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Abstract. One of the applications of supercompilation is proving prop-
erties of programs. We focus in this paper on a specific task: proving term
equivalence for a higher-order lazy functional language. The “classical”
way to prove equivalence of two terms t1 and t2 is to write an equality
function equals and to simplify the term (equals t1 t2). However, this
works only when certain conditions are met. The paper presents another
approach to proving term equivalence by means of supercompilation. In
this approach we supercompile both terms and compare supercompiled
terms syntactically. Some applications of the technique are discussed. In
particular, one of these applications may lead to the development of a
more powerful “higher-level” supercompiler.

1 Introduction

The functional style of programming allows developers to write modular, main-
tainable and elegant programs. However, these advantages do not come for free.
Making use of intermediate data structure, higher-order functions, lazy eval-
uation and function composition may result in a significant overhead during
program execution. There are a number of program transformation techniques
capable of eliminating this overhead. One of them is supercompilation, a tech-
nique suggested by V.F. Turchin in early 1970s. Initially, supercompilation was
developed as a means of optimizing programs written in a functional language
Refal [14,15], but later it was reformulated in more abstract terms [13,10,6].

Supercompilation is based on the following procedures:

– The construction of a labeled ”process tree” that represents all possible
traces of a computation process, the label (= ”configuration”) being a rep-
resentation of the possible states of the computation.

– Decomposing and/or generalizing the configurations in order to turn the
(possibly) infinite process tree into a finite graph.

– Generating the target (“residual”) program from the graph.

Surprisingly, supercompilation turned out to be applicable not only to pro-
gram optimization but also to program analysis and verification.
? Supported by Russian Foundation for Basic Research projects No. 08-07-00280-a
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Namely, transforming a program by means of a supercompiler may produce
an equivalent target program, whose structure is, in a sense, “simpler” than the
structure of the source program, so that some subtle properties of the source
program may become readily apparent and easy to prove.

Moreover, if some knowledge may be formally expressed in terms of a pro-
gram, supercompilation may be used for analyzing this knowledge and inferenc-
ing and making explicit some non-trivial, hidden facts.

Hence, supercompilation may play a role in program analysis similar to that
of X-rays in radiography (at least, potentially).

The present paper considers the problem of proving term equivalence by
means of supercompilation. It is shown that some interesting classes of equiva-
lencies can be proved by supercompiling both terms and comparing the super-
compiled terms syntactically. It should be noted that this technique is applicable
to languages with infinite data structures and higher-order functions. In addi-
tion, this approach does not require that a universal built-in equality predicate
be present in the language.

Some applications of the technique are discussed. In particular, one of these
applications may lead to the development of a more powerful supercompiler.

2 Why a Lazy Language with Higher-Order Functions?

Suppose there is some knowledge that is going to be encoded as a program, in
order to be analyzed by a supercompiler. What programming language should
be considered as “good” for this purpose? It could be argued that

1. The semantics of the language should be clearly defined.
2. The language should be easy for a supercompiler to deal with, especially if

the supercompiler is required to strictly preserve the semantics of programs.
3. The language should be convenient for encoding knowledge as programs.

In particular, infinite data structures are handy for representing infinite se-
quences of events and similar purposes.

4. The language should provide functions as first-class values. This is useful for
formulating and proving “higher-order” assertions quantified over functions.

Since we are interested in reasoning about programs, and this is hardly possi-
ble for a language with obscure semantics, the first requirement is quite natural.
Thus a functional programming language seems to be a good choice for our
purposes.

The second requirement is easier to meet in the case of a lazy functional lan-
guage, rather than a strict one, because many program transformation techniques
(including supercompilation and deforestation) are “call-by-name” in nature. If
these techniques are applied to a call-by-value language, the termination prop-
erties of programs may be violated. This, certainly, can be avoided by imposing
some restrictions on input programs. For example, the termination properties
are preserved by supercompilation, if the source program always terminates (see
“total functional programming” [17]). Another approach is to impose certain
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restrictions on the transformations performed during supercompilation, which
requires some additional analysis to be perform [6]. However, for the purposes of
program analysis, the most straightforward solution is to just assume that the in-
put language is a lazy one. In addition, for a lazy language the third requirement
is met in a natural way.

