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Problem solving by multi-result supercompilation

A popular approach to problem solving is trial and error:

Generate alternatives.

Evaluate alternatives.

Select the best alternatives.

Using a multi-result supercompiler mrsc and a filter filter we get a
“problem solver”

solver = filter ∘ mrsc

Thus

Instead of trying to guess, which variant is ”the best” one, we
produce a collection of residual graphs: g1, g2, . . . , gk .

And then filter this collection according to some criteria.
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What is good and what is bad

Design:

solver = filter ∘ mrsc

Good: this design is modular and gives a clear separation of concerns.

mrsc is a general-purpose tool.

filter incorporates some knowledge about the problem domain.

mrsc knows nothing about the problem domain.

filter knows nothing about supercompilation.

Bad: the process is time and space consuming.

mrsc can produce millions of residual graphs!
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Exploiting monotonicity of filters

Monotonicity:

If some parts of a partially constructed residual graph are ”bad”, then
the completed residual graph is also certain to be a ”bad” one.

A solution: fusing filtering and constructing.

solver′ = fuse filter mrsc

Andrei V. Klimov, Ilya G. Klyuchnikov, Sergei A. Romanenko. Automatic Verification of
Counter Systems via Domain-Specific Multi-Result Supercompilation. In Third International
Valentin Turchin Workshop on Metacomputation (Proceedings of the Third International
Valentin Turchin Workshop on Metacomputation. Pereslavl-Zalessky, Russia, July 5-9, 2012).
A.V. Klimov and S.A. Romanenko, Ed. - Pereslavl-Zalessky: Ailamazyan University of Pereslavl,
2012, 260 p. ISBN 978-5-901795-28-6, pages 112-141.

Bad:

Fusion destroys modularity.

Every time filter is modified, the fusion of mrsc and filter has to be
repeated.
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Staged mrsc: multiple results represented as a residual
program

A “naive” multi-result supercompiler is decomposed into 2 stages:

naive-mrsc $ ⟨⟨_⟩⟩ ∘ lazy-mrsc

Or, given an initial configuration c ,

naive-mrsc c = ⟨⟨ lazy-mrsc c ⟩⟩

where lazy-mrsc generates a compact representation of a set of graphs,
which is then interpreted by ⟨⟨_⟩⟩, to actually produce graphs of
configurations.

Extensional equality
f $ g means that ∀ x → f x = g x

Mixfix notation (Agda)
if then else p x y is equivalent to if p then x else y
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The way to staged mrsc

This is achieved by the following steps.

Replacing the original small-step supercompiler mrsc with a big-step
supercompiler naive-mrsc.

Identifying some operations in naive-mrsc related to the calculation
of Cartesian products.

Rewriting naive-mrsc into lazy-mrsc, which, instead of calculating
Cartesian products immediately, outputs requests for ⟨⟨ ⟩⟩ to calculate
them at the second stage.
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Staging: big-step → small-step

Small-step supercompilation: rewriting the graph of configuration
step-by-step.

g0 → g1 → . . . → gn → g

(This is a generalization of small-step operational semantics.)

Big-step supercompilation: building the subgraphs and then building
the graph.

g = build(g1, g2, . . . , gk)

(This is a generalization of big-step, or “natural” operational
semantics.

The MRSC Toolkit implements small-step multi-result supercompilation:

Ilya G. Klyuchnikov, Sergei A. Romanenko. Formalizing and Implementing Multi-Result
Supercompilation. In Third International Valentin Turchin Workshop on Metacomputation
(Proceedings of the Third International Valentin Turchin Workshop on Metacomputation.
Pereslavl-Zalessky, Russia, July 5-9, 2012). A.V. Klimov and S.A. Romanenko, Ed. -
Pereslavl-Zalessky: Ailamazyan University of Pereslavl, 2012, 260 p. ISBN 978-5-901795-28-6,
pages 142-164.
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Staging: delaying Cartesian products

At some places, naive-mrsc calculates ”Cartesian products”.

Suppose, a graph g is to be constructed from k subgraphs g1, . . . , gk .

naive-mrsc computes k sets of graphs gs1, . . . , gsk .

