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We discuss an approach to deterministic parallel programming based on a two-level 

programming language. It comprises a higher-level functional-like subset for application 

programmers and a lower-level object-oriented Java-like language for experts in parallel 

programming, who develop libraries of classes. The experts guarantee determinism for the 

higher-level language user. We refer to these classes and objects as monotonic and give their 

definition as preserving two properties of the higher-level programs: determinism and 

idempotency. In this case study, we address the problem of representing cyclic data structures, 

which is unsolvable in purely functional languages, easy in object-oriented languages, and 

solvable but tricky with monotonic objects. As an introductory example, a simple monotonic 

class is given—a variable of a primitive type. Then we show that an analogous class declaration 

for a variable of a reference type is non-monotonic and reveal that building cyclic data 

structures in this setting is nontrivial. Finally, we present examples that demonstrate some of the 

subtleties of designing monotonic classes. This paper describes a work-in-progress towards a 

theory and a software system for deterministic parallel programming. It also poses new 

problems for program verification to assist in proving that class declarations are monotonic and, 

therefore, parallel programs developed in the proposed system are proved deterministic. 

Keywords: deterministic parallel programming, functional languages, object-oriented 

languages, monotonic objects and classes. 

1. Introduction and Related Work 

Parallel/concurrent programming and debugging are complicated because parallel/concurrent 

programs are nondeterministic in the general case. To simplify programming, various specific 

model of parallelism and concurrency have been, and are continuously being, invented. Some of 

them focus on the determinism of the results of computation, where all runs result with equivalent 

final states despite of interleaving and different ordering of operators from different 

parallel/concurrent threads. 
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Please refer to our recent paper [5] for a survey of an extensive field of research on deterministic 

parallel/concurrent programming. Let us list below just some of these works which are the most 

interesting for our study. 

The most restricted models are those based on pure functional programming, where side effects 

are absent, threads are independent of each other, and hence the results are always the same. Not 

surprisingly, active research on deterministic parallelism is carried out in the community of the 

purely functional language Haskell [10]. Our work is in fact a transfer of the ideas of the functional 

paradigm to object-oriented languages, while retaining some important properties in a more general 

form. 

In the object-oriented setting, the work on Deterministic Parallel Java (DPJ) [6,7,11] extends the 

Java language and the compiler by adding certain features that guarantee determinism using an 

analysis that checks that parallel threads interfere only in a disciplined way, which does not violate 

determinism. 

The most interesting from our point of view are results by Lindsey Kuper et al. [12,13,14,15] 

where she suggests that variables shared between threads should change monotonically in some 

partially ordered set (more precisely, a semilattice) and operations on them are defined in such a 

way that the result of computation is deterministic. In our work, we use this idea in a more general 

object-oriented setting. 

The rest of the paper is organized as follows. In Section 2 we introduce the idea of a two-level 

programming language and system. In Section 3 the notion of a monotonic class and object is 

defined. In Section 4 an introductory example of a monotonic class is given. Sections 2–4 are based 

on our previous work [4,5,8,9]. In Section 5 we present novel material: using some examples we 

discuss problems and solutions on how to build cycle data structures using monotonic objects, 

thereby overcoming the limitations of purely functional programming, while preserving the 

determinism of parallel computation. 

2. A Two-Level Programming Language and System 

In order to meet controversial requirements of program determinism for application 

programmers and diversity of deterministic parallel computation models, we suggest the use of (and 

develop) a two-level programming language and system: 

• The higher-level language is like a functional subset of Java with simple means to initiate 

new threads on function calls and method invocations (often called “futures”, “promises”1). 

 

1 https://en.wikipedia.org/wiki/Futures_and_promises 

https://en.wikipedia.org/wiki/Futures_and_promises
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Threads create objects of classes declared at the lower level and communicate only through 

operations on them. Any syntactically correct program here is deterministic by construction. 

This higher-level language is intended for use by the application developers. 

• The lower-level language is full Java, or any other similar object-oriented language, which 

comprises a complete set of means for concurrent programming of generally 

nondeterministic programs. In this language, experts in parallel and concurrent programming 

declare lower-level classes in such a way that their use in the higher-level language 

guarantees determinism and preserves other valuable properties discussed below. We refer to 

these classes and their objects as monotonic. 

Notice a subtlety of this definition: the declarations of monotonic classes belong to the lower 

level, while their monotonicity is defined through the properties of programs in the higher-level 

language, rather than the properties of the classes per se like pre- and post-conditions of their 

methods, object invariants, etc. 

The development of this language and system is based on (and continues) our previous research 

into parallel programming systems [1,2,3,4]. 

3. The Notion of a Monotonic Class and Object 

To formally articulate what determinism means we need the notion of equivalence of 

computations. We use the Leibniz notion of contextual equivalence. 