The fourth requirement is motivated by the fact that in almost all program-
ming languages a function’s arguments are considered to be universally quan-
tified. So a function definition can be read: for any x, y, . . . If we deal with a
first-order language then we can abstract over first-order data. But if we deal
with a higher-order language, we can abstract over functions, too! Functions may
represent rules, transformations, strategies and so forth.

In addition, there are cases where the results of supercompilation are just
difficult to represent by a first-order program [12].

For the above reason, we have preferred to deal with a lazy functional lan-
guage with higher-order functions.

3 HOSC: an Experimental “Higher-Order”
Supercompiler

All experiments in program transformation described in the paper have been car-
ried out by means of an experimental open-source supercompiler HOSC, dealing
with a lazy language with higher-order functions1. HOSC preserves the seman-
tics of programs, which is essential for the techniques described in the paper.

HOSC transforms programs written in HLL, a simple higher-order lazy lan-
guage, similar to that used by Hamilton [3,4]. HLL is typed using the Hindley-
Milner polymorphic typing system.

A program in HLL consists of a number of data type definitions, a term to
be evaluated and a set of function definitions (see Fig. 1).

A left-hand side of a data type definition is a type name (more precisely, a
type constructor name) followed by a list of type variables. The right-hand side
consists of one or more constructor declarations.

The grammar of HLL is shown in Fig. 1. A term is either a variable, a
constructor, a lambda abstraction, an application, a case term, a local func-
tion definition or a term in parenthesis. A function definition binds a variable
to a lambda abstraction. The intended operational semantics of HLL is the
normal-order graph reduction to a weak head normal form. The data analysis is
performed by pattern matching with constructors in case terms (as in [13]).

A term in HLL may contain free variables and local function definitions.
Note that the construct where is only a syntactic sugar, since the function

definitions can always be transformed to letrec-s and moved to the term pre-
ceding where. Hence, any program is essentially a single term (plus a number of
type declarations), so that there is no difference between transforming a term
and transforming a program. In particular, the equivalence of programs is just
the equivalence of terms.
1 See the HOSC web-application and the sources at http://hosc.appspot.com
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typeDef ::= typeCon = dataCon1 | ... | dataConn

typeCon ::= tn type1 ... typen

dataCon ::= c type1 ... typen

type ::= tv | typeCon | type → type | (type)

prog ::= typeDef1...typeDefn e where f1 = e1...fn = en

e ::= v
| c e1...en

| f
| λv.e
| e0 e1
| case e0 of p1 → e1...pk → ek

| letrec f = λv.e in e
| (e)

p :: = c v1...vn

type definition
type constructor
data constructor
type expression

program

variable
constructor
function
abstraction
application
case term
local function
term in parenthesis

pattern

where tn ranges over type names, tv ranges over type variables, c ranges over construc-
tors.

Fig. 1. HLL grammar

4 Proving Term Equivalence

4.1 Proving Properties of Terms by Supercompilation

As shown by Turchin [15,16], some properties of programs can be proved by
program transformation. For example, suppose there is a function f (represented
as a program), and we want to prove that, for any input x, the result returned
by f satisfies some property p. Then we may encode p as a program, and try to
“simplify” the term p(f(x)) by means of a supercompiler. If the structure of the
supercompiled term is trivial, so that it can be readily seen that the evaluation
of the term never returns False and always terminates, we can conclude that
the source term p(f(x)) always returns True. Therefore, the result of evaluating
f(x) always satisfies the property p.

The fruitfulness of this approach has been recently shown by Lisitsa and
Nemythykh [8], who have succeeded in verifying a number of cache coherence
protocols by means of the supercompiler SCP4.