And then considers all possible gi ∈ gsi for i = 1, . . . , k and
constructs corresponding versions of the graph g = build(g1, . . . , gk).

lazy-mrsc generates a ”lazy graph”, which, essentially, is a ”program” to
be ”executed” by ⟨⟨_⟩⟩.

Unlike naive-mrsc, lazy-mrsc does not calculate Cartesian products
immediately: instead, it outputs requests for ⟨⟨_⟩⟩ to calculate them at the
second stage.

Thus

naive-mrsc $ ⟨⟨_⟩⟩ ∘ lazy-mrsc
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First generating, then filtering

Let c be the initial configuration. We can produce and filter the collection
of graphs in two ways.

1 By the direct generation of the collection of graphs, followed by
filtering:

gs = filter (naive-mrsc c)

2 By generating a compact representation of the collection of graphs,
followed by the generation of graphs, followed by filtering:

gs = filter ⟨⟨ lazy-mrsc c ⟩⟩

A problem

In both cases the selection of best solutions is done by generating all the
graphs. And there may be, millions. . .

Conclusion

Compact representation for collections of graphs seems to be of no use.
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First filtering, then generating. Is it possible?

What about pushing filter over ⟨⟨_⟩⟩?

Definition

A function clean is a cleaner of lazy graphs if for a lazy graph l

⟨⟨ clean l ⟩⟩ ⊆ ⟨⟨ l ⟩⟩

Given a filter filter, let clean be a cleaner, such that

filter ∘ ⟨⟨_⟩⟩ $ ⟨⟨_⟩⟩ ∘ clean

Then

filter ∘ mrsc $
filter ∘ ⟨⟨_⟩⟩ ∘ lazy-mrsc $

⟨⟨_⟩⟩ ∘ clean ∘ lazy-mrsc

Conclusion

Now cleaning is done before the actual generation of graphs.
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Some cleaners of practical importance

It is easy to implement cleaners that perform the following tasks.

Removing subtrees that represent empty sets of graphs.

Removes subtrees that contain “bad” configurations.

Selecting subtrees of minimal size.

The above cleaners produce results in linear time.
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What are the advantages?

The construction is modular: lazy-mrsc and ⟨⟨_⟩⟩ do not have to
know anything about filtering, while clean does not have to know
anything about lazy-mrsc and ⟨⟨_⟩⟩.
Cleaners are composable: we can decompose a sophisticated cleaner
into a composition of simpler cleaners.

In many cases (of practical importance) cleaners can be implemented
in such a way that the best graphs can be extracted from a lazy
graph in linear time.
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Decomposing lazy-mrsc

Using codata and corecursion, we can decompose lazy-mrsc:

lazy-mrsc $ prune-cograph ∘ build-cograph

where

build-cograph constructs a (potentially) infinite tree.

prune-cograph traverses this tree and turns it into a (finite) lazy
graph.

Modularity:

build-cograph uses driving and rebuilding. Knows nothing about
the whistle.

prune-cograph uses the whistle. Knows nothing about driving and
rebuilding.
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Cleaning before whistling

Suppose that

clean ∘ prune-cograph $ prune-cograph ∘ clean∞

where

clean is a lazy graph cleaner.

clean∞ a cograph cleaner.

Then

clean ∘ lazy-mrsc $
clean ∘ prune-cograph ∘ build-cograph $
prune-cograph ∘ clean∞ ∘ build-cograph

A good thing

build-cograph and clean∞ work in a lazy way, generating subtrees by
demand!
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What are the advantages?

Evaluating

⟨⟨ prune-cograph (clean∞ (build-cograph c)) ⟩⟩

is likely to be less time and space consuming than directly evaluating

⟨⟨ clean (lazy-mrsc c) ⟩⟩

A cograph cleaner working in linear time:

Removing subtrees that contain “bad” configurations.
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An (executable) model of big-step multi-result
supercompilation in Agda

The project in Agda

https: // github. com/ sergei-romanenko/ staged-mrsc-agda

What is implemented?

