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Abstract. The paper describes the design and implementation of a cer-
tifying supercompiler TT Lite SC, which takes an input program and
produces a residual program and a proof of the fact that the residual
program is equivalent to the input one. As far as we can judge from the
literature, this is the first implementation of a certifying supercompiler
for a non-trivial higher-order functional language. The proofs generated
by TT Lite SC can be verified by a type checker which is independent
from TT Lite SC and is not based on supercompilation. This is essential
in cases where the reliability of results obtained by supercompilation is
of fundamental importance. Currently, the proofs can be either verified
by the type-checker built into TT Lite, or converted into Agda programs
and checked by the Agda system. The main technical contribution is a
simple but intricate interplay of supercompilation and type theory.

1 Introduction

Supercompilation [1,2] is a program manipulation technique that was originally
introduced by V. Turchin in terms of the programming language Refal (a first-
order applicative functional language) [3], for which reason the first supercom-
pilers were designed and developed for the language Refal [4].

Roughly speaking, the existing supercompilers can be divided into two large
groups: “optimizing” supercompilers that try to make programs more e�cient,
and “analyzing” supercompilers that are meant for revealing and proving some
hidden properties of programs, in order to make programs more suitable for
subsequent analysis and/or verification.

The main idea behind the program analysis by supercompilation is that
supercompilation “normalizes” and “trivializes” the structure of programs by
removing modularity and levels of abstraction (carefully elaborated by the pro-
grammer). Thus, although the transformed program becomes less human-friendly,
it may be more convenient for automatic analysis.

Examples of using supercompilation for the purposes of analysis and verifica-
tion are: verification of protocols [5,6], proving the equivalence of programs [7],
contract checking (e.g. the verification of monadic laws) [8], problem solving in
Prolog style by inverse computation [9], proving the correctness of optimizations
(verifying improvement lemmas) [10], proving the productivity of corecursive
functions [11]. It should be noted that the use of supercompilation for analysis
and verification is based on the assumption:



The supercompiler we use preserves the semantics of programs.

In the following we will silently assume that this requirement is satisfied1.
At this point we are faced with the problem of correctness of supercompi-

lation itself, which has a number of aspects. A non-trivial supercompiler is a
sophisticated construction, whose proof of correctness is bound to be messy and
cumbersome, involving as it does several areas of computer science. (For ex-
ample, the proof of correctness of the supercompiler HOSC takes more than 30
pages [12].) Such a proof may contain some bugs and overlooks. Even if the proof
is perfect, the implementation of the supercompiler may be buggy. The correct-
ness of the implementation can be verified by means of formal methods. However,
even the verification of a “toy” supercompiler is technically involved [13].

As we have seen, ensuring the correctness of a supercompiler is a di�cult
task. But, what we are really interested in is the correctness of the results of
supercompilation. Thus we suggest the following solution.

Let the supercompiler produce a pair: a residual program, and a proof of
the fact that this residual program is equivalent to the original program. The
essential point is that the proof must be verifiable with a proof checker that is not
based on supercompilation and is (very!) much simpler than the supercompiler.

The advantages of such certifying supercompilation are the following.

– The supercompiler can be written in a feature-rich programming language
(comfortable for the programmer), even if programs in this language are not
amenable to formal verification.

– The implementation of the supercompiler can be buggy, and yet its results
can be verified and relied upon.

– The supercompiler can be allowed to apply incorrect techniques, or, more
exactly, some techniques that are only correct under certain conditions that
the supercompiler is unable to check. In this case, some results of supercom-
pilation may be incorrect, but it is possible to filter them out later.

A certifying supercompiler, in general, has to deal with two languages: the
programs transformed by the supercompiler are written in the subject language,
while the proof language is used for formulating the proofs generated by the
supercompiler. The problem is that the proof language and the subject language
must be consistent with each other in some subtle respects. For example, the
functions in the subject language may be partial (as in Haskell), but total in the
proof language (as in Coq [14] or Agda [15]). And semantic di↵erences of that
kind may cause a lot of trouble.

The above problem can be circumvented if the subject language of the su-
percompiler is also used as its proof language! Needless to say, in this case the
subject language must have su�cient expressive power2.