4.2 Equality-Based Approach to Proving Term Equivalence

As pointed out by Turchin [14], proving the equivalence of two terms t1 and
t2 can be reduced to proving a property of a single term. Namely, if equals is
a function testing values for equality, we can compose the term equals t1 t2
and supercompile it to see whether it always returns True.

Consider the program in Fig. 2 in which the function plus takes two natural
numbers (in unary system) and returns their sum. We want to prove that
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data number = Z | S number

data boolean = True | False

equals (plus (S x) y) (plus x (S y)) where

plus = λx.λy.
case x of

Z → y

S x1 → S (plus x1 y)

equals = λx.λy.
case x of

Z →
case y of

Z → True

S y1 → False

S x1 →
case y of

Z → False

S y1 → equals x1 y1

Fig. 2. Proving (x + 1) + y = x + (y + 1): the source program

equals (plus (S x) y) (plus x (S y))

or, in more “mathematical” notation, that

(x + 1) + y = x + (y + 1)

The result of supercompiling the program is shown in Fig. 3. It can be read-
ily seen that the supercompiled program never returns False. However, there
remain a few subtle points concerning such kind of reasoning!

4.3 Restrictions and Drawbacks of the Equality-Based Approach

Suppose the term equals t1 t2 never returns False. Does it mean that t1 and
t2 are really “equivalent”?

It depends on what is understood by “equivalence”. The “equality-based”
approach to proving term equivalence is based on a number of assumptions:

1. There exists a built-in equality function equals, or, at least, equals can be
defined for the values returned by t1 and t2.

2. All data structures involved are finite.
3. The evaluation of t1 and t2 always terminates.

Assumption 1 is usually true of first-order strict languages (like Refal [14,8]).
However, in the case of a higher-order language there arise some problems, be-
cause t1 and t2 may return functional values, which are impossible to test for
equality.
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data number = Z | S number

data boolean = True | False

letrec f = λp2.λr2.
case p2 of

Z → letrec g = λs2.
case s2 of

Z → True

S w → g w

in g r2

S p1 → f p1 r2

in f x y

Fig. 3. Proving (x + 1) + y = x + (y + 1): the supercompiled program

Assumption 2 is not automatically true in the case of a lazy language (even
a first-order one).

Assumption 3 may not be true in many interesting cases. For example, if t1
and t2 deal with infinite data structures and, by necessity, never terminate, but
are still “equivalent” (i.e. have the same “meaning” according to the language’s
semantics).

4.4 Normalization-Based Approach to Proving Term Equivalence

In order to get rid of dealing with equality predicates, we need an alternative,
more general, definition of term equivalence. Thus, the “contextual equivalence”,
as defined by Pitt [11], seems to be a reasonable choice:

Loosely speaking, two expressions M and M ′ of a programming language
are contextually equivalent if any occurrences of M and M ′ in complete
programs can be interchanged without affecting the results of executing
the programs.

In particular, the above definition implies that two programs are trivially
equivalent, if they are “syntactically isomorphic” (i.e. identical, modulo some
trivial renaming and/or rearranging of the constructs appearing in the program).

Let A ⇒sc A′ mean that A′ is semantically equivalent to A and can be
produced by supercompiling A, or, in other words, ⇒sc is a “supercompilation
relation” (as defined by Klimov [7]).

Let ≈ denote equivalence and ∼= “syntactic isomorphism” of programs. Then
the following holds:

A⇒sc A′ B ⇒sc B′ A′ ∼= B′

A ≈ B

Or, in plain words, if supercompiling A and B results in producing essentially
the same residual program, then A and B are equivalent.
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Thus, supercompilation can be seen as transformation that, in a sense, “nor-
malizes” terms. Some other program transformation techniques can also be con-
sidered as normalizing ones [1,2].

Note that the general idea of proving equivalence by normalization is a well-
known one, being a standard technique in such fields as computer algebra. The
idea of using supercompilation for normalization is due to Lisitsa and Webster
[9], who have successfully applied supercompilation for proving the equivalence of
programs written in a first-order functional language, provided that the programs
deal with finite input data and are guaranteed to terminate.

