
1

Overgraph Representation for 
Multi-Result Supercompilation

Sergei Grechanik

Keldysh Institute of Applied Mathematics
Russian Academy of Sciences

Meta 2012



2

General Idea of Multi-Resultness

P1

SC(P1)

P1

We use heuristics to 
guess the best path

SC(P1)

And get a single 
residual program 
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General Idea of Multi-Resultness

P1

SC(P1)

P1

SC(P1)

We take (almost) 
every possible path

We get a set of 
residual programs

And then we choose 
the best one 
(optionally)
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A problem

Millions of residual programs

Overgraph – a compact 
representation for sets of graphs

A solution
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MRSC Toolkit Architecture

Core

Rules

Whistle
Generalization

Strategy

Driving
Rules

Folding
Strategy

...

Graph

C

Rewriting Steps

Residualization R
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MRSC: Graphs of Configurations

C1

C2 C3

C4 C5 C6 C7

C2' C8

Root

Current Node

Incomplete Nodes

Folding Edge



7

MRSC: Graph Rewriting Steps

Complete

AddChildNodes

Fold

Rebuild

1 2
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MRSC: Tree of Graphs
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MRSC: Tree of Graphs

Depth-First Traversal of the Tree of Graphs
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MRSC: Tree of Graphs

Depth-First Traversal of the Tree of Graphs
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MRSC: Tree of Graphs

Depth-First Traversal of the Tree of Graphs
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MRSC: Tree of Graphs

Depth-First Traversal of the Tree of Graphs
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MRSC: Tree of Graphs

Depth-First Traversal of the Tree of Graphs

Yield



14

MRSC: Tree of Graphs

Depth-First Traversal of the Tree of Graphs

Yield

Yield

Yield

Yield
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Combinatorial Explosion

Too many graphs

– Use some heuristics
– Share some parts of graphs

Shared

Spaghetti Stack 
(MRSC)
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Do Spaghetti Stacks Solve the 
Problem?

Not entirely

These subtrees are 
likely to be equal 

but they won't be 
shared
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Rules : Graph → [Step]

Rules transform graphs into rewriting steps

Add this node

Add this node

But usually they don't need the whole graph, 
just a path from the root to the current node
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Rules : Path → [Step]

● Let's try to restrict rules to work on paths

Add this node

● We would need some new representation to 
make use of this new property

● We would lose an interesting ability to fold with cross 
edges
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Overtree Representation

Let's combine all configuration trees into one 
big overtree 

+ =

An overtree represents a set of trees

data Tree = Tree (F Tree)

data OTree = OTree [F OTree]
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Do Overtrees Solve the Problem?

● They are a bit better, but still...

f(g(h(x)))

f(g(x)) h(x) g(h(x))f(x)

f(x) g(x) g(x) h(x)

Duplication

● We've already lost cross edges

● Are we going to lose folding edges completely?
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Overgraph

● Let's just glue together nodes equivalent up to 
renaming

f(g(h(x)))

f(g(x)) h(x) g(h(x))f(x)

g(x)

● Each configuration corresponds to no more 
than one node
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Folding

We don't need special folding edges

f(x)

f(g(y))

f(z) g(y)

...

f(x)

f(g(y))

g(y)

...
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Advantages and Problems
● Overgraphs are more compact

● Overgraphs are cleaner

– One configuration ― one node

– No special folding edges
● Overgraphs contain more information

● Each node can have multiple parents

– Can we use binary whistles?

– How can we control generalization?
● How to apply rules?

● How to extract residual programs?
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Hyperedges

f g h∘ ∘

f g∘ h g h∘f

g

Hyperedge
f g h → (f , g h)∘ ∘ ∘

● Hyperedges represent steps like driving and 
generalization

● Completion step can be represented as a hyperedge 
with zero destination nodes

C1 → ()C1 C2
incomplete nodes have 
no outgoing hyperedges

● We will call bundles of edges hyperedges 
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Supercompilation with Overgraphs

1) Overgraph Construction

Add nodes and edges while possible

2) Overgraph Truncation

Remove useless nodes and edges

3) Residualization



26

Overgraph Construction

● Rule : Configuration → [Step] 

Add this node

● Rule : Overgraph → [Hyperedge] 

In what order should we apply the rules?

G ⊆ H ⇒ r(G) ⊆ r(H)
r is monotone if for all graphs G and H:

If all rules are monotone we can apply 
them in any order
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Rules

● We can also write rules in this form:

precondition

hyperedges to add

● Examples:
¬ UnaryWhistle(c)

c → drive(c)

always

c → generalize(c)

min_depth(c) < 42

c → drive(c)

This precondition is 
monotone
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Binary Whistles

¬  d  G : BinaryWhistle(c,d)∃ ∈

c → drive(c)

NOT monotone

 ∃ path p from root to c : 
 ∀ d  p : ¬BinaryWhistle(c,d)∈

c → drive(c)

OK

This green path won't 
disappear
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Overgraph Truncation

This incomplete node 
is useless

We should remove all incident hyperedges
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Residualization

Overgraph Set of graphs

Building a full set of graphs should be avoided!

