⊆ G and for all other G′ satisfying this property,
G ⊆ G′.

Homeomorphic embedding used for termination of loop unrolling similar to other
supercompilers [30, 33, 34, 27]: C1 � C2 if the call stacks of C1 and C2 have the
same “shape” (their lengths are equal and the program points of each stack
frame and hence the sets of local variables are the same) and the homeomorphic
relation x1 � x2 holds for all pairs of corresponding values x1 from C1 and x2

from C2, where � is the least relation satisfying:

– v1 � v2 for all configuration variables v1 and v2 (including references). If the
configuration variables have an integral type, their restrictions must embed
as well, Restr(v1) � Restr(v2) (see below);

– x1 � x2 for all values x1 and x2 of the String class unless this is switched off
by the user (when he considers beneficial to generate separate configurations
for different string values);

– x1 � x2 for all ground values x1 and x2 of the same floating type;



– n1 � n2 for all ground values n1 and n2 of the same integral type such
that 0 ≤ k ≤ n1 ≤ n2 or 0 ≥ −k ≥ n1 ≥ n2, where k is a user-defined
parameter that influences the number of basic configurations and the shape
of the residual graph. For verification of the protocols [16] values k = 0 and
k = 1 were used (due to observation by A. Nemytykh);

– embedding of restrictions: r1 � r2 if r1 = λx.true, or 0 ≤ n1 ≤ n2, or
0 ≥ n1 ≥ n2, where r1 = λx.(x ≥ n1) and r2 = λx.(x ≥ n2).

Thus defined homeomorphic embedding relation is a well-quasi order: for
any infinite sequence of configurations Ci there exist i and j such that i ≤ j,
Ci � Cj . The proof is by reduction to the Higman-Kruskal theorem [20]: encode
configurations as terms, where all variables are mapped to one symbol and integer
constants are represented in the unary system, e.g., as a sequence of 1’s.

2.3 Driving of Method Invocations

In the current version of JScp method invocations are either inlined, or residual-
ized. No specialized methods are generated as in other supercompilers [27] and
partial evaluators [14].

Inlining in a supercompiler is done like invocation in interpreters and inlin-
ing in ordinary compilers: A new stack frame is added to the call stack with
the method parameters bound to the values of arguments, which may be con-
figuration variables. On exit from the method the value of the expression in the
return statement, if any, is passed to the calling stack frame as the value of the
method invocation expression.

Whether to inline or not is controlled by certain JScp options (e.g., inline until
call stack length is equal to a given number). In our experiments on verification
all method invocations were inlined.

2.4 Driving of Expressions and Assignments

The process of partial program execution in a supercompiler is referred to as
driving. Driving of an expression in a current configuration yields the value of
the expression, a residual code, and a new configuration.

For the purpose of this paper, a Java expression consists of constants, local
and global (static) program variables and static method invocations con-
nected by unary and binary operators. Driving of an expression recursively re-
duces to driving of its constituents like ordinary interpretation.

Driving of a constant yields just the constant value. The result of driving
of a local variable is a configuration value bound to the variable in the current
configuration, and empty residual code. A final global variable g is processed
similarly except that if the value bound to it at initialization stage is a con-
figuration variable v, a local variable declaration statement of form t v = g is
residualized, where t is the type of g and v. (This may produce extra repeated
variable declarations, which are deleted by post-processing.) A non-final global
variable is driven like a final one with a fresh configuration variable bound to it.



Each unary or binary operation is either evaluated, if there is sufficient in-
formation to produce a ground resulting value, or otherwise residualized with a
fresh configuration variable v as its value in form of a local variable declaration
of form t v = e, where e is the expression representing residualized operation
with the values of arguments substituted into it.

Restrictions are taken into account in the following way. Integer operations
v + i and v − i, where i an integer constant, v a configuration variable with
restriction λx.(x ≥ n), are residualized in form t v′ = v + i and t v′ = v − i,
and a new configuration variable v′ with a restriction of form λx.(x ≥ n+ i) or
λx.(x ≥ n− i) is added to the configuration.

Integer comparisons v == i, v != i, v < i, v <= i, v > i, v >= i and their
commutative counterparts, where i is an integer ground value, v a configuration
variable with restriction λx.(x ≥ n), evaluate to true or false, when this is
clear from comparison n > i or n ≥ i.