An abstract model in Agda of big-step multi-result supercompilation.
A formal proof is given of the fact that

∀ (c : Conf) → naive-mrsc c ≡ ⟨⟨ lazy-mrsc c ⟩⟩

The abstract model is instantiated to produce a multi-result
supercompiler for counter systems.
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Related works 1/2

Ilya G. Klyuchnikov and Sergei A. Romanenko. MRSC: a toolkit for building multi-result
supercompilers. Preprint 77, Keldysh Institute of Applied Mathematics, 2011. URL:
http://library.keldysh.ru/preprint.asp?lg=e&id=2011-77.

Ilya G. Klyuchnikov, Sergei A. Romanenko. Formalizing and Implementing Multi-Result
Supercompilation. In Third International Valentin Turchin Workshop on Metacomputation
(Proceedings of the Third International Valentin Turchin Workshop on Metacomputation.
Pereslavl-Zalessky, Russia, July 5-9, 2012). A.V. Klimov and S.A. Romanenko, Ed. -
Pereslavl-Zalessky: Ailamazyan University of Pereslavl, 2012, 260 p. ISBN 978-5-901795-28-6,
pages 142-164.

The MRSC Toolkit is a generic framework.

No means for formulating properties supercompilers and/or proving
their correctness.
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Related works 2/2

Dimitur N. Krustev. A simple supercompiler formally verified in Coq. In A. P. Nemytykh,
editor, Second International Valentin Turchin Memorial Workshop on Metacomputation in
Russia, Pereslavl-Zalessky, Russia, July 1–5, 2010, pages 102–127. Ailamazyan University of
Pereslavl, Pereslavl-Zalessky, 2010.

The first formally verified supercompiler.

A specific supercompiler for a specific language.

Dimitur N. Krustev. Towards a Framework for Building Formally Verified Supercompilers in
Coq. In Proceedings of the 13th International Symposium on Trends in Functional
Programming (TFP 2012), St Andrews, UK, June 12-14, 2012. Lecture Notes in Computer
Science Volume 7829, 2013, pp 133–148.

This framework is generic.

It formalizes “traditional” single-result supercompilation.
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Graphs of configurations

data Graph (C : Set) : Set where

back : ∀ (c : C) → Graph C

forth : ∀ (c : C) (gs : List (Graph C)) → Graph C

We abstract away from the concrete structure of configurations.

Arrows in the graph carry no information (if needed, this information
can be kept inside “configurations”).

back c means that c is foldable to (at least one) parent
configuration.

Forth-nodes are produced by

decomposing a configuration into a number of other configurations
(e.g. by driving), or

by rewriting a configuration by another one (e.g. by generalization, or
applying a lemma during two-level supercompilation).
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“Worlds” of supercompilation 1/2

record ScWorld : Set1 where

field

Conf : Set

_⊑_ : (c c′ : Conf) → Set

_⊑?_ : (c c′ : Conf) → Dec (c ⊑ c′)
_⇒ : (c : Conf) → List (List Conf)

whistle : BarWhistle Conf

...

Conf is the type of “configurations”.

⊑ is a “foldability relation”. c ⊑ c′ means that c is foldable to c′.

⊑? is a decision procedure for ⊑ . This procedure is necessary for
implementing supercompilation in functional form.

⇒ produces possible decompositions of a configuration. Let
cs ∈ (c ⇒). Then c can be decomposed into configurations cs.

whistle is used to ensure termination of functional supercompilation.
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“Worlds” of supercompilation 2/2

record ScWorld : Set1 where

...

History : Set

History = List Conf

Foldable : ∀ (h : History) (c : Conf) → Set

Foldable h c = Any (_⊑_ c) h

foldable? : ∀ (h : History) (c : Conf) →
Dec (Foldable h c)

foldable? h c = Any.any (_⊑?_ c) h

History is the list of configurations on the path to the current one.

Foldable h c means that c is foldable to a configuration in h.

foldable? h c decides whether Foldable h c.
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Relational big-step non-deterministic supercompilation 1/2

h ⊢NDSC c →˓ g

This means that the graph g can be produced by supercompiling the
configuration c with respect to the history h.

data _⊢NDSC_→˓_ : ∀ (h : History) (c : Conf)

(g : Graph Conf) → Set

h ⊢NDSC* cs →˓ gs

This means that length cs = length gs, and each g ∈ gs can be
produced by supercompiling the corresponding c ∈ cs.

