Staged multi-result supercompilation (Filtering by transformation)

Sergei A. Grechanik Ilya G. Klyuchnikov Sergei A. Romanenko

Keldysh Institute of Applied Mathematics, Moscow

June 30, 2014 – Pereslavl-Zalessky

1 Problem solving by multi-result supercompilation

- 2 Staged mrsc: multiple results represented as a residual program
- 3 Pushing filtering over generation of graphs
- Pushing filtering over the whistle
- 5 An executable model of multi-result supercompilation in Agda

6 Conclusions

1 Problem solving by multi-result supercompilation

- 2 Staged mrsc: multiple results represented as a residual program
- Output Pushing filtering over generation of graphs
- 4 Pushing filtering over the whistle
- 5 An executable model of multi-result supercompilation in Agda

6 Conclusions

A popular approach to problem solving is *trial and error*.

- Generate alternatives.
- Evaluate alternatives.
- Select the best alternatives.

Using a multi-result supercompiler mrsc and a filter filter we get a "problem solver"

solver = filter o mrsc

Thus

- Instead of trying to guess, which variant is "the best" one, we produce a collection of residual graphs: g₁, g₂,..., g_k.
- And then *filter* this collection according to some criteria.

Design:

solver = filter o mrsc

Good: this design is modular and gives a clear separation of concerns.

- mrsc is a general-purpose tool.
- filter incorporates some knowledge about the problem domain.
- mrsc knows nothing about the problem domain.
- filter knows nothing about supercompilation.
- Bad: the process is time and space consuming.
 - mrsc can produce millions of residual graphs!

Exploiting monotonicity of filters

Monotonicity:

• If some parts of a partially constructed residual graph are "bad", then the completed residual graph is also certain to be a "bad" one.

A solution: fusing filtering and constructing.

solver' = fuse filter mrsc

Andrei V. Klimov, Ilya G. Klyuchnikov, Sergei A. Romanenko. **Automatic Verification of Counter Systems via Domain-Specific Multi-Result Supercompilation.** In Third International Valentin Turchin Workshop on Metacomputation (Proceedings of the Third International Valentin Turchin Workshop on Metacomputation. Pereslavl-Zalessky, Russia, July 5-9, 2012). A.V. Klimov and S.A. Romanenko, Ed. - Pereslavl-Zalessky: Ailamazyan University of Pereslavl, 2012, 260 p. ISBN 978-5-901795-28-6, pages 112-141.

Bad:

- Fusion destroys modularity.
- Every time filter is modified, the fusion of mrsc and filter has to be repeated.

Problem solving by multi-result supercompilation

2 Staged mrsc: multiple results represented as a residual program

- Output States Pushing filtering over generation of graphs
- 4 Pushing filtering over the whistle
- 5 An executable model of multi-result supercompilation in Agda

6 Conclusions

Staged mrsc: multiple results represented as a residual program

A "naive" multi-result supercompiler is decomposed into 2 stages: naive-mrsc $\stackrel{\circ}{=} \langle \langle _ \rangle \rangle \circ lazy-mrsc$

Or, given an initial configuration c,

naive-mrsc c = $\langle\!\langle$ lazy-mrsc c $\rangle\!\rangle$

where lazy-mrsc generates a compact representation of a set of graphs, which is then interpreted by $\langle\!\langle_-\rangle\!\rangle$, to actually produce graphs of configurations.

Extensional equality $f \stackrel{\circ}{=} g$ means that $\forall x \rightarrow f x = g x$ Mixfix notation (Agda) $if_then_else_ p x y$ is equivalent to if p then x else y This is achieved by the following steps.

- Replacing the original small-step supercompiler mrsc with a big-step supercompiler naive-mrsc.
- Identifying some operations in <u>naive-mrsc</u> related to the calculation of Cartesian products.
- Rewriting naive-mrsc into lazy-mrsc, which, instead of calculating Cartesian products immediately, outputs requests for $\langle\!\langle _- \rangle\!\rangle$ to calculate them at the second stage.

Staging: big-step \rightarrow small-step

• *Small-step* supercompilation: rewriting the graph of configuration step-by-step.

