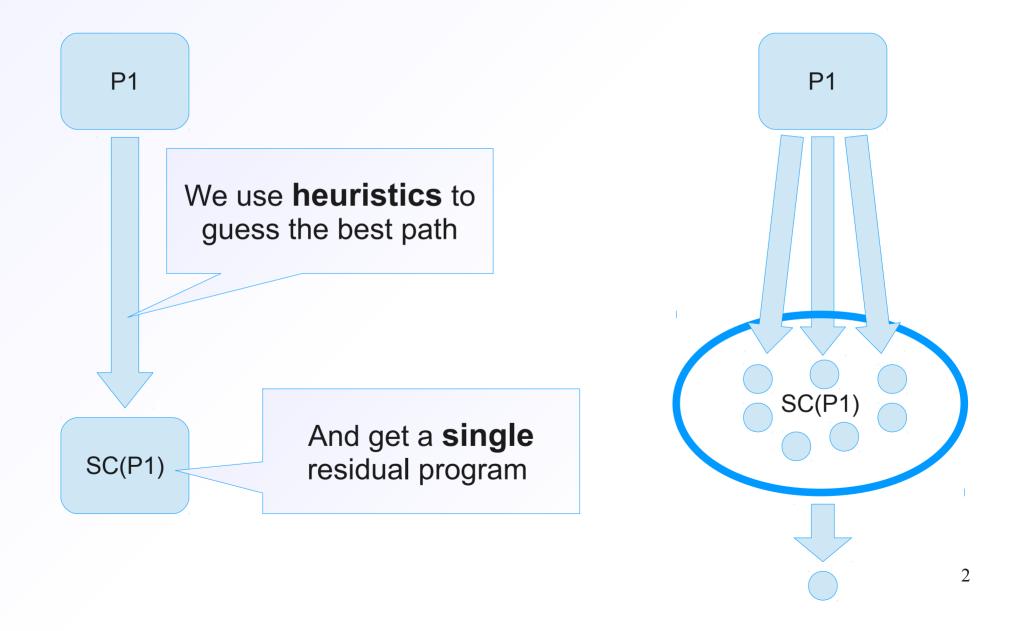
Overgraph Representation for Multi-Result Supercompilation

Sergei Grechanik

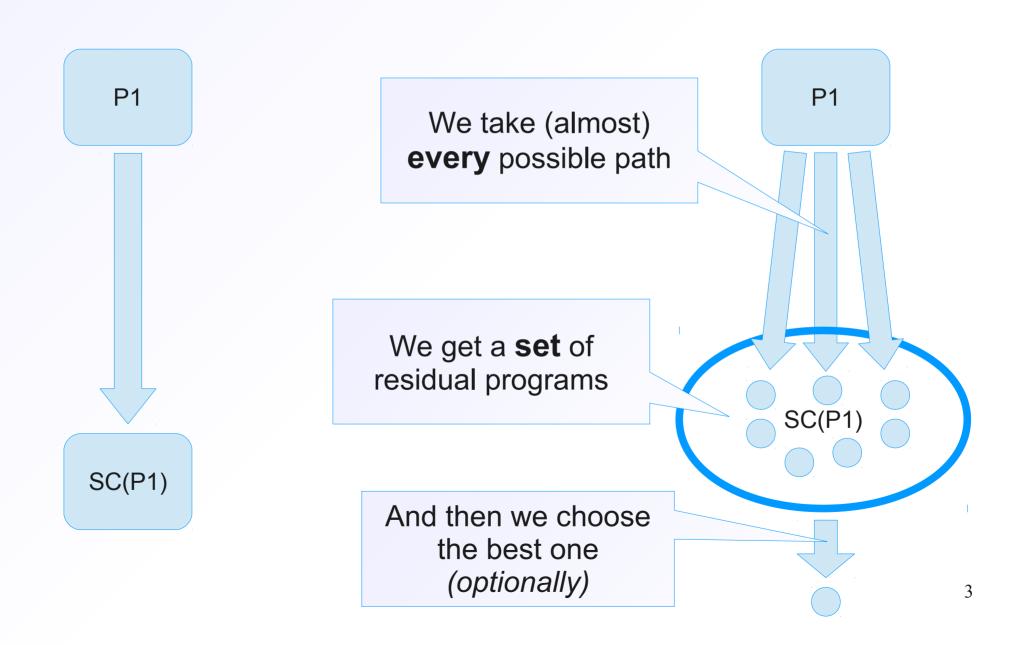
Keldysh Institute of Applied Mathematics Russian Academy of Sciences