_⊢NDSC*_→˓_ : ∀ (h : History) (cs : List Conf)

(gs : List (Graph Conf)) → Set

h ⊢NDSC* cs →˓ gs = Pointwise.Rel (_⊢NDSC_→˓_ h) cs gs
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Relational big-step non-deterministic supercompilation 2/2

data _⊢NDSC_→˓_ where

ndsc-fold : ∀ {h : History} {c}

(f : Foldable h c) →
h ⊢NDSC c →˓ back c

ndsc-build : ∀ {h : History} {c}

{cs : List Conf} {gs : List (Graph Conf)}

(¬f : ¬ Foldable h c)

(i : cs ∈ c ⇒) (s : (c :: h) ⊢NDSC* cs →˓ gs) →
h ⊢NDSC c →˓ forth c gs

ndsc-fold: if c is foldable, let us fold.

ndsc-build: if c is not foldable, let us build a subtree by selecting a
cs ∈ c ⇒ and supercompiling each c ∈ cs, to produce a list of
subgraphs gs.
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Relational big-step multi-result supercompilation 2/2

data _⊢MRSC_→˓_ where

mrsc-fold : ∀ {h : History} {c}

(f : Foldable h c) →
h ⊢MRSC c →˓ back c

mrsc-build : ∀ {h : History} {c}

{cs : List Conf} {gs : List (Graph Conf)}

(¬f : ¬ Foldable h c) (¬w : ¬ � h)

(i : cs ∈ c ⇒) (s : (c :: h) ⊢MRSC* cs →˓ gs) →
h ⊢MRSC c →˓ forth c gs

mrsc-fold: if c is foldable, let us fold.

mrsc-build: if c is not foldable and the history h is not dangerous
(¬ � h), let us build a subtree by selecting a cs ∈ c ⇒ and
supercompiling each c ∈ cs, to produce a list of subgraphs gs.
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Related works

A relational specification of small-step single-result supercompilation was
suggested by Klimov.

Andrei V. Klimov. A program specialization relation based on supercompilation and its
properties. In First International Workshop on Metacomputation in Russia (Proceedings of the
first International Workshop on Metacomputation in Russia. Pereslavl-Zalessky, Russia, July
2–5, 2008). A. P. Nemytykh, Ed. - Pereslavl-Zalessky: Ailamazyan University of Pereslavl,
2008, 108 p. ISBN 978-5-901795-12-5, pages 54–77.

Klyuchnikov used a supercompilation relation for proving the correctness
of a small-step single-result supercompiler for a higher-order functional
language.

Ilya G. Klyuchnikov. Supercompiler HOSC: proof of correctness. Preprint 31. Keldysh
Institute of Applied Mathematics, Moscow. 2010. URL:
http://library.keldysh.ru/preprint.asp?lg=e&id=2010-31

We consider a supercompilation relation for a big-step multi-result
supercompilation.
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Supercompilers as total functions

The supercompiler naive-mrsc is a (generic) total function:

naive-mrsc : (c : Conf) → List (Graph Conf)

such that

⊢MRSC→˓⇔naive-mrsc :

{c : Conf} {g : Graph Conf} →
[] ⊢MRSC c →˓ g ⇔ g ∈ naive-mrsc c

The termination of naive-mrsc is guaranteed by a whistle.

In our model of big-step supercompilation whistles are assumed to be
“inductive bars”. See

Thierry Coquand. About Brouwer’s fan theorem. September 23, 2003. Revue internationale de
philosophie, 2004/4 n° 230, p. 483-489.
http://www.cairn.info/revue-internationale-de-philosophie-2004-4-page-483.htm

http://www.cairn.info/load_pdf.php?ID_ARTICLE=RIP_230_0483
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What is a bar?

Bar D h means that“D is a bar for the sequence h”.

data Bar {A : Set} (D : List A → Set) :

(h : List A) → Set where

now : {h : List A} (bz : D h) → Bar D h

later : {h : List A}

(bs : ∀ c → Bar D (c :: h)) → Bar D h

If Bar D h, then either

D h is valid right now (i.e. h is “dangerous”).

Or, for all possible c there holds Bar D (c :: h) (i.e. any
continuation of h eventually becomes “dangerous”).