2.5 Driving of Conditional Statements

Consider a source program fragment if (c) a else b; d, where c is a conditional
expression, statements a and b are branches, and a sequence of statements d a
continuation executed on exit from the if statement.

If driving of c gives true or false, the respective branch a or b is used for
further driving instead of the if statement.

Otherwise, the if statement is residualized and each of the branches is su-
percompiled with the initial configuration corresponding to the end of driving
of the conditional c. Restrictions on the configuration variables involved in the
conditional c are refined, if possible, when c has form x1 == x2, x1 != x2, x1 < x2,
x1 <= x2, x1 > x2 or x1 >= x2, where xi is a ground integer value or a config-
uration variable. Additionally to the residual code of the if statement of form
if (c′) a′ else b′, two configurations Ca and Cb corresponding to the ends of
the branches a′ and b′ are returned.

On exit from the if statement there are two alternatives:

– either supercompile the statements d two times with initial configurations
Ca and Cb producing residual codes d′a and d′b respectively, and return the
residual code for the whole fragment of form if (c′) {a′; d′a} else {b′; d′b};

– or generalize the configurations Ca and Cb to a configuration G, where
Ca = δaG and Cb = δbG, δa and δb are substitutions; supercompile d with
initial configuration G producing d′, and return the following residual code
for the whole fragment: if (c′) {a′;αa} else {b′;αb}; d′, where αa and αb

assignments encoding substitutions δa and δb in Java.

The choice between the alternatives is made by the JScp user. For the task
of protocol verification we used the more aggressive first option.

The switch statement is supercompiled similarly.



2.6 Configuration Analysis of Loop Statements

Proper configuration analysis is performed only for loops in the current JScp. All
kinds of loops in Java are reducible to a loop of form L: while (true) b, where
b is a loop body statement.

Four kinds of exits are possible from the source and residual code of a loop
body: throw, return, break and continue. The first three kinds are terminal
nodes from the viewpoint of supercompilation of the loop statement. A throw
statement is just residualized and no more actions are taken on that branch.3 A
return statement is reduced to a break with a label of an appropriate enclos-
ing statement. Processing of breaks and continues to a level higher than the
loop statement is postponed until the corresponding level is reached. Statements
break L along with the configurations corresponding to them are exits from the
residual code of the loop statement. Residual statements continue L with their
configurations are subject to further configuration analysis.

Let a loop statement L: while (true) b be supercompiled with an initial con-
figuration C0. First, the loop body b is supercompiled with C0 producing residual
code b0 and the list of continue L statements with configurations Ci, i ∈ [1..n0].
For those Ci that Ci ⊆ C0, Ci = δiC0, the continue statements are residualized
in form αi; continue L, where αi are assignments encoding the substitution δi.

The remaining configurations Ci, Ci 6⊆ C0, comprise a current set Cont
of to-be-supercompiled continue statements. They are points of further loop
unrolling: the loop body b is supercompiled with each C ∈ Cont and the residual
code is analyzed in the same way as for C0.

This process is repeated and a residual code in form of a tree consisting of
residual loop bodies supercompiled with various initial configurations is built.
Each new configuration Ci on a leaf of an unfinished tree is checked for looping-
back to all of the initial configurations of the residual loop bodies on the path
from C0 to this leaf.4

This process terminates when the set Cont is empty. However this does not
happen in general case.

Generalization and termination To guarantee termination of supercompilation of
loops, we have to generalize some configurations. A criterion that tells whether
to stop or to continue and selects a configuration to be generalized is called
a whistle in the supercompilation jargon. The now most popular whistle [30,
33, 34, 27] is based on the homeomorphic embedding of the representations of
configurations and the Higman-Kruskal theorem [20]. The embedding relation �

used in JScp was described in Section 2.2.

3 In the current JScp, try statements are residualized without change except some
trivial cases. In future we plan to implement collecting information about possible
exceptions in residual code and proper specialization of try statements based on this
information. try statements are not used in the protocol models in our experiments.

4 This is a simplification to a case where residual code is easier to represent back in
Java. A more compact residual code may be obtained if the restriction that config-
urations for comparison are taken from the path from C0 only, is lifted.