 $g_0
ightarrow g_1
ightarrow \ldots
ightarrow g_n
ightarrow g$

(This is a generalization of small-step operational semantics.)

• *Big-step* supercompilation: building the subgraphs and then building the graph.

$$g = \mathsf{build}(g_1, g_2, \ldots, g_k)$$

(This is a generalization of big-step, or "natural" operational semantics.

The MRSC Toolkit implements small-step multi-result supercompilation:

Ilya G. Klyuchnikov, Sergei A. Romanenko. Formalizing and Implementing Multi-Result Supercompilation. In Third International Valentin Turchin Workshop on Metacomputation (Proceedings of the Third International Valentin Turchin Workshop on Metacomputation. Pereslavl-Zalessky, Russia, July 5-9, 2012). A.V. Klimov and S.A. Romanenko, Ed. - Pereslavl-Zalessky: Ailamazyan University of Pereslavl, 2012, 260 p. ISBN 978-5-901795-28-6, pages 142-164.

Staging: delaying Cartesian products

At some places, **naive-mrsc** calculates "Cartesian products".

- Suppose, a graph g is to be constructed from k subgraphs g_1, \ldots, g_k .
- naive-mrsc computes k sets of graphs gs_1, \ldots, gs_k .
- And then considers all possible g_i ∈ gs_i for i = 1,..., k and constructs corresponding versions of the graph g = build(g₁,...,g_k).

lazy-mrsc generates a "lazy graph", which, essentially, is a "program" to be "executed" by $\langle\!\langle_-\rangle\!\rangle$.

Unlike naive-mrsc, lazy-mrsc does not calculate Cartesian products immediately: instead, it outputs requests for $\langle\!\langle _ \rangle\!\rangle$ to calculate them at the second stage.

Thus

naive-mrsc
$$\doteq$$
 $\langle\!\langle _ \rangle\!\rangle$ \circ lazy-mrsc

Problem solving by multi-result supercompilation

- 2 Staged mrsc: multiple results represented as a residual program
- 3 Pushing filtering over generation of graphs
- 4 Pushing filtering over the whistle
- 5 An executable model of multi-result supercompilation in Agda

6 Conclusions

Let ${\bf c}$ be the initial configuration. We can produce and filter the collection of graphs in two ways.

By the direct generation of the collection of graphs, followed by filtering:

```
gs = filter (naive-mrsc c)
```

By generating a compact representation of the collection of graphs, followed by the generation of graphs, followed by filtering:

```
gs = filter \langle\!\langle lazy-mrsc c \rangle\!\rangle
```

A problem

In both cases the selection of best solutions is done by generating all the graphs. And there may be, millions...

Conclusion

Compact representation for collections of graphs seems to be of no use.

First filtering, then generating. Is it possible?

What about pushing filter over $\langle\!\langle _ \rangle\!\rangle$?

Definition

A function clean is a cleaner of lazy graphs if for a lazy graph 1

 $\langle\!\langle \text{ clean 1 } \rangle\!\rangle \subseteq \langle\!\langle \text{ 1 } \rangle\!\rangle$

Given a filter filter, let clean be a cleaner, such that

filter
$$\circ~\langle\!\langle_\rangle\!\rangle~\stackrel{\circ}{=}~\langle\!\langle_\rangle\!\rangle~\circ$$
 clean

Then

Conclusion

Now cleaning is done before the actual generation of graphs.

It is easy to implement cleaners that perform the following tasks.

- Removing subtrees that represent empty sets of graphs.
- Removes subtrees that contain "bad" configurations.
- Selecting subtrees of minimal size.

The above cleaners produce results in linear time.

- The construction is modular: lazy-mrsc and $\langle\!\langle _ \rangle\!\rangle$ do not have to know anything about filtering, while clean does not have to know anything about lazy-mrsc and $\langle\!\langle _ \rangle\!\rangle$.
- Cleaners are composable: we can decompose a sophisticated cleaner into a composition of simpler cleaners.
- In many cases (of practical importance) cleaners can be implemented in such a way that the best graphs can be extracted from a lazy graph in linear time.