Bar induction

∀ D h → Bar D [] → Bar D h
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Bar whistles

A bar whistle is a record

record BarWhistle (A : Set) : Set1 where

field

� : (h : List A) → Set

�:: : (c : A) (h : List A) → � h → � (c :: h)

�? : (h : List A) → Dec (� h)

bar[] : Bar � []

� h means h is dangerous.

�:: postulates that if h is dangerous, so are all continuations of h.

�? says that � is decidable.

bar[] says that any sequence eventually becomes dangerous. (In
Coquand’s terms, Bar � is required to be “an inductive bar”.)
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Computing Cartesian products

The functional specification of big-step multi-result supercompilation is
based on the function cartesian:

cartesian : ∀ {A : Set}

(xss : List (List A)) → List (List A)

Namely, suppose that xss has the form

xs1 :: xs2 :: . . . :: xsk

Then cartesian returns all possible lists of the form

x1 :: x2 :: . . . :: xk :: []

where xi ∈ xsi . In Agda this is formulated as follows:

∈*↔∈cartesian :

∀ {A : Set} {xs : List A} {yss : List (List A)} →
Pointwise.Rel _∈_ xs yss ↔ xs ∈ cartesian yss
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Functional big-step multi-result supercompilation 1/2

naive-mrsc is defined in terms of a more general function naive-mrsc′.

naive-mrsc : (c : Conf) → List (Graph Conf)

naive-mrsc′ : ∀ (h : History) (b : Bar � h) (c : Conf) →
List (Graph Conf)

naive-mrsc c = naive-mrsc′ [] bar[] c

naive-mrsc′ takes 2 additional arguments:

h is a history.

b is a proof b of the fact Bar � h.

naive-mrsc has to supply a proof of the fact Bar � []. But this proof is
supplied by the whistle!
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Functional big-step multi-result supercompilation 2/2

Now comes the definition of naive-mrsc′:

naive-mrsc′ h b c with foldable? h c

... | yes f = [ back c ]

... | no ¬f with �? h

... | yes w = []

... | no ¬w with b

... | now bz with ¬w bz

... | ()

naive-mrsc′ h b c | no ¬f | no ¬w | later bs =

map (forth c)(concat (map (cartesian ∘
map (naive-mrsc′ (c :: h) (bs c))) (c ⇒)))

For each c′ ∈ cs ∈ (c ⇒) there is recursively called
naive-mrsc′ (c :: h) (bs c) c′ to produce a list of graphs gs′.

cartesian selects a graph g′ ∈ gs′ from each gs′.
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Why naive-mrsc′ passes the termination check?

The problem with ‘naive-mrsc′‘ is that in the recursive call

naive-mrsc′ (c :: h) (bs c) c′

h is replaced with c :: h (which is bigger than h).

c is replaced with c′ (whose size is unknown).

Hence, h and c do not become “structurally smaller”.

However,

(later bs) becomes (bs c).

Agda’s termination checker considers bs and (bs c) to be “of the
same size”.

Therefore

(bs c) is “structurally smaller” than (later bs)!

38 / 56



Related works

Big-step supercompilation was studied and implemented by Bolingbroke
and Peyton Jones.

Maximilian C. Bolingbroke and Simon L. Peyton Jones. Supercompilation by evaluation. In
Proceedings of the third ACM Haskell symposium on Haskell (Haskell ’10). ACM, New York,
NY, USA, 2010, pages 135–146. http://doi.acm.org/10.1145/1863523.1863540

We deal with multi-result supercompilation, rather than single-result
supercompilation.

Our big-step supercompilation constructs graphs of configurations in
an explicit way, because the graphs are going to be filtered and/or
analyzed at a later stage.

We consider not only the functional formulation of big-step
supercompilation, but also the relational one.
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Staging big-step multi-result supercompilation

Now we decompose naive-mrsc into two stages

naive-mrsc $ ⟨⟨_⟩⟩ ∘ lazy-mrsc

where

lazy-mrsc produces a “lazy graph”, which is a “residual program”.