Before supercompilation of the loop body with a next configuration Ci, the
configuration is compared for homeomorphic embedding with all of the previous
initial configurations of the residual loop bodies on the path to it from C0. If such
Cj that Cj � Ci is found, Cj is generalized with Ci obtaining a configuration G,
Cj ⊆ G. Then the residual subtree below Cj is erased, a sequence of assignments
corresponding to the substitution δ that reduces Cj to G, Cj = δG, is inserted
into the point of Cj , and supercompilation is repeated from the configuration G.

This process terminates due to that there can be only a finite number of
generalizations for each configuration and due to the Higman-Kruskal theorem
[20] using our homeomorphic embedding of configurations.

3 Application to Verification of Cache-Coherence
Protocols

A. Lisitsa and A. Nemytykh [21–26] have found a nice class of applications solv-
able by supercompilation. They used the Refal Supercompiler SCP4 developed
by A. Nemytkh and V. Turchin [27] and encoded in the functional language Re-
fal the protocol models from site [6] developed by G. Delzanno [8]. They verified
the protocol models by applying the compiler SCP4. The code of the models and
the results of the supercompilation may be found in [24].

Here we demonstrate this method of verification with the use of Java and
the Java supercompiler JScp. The protocol models in Java and the results of
supercompilation are collected in [16]. The Java code of the models is rather close
to the code in the domain-specific language HyTech used in [6]. We translated
the code manually but the work was almost mechanical.

For the lack of space we don’t describe the G. Delzanno’s approach to the
parameterized modeling of cache-coherence protocols. See his papers, e.g. [8], for
details. Only the structure of the Java code of models is essential for demonstra-
tion of the JScp work.

A model is an extended finite state machine (EFSM) parameterized by a
finite number of integer variables with positive values. State change is caused by
a finite number of external actions. An action is applicable if a certain condition
is met. State change is encoded in Java as assignments to the state variables
with simple arithmetic expressions at the right-hand sides dependent on the
previous values of the state variables. When the sequence of actions ends, the
state machine turns to the final state which must satisfy a certain “safety”
condition. A protocol model is correct if for any sequence of actions the final
state meets the “safety” condition.

Figure 1 contains the pattern used to encode the protocol models. A model
is programmed as the body of method runModel.

To attempt to prove the correctness of a model we supercompile the method
runModel and observe the residual code, which is equivalent to the source code
(provided the supercompiler is correct). If all return statements has form return
true, we conclude the model can never reach an “unsafe” state, a state where
the post-condition returns false.



class model-class-name extends ProtocolModel {
boolean runModel(int[] actions, int[] pars) throws ModelException {

int state-var-1 = initial-value-1-or- pars[0]; ...

require(precondition );

for (int i = 0; i < actions.length; i++) {
switch (actions[i]) {
case 1:

require(condition-for-action-1 );

computation-of-next-state

break;

case 2:

...

default:

require(false);

}
}
if (condition-for-unsafe-state-1 ) return false; ...

return true;

}
void require(boolean b) throws ModelException {
if (!b) throw new ModelException();

}
}

Fig. 1. Model encoding pattern

As an example, the shortest model from the collection in [16]—the model of
MOESI cache-coherence protocol—is shown in Figures 2 and 3. It took less than
1 second on Pentium 4 1.8 GHz to supercompile the example. Other protocol
models in [16] are supercompiled in a few seconds as well.

Since the residual code produced by JScp is too large, only its residual graph
(the flow-chart of the residual program) is shown in Fig. 3. The essential infor-
mation contains in the return statements that are drawn as double octagons
with labels T or F meaning return true and return false respectively. Since
there are no F-nodes in this graph, we conclude the MOESI protocol model is
correct.