1 Note that some supercompilers are not semantics-preserving, changing as they do
termination properties and/or error handling behavior of programs.

2 Note, however, that the implementation language of the supercompiler does not need
to coincide with either the subject language or the proof language.



The purpose of the present work is to show the feasibility and usefulness of
certifying supercompilation. To this end, we have developed and implemented
TT Lite [16], a proof-of-concept supercompiler for Martin-Löf’s type theory (TT
for short) [17]. The choice of TT as the subject+proof language was motivated
as follows.

– The language of type theory is su�ciently feature-rich and interesting. (It
provides inductive data types, higher-order functions and dependent types.)

– The type theory is easy to extend and can be implemented in a simple,
modular way.

– Programs and proofs can be written in the same language.
– The typability of programs is decidable, and type checking can be easily

implemented.

To our knowledge, the supercompiler described in the present work is the
first one capable of producing residual programs together with proofs of their
correctness. It is essential that these proofs can be verified by a type checker that
is not based on supercompilation and is independent from the supercompiler.

The general idea that a certifying program transformation system can use
Martin-Löf’s type theory both for representing programs and for representing
proofs of correctness was put forward by Albert Pardo and Sylvia da Rosa [18].
We have shown that this idea can be implemented and does work in the case of
program transformations performed by supercompilation.

The TT Lite project3 comprises 2 parts: TT Lite Core, which is a minimalistic
implementation of the language of type theory (a type-checker, an interpreter
and REPL), and TT Lite SC, which is a supercompiler. The results produced by
TT Lite SC are verified by the type checker implemented in TT Lite Core. TT
Lite Core does not depend on TT Lite SC and is not based on supercompilation4.

TT Lite Core implements the collection of constructs and data types that
can be usually found in textbooks on type theory: dependent functions, pairs,
sums, products, natural numbers, lists, propositional equality, the empty (bot-
tom) type and the unit (top) type. Also the site of the project contains a tu-
torial on programming in the TT Lite language with (a lot of) examples taken
from [19,20].

While [16] contains full technical information about TT Lite in detail, this
paper describes a small subset of TT Lite and can be regarded as a gentle, step-
by-step introduction to [16]. In this paper we limit ourselves to the language
which only contains dependent functions, natural numbers and identity (we use
the abbreviation ⇧NI for this subset of TT Lite). This allows us to present
and explain the fundamental principles of our certifying supercompiler without
going into too much technical detail.

3
https://github.com/ilya-klyuchnikov/ttlite

4 This design is similar to that of Coq [14]. The numerous and sophisticated Coq
“tactics” generate proofs written in Coq’s Core language, which are then verified
by a relatively small type checker. Thus, occasional errors in the implementation of
tactics do not undermine the reliability of proofs produced by tactics.

https://github.com/ilya-klyuchnikov/ttlite


1 plus : forall (x y : Nat). Nat;

2 plus = \(x y : Nat). elim Nat (\(n : Nat). Nat) y (\(n r : Nat). Succ r) x;

3 $x : Nat; $y : Nat; $z : Nat;

4 in1 = plus $x (plus $y $z);

5 in2 = plus (plus $x $y) $z;

6 (out1, pr1) = sc in1;

7 (out2, pr2) = sc in2;

8 id_in1_out1 : Id Nat in1 out1;

9 id_in1_out1 = pr1;

10 id_in2_out2 : Id Nat in2 out2;

11 id_in2_out2 = pr2;

12 id_out1_out2 : Id Nat out1 out2;

13 id_out1_out2 = Refl Nat out1;

14 id_in1_in2 : Id Nat in1 in2;

15 id_in1_in2 = proof_by_trans Nat in1 in2 out1 pr1 pr2;

Fig. 1. Proving the associativity of addition via normalization by supercompilation.