1 Problem solving by multi-result supercompilation

- 2 Staged mrsc: multiple results represented as a residual program
- Output States Pushing filtering over generation of graphs

Pushing filtering over the whistle

5 An executable model of multi-result supercompilation in Agda

6 Conclusions

Using codata and corecursion, we can decompose lazy-mrsc: lazy-mrsc $\stackrel{\circ}{=}$ prune-cograph \circ build-cograph

where

- build-cograph constructs a (potentially) infinite tree.
- prune-cograph traverses this tree and turns it into a (finite) lazy graph.

Modularity:

- **build-cograph** uses driving and rebuilding. Knows nothing about the whistle.
- prune-cograph uses the whistle. Knows nothing about driving and rebuilding.

Suppose that

```
clean \circ prune-cograph \stackrel{\circ}{=} prune-cograph \circ clean \infty
```

where

- clean is a lazy graph cleaner.
- $clean\infty$ a cograph cleaner.

Then

```
clean \circ lazy-mrsc \stackrel{\circ}{=}
clean \circ prune-cograph \circ build-cograph \stackrel{\circ}{=}
prune-cograph \circ clean\infty \circ build-cograph
```

A good thing

build-cograph and clean ∞ work in a lazy way, generating subtrees by demand!

Evaluating

 $\langle\!\langle$ prune-cograph (clean ∞ (build-cograph c)) $\rangle\!\rangle$

is likely to be less time and space consuming than directly evaluating

 $\langle\!\langle$ clean (lazy-mrsc c) $\rangle\!\rangle$

A cograph cleaner working in linear time:

• Removing subtrees that contain "bad" configurations.

1 Problem solving by multi-result supercompilation

- 2 Staged mrsc: multiple results represented as a residual program
- Output Pushing filtering over generation of graphs
- 4 Pushing filtering over the whistle

5 An executable model of multi-result supercompilation in Agda

6 Conclusions

An (executable) model of big-step multi-result supercompilation in Agda

The project in Agda

https://github.com/sergei-romanenko/staged-mrsc-agda

What is implemented?

• An abstract model in Agda of big-step multi-result supercompilation. A formal proof is given of the fact that

orall (c : Conf) ightarrow naive-mrsc c \equiv $\langle\!\langle$ lazy-mrsc c $\rangle\!\rangle$

• The abstract model is instantiated to produce a multi-result supercompiler for counter systems.

Ilya G. Klyuchnikov and Sergei A. Romanenko. MRSC: a toolkit for building multi-result supercompilers. Preprint 77, Keldysh Institute of Applied Mathematics, 2011. URL: http://library.keldysh.ru/preprint.asp?lg=e&id=2011-77.

Ilya G. Klyuchnikov, Sergei A. Romanenko. Formalizing and Implementing Multi-Result Supercompilation. In *Third International Valentin Turchin Workshop on Metacomputation* (*Proceedings of the Third International Valentin Turchin Workshop on Metacomputation. PereslavI-Zalessky, Russia, July 5-9, 2012*). A.V. Klimov and S.A. Romanenko, Ed. -PereslavI-Zalessky: Ailamazyan University of PereslavI, 2012, 260 p. ISBN 978-5-901795-28-6, pages 142-164.

- The MRSC Toolkit is a generic framework.
- No means for formulating properties supercompilers and/or proving their correctness.

Dimitur N. Krustev. A simple supercompiler formally verified in Coq. In A. P. Nemytykh, editor, Second International Valentin Turchin Memorial Workshop on Metacomputation in Russia, Pereslavl-Zalessky, Russia, July 1–5, 2010, pages 102–127. Ailamazyan University of Pereslavl, Pereslavl-Zalessky, 2010.

- The first formally verified supercompiler.
- A specific supercompiler for a specific language.

Dimitur N. Krustev. Towards a Framework for Building Formally Verified Supercompilers in Coq. In Proceedings of the 13th International Symposium on Trends in Functional Programming (TFP 2012), St Andrews, UK, June 12-14, 2012. Lecture Notes in Computer Science Volume 7829, 2013, pp 133–148.