Definition 1 (equivalence of values). Two values are (contextually) equivalent if they are 

indistinguishable programmatically in the higher-level language, that is: 

• the values are of the same type, and 

• in the case of a primitive type: the values are equal, and 

• in the case of a reference type: any function or method with a primitive result type, when 

applied to these values, returns equal results, or neither terminate. □ 

Definition 2 (equivalence of computations). Two executions of copies of an expression (with 

the copies of arguments) are (contextually) equivalent, if 

• they both terminate and return equivalent values, or 

• they both throw exceptions (which may be different), or 

• neither terminate. □ 

Definition 3 (monotonic). A declaration of a class and the objects of the class are called 

monotonic if any program in the higher-level language using the operation of object creation and 

methods on the objects of this class, satisfies the following properties: 
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• Determinism of computation (or confluence), that is, the results obtained in different order of 

a parallel/concurrent computation are equivalent. 

• Idempotency, that is, a repeated computation of a copy of an expression is equivalent to the 

original computation, and the difference between the side effects of the two runs is not 

observable programmatically in the higher-level language. 

These properties must be satisfied simultaneously for all monotonic classes when they are used 

together in any program in the higher-level (functional-like) language. □ 

One may wonder about motivation behind the idempotency property.  It may seem that 

idempotency is implied by determinism. However, in the definition of determinism, to compare the 

results of different computation order, repeated runs are performed starting from the same initial 

state, while in the definition of idempotency, the next run uses the final state of the previous one. 

 
 class IntVar { 
 
   private boolean defined = false; 
   private int value; 
 
   public synchronized int get() 
   { 
     if (!defined) wait(); 
     return value; 
   } 
 
   public synchronized void set(int x) 
   { 
     if (!defined) { 
       value = x; 
       defined = true; 
       notifyAll(); 
     } 
     else if (value != x) 
       throw new RuntimeException(); 
   } 
 } 

 
 class ObjectVar { 
 
   private boolean defined = false; 
   private Object value; 
 
   public synchronized Object get() 
   { 
     if (!defined) wait(); 
     return value; 
   } 
 
   public synchronized void set(Object x) 
   { 
     if (!defined) { 
       value = x; 
       defined = true; 
       notifyAll(); 
     } 
     else if (value != x) 
       throw new RuntimeException(); 
   } 
 } 

Fig. 1. Monotonic class IntVar with one field 

of the primitive type int. 

Fig. 2. Non-monotonic class ObjectVar with one 

field of the reference type Object. 

4. A Simple Monotonic Class Example 

Parallel threads communicate by means of side effects on variables of various types. Our goal is 

to construct monotonic versions of classes representing such variables. 

Consider the case where a variable is of primitive type int. The monotonic class IntVar shown 

in Fig. 1 declares 2 methods set and get with the following semantics: 

• set(x) stores the value x, if an unequal value has not been stored already; otherwise throws 

an exception; 
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• get() returns the value stored by set(), or waits until set has been invoked, and then 

completes. 

Thus, each IntVar object monotonically changes from the undefined state to the state defined 

with some integer and then possibly to raising an exception, which may be read as the 

“overdefined” state. We argue that such behavior satisfies the definition of monotonic objects. This 

is explained in more detail in our earlier paper [9]. 

5. Building Cyclic Data Structures 

Notice that it is principally impossible to build a cyclic data structure without using mutable 

data. That is why purely functional languages allow us to efficiently manipulate only trees. This 

prohibits development of high-performance software that manipulates graphs, which imperative and 

object-oriented languages allow. In order to efficiently manipulate graphs, where cyclic relations 

between vertices and edges are denoted by references, one needs to mutate the representation. Our 

goal is to allow mutable data and preserve the main properties of functional languages, which we 

capture in the notion of monotonic objects. 

Let us study various examples of declarations of mutating operations on objects and see which of 

them are monotonic and which are not. 

Example 1: non-monotonic. Let us change in Fig. 1 the value field from the primitive to 

reference type. Figure 2 shows the code of the class ObjectVar, which coincides with the 

monotonic class IntVar, except for the type Object instead of int. However, this makes the class 

non-monotonic. The cause of this is the lack of referential transparency of the new operator as it 

generates a new reference to a new object on each evaluation, which fundamentally differs from the 

world of functional programming. Consider the following code fragment: 

ObjectVar a = new ObjectVar(); 

a.set(new ObjectVar());    // first evaluation of an expression 

a.set(new ObjectVar());    // second evaluation of the same expression 

return a.get(); 

The notion of monotonicity requires that reevaluation of an expression returns an equivalent 

result and is idempotent with respect to side effects (that is, nothing changes). However, in the 

second invocation of the method set, the condition (value != x) in its body evaluates to true and 

the exception RuntimeException is thrown. 

Example 2: non-monotonic. A natural idea to avoid this unpleasant exception is to replace the 

comparison of references with the comparison of the objects’ contents by the method equal: 

 if (!value.equal(x)) throw new RuntimeException(); 
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The method equal should perform deep comparison, paying no attention to the equality of 

references, except for the sake of optimization, which is invisible from the outside, and in order to 

avoid looping when traversing cyclic data. 

Nevertheless, the class ObjectVar, thus defined, is still non-monotonic, because the result of 

a.get() depends on the order of evaluation of the two new expressions. We imply that the 

statements a.set(new ObjectVar()) can be computed in parallel, hence the result can be either 

the reference to the object created by the first new sub-expression, or by the second one. This 

difference is programmatically visible. 