2 TT Lite SC in action

TT Lite SC implements a supercompiler which can be called by programs writ-
ten in the TT Lite input language by means of a built-in construct sc. (This
supercompiler, as well as TT Lite Core, however, is implemented in Scala, rather
than in the TT Lite language.) The supercompiler takes as input an expression
(with free variables) in the TT Lite language and returns a pair: an output ex-
pression and a proof that the output expression is equivalent to the input one.
The proof is also written in the TT Lite language and certifies that two expres-
sions are extensionally equivalent, which means that, if we assign some values to
the free variables appearing in the expressions, the evaluation of the expressions
will produce the same result.

Both the output expression and the proof produced by the supercompiler are
first-class values and can be further manipulated by the program that has called
the supercompiler. Technically, the input expression is converted (reflected) to
an AST, which is then processed by the supercompiler written in Scala. The
result of supercompilation is then reified into values of the TT Lite language.

Let us consider the example in Figure 1 illustrating the use of TT Lite SC
for proving the equivalence of two expressions [7].

As in Haskell and Agda [15], the types of defined expressions do not have to
be specified explicitly. However, type declarations make programs more under-
standable and easier to debug.

Lines 1–2 define the function of addition for natural numbers. Line 3 declares
(assumes) 3 free variables $x, $y and $z whose type is Nat. By convention, the
names of free variables start with $. Lines 4–5 define two expressions whose
equivalence is to be proved.

Now we come to the most interesting point: line 6 calls the built-in function
sc, which takes as input the expression in1 and returns its supercompiled version
out1 along with the proof pr1 for the fact that in1 and out1 are extensionally
equivalent (i.e., given $x, $y and $z, in1 and out1 return the same value). Line
7 does the same for in2, out2 and pr2.



p ::= (def |dec)⇤ program
def ::= id = e; | id : e; id = e; optionally typed definition
dec ::= $id : e; declaration (assumption)
e ::= x variable

| c built-in constant
| b(x : e). e(x) built-in binder
| e1 e2 application
| elim e

t

e

m

e

i

e

d

elimination
| (e) parenthesized expression

Fig. 2. TT Lite: syntax

Lines 8–9 formally state that pr1 is indeed a proof of the equivalence of in1
and out1, having as it does the appropriate type, and this fact is verified by the
type checker built into TT Lite Core. Lines 10–11 do the same for in2, out2
and pr2.

And now, the final stroke! Lines 12–13 verify that out1 and out2 are “propo-
sitionally equivalent” or, in simpler words, they are just textually the same.
Hence, by transitivity (lines 14–15), in1 is extensionally equivalent to in2. And
this proof has been automatically found by supercompilation and verified by type
checking [7]. The function proof by trans is coded in the TT Lite language in
the file examples/id.tt.

3 TT Lite: syntax and semantics

In the following, the reader is assumed to be familiar with the basics of program-
ming in Martin-Löf’s type theory [19,20].

TT Lite Core provides a modular and extensible implementation of type
theory. Technically speaking, it deals with a monomorphic version of type theory
with intensional equality and universes.

TT Lite SC is based on TT Lite Core and makes heavy use of the expression
evaluator (normalizer) and type checker provided by TT Lite Core. Hence, before
looking into the internals of the supercompiler, we have to consider the details

of how normalization and type checking are implemented in TT Lite Core.
The Syntax of the TT Lite language is shown in Figure 2. A program is a

list of declarations and definitions. A definition (as in Haskell) can be of two
kinds: with or without an explicit type declaration. There is also a possibility
to declare the type of an identifier without defining its value (quite similar to
module parameters in Agda), in which case the identifier must start with $.

A TT Lite expression is either a variable, a built-in constant, a binder5, an ap-
plication, an application of an eliminator [22] or an expression enclosed in paren-
theses. This syntax should be familiar to functional programmers: variables and
applications have usual meaning, binders are a generalization of �-abstractions,
eliminators are a “cross-breed” of case and fold.

5 See [21, Section 1.2] describing abstract binding trees.



In general, an eliminator in the TT Lite language has the form elim et em ei ed

where et is the type of the values that are to be eliminated, em is a “motive” [22],
ei correspond to the cases that can be encountered when eliminating a value,
and ed is an expression that produces values to be eliminated6.

The typing and normalization rules implemented in the ⇧NI subset of TT
Lite can be found in Figure 3. Essentially, they correspond to the rules described
in [19,20], but have been refactored, in order to be closer to their actual imple-
mentation in TT Lite.