The graph in Fig. 3 is larger than the residual graph of this model in Refal
produced by the Refal supercompiler SCP4 as it is shown in [25]. The reason is
SCP4 always produces minimal graphs, while the configuration analysis in the
current version of JScp is not perfect and often returns non-minimal graphs. In
SCP4 a current configuration is compared with all configurations produced so
far, while JScp now uses for comparison only the configurations lying on the
path from the initial configuration of current loop statement. This drawback is
planned to be fixed in future versions of JScp. It does not influence the class



public boolean runModel(int[] actions, int[] pars)

throws ModelException

{
// set and check initial state (precondition)

int invalid = pars[0], invalid_ = invalid;

int exclusive = 0, exclusive_ = exclusive;

int shared = 0, shared_ = shared;

int modified = 0, modified_ = modified;

int owned = 0, owned_ = owned;

require (invalid >= 1);

// execute actions

for (int i = 0; i < actions.length; i++) {
switch (actions[i]) {

...=================================⇒
default:

require (false);

}
invalid = invalid_;

exclusive = exclusive_;

shared = shared_;

modified = modified_;

owned = owned_;

}

// check safety conditions (postcondition)

if (exclusive + shared + owned >= 1 &&

modified >= 1)

return false;

if (exclusive >= 1 && shared + owned >= 1)

return false;

if (modified >= 2) return false;

if (exclusive >= 2) return false;

return true;

}

case 1; // rm

require (invalid >= 1);

invalid_ = invalid - 1;

exclusive_ = 0;

modified_ = 0;

shared_ = shared +

exclusive + 1;

owned_ = owned + modified;

break;

case 2: // wh2

require (exclusive >= 1);

exclusive_ = exclusive - 1;

modified_ = modified + 1;

break;

case 3: // wh3

require (shared + owned >= 1);

shared_ = 0;

exclusive_ = 1;

modified_ = 0;

owned_ = 0;

invalid_ = invalid + modified +

exclusive + shared +

owned - 1;

break;

case 4: // wm

require (invalid >= 1);

shared_ = 0;

exclusive_ = 1;

modified_ = 0;

owned_ = 0;

invalid_ = invalid + modified +

exclusive + shared +

owned - 1;

break;

Fig. 2. MOESI cache-coherence protocol model source code in Java

of verification tasks solved by the supercompiler, but only the supercompilation
time and the residual graph size.

It is instructive to note a residual code and its graph is actually the graph
of an induction proof of the correctness of a protocol. The residual Java code
could be mechanically translated into mathematical notation.

A supercompiler is also capable of finding counterexamples in some cases
where a model is incorrect. The site [16] contains such an example: an incorrect
version of Xerox PARC Dragon cache-coherence protocol published in [7].

Of course, a supercompiler is not capable of verifying all protocol models
and all programs in general. When it fails, the residual graph contains return
false statements. In this case, the user should perform several supercompilation
experiments varying JScp options and modifying the source code.



Legend

– Diamond:
if statement.

– Hexagon:
head of loop statement.

– Double octagon:
return statement.
Label T means return true.
There are no return false

statements here.
– Arcs:

basic blocks (optionally
ending with break or
continue).
Arcs with throw statements
are not shown.

Fig. 3. MOESI cache-coherence protocol model residual graph. The absence of nodes
return false (with label F) shows JScp has proven the protocol model is correct.

4 Conclusion and Related Work

As compared to specific verification methods and modeling languages used by
G. Delzanno and others, we have shown that a universal program specialization
method for a universal programming language Java implemented in the Java
Supercompiler JScp is capable of verification of a large class of protocol models.
The part of the supercompilation method sufficient for solving this problem was
described in this paper. It is simpler than model checking methods of program
verification based on temporary logics [9], although model checking can verify
more statements about programs than the considered part of supercompilation.

The Java supercompilation method is an extension of supercompilation for
functional languages [30, 33, 34, 27]. The extension concerns specialization of op-
erations on objects (described in another paper [15]) and a new method of con-
figuration analysis of control statements reviewed in this paper.

Supercompilation of the imperative subset of the Java language is worth com-
paring with works on mixed computation [11, 4] and partial evaluation of imper-
ative [14] and object-oriented languages [29, 5, 19]. The main distinctive feature
of supercompilation is the explicit notion of a configuration with configuration
variables and operations on configurations. This allows for more sophisticated
analysis and transformation of programs, including induction hypothesis genera-
tion by methods of generalization of configurations as well as termination based
of the homeomorphic embedding relation. These methods are essential for pro-
gram verification. Mixed computation and partial evaluation lacks the notions
of a configuration variable and a configuration and, from our viewpoint, this is
their main limitation.



Another often mentioned difference of supercompilation from partial evalua-
tion is absence of a preliminary (binding time) analysis. Supercompilation as an
“on-line” technique is capable of performing deeper specialization than “off-line”
partial evaluation. This is also crucial for application of program specialization
methods to program verification.