We argue that this techinque is also applicable to higher-order functional
programs, even if they deal with inifinite data structures and do not
terminate for some inputs.

Let us consider the program in Fig. 4 containing definitions of a few well-
known functions over lists. Supercompiling the term map (compose f g) xs
produces the program shown in Fig. 5. On the other hand, supercompiling
the term (compose (map f) (map g)) xs results in the same residual program
(modulo alpha renaming)! Hence, we have proved that the following holds

map (compose f g) xs = (compose (map f)(map g)) xs

for all f, g, and xs that are allowed by the type system of the language HLL.
Note that this statement holds for all lists xs including infinite lists and ⊥, whose
elements may be quite exotic: first-order values, functions, data trees, or ⊥. Also
note that the functions f and g do not have to terminate.

Therefore, the normalization-based approach enables us to prove state-
ments that are even impossible to formulate in terms of the equality-
based approach!

The authors have implemented an equivalence checker based on term nor-
malization and built on top of the specializer HOSC. Following are a number of
sample equivalences that have been automatically proved by the checker:

compose (map f) unit = compose unit f

compose (map f) join = compose join (map (map f))

append (map f xs) (map f ys) = map f (append xs ys)

append (append xs ys) zs = append xs (append ys zs)

filter p (map f xs) = map f (filter (compose p f) xs)

iterate f (f x) = map f (iterate f x)

map (compose f g) xs = (compose (map f)(map g)) xs

rep (append xs ys) zs = (compose (rep xs) (rep ys)) zs

(compose abs rep) xs = idList xs

map (fp (P f g)) (zip (P x y)) = zip (fp (P (map f) (map g)) (P x y))

append r (Cons p ps) =

case (append r (Cons p Nil)) of

Nil → ps

Cons v vs → Cons v (append vs ps)
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data List a = Nil | Cons (List a)

data Boolean = True | False

data Pair a b = P a b

compose = λf.λg.λx.f (g x)

unit = λx.Cons x Nil

rep = λxs. append xs

abs = λf. f Nil

iterate = λf.λx. Cons x (iterate f (f x))

fp = λp1.λp2.
case p1 of P a1 a2 →

case p2 of P b1 b2 → P (a1 b1) (a2 b2)

map = λf.λxs.
case xs of

Nil → Nil

Cons x1 xs1 → Cons (f x1) (map f xs1)

join = λxs.
case xs of

Nil → Nil

Cons x1 xs1 → append x1 (join xs1)

append = λxs.λys.
case xs of

Nil → ys

Cons x1 xs1 → Cons x1 (append xs1 ys)

idList = λxs.
case xs of

Nil → Nil

Cons x1 xs1 → Cons x1 (idList xs1)

filter = λp.λxs.
case xs of

Nil → Nil

Cons x xs1 →
case p x of

True → Cons x (filter p xs1)

False → filter p xs1

zip = λp.case p of P xs ys →
case xs of

Nil → Nil

Cons x1 xs1 →
case ys of

Nil → Nil

Cons y1 ys1 → Cons (P x1 y1) (zip (P xs1 ys1))

Fig. 4. Example functions over lists
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data List a = Nil | Cons a (List a)

letrec

h = λys.
case ys of

Nil → Nil

Cons y1 ys1 → Cons (f (g y1)) (h ys1)

in

h xs

Fig. 5. Supercompilation of map (compose f g) xs

Note that some of the above equivalences are instances of Wadler’s “free
theorems” [18,5].

Given the program in Fig. 2, the associativity of addition can be proved by
supercompiling both sides of the equation

plus (plus x y) z = plus x (plus y z)

One might expect that the commutativity of addition

plus x y = plus y x

could be proved in the same way. However, this is not the case, just because
the conjecture is not true! The language HLL is a lazy one, for which reason
plus (S Z) ⊥ = (S ⊥), but plus ⊥ (S Z) = ⊥.

5 Applications of the Technique

5.1 Generating Sets of Equivalent Terms

Since the set of all terms is recursively enumerable, it is possible to write a
generator automatically producing sets of equivalent terms. A straightforward
procedure may look as follows.