The typing and normalization rules are formulated with respect to a context
� , where � is a list of pairs of two kinds: x := e binds a variable to an expression
defining its value, while x : T binds a variable to a type. By tradition, we divide
the rules into 3 categories: formation (F ), introduction (I) and elimination (E)
rules. A rule of the form � ` e : T means that e has the type T in the context
� , while [[e]]� = e

0 means that e0 is the result of normalizing e in the context � .
Our rules mainly di↵er from the corresponding ones in [19,20] in that subex-

pressions are explicitly normalized in the process of type checking. It should be
also noted that these expressions, in general, may contain free variables. If a TT
Lite expression is well-typed, the normalization of this expression is guaranteed
to terminate. So, any function definable in the TT Lite language is total by con-
struction. Figure 4 gives a definition of the neutral variable [22] of an expression.
Essentially, a neutral variable is the one that prevents an elimination step from
being performed7.

4 TT Lite SC: supercompilation

The implementation of TT Lite SC is based on the MRSC Toolkit [23], which
builds graphs of configurations [3] by repeatedly applying a number of graph
rewrite rules. The nodes of a partially constructed graph are classified as either
complete or incomplete. The supercompiler selects an incomplete node, declares
it to be the current one, and turns it into a complete node by applying to it the
rules specified by the programmer. The process starts with a graph containing
a single (initial) configuration and stops when all nodes become complete8.

Figure 5 schematically depicts the graph building operations that can be
performed by the MRSC Toolkit. (Incomplete nodes are shown as dashed circles,
the current node is inside a rounded box.) These operations are applied to the
current node (which, by definition, is incomplete). The operation unfold adds
child nodes to the current node. This node becomes complete, while the new
nodes are declared to be incomplete. The operation fold adds a “folding” edge
from the current node to one of its parents, and the node becomes complete. The
operation stop just declares the current node to be complete, and does nothing
else.
6 By the way, application is essentially an eliminator for functional values.
7 Recall that application is also a special case of eliminator
8 Or the graph is declared by the whistle to be “dangerous” (in this case the super-
compiler just discards the graph), but this feature is not used by TT Lite SC.
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Fig. 3. TT Lite: rules

nv(x e) = x nv(elim N m f0 f

s

e) = nv(e)
nv(e1 e2) = nv(e1) nv(elim (I A t1 t2)mf x)= x

nv(elim N m f0 f

s

x)= x nv(elim (I A t1 t2)mf e)= nv(e)

Fig. 4. Finding the neutral variable of a term



Unfold�����! Fold���!

Stop���!

Fig. 5. Basic operations of MRSC

The MRSC toolkit allows the nodes and edges of a graph to hold arbitrary
information. Information in a node is called a configuration. In the case of TT
Lite SC, a configuration is a pair consisting of a term (expression) and a context.

Schematically, a graph node will be depicted as follows:
⌥⌃ ⌅⇧t | � . We use two

kind of edge labels (I and E) in TT Lite SC. The first kind corresponds to
the decomposition of a constructor, while the second kind corresponds to case
analysis and (in general case) primitive recursion performed by an eliminator. In
the case of recursive eliminators (such as N, List) the label also holds information
to be used for finding possible foldings.

We use the following notation for depicting nodes and transitions between
nodes:

(a)
⌥⌃ ⌅⇧t0 | �0

I(Succ)�������!
⌥⌃ ⌅⇧t1 | �1 (c)

⌥⌃ ⌅⇧t0 | �0  �������
⌥⌃ ⌅⇧t1 | �1

(b)
⌥⌃ ⌅⇧t0 | �0

E(y!c1,r)�������!
⌥⌃ ⌅⇧t1 | �1 (d)

⌥⌃ ⌅⇧t0 | �0 �������! •
E(y!c1,•)�������!