Meta 2012

General Idea of Multi-Resultness



General Idea of Multi-Resultness



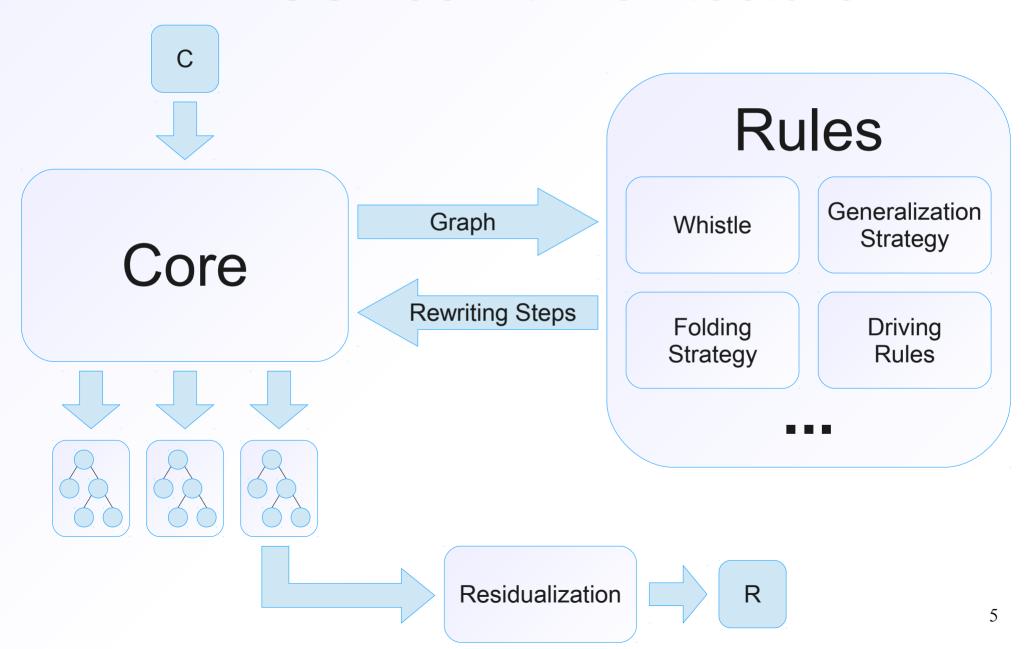
A problem

Millions of residual programs

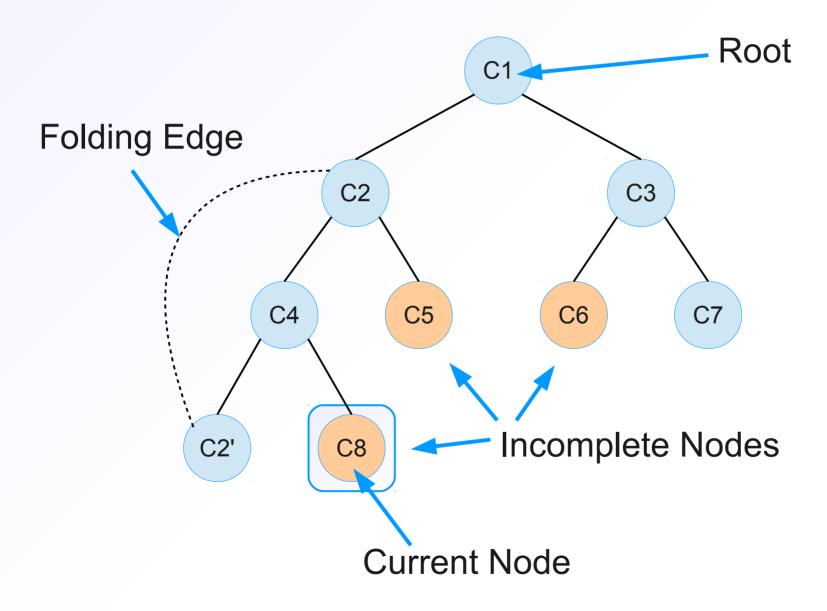
A solution

Overgraph – a compact representation for sets of graphs

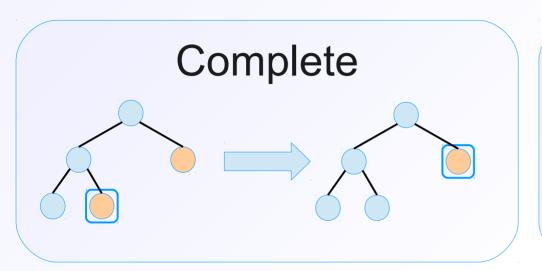
MRSC Toolkit Architecture

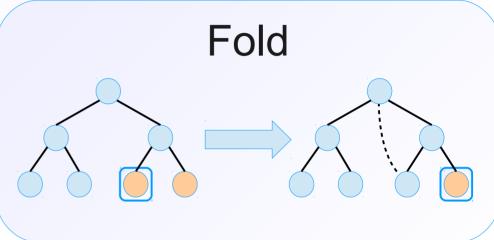


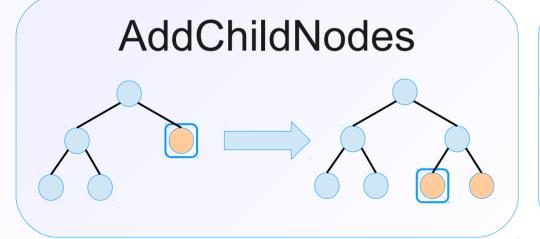
