
Building Cyclic Data

in a Functional-Like Language

Extended with Monotonic Objects

Alexei I. Adamovich1, Andrei V. Klimov2

1 Ailamazyan Program Systems Institute of RAS, Pereslavl-Zalessky

2 Keldysh Institute of Applied Mathematics of RAS, Moscow

X Workshop “Program Semantics, Specification and Verification: Theory and Applications” (PSSV-2019)

July 1–2, 2019, Novosibirsk Akademgorodok, Russia

Building Cyclic Data with Monotonic ObjectsAndrei Klimov

Building Cyclic Data

in a Functional-Like Language

Extended with Monotonic Objects

is a particular task within the following general problem

Construction of an intermediate model of computation between

the functional and object-oriented programming paradigms,

preserving the majority of nice properties of the functional one

and extending the domain of its efficient applications

What is the main limitation of functional programing?

• Functional languages allow us to declare and efficiently manipulate

tree data only, by composing terms of constructors

• Object-oriented languages allow us to efficiently represent and

traverse arbitrary graphs, denoting relations between vertices and/or

vertices and edges by references to objects

2 / 11

Part of General Problem

H
e
n

c
e
 t

h
e
 t

a
s
k

Building Cyclic Data with Monotonic ObjectsAndrei Klimov

Functional-like

language with

monotonic

objects

and

references

Object-oriented

language used for

declaration of

monotonic classes

Building Cyclic Data

in a Functional-Like Language

Extended with Monotonic Objects

is a particular task within the following general problem

General Problem Statement

Pure functional

• Data domains fit

classical mathematics

• Denotational

semantics

• Referential

transparency

• No side effects

• Implicit parallelism

• Determinism of parallel

computation

Object-oriented

• Objects with references

outside of classical math.

• No clear denotat. seman.

• No referential

transparency

• Side effects

• Explicit parallelism:

threads, communication

• Non-deterministic

parallel computation

open prbl

3 / 11

Building Cyclic Data with Monotonic ObjectsAndrei Klimov

Definition. Monotonic classes and objects are such that functional-like

programs invoking methods on them satisfy the following properties

• Operational properties (formal)

– Determinism of parallel computation:

• results obtained in different order of computation are equivalent

(their difference is unobservable)

– Idempotency:

• recomputation of an expression produces an equivalent result and

side effect difference is unobservable

• Target properties (still informal)

– Existence of semilattices in which objects change monotonically

• derived from declarations of monotonic classes

– Existence of denotational semantics

• generalizing that of pure functional languages

• not using the order of computation (parallel, in essence)

4 / 11

Monotonic Objects and Classes

Building Cyclic Data with Monotonic ObjectsAndrei Klimov

a.set(5) a.set(5) a.set(7)

5 / 11

Simplest Monotonic Class: Arvind’s I-Structure

Legend

reference

object

a

⊥

a = new IntVar

5 5 ⊤
overdefined

(exception)

undefined

a a a

Monotonic with a primitive value

a.set(new) a.set(new)

a

⊥

a = new ObjectVar

⊤

a a

Non-monotonic with a reference value

b

b

c≠
Notice

repeated

a.set(5)

a.set(new)

Building Cyclic Data with Monotonic ObjectsAndrei Klimov

public class IntVar {

boolean defined = false;

int value;

public synchronized int get() {

if (!defined) wait();

return value;

}

public synchronized void set(int x) {

if (!defined) {

value = x;

defined = true;

notifyAll();

}

else if (value != x)

throw new RuntimeException();

}

}

Monotonic class with a value of

primitive type int
6 / 11

Simplest Monotonic Class: Java Code

public class ObjectVar {

boolean defined = false;

Object value;

public synchronized Object get() {

if (!defined) wait();

return value;

}

public synchronized void set(Object x) {

if (!defined) {

value = x;

defined = true;

notifyAll();

}

else if (value != x)

throw new RuntimeException();

}

}

Non-monotonic class with a value of

reference type Object

Building Cyclic Data with Monotonic ObjectsAndrei Klimov 7 / 11

Monotonic I-Structure with a Reference Value

Monotonic with a reference value

① a = new ObjectVar a

b

5

75

⊥

c

⊥
7

③ c = new …

a.set(c)

④ d = a.getd

Unification of the set objects

A new intermediate object

is created on the first set

The intermediate object

is returned by get

② b = new …

a.set(b)

Building Cyclic Data with Monotonic ObjectsAndrei Klimov

a = new Easy in an

b = new object-oriented language

a.set(b) but it is non-monotonic

b.set(a)

Solid-line objects and

references are created

by the above code

c = a.get Undesirable unrolling

of the cyclic graph

Can’t catch a cycle

d = c.get by comparing references

while traversing

e = b.get.get

Our wish

Monotonic

1st solution

(Example 4)

8 / 11

How to Monotonically Create a Cycle (1)

ab

a b

c

a b

d

e

Building Cyclic Data with Monotonic ObjectsAndrei Klimov

[а,b] =

Monotonic

2nd solution

(Example 5a)

a = new Easy in an

b = new object-oriented language

a.set(b) but it is non-monotonic

b.set(a)

Simultaneous creation

of objects a and b

[a,b] = new[2]

Objects know references

to each other from birth

a.set(b)

b.set(b)

In this case

plain setting as in OOL

does not violate

monotonicity

Our wish

9 / 11

How to Monotonically Create a Cycle (2)

ab

⊥ ⊥

a b

a b

ab

a b

after creation

after setting

Building Cyclic Data with Monotonic ObjectsAndrei Klimov

We know one more solution* to the problem of building

a cyclic data structure, which is simpler to express as

an algorithm than to draw a picture:

Algorithm

1. Consider building a cycling graph as in solution 1

2. Let us have one object as the root

3. Invoke on the root the minimize method that waits for

all fields of the objects accessible from the root to

become defined and then merges the objects that

are indistinguishable by all operations

4. The operation minimize returns a fresh reference to

the root such that all objects accessible from it get

a fresh unique reference for each

In the 2nd and 3rd solutions catching cycles is possible

like in a plain object-oriented language

*There may be other solutions which we don’t know yet

How to Monotonically Create a Cycle (3)

Monotonic

3rd solution

(Example 5b)

10 / 11

Building Cyclic Data with Monotonic ObjectsAndrei Klimov

• We have made first steps to construction of a new model of computation

intermediate between functional and object-oriented paradigms

• A programming language that implements the model is two-level:

– The higher level is a functional-like language

– The lower level is a common object-oriented language

• The main idea is to restrict the methods of the classes (called monotonic)

that are used in the functional language in such a way

that the following properties of functional programs are preserved:

– Determinism of parallel computation

– Idempotency of side effects and results

• The key initial problem to be solved is overcoming the main limitation of

functional languages that only tree-like structures can be constructed

• We have demonstrated examples of monotonic classes, by using which

a functional program can build cyclic structures where

each object has a programmatically accessible unique reference
11 / 11

Conclusion