Example 3: monotonic. To fix this, we must avoid returning from monotonic objects (by 

methods like get) the references passed in arguments of any of its methods (like set). This can be 

done in two ways. First, a clone of the stored object can be created in set, the reference to which is 

then returned by all invocations of get. Second, a new clone of the stored object can be generated 

on each invocation of get. The first version seems more efficient (in terms of the memory for extra 

objects generated in the second version). However, either of these versions could be useful, 

depending on the application. A library of monotonic classes should contain both versions, with 

different names. 

However, this does not complete the definition of the monotonic ObjectVar semantics. The 

objects in the argument of the set method could be undefined, or partially defined. The latter case 

may occur when the object has many fields, and some of them are already defined, while others are 

not. Thus, a kind of unification of the objects from the arguments of several invocations of set is 

required, the result of the unification being stored in the ObjectVar object. Now, if properly 

formalized and coded, the class ObjectVar becomes monotonic. 

Nevertheless, some degrees of freedom preserving monotonicity remain. Should the unified 

objects be changed as well? Should the information about the unified objects flow in one direction 

from the set arguments to the stored object only, or could it flow in the opposite direction as well? 

The answer is that both versions are monotonic, and their usefulness depends on the application. 

Example 4: building a cycle. Now we can build a cycle of length 1 from an object of the class 

ObjectVar with the first version of the monotonic class semantics discussed in Example 3: 

ObjectVar a = new ObjectVar(); 

a.set(a);    // a cycle is built 

b = a.get(); 

c = b.get(); // c != b 

d = c.get(); // d != b && d!= c 
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Notice that to preserve monotonicity according to the above semantics, different references are 

returned in variable a, b, and c. Thus, we met a problem that, although the cycle was built, it can 

never be recognized programmatically, while traversing the object structure. For some applications 

this may be appropriate, for example, when a graph is the representation of a finite automata, which 

is used only in its interpreter. But if, for example, we wanted to print the automata representation, 

we would not be able to write a terminating code. 

Example 5: a cyclic graph with a finite number of references to vertices. Although we don’t 

know how to represent and traverse graphs having access to the unique references to edges in the 

world of monotonic objects as easily as we do in object-oriented languages, there are particular 

solutions to this problem. Consider two of them. 

Example 5a: Imagine a factory method that simultaneously creates a given number of objects 

and returns an immutable vector of the references to them. Its signature may be like this: 

Vector<ObjectVar> createObjectVars(int n); 

Then let us modify the class ObjectVar in such a way that its objects “know brothers”, that is, 

each object has access to this vector, and the get method returns only references to the “brothers” 

and to the object itself. Classes with such semantics allow us to build an efficient representation of 

an arbitrary finite graph. We argue that such class declarations are monotonic. 

Example 5b: Let us return to the monotonic class declaration in Examples 3 and 4 and use it for 

further modification. Let us prohibit returning reference values from monotonic objects until the 

whole of the deep structure accessible from the given object is fully defined (and hence, is finite). 

Then let us minimize the graph representation by means of the well-known algorithm of 

minimization of a finite automaton. We argue that the unique references to the objects of the 

minimal representation can now be returned by the methods like get, preserving monotonicity. 

There are a finite number of references to the accessible objects and while traversing the graph 

structure, we can programmatically catch the cycles. 

More parallelism by suspending the equality checks and exceptions. One more subtlety that 

can limit parallelism is that the method equal (in the if statement of Example 2) cannot return 

true until the compared objects become fully defined. Such blocking of the computation is highly 

undesirable. Fortunately, there is an escape. The definition of monotonicity does not distinguish 

various exceptions raised in different program points. All exceptions are equivalent as the result of 

computation. This gives us а possibility to suspend execution of such equal predicates along with 

the surrounding if statements and immediately return from the set method. If, in the end, when the 

compared objects become defined, equal returns true, the suspended statement completes with no 
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effect. If a difference is found and equal returns false, the exception is raised from the suspended 

statement and propagated as the resulting exception of the whole computation. This behavior is 

monotonic according to our definition. 
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7. Conclusion 

The notion of a monotonic class and a monotonic object was presented. It was defined so that the 

use of monotonic objects in a program in a functional-like language with maximal parallelism 

preserves the main properties of functional languages: determinism of computation results 

(confluence) and possibility of repeated computations with the same result and side effect 

(idempotency). We use the term monotonic with the idea that a monotonic object changes in a 

certain (semi)lattice that can be derived from its class declaration. 

Unlike functional languages, building cyclic data structures is possible with the use of monotonic 

classes, although their semantics and code are nontrivial and tricky, and impose certain overheads 

compared to common object-oriented programming. Further development of the methods of their 

efficient implementation is required taking into consideration special cases and using 

metacomputation methods like program specialization. Currently, we are prototyping an 

implementation of a language with monotonic classes. 

The demonstrated examples show that it is not at all obvious whether a class declaration is 

monotonic or not. Designing such a class is like finding a nontrivial solution to an “equation” that is 

the property of monotonicity. Formal means (theory and software tools) are highly desirable in 

helping us prove monotonicity. This is an interesting program verification topic for future work. 
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