5 Acknowledgements

The development of the Java supercompiler would not be possible without col-
laboration with many people. The project was started together with Larry Witte
and Valentin Turchin to whom the author is greatly indebted. Special thanks
are due to the developers of various parts of the JScp system Arkady Klimov
and Artem Shvorin. We are very grateful to our partners Ben Goertzel and Yuri
Mostovoy: without their help and support such a complex project as JScp could
not be done.

It was a pleasure to collaborate with Andrei Nemytykh on application of
supercompilation to program verification.

The ideas and results of Java supercompilation and program verification
were discussed at the seminar on Refal and metacomputation at Keldysh In-
stitute. Special thanks to its most active participants: Sergei Abramov, Arkady
Klimov, Yuri Klimov, Ilya Klyuchnikov, Andrei Nemytykh, Leonid Provorov,
Igor Shchenkov, Sergei Romanenko, Anton Orlov, and others.

References

1. Reynald Affeldt, Hidehiko Masuhara, Eijiro Sumii, and Akinori Yonezawa. Sup-
porting objects in run-time bytecode specialization. In ASIA-PEPM, pages 50–60,
2002.

2. Peter Bertelsen. Binding-time analysis for a JVM core language, 1999. Unpub-
lished note; available from http://www.petermb.dk/bta-core-jvm.ps.gz.

3. Manfred Broy and Alexandre V. Zamulin, editors. Perspectives of Systems Infor-
matics, 5th International Andrei Ershov Memorial Conference, PSI 2003, Akadem-
gorodok, Novosibirsk, Russia, July 9-12, 2003, Revised Papers, volume 2890 of
Lecture Notes in Computer Science. Springer, 2003.

4. Mikhail A. Bulyonkov. From partial evaluation to mixed computation. Theor.
Comput. Sci., 90(1):47–60, 1991.

5. Andrei M. Chepovsky, Andrei V. Klimov, Arkady V. Klimov, Yuri A. Klimov,
Andrei S. Mishchenko, Sergei A. Romanenko, and Sergei Yu. Skorobogatov. Partial
evaluation for common intermediate language. In Broy and Zamulin [3], pages 171–
177.

6. Giorgio Delzanno. Automatic Verification of Cache Coherence Pro-
tocols via Infinite-state Constraint-based Model Checking. Web site
http://www.disi.unige.it/person/DelzannoG/protocol.html.

7. Giorgio Delzanno. Automatic verification of parameterized cache coherence pro-
tocols. In E. Allen Emerson and A. Prasad Sistla, editors, CAV, volume 1855 of
Lecture Notes in Computer Science, pages 53–68. Springer, 2000.



8. Giorgio Delzanno. Constraint-based verification of parameterized cache coherence
protocols. Formal Methods in System Design, 23(3):257–301, 2003.

9. Orna Grumberg Edmund M. Clarke Jr. and and Doron A. Peled. Model Checking.
The MIT Press, 2000.

10. Andrei P. Ershov. Mixed computation: potential applications and problems for
study. Theoretical Computer Science, 18:41–67, 1982.

11. Andrei P. Ershov and V. E. Itkin. Correctness of mixed computation in Algol-like
programs. In Jozef Gruska, editor, MFCS, volume 53 of Lecture Notes in Computer
Science, pages 59–77. Springer, 1977.

12. Yoshihiko Futamura. Partial computation of programs. In Eiichi Goto, Koichi
Furukawa, Reiji Nakajima, Ikuo Nakata, and Akinori Yonezawa, editors, RIMS
Symposium on Software Science and Engineering, volume 147 of Lecture Notes in
Computer Science, pages 1–35. Springer, 1983.

13. Ben Goertzel, Andrei V. Klimov, and Arkady V. Klimov. Supercompiling Java
Programs, white paper, 2002. http://www.supercompilers.com/white paper.shtml.

14. Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and
Automatic Program Generation. Prentice-Hall, 1993.

15. Andrei V. Klimov. An approach to supercompilation for object-oriented lan-
guages: the Java Supercompiler case study. In Nemytykh [28], pages 43–53.
http://meta2008.pereslavl.ru/accepted-papers/paper-info-4.html.