MRSC: Graphs of Configurations

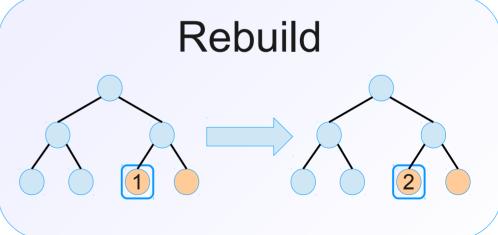


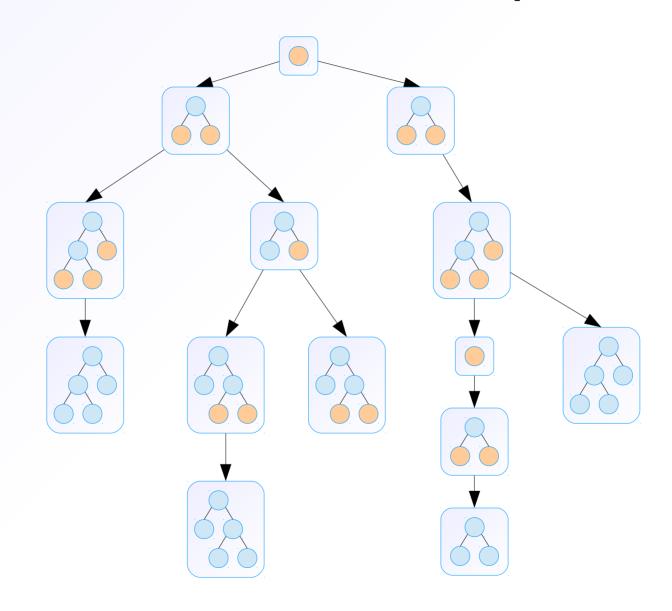
MRSC: Graph Rewriting Steps

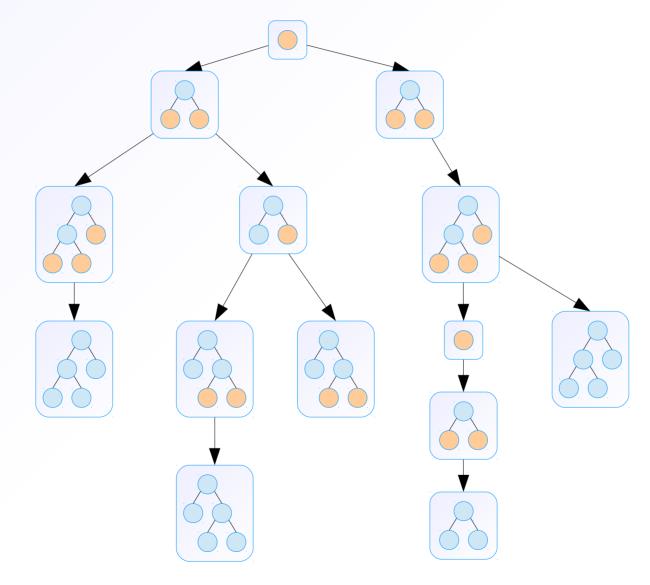




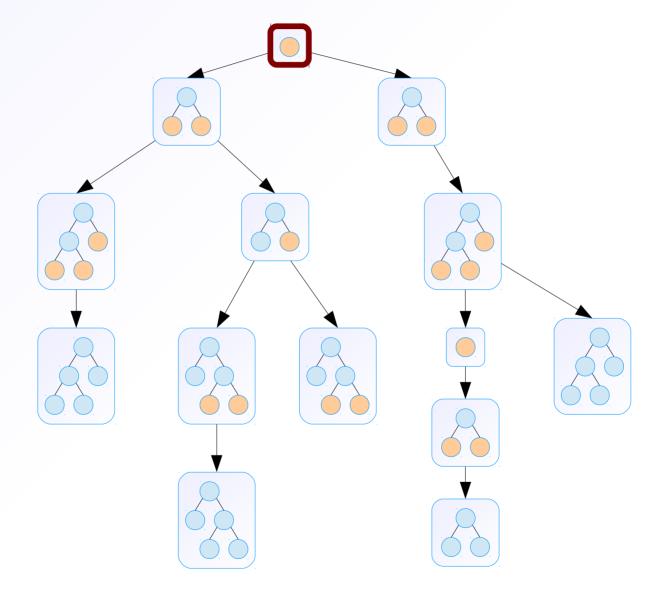




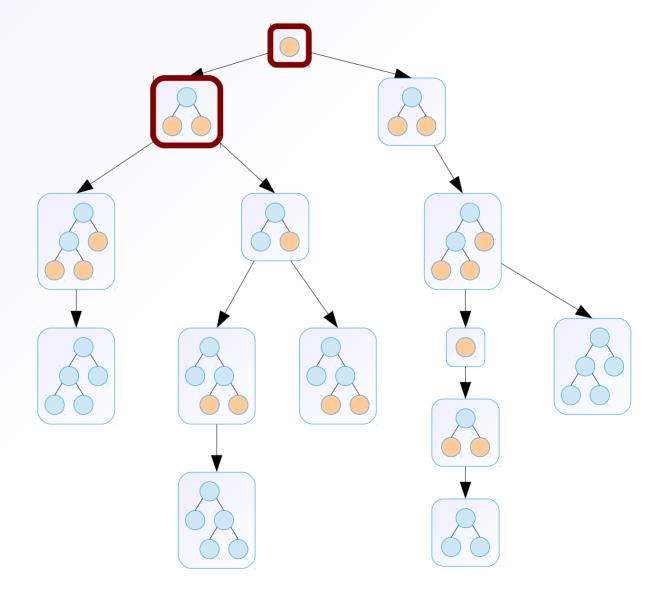




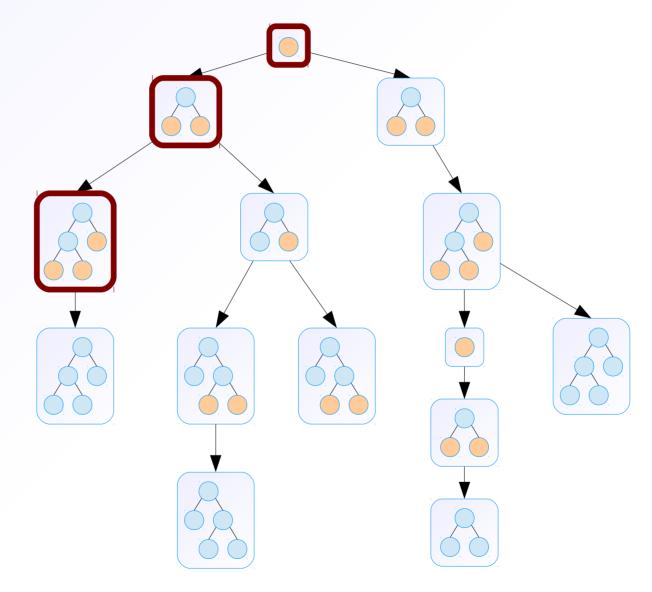
Depth-First Traversal of the Tree of Graphs



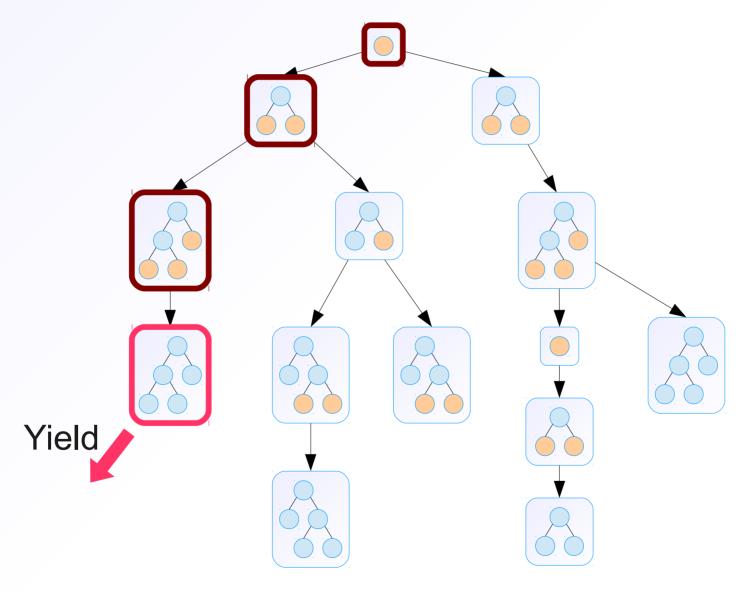
Depth-First Traversal of the Tree of Graphs