We will represent residual 
programs as trees with 
back edges
(i.e. no subprogram sharing)
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Naive Residualization Algorithm

1

4

32

5 6

1

4

32

5 6

4

5 6

2Convert Overgraph into an Overtree 
and then convert it into a set of trees
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Naive Residualization Algorithm

1

4

32

5 6

1

4

32

5 6

4

5 6

2Convert Overgraph into an Overtree 
and then convert it into a set of trees
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Suboptimality

1

4

32

5 6

1

4

32

5 6

4

5 6

Absolutely identical subtrees

Idea: Cache intermediate results 
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More Formal Definition

R n h | n ∈ h = [Fold(n)]
R n h | otherwise =

[n → (r1 ... rk) |  
n → (d1 ... dk)  ∈  G,
ri ∈ R di (n:h)]

R : Node → [Node] → [Tree]

1

4

32
h = [4, 2, 1]
n = 2

2

4

2'

1
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More Formal Definition

R n h | n ∈ h = [Fold(n)]
R n h | otherwise =

[n → (r1 ... rk) |  
n → (d1 ... dk)  ∈  G,
ri ∈ R di (n:h)]

R : Node → [Node] → [Tree]

1

32

h = [2, 1]
n = 4

4 R 2 [4, 2, 1]
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History Structure
R : Node → [Node] → [Tree]

N

Predecessors

Successors

Both

History

Won't be in a history

Can be in a history but 
cannot be folded against

These can influence 
folding 
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Enhanced Residualization

● Removing pure predecessors from history 
won't change the result

R n h = R n (h ∩ succs(n))
● Let's rewrite residualization algorithm this way:

R n h | n ∈ h = [Fold(n)]
R n h | otherwise =

[n → (r1 ... rk) |  
n → (d1 ... dk)  ∈  G,
ri ∈ R di (n:h ∩ succs(di))]

● Now we can just apply memoization
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Evaluation of Residualization 
Algorithms

● Caching improves performance 

add

mul

fict

idle

evenBad

nrev

0 2 4 6 8 10 12 14

Improvement (times)

● But the algorithms produce trees with back edges

Turned out it is not very useful for most tasks 
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Example: Counter Systems

● The task is to find the minimal proof of a 
counter system's safety

● A proof is a graph, not a tree with back edges
● MRSC uses cross edges to simulate graphs
● But overgraphs may be still useful because 

they enable truncation
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Experiment with Counter Systems

Rules

Core

Branch & Bound
Branch & Bound

Overgraph
Construction

Truncation

Rules

Core

VS
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Experimental Results

Synapse

MSI

MOSI

MESI

MOESI

Illinois

Berkley

Firefly

Xerox

Java

ReaderWriter

DataRace

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Improvement (times)

(in terms of the number of visited nodes)
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Why overgraphs were useful?

● We could compute sets of successors
● We could truncate an overgraph

An overgraph contains a lot of information 
about relations between configurations

This is even more important than its 
compactness
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Further Work

● Experiments with subgraph-producing 
residualization algorithms
– need graph-based language

– tree-producing algorithm seems unsuitable for 
real-world tasks

● Searching for heuristics (whistles etc) useful 
for overgraph representation

● Applying overgraphs to higher-level 
supercompilation 
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Conclusions

We suggested the Overgraph representation
● An Overgraph is a very compact 

representation 
● Rules, Whistles and Residualization were 

generalized to Overgraphs
● The implementation has shown its usefulness

– Caching residualization algorithm
– Truncation for counter systems

● Overgraph contains a lot of information, so it is 
possible to analyze multiple graphs at once
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Please return to the previous slide
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Correctness

● It is possible that not all of the trees extracted 
from an overgraph represent correct programs 

● Usually it is not a problem for single-level 
supercompilation

a b

id

id

a = b
b = a

a = a

a b

c

✓
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Language used in experiments

● The language is essentially based on trees 
with back edges

Y (λ f → ...)

f

● Higher order
● Explicit fixed point combinator
● No let-expressions
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Overgraph vs E-PEG

● Essentially the same idea applied to different 
domains

● We work with functional languages, so we 
have a clear recursion rather than 
incomprehensible cycles

● We don't have symmetric equalities
● We decided to residualize to trees, they 

naturally “residualize” to graphs

– Should we do the same?
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There are no more slides
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