16. Andrei V. Klimov. JVer Project: Verification of Java programs by Java Supercom-
piler, 2008. Web site http://pat.keldysh.ru/jver/.

17. Andrei V. Klimov, Arkady V. Klimov, and Artem B. Shvorin. The Java Super-
compiler Project. Web site http://www.supercompilers.ru.

18. Yuri A. Klimov. An approach to polyvariant binding time analysis for a stack-based
language. In Nemytykh [28], pages 78–84. http://meta2008.pereslavl.ru/accepted-
papers/paper-info-6.html.

19. Yuri A. Klimov. Program specialization for object-oriented languages by partial
evaluation: approaches and problems. Preprint 28, Keldysh Institute of Applied
Mathematics, Russian Academy of Sciences, 2008. (In Russian).

20. Joseph B. Kruskal. Well-quasi-ordering, the tree theorem, and Vazsonyi’s conjec-
ture. Transactions of the American Mathematical Society, 95(2):210–225, 1960.

21. Alexei P. Lisitsa and Andrei P. Nemytykh. Towards verification via supercompi-
lation. In COMPSAC (2), pages 9–10. IEEE Computer Society, 2005.

22. Alexei P. Lisitsa and Andrei P. Nemytykh. Experiments on verification via super-
compilation, 2007. Web site http://refal.botik.ru/protocols/.

23. Alexei P. Lisitsa and Andrei P. Nemytykh. A note on specialization of interpreters.
In Volker Diekert, Mikhail V. Volkov, and Andrei Voronkov, editors, CSR, volume
4649 of Lecture Notes in Computer Science, pages 237–248. Springer, 2007.

24. Alexei P. Lisitsa and Andrei P. Nemytykh. Verification as a parameterized testing
(experiments with the SCP4 supercompiler). Programming and Computer Soft-
ware, 33(1):14–23, 2007.

25. Alexei P. Lisitsa and Andrei P. Nemytykh. Reachability analysis in verification via
supercompilation. Int. J. Found. Comput. Sci., 19(4):953–969, 2008.

26. Alexei P. Lisitsa and Andrei P. Nemytykh. Verification as specialization
of interpreters with respect to data. In Nemytykh [28], pages 94–112.
http://meta2008.pereslavl.ru/accepted-papers/paper-info-8.html.

27. Andrei P. Nemytykh. The supercompiler SCP4: General structure. In Broy and
Zamulin [3], pages 162–170.



28. Andrei P. Nemytykh, editor. The First International Workshop on Metacomputa-
tion in Russia, Proceedings. Pereslavl-Zalessky, Russia, July 2-5, 2008. Pereslavl-
Zalessky: Ailamazyan University of Pereslavl, 2008.

29. Ulrik P. Schultz, Julia L. Lawall, and Charles Consel. Automatic program special-
ization for Java. ACM Trans. Program. Lang. Syst., 25(4):452–499, 2003.

30. Morten Heine Sørensen and Robert Glück. An algorithm of generalization in pos-
itive supercompilation. In J. W. Lloyd, editor, International Logic Programming
Symposium, December 4-7, 1995, Portland, Oregon, pages 465–479. MIT Press,
1995.

31. Valentin F. Turchin. The concept of a supercompiler. Transactions on Program-
ming Languages and Systems, 8(3):292–325, 1986.

32. Valentin F. Turchin. The algorithm of generalization in the supercompiler. In
Dines Bjørner, Andrei P. Ershov, and Neil D. Jones, editors, Partial Evaluation
and Mixed Computation, pages 531–549. North-Holland, 1988.

33. Valentin F. Turchin. Metacomputation: Metasystem transitions plus supercom-
pilation. In Olivier Danvy, Robert Glück, and Peter Thiemann, editors, Dagstuhl
Seminar on Partial Evaluation, volume 1110 of Lecture Notes in Computer Science,
pages 481–509. Springer, 1996.

34. Valentin F. Turchin. Supercompilation: techniques and results. In Dines Bjørner,
Manfred Broy, and Igor V. Pottosin, editors, Perspectives of System Informat-
ics, Second International Andrei Ershov Memorial Conference, Akademgorodok,
Novosibirsk, Russia, June 25-28, 1996, Proceedings, volume 1181 of Lecture Notes
in Computer Science, pages 227–248. Springer, 1996.