First, a potentially infinite sequence of term can be generated, the terms
being ordered according to their size. Then the sequence of terms can be filtered,
in order for the terms that are not well-typed to be rejected. Then the well-
typed terms can be “normalized” by supercompiling them, and partitioned into
equivalence classes by comparing their “normalized” versions.

Certainly, the above procedure is not “complete”, because term equivalence
is, in general, undecidable. Hence, for any given supercompiler, some equivalences
will not be proved by supercompilation. However, an important point is that
the above procedure is capable of automatically discovering equivalences, rather
than just proving them.

5.2 Term Equivalence and Higher-Level Supercompilation

As has been shown above, given a supercompiler, a library of term equivalences
can be generated. And this library can be used for increasing the power of

9



supercompilation. In other words, we can build a “higher-level” supercompiler
using a “classic” supercompiler as a “lower-level” building block.

Namely, if a “classic” supercompiler encounters two configurations A and B,
such that A is homeomorphically embedded into B, the supercompiler tries to
fold B to A. This is possible, if B is an instance of A. Otherwise, the super-
compiler has to throw B away and replace A with a more general configuration,
which may lead to “over-generalization”.

However, given a library of equations, a “higher-level” supercompiler may
replace B with an equivalent configuration B′ that is an instance of A, so that
B′ can be folded to A.

As an example, let us consider supercompiling a näıve definition of the func-
tion reverse into one with an accumulating parameter (which is more efficient).

Let us try supercompiling the following term:

append (reverse xs) ys

After unfolding we get:

case reverse xs of

Nil → ys

Cons x3 x4 → Cons x3 (append x4 ys)
(1)

Further unfolding results in:

case

case xs of

Nil → Nil

Cons x5 x6 → append (reverse x6) (Cons x5 Nil)

of

Nil → ys

Cons x3 x4 → Cons x3 (append x4 ys)

(2)

Now we have to split the configuration by considering two cases: xs = Nil
and xs = Cons x5 x6. If xs = Nil, the configuration is reduced to ys, and, in
the second case, it is transformed into

case append (reverse x6) (Cons x5 Nil) of

Nil → ys

Cons x3 x4 → Cons x3 (append x4 ys)
(3)

The term (3) embeds the term (1), without being an instance of (1). Hence,
a “classical” supercompiler would have to generalize (1). But the generalization
can be avoided by using the following equation

append r (Cons p ps) =

case (append r (Cons p Nil)) of

Nil → ps

Cons v vs → Cons v (append vs ps)

(4)

Note that this equation can be proved by term normalization.
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data List a = Nil | Cons (List a)

letrec reverse1 = λxs1.λys1.
case xs1 of

Nil → ys1

Cons x2 xs2 → reverse1 xs2 (Cons x2 ys2)

in

reverse1 xs ys

Fig. 6. Higher-level supercompilation of append (reverse xs) ys

Applying the substitution {r = reverse x6, p = x5, ps = ys} to the above
equality, we can replace the term (3) with the equivalent term

append (reverse x6) (Cons x5 ys)

which is an instance of the initial term append (reverse xs) ys. Hence, a
folding can be performed, to produce the final result of this “higher-level” su-
percompilation shown in Fig. 6.

Therefore, the following equation has been proved

append (reverse xs) ys = reverse1 xs ys.

which implies that

reverse xs = append (reverse xs) Nil = reverse1 xs Nil.

The original definition of reverse was quadratic in the length of xs, while the
transformed one is linear. Hence, the proposed technique is capable of producing
results similar to those achieved by “distillation”, another approach to “higher-
level” supercompilation suggested by Hamilton [3].

6 Conclusions

We have shown that the equivalence of terms can be proved by means of super-
compilation without the use of an equality predicate, which makes the technique
applicable to lazy languages with higher-order functions. The techniques can be
used to increase the power of supercompilation, to achieve the results similar to
distillation, which is another approach to “higher-level” supercompilation.
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