- This framework is generic.
- It formalizes "traditional" single-result supercompilation.

```
data Graph (C : Set) : Set where
back : \forall (c : C) \rightarrow Graph C
forth : \forall (c : C) (gs : List (Graph C)) \rightarrow Graph C
```

- We abstract away from the concrete structure of configurations.
- Arrows in the graph carry no information (if needed, this information can be kept inside "configurations").
- back c means that c is foldable to (at least one) parent configuration.
- Forth-nodes are produced by
 - decomposing a configuration into a number of other configurations (e.g. by driving), or
 - by rewriting a configuration by another one (e.g. by generalization, or applying a lemma during two-level supercompilation).

"Worlds" of supercompilation 1/2

```
record ScWorld : Set<sub>1</sub> where
field
Conf : Set
\_\sqsubseteq\_ : (c c' : Conf) \rightarrow Set
\_\sqsubseteq?\_ : (c c' : Conf) \rightarrow Dec (c \sqsubseteq c')
\_\rightrightarrows : (c : Conf) \rightarrow List (List Conf)
whistle : BarWhistle Conf
```

• Conf is the type of "configurations".

- $___$ is a "foldability relation". c \sqsubseteq c' means that c is foldable to c'.
- _⊑?_ is a decision procedure for _⊑_. This procedure is necessary for implementing supercompilation in functional form.
- _⇒ produces possible decompositions of a configuration. Let
 cs ∈ (c ⇒). Then c can be decomposed into configurations cs.
- whistle is used to ensure termination of functional supercompilation.

"Worlds" of supercompilation 2/2

```
record ScWorld : Set<sub>1</sub> where
  History : Set
  History = List Conf
  Foldable : \forall (h : History) (c : Conf) \rightarrow Set
  Foldable h c = Any (\_\Box\_c) h
  foldable? : \forall (h : History) (c : Conf) \rightarrow
    Dec (Foldable h c)
  foldable? h c = Any.any (\_\Box?\_c) h
```

- History is the list of configurations on the path to the current one.
- Foldable h c means that c is foldable to a configuration in h.
- foldable? h c decides whether Foldable h c.

Relational big-step non-deterministic supercompilation 1/2

$\texttt{h} \vdash \texttt{NDSC} \texttt{c} \, \hookrightarrow \, \texttt{g}$

This means that the graph g can be produced by supercompiling the configuration c with respect to the history h.

```
data _\vdashNDSC_\hookrightarrow_ : \forall (h : History) (c : Conf) (g : Graph Conf) \rightarrow Set
```

$h \vdash NDSC* cs \hookrightarrow gs$

This means that length cs = length gs, and each $g \in gs$ can be produced by supercompiling the corresponding $c \in cs$.

```
_⊢NDSC*_\hookrightarrow_ : \forall (h : History) (cs : List Conf)
(gs : List (Graph Conf)) → Set
```

 $h \vdash NDSC*$ cs \hookrightarrow gs = Pointwise.Rel ($_\vdash NDSC_ \hookrightarrow_$ h) cs gs

Relational big-step non-deterministic supercompilation 2/2

```
data \_\vdash NDSC\_ \hookrightarrow\_ where
```

- ndsc-fold: if c is foldable, let us fold.
- ndsc-build: if c is not foldable, let us build a subtree by selecting a cs ∈ c ⇒ and supercompiling each c ∈ cs, to produce a list of subgraphs gs.

Relational big-step multi-result supercompilation 2/2

```
data \_\vdash MRSC\_ \hookrightarrow\_ where
```

- mrsc-fold: if c is foldable, let us fold.
- mrsc-build: if c is not foldable and the history h is not dangerous (¬ 4 h), let us build a subtree by selecting a cs ∈ c ⇒ and supercompiling each c ∈ cs, to produce a list of subgraphs gs.

Related works

A relational specification of small-step single-result supercompilation was suggested by Klimov.