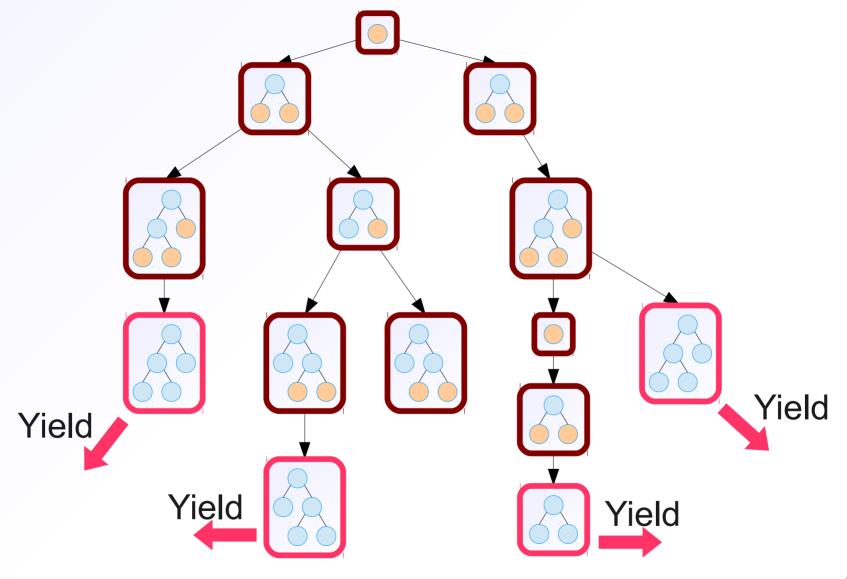
Depth-First Traversal of the Tree of Graphs



Depth-First Traversal of the Tree of Graphs



Depth-First Traversal of the Tree of Graphs

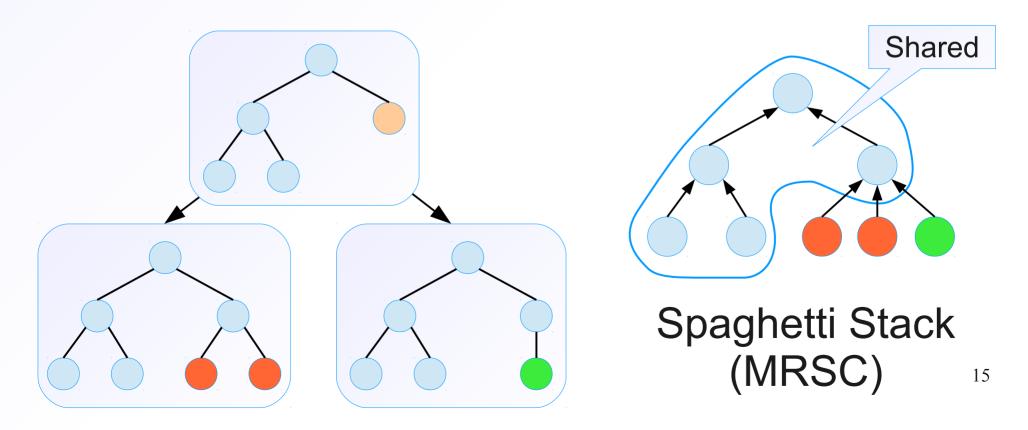


Depth-First Traversal of the Tree of Graphs

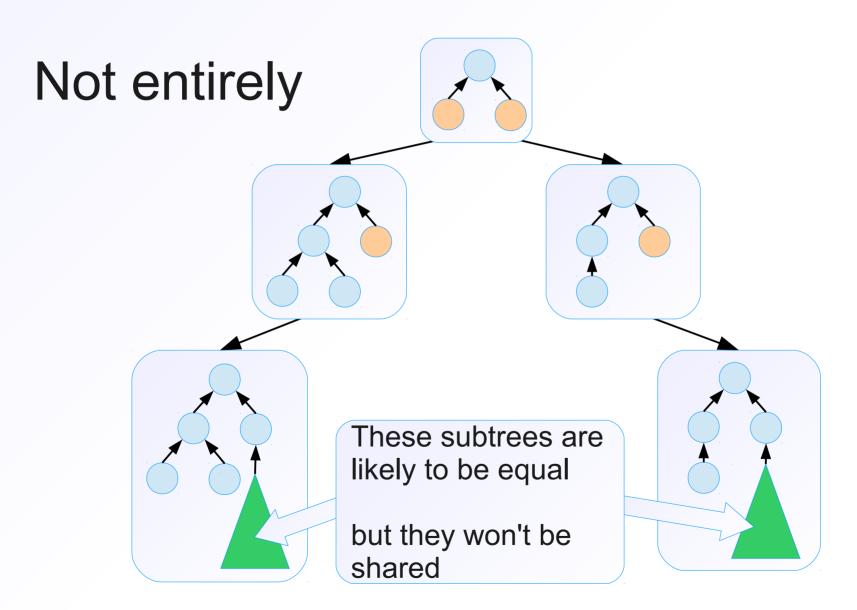
Combinatorial Explosion

Too many graphs

- Use some heuristics
- Share some parts of graphs

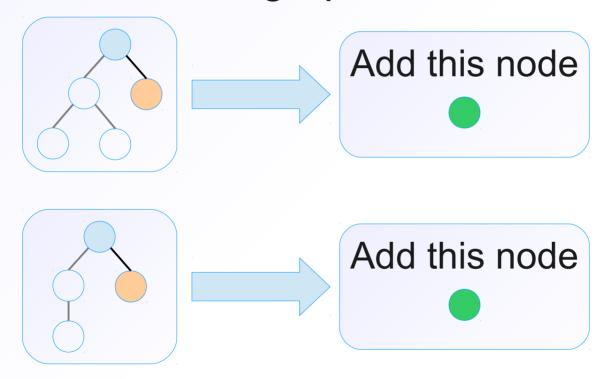


Do Spaghetti Stacks Solve the Problem?