⌥⌃ ⌅⇧t2 | �2

An unfolding edge is schematically represented by a right arrow, and a folding

edge by a left arrow. (a) represents a decomposition. (b) corresponds to case
analysis performed by an eliminator. If the eliminator is a recursive one, the
edge label contains a recursive term r, otherwise this position is occupied by the
dummy placeholder •. (c) represents a folding edge. (d) represents a complete
node without child nodes. Sometimes, nodes will be denoted by greek letters.
For example, a folding edge from � to ↵ will be depicted as a �.

The rules used by TT Lite SC for building graphs of configurations are pre-
sented in Figure 6(a). In simple cases, the left part of a rule is a pattern that
specifies the structure of the nodes the rule is applicable to. But, sometimes
a rule has the form of an inference rule with a number of premises (“guarded
pattern matching” in programmer’s terms). The rules are ordered.

Let us consider rules of various kinds in more details.
There are two kinds of rules for building graphs of configurations: type-

specific and general ones. Type-specific rules determine how driving [24] is per-
formed for constructions introduced by a specific type. General rules do not



(a) Construction of a graph of configurations

(Fold)
9↵ 2 anc(�) : ↵
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↵ � �

(Stop)
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⌥⌃ ⌅⇧t | �

(NE0)
nv(c) = y y : N⌥⌃ ⌅⇧c | �

y 7!0,•����!
⌥⌃ ⌅⇧[[c]]

�,y:=0 | �
y 7!Succ y,c�������!

⌥⌃ ⌅⇧[[c]]
�,y:=Succ y

| �
(Default) ⌥⌃ ⌅⇧c | � ���! •

(b) Code generation from a graph of configurations

C
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�  
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⇤
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= ↵.e C
h
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i
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C
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#
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=
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C[↵1]⇢ (�(y : N)(v : tp(↵)). C[↵2]
⇢+(↵!v)) y

(c) Proof generation from a graph of configurations
P
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⇤
⇢,�

= �(�) P
⇥
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⇤
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= Refl tp(↵) ↵.e
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#

⇢,�

=
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⇢
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(�(y : N)(v : I tp(↵) ↵.e C[↵]

⇢

). P[↵2]
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y

(d) Utility function
cong : ⇧(A : U

i

)(B : U
j

)(f : ⇧( : A).B)(x : A)(y : A)( : I A x y). I B (f x) (f y);
cong = �(A : U

i

)(B : U
j

)(f : ⇧( : A).B)(x : A)(y : A)(i : I A x y).
elim (I A x y) (�(x y : A)( : I A x y). I B (f x) (f y)) (�(x : A).Refl B (f x)) i;

Fig. 6. Supercompilation rules

correspond to a specific type and ensure the finiteness of graphs of configura-
tions. In this paper we present all general rules of TT Lite SC and the driving
rules for the ⇧NI subset9. Rules Fold, Stop and Default are general ones.
Rules (NI 02) and (NE0) are driving rules for N. All other driving rules can be
found in [16].

Rules (NI 02) and (NE0) add new nodes to the graph by applying the MRSC
operation Unfold. Any driving rule in TT Lite SC can be classified as either a
decomposition or a case analysis by means of an eliminator.

From the perspective of the type theory, decomposition corresponds to for-
mation and introduction rules. The essence of decomposition is simple: we take
a construct to pieces (which become the new nodes) and label the edges with
some information (about the construct that has been decomposed). In the case
of the ⇧NI subset there is only one decomposition rule: (NI 02).

Note that, in general, for each formation and introduction rule there exists
a corresponding decomposition rule, provided that the corresponding value has

9 In this paper the identity type is only used for constructing proofs of correctness.
Thus, for brevity, we do not discuss here driving rules for identity.



some internal structure. However, in the case of the type N, the constructs N
and 0 have no internal structure.

Decomposition is not performed for binders ⇧ and �. The reason is that in
this case we could be unable to generate a proof of correctness of decomposition,
because the core type theory does not provide means for dealing with extensional
equality.

When the supercompiler encounters an expression with a neutral variable, it
considers all instantiations of this variable that are allowed by its type. Then,
for each possible instantiation, the supercompiler adds a child node and labels
the corresponding edge with some information about this instantiation.