Andrei V. Klimov. A program specialization relation based on supercompilation and its properties. In *First International Workshop on Metacomputation in Russia (Proceedings of the first International Workshop on Metacomputation in Russia. Pereslavl-Zalessky, Russia, July 2–5, 2008).* A. P. Nemytykh, Ed. - Pereslavl-Zalessky: Ailamazyan University of Pereslavl, 2008, 108 p. ISBN 978-5-901795-12-5, pages 54–77.

Klyuchnikov used a supercompilation relation for proving the correctness of a small-step single-result supercompiler for a higher-order functional language.

Ilya G. Klyuchnikov. Supercompiler HOSC: proof of correctness. Preprint 31. Keldysh Institute of Applied Mathematics, Moscow. 2010. URL: http://library.keldysh.ru/preprint.asp?lg=e&id=2010-31

• We consider a supercompilation relation for a big-step multi-result supercompilation.

Supercompilers as total functions

The supercompiler **naive-mrsc** is a (generic) total function:

```
<code>naive-mrsc</code> : (c : Conf) \rightarrow List (Graph Conf)
```

such that

- The termination of naive-mrsc is guaranteed by a whistle.
- In our model of big-step supercompilation whistles are assumed to be "inductive bars". See

Thierry Coquand. About Brouwer's fan theorem. September 23, 2003. Revue internationale de philosophie, 2004/4 n° 230, p. 483-489. http://www.cairn.info/revue-internationale-de-philosophie-2004-4-page-483.htm http://www.cairn.info/load_pdf.php?ID_ARTICLE=RIP_230_0483

What is a bar?

Bar D h means that "D is a bar for the sequence h".

```
data Bar {A : Set} (D : List A \rightarrow Set) :

(h : List A) \rightarrow Set where

now : {h : List A} (bz : D h) \rightarrow Bar D h

later : {h : List A}

(bs : \forall c \rightarrow Bar D (c :: h)) \rightarrow Bar D h
```

If Bar D h, then either

- D h is valid right now (*i.e.* h is "dangerous").
- Or, for all possible c there holds Bar D (c :: h) (*i.e.* any continuation of h *eventually* becomes "dangerous").

Bar induction

 \forall D h \rightarrow Bar D [] \rightarrow Bar D h

Bar whistles

A bar whistle is a record

```
record BarWhistle (A : Set) : Set<sub>1</sub> where
field
4 : (h : List A) \rightarrow Set
4:: (c : A) (h : List A) \rightarrow 4 h \rightarrow 4 (c :: h)
4? : (h : List A) \rightarrow Dec (4 h)
bar[] : Bar 4 []
```

- $\frac{1}{2}$ h means h is dangerous.
- \downarrow :: postulates that if h is dangerous, so are all continuations of h.
- **4**? says that **4** is decidable.
- bar [] says that any sequence eventually becomes dangerous. (In Coquand's terms, Bar 4 is required to be "an inductive bar".)

Computing Cartesian products

The functional specification of big-step multi-result supercompilation is based on the function cartesian:

```
cartesian : \forall \{A : Set\}
(xss : List (List A)) \rightarrow List (List A)
```

Namely, suppose that xss has the form

 $xs_1 :: xs_2 :: \ldots :: xs_k$

Then cartesian returns all possible lists of the form

 $x_1 :: x_2 :: \ldots :: x_k :: []$

where $x_i \in xs_i$. In Agda this is formulated as follows:

```
\in *\leftrightarrow \in \text{cartesian} :
∀ {A : Set} {xs : List A} {yss : List (List A)} →
Pointwise.Rel _\in_ xs yss \leftrightarrow xs \in cartesian yss
```

naive-mrsc is defined in terms of a more general function naive-mrsc'.

naive-mrsc c = naive-mrsc' [] bar[] c

naive-mrsc' takes 2 additional arguments:

- h is a history.
- b is a proof b of the fact Bar $\frac{1}{2}$ h.

naive-mrsc has to supply a proof of the fact **Bar 7** []. But this proof is supplied by the whistle!