Rules : Graph → [Step]

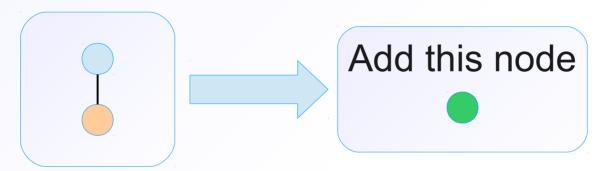
Rules transform graphs into rewriting steps



But usually they don't need the whole graph, just a path from the root to the current node

Rules : Path → [Step]

Let's try to restrict rules to work on paths



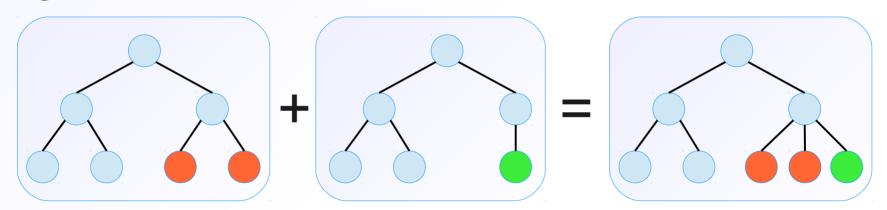
We would lose an interesting ability to fold with cross

edges

 We would need some new representation to make use of this new property

Overtree Representation

Let's combine all configuration trees into one big overtree

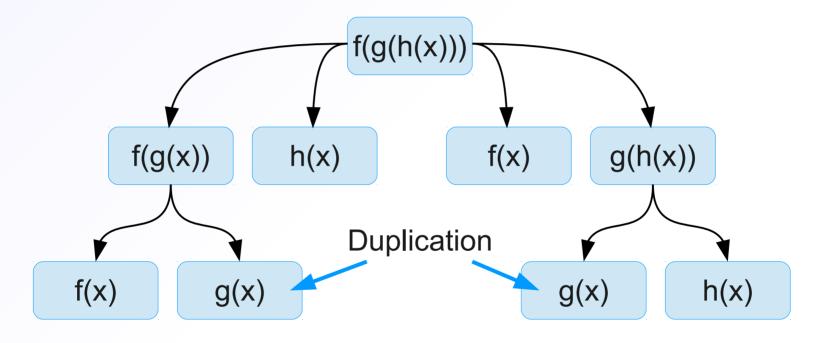


An overtree represents a **set** of trees

```
data Tree = Tree (F Tree)
data OTree = OTree [F OTree]
```

Do Overtrees Solve the Problem?

They are a bit better, but still...

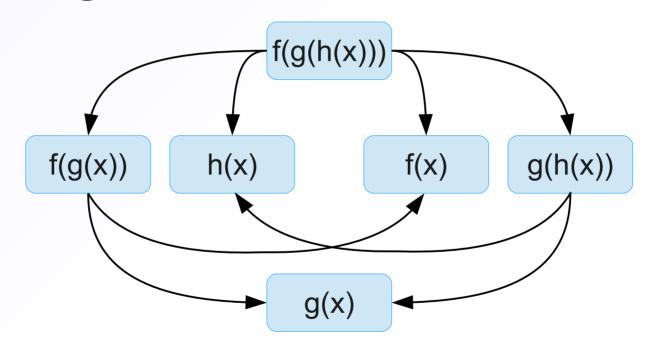


- We've already lost cross edges
- Are we going to lose folding edges completely?

20

Overgraph

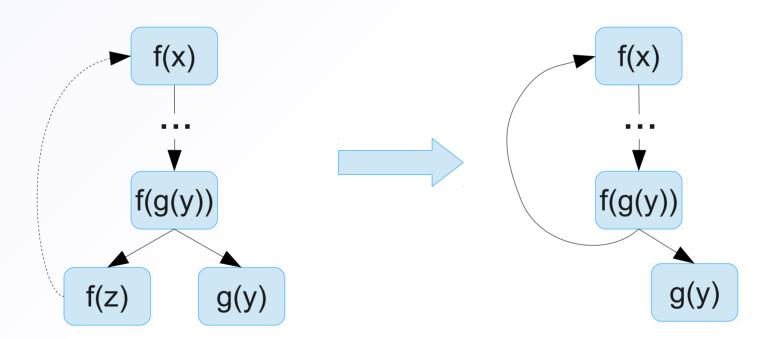
 Let's just glue together nodes equivalent up to renaming



 Each configuration corresponds to no more than one node

Folding

We don't need special folding edges

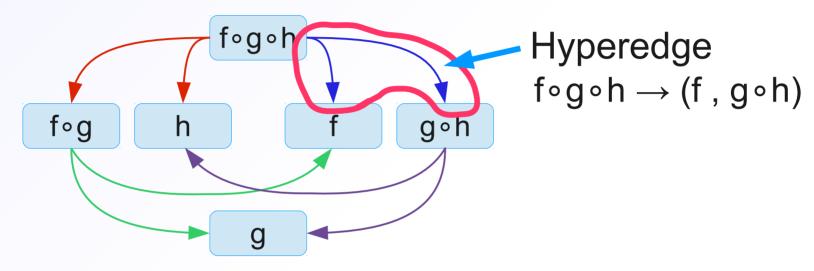


Advantages and Problems

- Overgraphs are more compact
- Overgraphs are cleaner
 - One configuration one node
 - No special folding edges
- Overgraphs contain more information
- Each node can have multiple parents
 - Can we use binary whistles?
 - How can we control generalization?
- How to apply rules?
- How to extract residual programs?