When dealing with eliminators for recursive types (such as N and List), we
record the expression corresponding to the “previous step of elimination”10 in
the edge label. For example, for the expression elim N m f0 fs (Succ y), the
expression corresponding to the previous step of elimination is elim N m f0 fs y.
In the case of the subset ⇧NI, the only rule for case analysis is (NE0), which
considers two possible instantiations of the neutral variable y of the type N:
0 and Succ y. Note that by putting an instantiation in the context and then
normalizing the expression, we perform positive information propagation: the key
step of supercompilation. Storing “the previous step of eliminator” is crucial for
folding and code generation, since the only way to introduce recursive functions
in TT Lite is via eliminators.

A technical note should be done here: in TT Lite SC we generate new vari-
ables for instantiations and put them into context. So, in TT Lite SC, given a
neutral variable y of type N, the child configuration corresponding to the case

y = Succ y1 is
⌥
⌃

⌅
⇧[[c]]�,y:=Succ y1

| �, y1 : N , where y1 is a fresh variable of the type

N. However, in this specific case we can avoid the generation of a new variable
by reusing the variable y and not extending the context (since y is already in the
context). This small trick allows us to make presentation of code generation and
proof generation rules (given in the next sections) shorter and less cumbersome.

Note that the information stored on the edge label is enough for generating
both the residual program and the proof of correctness (in a straightforward
way).

Another special case is the application of a neutral variable. Since a neutral
variable is bound to have a functional type, we cannot enumerate all its possible
instantiations. In such situation, most supercompilers (e.g. HOSC [25]) perform
a decomposition of the application, but, to keep the supercompiler simple, we
prefer not to decompose such applications.

General rules (Fold, Stop, Default) are the core of TT Lite SC. In short,
general rules ensure the finiteness of graphs of configurations. This is achieved
either by folding the current expression to a previously encountered one or by
stopping the development of the current branch of the graph.

In the rule Fold, anc(�) is a set of ancestor nodes of the current node � and
c is an expression in the node �. The rule itself is very simple. Suppose that

10 = “recursive call” of the same eliminator



the current node has an ancestor node whose “previous step of elimination” in
the outgoing edge is (literally) the same as the current term. Then the rule Fold
is applicable, and the current configuration can be folded to the parent one. In
the residual program this folding will give rise to a function defined by primitive
recursion.

Folding in TT Lite SC di↵ers from that in traditional supercompilers. Namely,
most supercompilers perform folding when the current expression is a renaming
of some expression in the history. However, since TT Lite SC has to encode
recursion by means of eliminators, the mixture of folding and renaming would
create some technical problems. So, we prefer to separate them.

If no folding/driving rule is applicable, the rule Default is applied. (This rule
is the last and has the lowest priority.) In this case, the current node becomes
complete and the building of the current branch of the graph is stopped.

In general, the process of repeatedly applying driving rules, together with
the rules Fold and Default, may never terminate. Thus, in order to ensure termi-
nation, we use the rule Stop, whose priority is higher than that of the unfolding
rules and the rule Default. In this supercompiler we use a very simple termina-
tion criterion: the building of the current branch stops if its depth exceeds some
threshold n. Note that, in the case of TT Lite SC, the expressions appearing in
the nodes of the graph are self-contained, so that they can be just output into
the residual program.

Since the graph of configurations is finitely branching, and all branches have
finite depth, the graph of configurations cannot be infinite. Therefore, the process
of graph building eventually terminates.

The generation of the residual program corresponding to a completed graph
of configurations is performed by recursive descent. The function that imple-
ments the residualization algorithm is defined in Figure 6 (b). A call to this
function has the form C[↵]⇢, where ↵ is the current node, and ⇢ is an environ-
ment (mapping of nodes to variables) to “tie the knot” on “folding” edges. The
initial call to the function C has the form C[root]{}, where root is the root node
of the graph of configurations.

The function C performs pattern matching against the edges going out of the
current node. (In the rules, the patterns are enclosed into square brackets.) We
use the following conventions: the current node is ↵, ↵.e is an expression in the
node ↵, tp(↵) is the type of the expression appearing in the node ↵. If e | � is
the configuration in the node ↵, and � ` e : T , then tp(↵) = T . In the last rule
(corresponding to a case analysis of a neutral var of type N) v is a fresh variable.