Functional big-step multi-result supercompilation 2/2

Now comes the definition of **naive-mrsc'**:

```
naive-mrsc' h b c with foldable? h c

... | yes f = [ back c ]

... | no \negf with 4? h

... | yes w = []

... | no \negw with b

... | now bz with \negw bz

... | ()

naive-mrsc' h b c | no \negf | no \negw | later bs =

map (forth c)(concat (map (cartesian \circ

map (naive-mrsc' (c :: h) (bs c))) (c \Rightarrow)))
```

- For each c' ∈ cs ∈ (c ⇒) there is recursively called naive-mrsc' (c :: h) (bs c) c' to produce a list of graphs gs'.
- cartesian selects a graph $g' \in gs'$ from each gs'.

Why naive-mrsc' passes the termination check?

The problem with 'naive-mrsc'' is that in the recursive call

naive-mrsc' (c :: h) (bs c) c'

- h is replaced with c :: h (which is bigger than h).
- c is replaced with c' (whose size is unknown).

Hence, h and c do not become "structurally smaller".

However,

- (later bs) becomes (bs c).
- Agda's termination checker considers bs and (bs c) to be "of the same size".

Therefore

```
(bs c) is "structurally smaller" than (later bs)!
```

Big-step supercompilation was studied and implemented by Bolingbroke and Peyton Jones.

Maximilian C. Bolingbroke and Simon L. Peyton Jones. **Supercompilation by evaluation.** In *Proceedings of the third ACM Haskell symposium on Haskell (Haskell '10)*. ACM, New York, NY, USA, 2010, pages 135–146. http://doi.acm.org/10.1145/1863523.1863540

- We deal with multi-result supercompilation, rather than single-result supercompilation.
- Our big-step supercompilation constructs graphs of configurations in an explicit way, because the graphs are going to be filtered and/or analyzed at a later stage.
- We consider not only the functional formulation of big-step supercompilation, but also the relational one.

Now we decompose **naive-mrsc** into two stages

naive-mrsc \doteq $\langle\!\langle \rangle\!\rangle \circ$ lazy-mrsc

where

- lazy-mrsc produces a "lazy graph", which is a "residual program".
- (<_) is an interpreter that executes a lazy graph to actually produce a list of graphs of configurations.

lazy-mrsc : (c : Conf) \rightarrow LazyGraph Conf $\langle\!\langle_-\rangle\!\rangle$: {C : Set} (l : LazyGraph C) \rightarrow List (Graph C)

Lazy graphs of configuration

A lazy graph is a program whose nodes are commands.

```
data LazyGraph (C : Set) : Set where

\emptyset : LazyGraph C

stop : (c : C) \rightarrow LazyGraph C

build : (c : C)

(lss : List (List (LazyGraph C))) \rightarrow LazyGraph C
```

- Ø. Generate the empty list of graphs.
- stop. Generate a back-node back c and stop.
- build c lss. Consider all ls ∈ lss. Let ls has the form l₁ :: l₂ :: ... :: l_k :: []. Execute each l_i to produce a list of graphs gss = gs₁ :: gs₂ :: ... :: gs_k :: []. By evaluating cartesian gss, generate all gs' = g₁ :: g₂ :: ... :: g_k :: [], where g_i ∈ gs_i, and build all build c gs'.

Interpreting lazy graphs

 $\begin{array}{l} \langle \langle _ \rangle \rangle : \{ C : Set \} \ (l : LazyGraph C) \rightarrow List (Graph C) \\ \langle \langle _ \rangle \rangle * : \{ C : Set \} \ (ls : List (LazyGraph C)) \rightarrow \\ List (List (Graph C)) \\ \langle \langle _ \rangle \rangle \rightrightarrows : \{ C : Set \} \ (lss : List (List (LazyGraph C))) \rightarrow \\ List (List (Graph C)) \end{array}$

lazy-mrsc is defined in terms of a more general function lazy-mrsc':

lazy-mrsc : (c : Conf) \rightarrow LazyGraph Conf lazy-mrsc' : \forall (h : History) (b : Bar 4 h) (c : Conf) \rightarrow LazyGraph Conf

lazy-mrsc c = lazy-mrsc' [] bar[] c

An idea

lazy-mrsc can be derived from naive-mrsc by replacing the call to cartesian with the constructor build.