Hyperedges

We will call bundles of edges hyperedges



- Hyperedges represent steps like driving and generalization
- Completion step can be represented as a hyperedge with zero destination nodes

$$C1 \rightarrow ()$$

Supercompilation with Overgraphs

- Overgraph Construction
 Add nodes and edges while possible
- 2) Overgraph TruncationRemove useless nodes and edges
- 3) Residualization

Overgraph Construction

Rule : Configuration → [Step]

Rule: Overgraph → [Hyperedge]
 In what order should we apply the rules?

r is monotone if for all graphs G and H:

$$G \subseteq H \Rightarrow r(G) \subseteq r(H)$$

If all rules are monotone we can apply them in any order

Rules

We can also write rules in this form:

Examples:

$$\begin{array}{ccc} \neg \ \, & \text{UnaryWhistle(c)} & \text{always} \\ & c \rightarrow \text{drive(c)} & c \rightarrow \text{generalize(c)} \end{array}$$

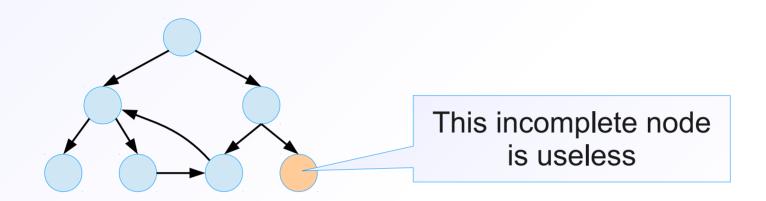
$$\frac{\text{min_depth(c)} < 42^{-1}}{\text{c} \rightarrow \text{drive(c)}}$$

This precondition is monotone

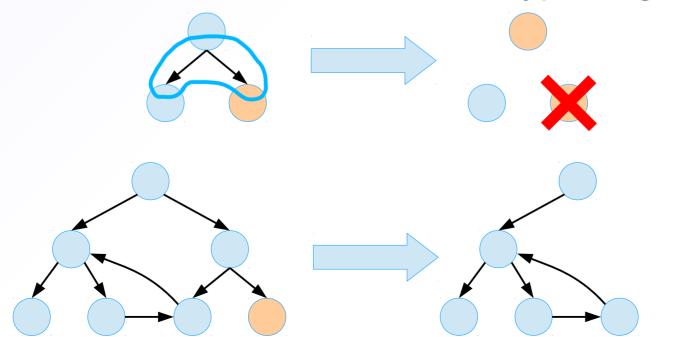
Binary Whistles

 $\neg \exists d \in G : BinaryWhistle(c,d)$ **NOT** monotone $c \rightarrow drive(c)$ ∃ path p from root to c: OK \forall d \in p : \neg BinaryWhistle(c,d) $c \rightarrow drive(c)$ This green path won't disappear

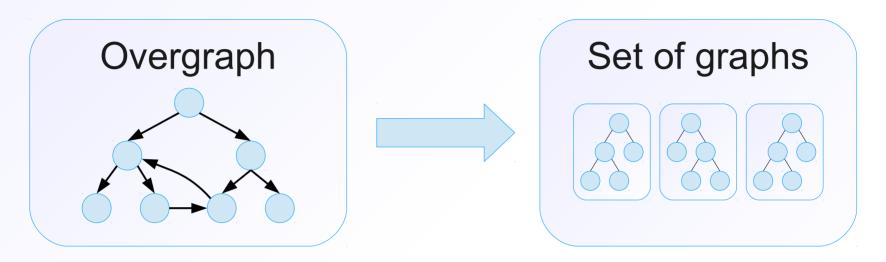
Overgraph Truncation



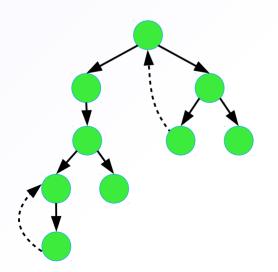
We should remove all incident hyperedges



Residualization

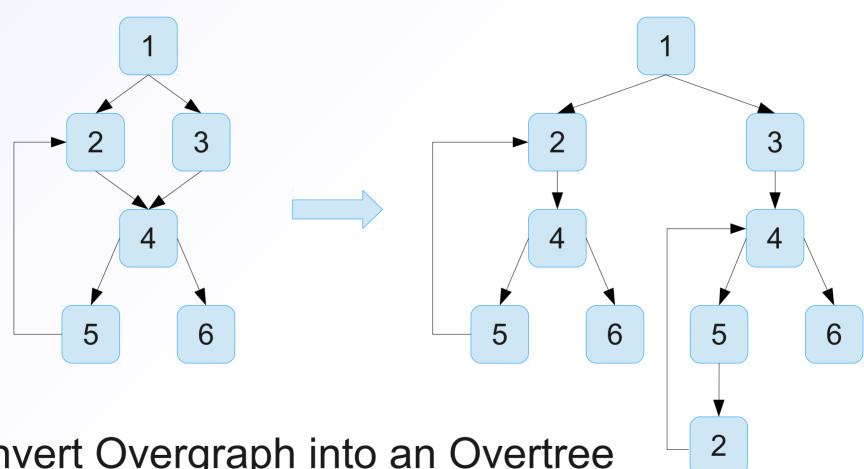


Building a full set of graphs should be avoided!