Note that rules for construction of a graph of configurations take into account
that residualization facilities of C are limited (by eliminators) and produce a
graph that can be residualized by C.

5 Proof generation

The function that implements the proof generator is defined in Figure 6 (c). A
call to this function has the form P[↵]⇢,�, where ↵ is the current node, while ⇢



and � are two environments. ⇢ is used for folding in residual programs (when
encoding recursion), while � is used for folding in proofs (when encoding proofs
by induction). Technically, � binds some nodes to corresponding inductive hy-
potheses. The initial call to the function P has the form P[root]{},{}, where root
is the root node of the graph of configurations.

Generated proofs are based on the use of propositional equality (i.e. syntactic
identity of normalized expressions), functional composition and induction.

– The residual expression corresponding to a childless node is the same as the
one appearing in this node. Hence, the proof amounts to the use of reflexivity
of equality (i.e. is a call to Refl).

– The proofs corresponding to decompositions of configurations exploit the
congruence of equality: the whole proof is constructed by combining sub-
proofs (demonstrating that the arguments of constructors are equal) with
the aid of the combinator cong defined in Figure 6 (d) ([16] uses more con-
gruence combinators).

– The proofs corresponding to eliminators are by structural induction. The
motive of a new eliminator is now a proof. When specifying a motive of
eliminator, C[↵]⇢ is used in the same way as during code generation (using
the same environment ⇢). But, when generating subproofs for recursive elim-
inators, C[↵]⇢ is used to extend the environment ⇢. Also � is extended, to
bind the current node to a subproof (inductive hypothesis).

Note that the same graph of configurations is used both for generating the
residual program and for generating the proof. If TT Lite SC would have been
implemented in “direct” style (without explicit graphs of configurations) like
in [26], such reuse would be problematic, which would produce a negative e↵ect
on the modularity of our design.

Despite the fact that the rules for P are compact, they are technically in-
volved since there is an intricate use of two “folding contexts” ⇢ and �. Another
technically interesting point is that code generation function C is used as a “type
inferencer” when constructing a motive for proof term encoded via eliminators.

6 Example

Let us consider supercompilation of the expression in2 from the Figure 1 (which
is plus (plus $x $y) $z). The graph of configurations for this expression is
shown in Figure 7. The generated code is shown in Figure 8. The proof that
in2 and out2 are equivalent is not shown here because of the lack of space (but
can be found at the project website). The project site contains more examples
of certifying supercompilation. In particular, TT Lite SC is capable of proving
most equivalences of expressions that have been presented in the paper [7] (and
proved by HOSC). The di↵erence from HOSC, however, is that TT Lite SC
generates explicit proofs, which can be verified by type checking.



elim Nat (�(n : Nat) -> Nat) $z
(�(n : Nat)(r : Nat) -> Succ r)
(elim Nat (�(n : Nat) -> Nat) $y
(�(n : Nat)(r : Nat) -> Succ r) $x)

elim Nat (�(n : Nat) -> Nat) $z
(�(n : Nat)(r : Nat) -> Succ r) $y

$z

E($y = 0,•)
Succ

(elim Nat (�(n : Nat) -> Nat) $z
(�(n : Nat)(r : Nat) -> Succ r) $y)

elim Nat (�(n : Nat) -> Nat) $z
(�(n : Nat)(r : Nat) -> Succ r) $y

I(Succ)

E($y = Succ $y, elim ...)

E($x = 0,•)
Succ

(elim Nat (�(n : Nat) -> Nat) $z
(�(n : Nat)(r : Nat) -> Succ r)
(elim Nat (�(n : Nat) -> Nat) $y
(�(n : Nat)(r : Nat) -> Succ r) $x))

elim Nat (�(n : Nat) -> Nat) $z
(�(n : Nat)(r : Nat) -> Succ r)
(elim Nat (�(n : Nat) -> Nat) $y
(�(n : Nat)(r : Nat) -> Succ r) $x)

I(Succ)

E($x = Succ $x, elim ...)