Generating lazy graphs 2/2

```
lazy-mrsc' h b c with foldable? h c
... | yes f = stop c
... | no ¬f with ½? h
... | yes w = Ø
... | no ¬w with b
... | now bz with ¬w bz
... | ()
lazy-mrsc' h b c | no ¬f | no ¬w | later bs =
build c (map (map (lazy-mrsc' (c :: h) (bs c))) (c ⇒))
```

Why this is good?

cartesian is not called! Thus, there is no combinatory explosion.

There is a formal proof in Agda of the theorem

 $naive \equiv lazy$: (c : Conf) \rightarrow naive-mrsc c \equiv $\langle\!\langle$ lazy-mrsc c $\rangle\!\rangle$

The idea to use a compact representation for collections of residual graphs is due to Grechanik.

Sergei A. Grechanik. **Overgraph Representation for Multi-Result Supercompilation.** In *Third International Valentin Turchin Workshop on Metacomputation (Proceedings of the Third International Valentin Turchin Workshop on Metacomputation.* Pereslavl-Zalessky, Russia, July 5–9, 2012). A.V. Klimov and S.A. Romanenko, Ed. – Pereslavl-Zalessky: Ailamazyan University of Pereslavl, 2012, 260 p. ISBN 978-5-901795-28-6, pages 48–65.

- As a matter of fact, the data structure LazyGraph C formalizes the idea of "overtrees" described in the above paper.
- We show that "lazy graphs" arise in a natural way as a result of staging a big-step multi-result supercompiler and, essentially, are residual "programs" that record graph-building operations delayed at the first stage.

What is a filter?

filter gs \subseteq gs

What is a cleaner?

$$\langle\!\langle \text{ clean 1 } \rangle\!\rangle \subseteq \langle\!\langle \text{ 1 } \rangle\!\rangle$$

Correctness of a cleaner with respect to a filter

filter $\circ \langle \langle _ \rangle \rangle \stackrel{\circ}{=} \langle \langle _ \rangle \rangle \circ clean$

Pushing filtering over generation

filter \circ naive-mrsc $\stackrel{\circ}{=}$ $\langle\!\langle _ \rangle\!\rangle \circ$ clean \circ lazy-mrsc

Removing graphs with bad configurations (filtering)

A graph is "bad" if it contains a bad configuration.

```
bad-graph : \{C : Set\} (bad : C \rightarrow Bool)
    (g : Graph C) \rightarrow Bool
bad-graph* : {C : Set} (bad : C \rightarrow Bool)
    (gs : List (Graph C)) \rightarrow Bool
bad-graph bad (back c) = bad c
bad-graph bad (forth c gs) = bad c \lor bad-graph* bad gs
bad-graph* bad [] = false
bad-graph* bad (g :: gs) =
    bad-graph bad g \vee bad-graph* bad gs
```

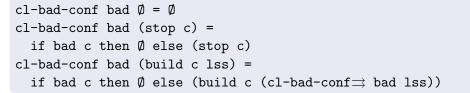
fl-bad-conf bad gs = filter (not \circ bad-graph bad) gs

Removing graphs with bad configuration (cleaning) 1/2

```
cl-bad-conf* bad [] = []
cl-bad-conf* bad (1 :: ls) =
  cl-bad-conf bad 1 :: cl-bad-conf* bad ls
```

```
cl-bad-conf⇒ bad [] = []
cl-bad-conf⇒ bad (ls :: lss) =
  cl-bad-conf* bad ls :: (cl-bad-conf⇒ bad lss)
```

Removing graphs with bad configuration (cleaning) 2/2



A "metasystem transition"...

Instead of removing bad graphs, we remove parts of the program that would generate bad graphs!

Correctness

Decompising lazy-mrsc

By using codata and corecursion, we can decompose lazy-mrsc:

 $lazy-mrsc \stackrel{\circ}{=} prune-cograph \circ build-cograph$

- build-cograph constructs a (potentially) infinite tree (a LazyCograph).
- prune-cograph traverses this tree and turns it into a (finite) LazyGraph C.