We will represent residual programs as **trees with back edges**(i.e. no subprogram sharing)

Naive Residualization Algorithm

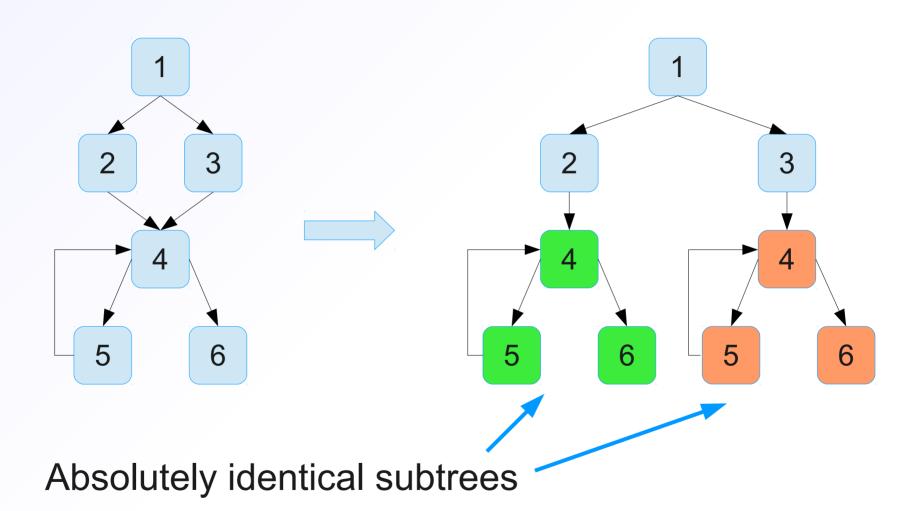


Convert Overgraph into an Overtree and then convert it into a set of trees

Naive Residualization Algorithm



Suboptimality



Idea: Cache intermediate results

More Formal Definition

R : Node → [Node] → [Tree]

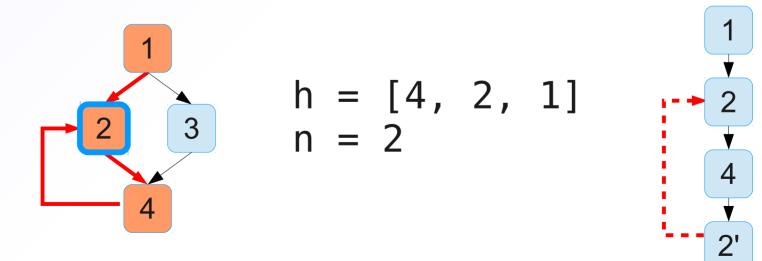
```
R n h | n ∈ h = [Fold(n)]

R n h | otherwise =

[n \rightarrow (r1 ... rk) |

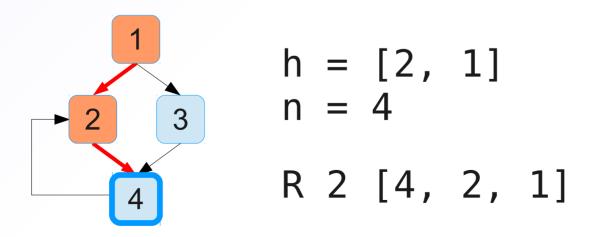
n \rightarrow (d1 ... dk) ∈ G,

ri ∈ R di (n:h)]
```

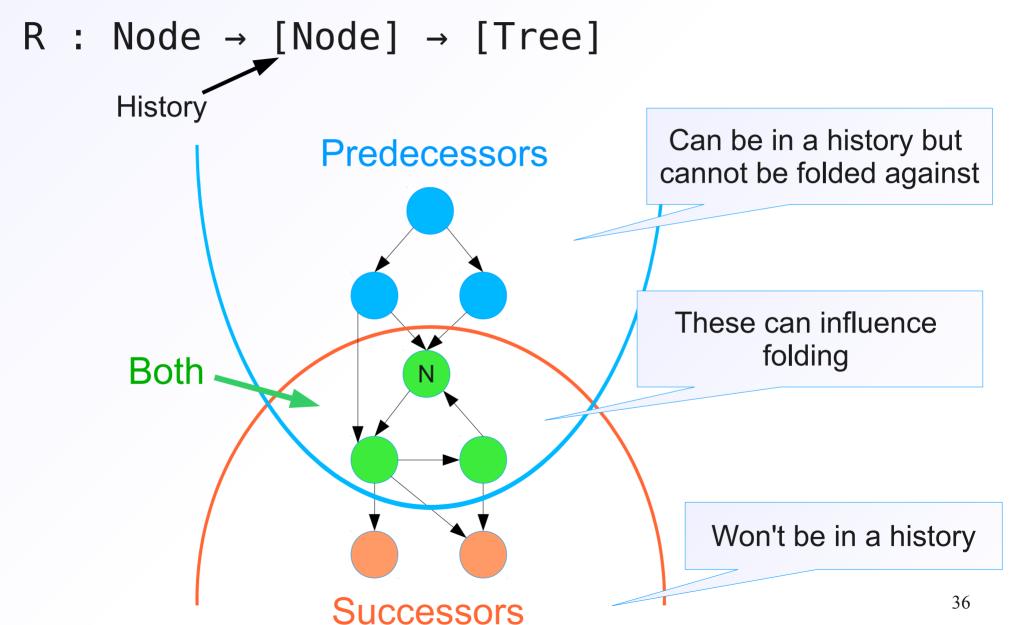


More Formal Definition

R : Node → [Node] → [Tree]



History Structure



Enhanced Residualization

 Removing pure predecessors from history won't change the result

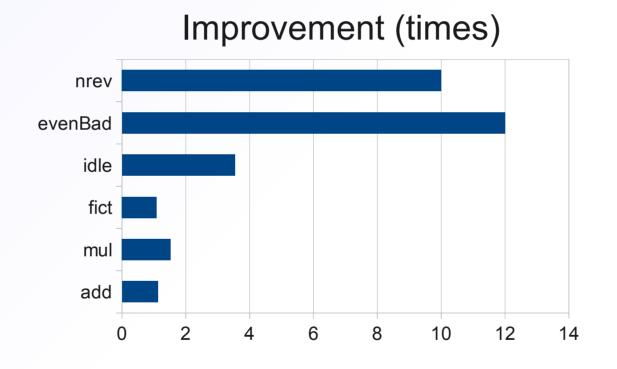
```
R n h = R n (h n succs(n))
```

Let's rewrite residualization algorithm this way:

Now we can just apply memoization

Evaluation of Residualization Algorithms

Caching improves performance

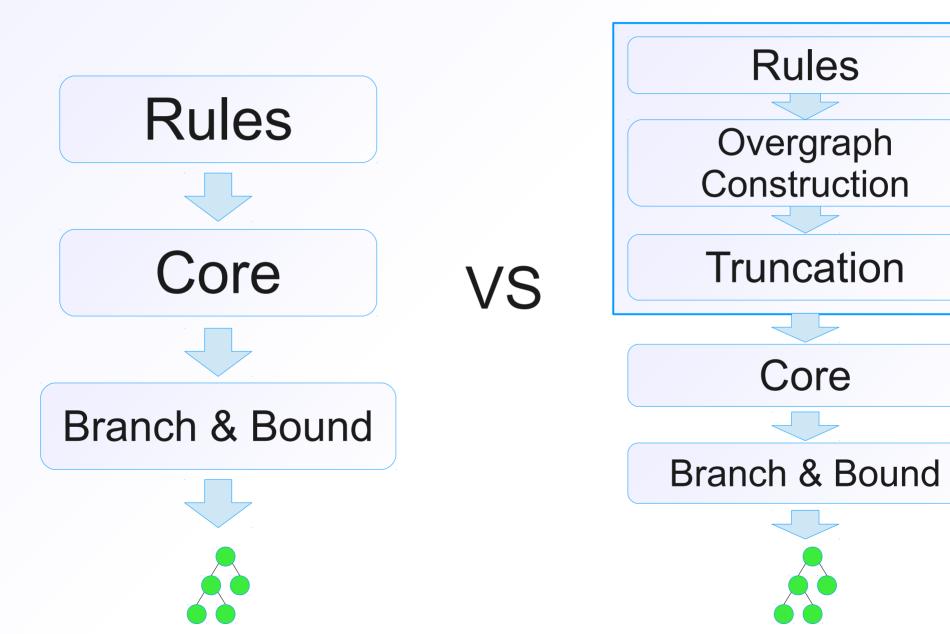


 But the algorithms produce trees with back edges Turned out it is not very useful for most tasks

Example: Counter Systems

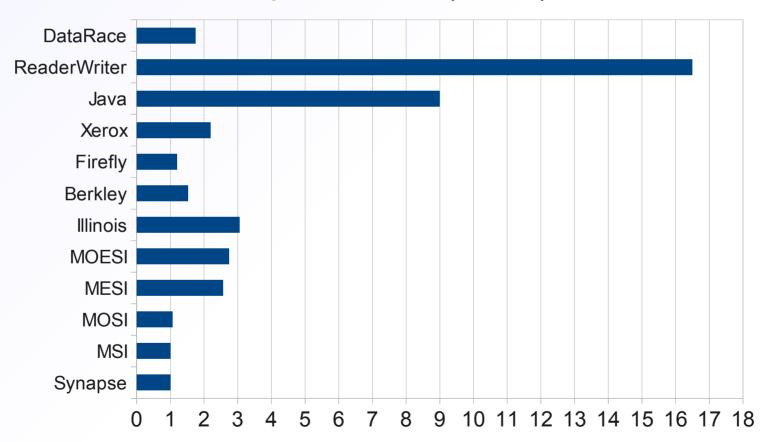
- The task is to find the minimal proof of a counter system's safety
- A proof is a graph, not a tree with back edges
- MRSC uses cross edges to simulate graphs
- But overgraphs may be still useful because they enable truncation

Experiment with Counter Systems



Experimental Results

Improvement (times)



(in terms of the number of visited nodes)

Why overgraphs were useful?

- We could compute sets of successors
- We could truncate an overgraph

An overgraph contains a lot of information about relations between configurations

This is even more important than its compactness

Further Work

- Experiments with subgraph-producing residualization algorithms
 - need graph-based language
 - tree-producing algorithm seems unsuitable for real-world tasks
- Searching for heuristics (whistles etc) useful for overgraph representation
- Applying overgraphs to higher-level supercompilation

Conclusions

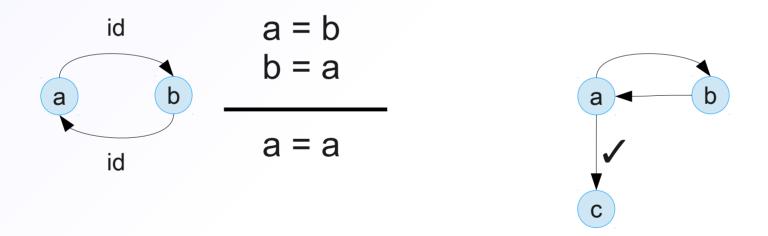
We suggested the Overgraph representation

- An Overgraph is a very compact representation
- Rules, Whistles and Residualization were generalized to Overgraphs
- The implementation has shown its usefulness
 - Caching residualization algorithm
 - Truncation for counter systems
- Overgraph contains a lot of information, so it is possible to analyze multiple graphs at once

Please return to the previous slide

Correctness

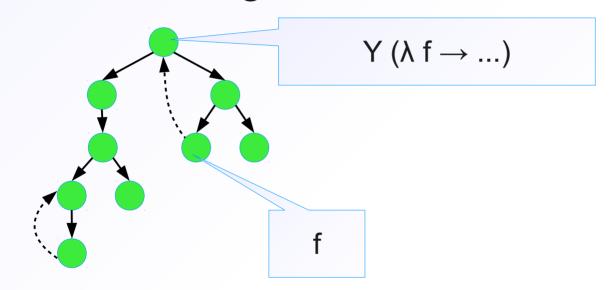
 It is possible that not all of the trees extracted from an overgraph represent correct programs



 Usually it is not a problem for single-level supercompilation

Language used in experiments

The language is essentially based on trees with back edges



- Higher order
- Explicit fixed point combinator
- No let-expressions

Overgraph vs E-PEG

- Essentially the same idea applied to different domains
- We work with functional languages, so we have a clear recursion rather than incomprehensible cycles
- We don't have symmetric equalities
- We decided to residualize to trees, they naturally "residualize" to graphs
 - Should we do the same?

There are no more slides