Fig. 7. Example: graph of configurations and “graph of residualization”

1 elim Nat (\($x : Nat) -> Nat)

2 (elim Nat (\ ($y : Nat) -> Nat) $z (\ ($y : Nat)(r2 : Nat) -> Succ r2) $y)

3 (\ ($x : Nat) (r1 : Nat) -> Succ r1) $x

Fig. 8. Example: residual expression (out2)

7 Related work

One of the ideas exploited by TT Lite SC is that of supercompilation by eval-

uation. As was shown in [26], supercompilation can be based on an evaluator
which tries to reduce an open term to head normal form. Unfortunately, if the
subject language is not a total one (as in the case of Haskell), the evaluation
may not terminate. For this reason, Bolingbroke and Peyton Jones had to equip
their evaluator with a termination check (“local whistle”), which may interfere
with global termination check in subtle ways. Hence, the evaluator had to be
fused, to some extent, with other parts of their supercompiler.

In the case of TT Lite SC, the totality of the subject language has allowed
us to greatly simplify and modularize the structure and implementation of our
supercompiler. In particular, since the evaluation of all expressions, including
expressions with free variables, terminates, the evaluator is trivialized into a
standard normalizer, so that TT Lite SC just reuses the interpreter provided by
TT Lite Core. Thus, the supercompiler knows nothing about the internals of the
evaluator, using it as a “black box”.

Another point, where we exploit the totality of the subject language, is case
analysis. Since a function returns a result for any input, all possible instantiations
of a neutral variable can be found by just examining the type of this variable.
Note that supercompilers dealing with partial functions usually find instantia-
tions of a variable by taking into account how this variable is actually used in
the program. Technically, this means that driving has to be implemented as a
combination of case analysis and variable instantiation. TT Lite SC, however,
completely decouples case analysis from variable instantiation.

Since our goal was to investigate whether certifying supercompilation is pos-
sible in principle, we tried to keep our proof-of-concept certifying supercompiler



as simple and comprehensible as possible. And, indeed, the ingredients of our
supercompiler for the ⇧NI subset fit on half a page! And yet, this is a su-
percompiler for a non-trivial language (of Martin-Löf’s type theory), which is
powerful enough in order to be able to prove most term equivalences from [7].

In some application areas, however, TT Lite SC is inferior even to “näıve”
partial evaluators. In particular, it fails to pass the classical KMP test [24]. The
reason is that, in residual programs produced by TT Lite SC, all loops and
recursive functions has to be encoded in terms of eliminators. Thus, TT Lite SC
can only fold a configuration to “the previous step of an eliminator”. This is a
restricted form of folding, which is not su�cient in the case of the KMP test.
We could generalize our graph building rules to allow TT Lite SC to use more
complicated forms of folding. However, in this case, residual programs would be
di�cult to express in terms of eliminators and, as a consequence, the generation
of correctness proofs, corresponding to residual programs, would become more
technically involved. This problem needs to be further investigated.

8 Conclusions

We have developed and implemented a certifying supercompiler TT Lite SC,
which takes an input program and produces a residual program paired with a
proof of the fact that the residual program is equivalent to the input one. As
far as we can judge from the literature, this is the first implementation of a
certifying supercompiler for a non-trivial higher-order functional language.

A proof generated by TT Lite SC can be verified by a type checker of TT
Lite Core which is independent from TT Lite SC and is not based on super-
compilation. This is essential in cases where the reliability of results obtained by
supercompilation is of fundamental importance. For example, when supercompi-
lation is used for purposes of program analysis and verification. Some “technical”
details in the design of TT Lite SC are also of interest.

– The subject language of the supercompiler is a total, statically typed, higher-
order functional language. Namely, this is the language of Martin-Löf’s type
theory (in its monomorphic version).

– The proof language is the same as the subject language of the supercompiler.
– Recursive functions in the subject language are written in a well-structured

way, by means of “eliminators”. An eliminator for an inductively defined
data type performs both the case analysis and recursive calls.

– Driving is type-directed.
– There is an intricate interplay of supercompilation, type theory and limita-

tions imposed by usage of eliminators.
– TT Lite programs (including proofs produced by supercompilation) can be

exported into Agda and checked by Agda system.
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