LazyCograph C differs from LazyGraph C only in ∞ in the type of lss.

```
data LazyCograph (C : Set) : Set where

\emptyset : LazyCograph C

stop : (c : C) \rightarrow LazyCograph C

build : (c : C) (lss : \infty(List (List (LazyCograph C)))) \rightarrow

LazyCograph C
```

Building lazy cographs

build-cograph can be derived from the function lazy-mrsc by removing the machinery related to whistles.

```
build-cograph' h c with foldable? h c
... | yes f = stop c
... | no ¬f =
build c (♯ build-cograph⇒ h c (c ⇒))
```

```
build-cograph* h [] = []
build-cograph* h (c :: cs) =
  build-cograph' h c :: build-cograph* h cs
build-cograph⇒ h c [] = []
build-cograph⇒ h c (cs :: css) =
  build-cograph* (c :: h) cs :: build-cograph⇒ h c css
build-cograph c = build-cograph' [] c
```

52 / 56

```
Pruning lazy cographs
```

prune-cograph* h b [] = [] prune-cograph* h b (1 :: ls) =

prune-cograph can be derived from lazy-mrsc by removing the machinery related to generation of nodes.

```
prune-cograph' h b \emptyset = \emptyset
prune-cograph' h b (stop c) = stop c
prune-cograph' h b (build c lss) with $\frac{1}{2} h
... | yes w = Ø
... | no \neg w with b
... | now bz with \neg w bz
... | ()
prune-cograph' h b (build c lss) | no ¬w | later bs =
```

```
build c (map (prune-cograph* (c :: h) (bs c)) (b lss))
```

prune-cograph' h b l :: (prune-cograph* h b ls)

prune-cograph 1 = prune-cograph' [] bar[] 1

Suppose $clean\infty$ is a cograph cleaner such that

clean \circ prune-cograph $\stackrel{\circ}{=}$ prune-cograph \circ clean ∞

then

```
clean \circ lazy-mrsc \stackrel{\circ}{=}
clean \circ prune-cograph \circ build-cograph \stackrel{\circ}{=}
prune-cograph \circ clean\infty \circ build-cograph
```

What is good?

build-cograph and $\texttt{clean}\infty$ work in a lazy way, generating subtrees by demand.

Removing cographs with bad configurations

```
cl-bad-conf∞ bad Ø =
Ø
cl-bad-conf∞ bad (stop c) =
if bad c then Ø else (stop c)
cl-bad-conf∞ bad (build c lss) with bad c
... | true = Ø
... | false = build c (♯ (cl-bad-conf∞⇒ bad (♭ lss)))
```

```
cl-bad-conf\infty* bad [] = []
cl-bad-conf\infty* bad (l :: ls) =
(cl-bad-conf\infty bad l) :: cl-bad-conf\infty* bad ls
```

```
cl-bad-conf∞⇒ bad [] = []
cl-bad-conf∞⇒ bad (ls :: lss) =
  cl-bad-conf∞* bad ls :: (cl-bad-conf∞⇒ bad lss)
```

1 Problem solving by multi-result supercompilation

- 2 Staged mrsc: multiple results represented as a residual program
- Output States Pushing filtering over generation of graphs
- 4 Pushing filtering over the whistle
- 5 An executable model of multi-result supercompilation in Agda

6 Conclusions

Conclusions

- Big-step multi-result supercompilation can be decomposed into two stages. The result of the first stage (a "lazy graph") is interpreted at the second stage, to produce a collection of residual graphs.
- A lazy graph is a compact representation for a collection of residual graphs (and can be regarded as a "program").
- Filtering a collection of graphs can be replaced with cleaning a lazy graph. In some cases of practical importance, cleaning can be performed in linear time.
- By using codata and corecursion, the generator of lazy graphs can be decomposed into two stages: building an infinite tree and pruning this tree to produce a (finite) lazy graph.
- Some cleaners of lazy graphs can be turned into cleaners of cographs, so that cleaning can be pushed over the whistle.