⟨⟨ ⟩⟩ is an interpreter that executes a lazy graph to actually produce a
list of graphs of configurations.

lazy-mrsc : (c : Conf) → LazyGraph Conf

⟨⟨_⟩⟩ : {C : Set} (l : LazyGraph C) → List (Graph C)

40 / 56



Lazy graphs of configuration

A lazy graph is a program whose nodes are commands.

data LazyGraph (C : Set) : Set where

Ø : LazyGraph C

stop : (c : C) → LazyGraph C

build : (c : C)

(lss : List (List (LazyGraph C))) → LazyGraph C

Ø. Generate the empty list of graphs.

stop. Generate a back-node back c and stop.

build c lss. Consider all ls ∈ lss. Let ls has the form
l1 :: l2 :: . . . :: lk :: []. Execute each li to produce a list of graphs
gss = gs1 :: gs2 :: . . . :: gsk :: []. By evaluating cartesian gss,
generate all gs ′ = g1 :: g2 :: . . . :: gk :: [], where gi ∈ gsi , and build all
build c gs′.
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Interpreting lazy graphs

⟨⟨_⟩⟩ : {C : Set} (l : LazyGraph C) → List (Graph C)

⟨⟨_⟩⟩* : {C : Set} (ls : List (LazyGraph C)) →
List (List (Graph C))

⟨⟨_⟩⟩⇒ : {C : Set} (lss : List (List (LazyGraph C))) →
List (List (Graph C))

⟨⟨ [] ⟩⟩* = []

⟨⟨ l :: ls ⟩⟩* = ⟨⟨ l ⟩⟩ :: ⟨⟨ ls ⟩⟩*

⟨⟨ [] ⟩⟩⇒ = []

⟨⟨ ls :: lss ⟩⟩⇒ = cartesian ⟨⟨ ls ⟩⟩* ++ ⟨⟨ lss ⟩⟩⇒

⟨⟨ Ø ⟩⟩ = []

⟨⟨ stop c ⟩⟩ = [ back c ]

⟨⟨ build c lss ⟩⟩ = map (forth c) ⟨⟨ lss ⟩⟩⇒
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Generating lazy graphs 1/2

lazy-mrsc is defined in terms of a more general function lazy-mrsc′:

lazy-mrsc : (c : Conf) → LazyGraph Conf

lazy-mrsc′ : ∀ (h : History) (b : Bar � h) (c : Conf) →
LazyGraph Conf

lazy-mrsc c = lazy-mrsc′ [] bar[] c

An idea

lazy-mrsc can be derived from naive-mrsc by replacing the call to
cartesian with the constructor build.
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Generating lazy graphs 2/2

lazy-mrsc′ h b c with foldable? h c

... | yes f = stop c

... | no ¬f with �? h

... | yes w = Ø

... | no ¬w with b

... | now bz with ¬w bz

... | ()

lazy-mrsc′ h b c | no ¬f | no ¬w | later bs =

build c (map (map (lazy-mrsc′ (c :: h) (bs c))) (c ⇒))

Why this is good?

cartesian is not called! Thus, there is no combinatory explosion.

There is a formal proof in Agda of the theorem

naive≡lazy : (c : Conf) → naive-mrsc c ≡ ⟨⟨ lazy-mrsc c ⟩⟩
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Related works

The idea to use a compact representation for collections of residual graphs
is due to Grechanik.

Sergei A. Grechanik. Overgraph Representation for Multi-Result Supercompilation. In Third
International Valentin Turchin Workshop on Metacomputation (Proceedings of the Third
International Valentin Turchin Workshop on Metacomputation. Pereslavl-Zalessky, Russia, July
5–9, 2012). A.V. Klimov and S.A. Romanenko, Ed. – Pereslavl-Zalessky: Ailamazyan University
of Pereslavl, 2012, 260 p. ISBN 978-5-901795-28-6, pages 48–65.

As a matter of fact, the data structure LazyGraph C formalizes the
idea of “overtrees” described in the above paper.

We show that “lazy graphs” arise in a natural way as a result of
staging a big-step multi-result supercompiler and, essentially, are
residual “programs” that record graph-building operations delayed at
the first stage.
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Filtering vs cleaning

What is a filter?
filter gs ⊆ gs

What is a cleaner?

⟨⟨ clean l ⟩⟩ ⊆ ⟨⟨ l ⟩⟩

Correctness of a cleaner with respect to a filter

filter ∘ ⟨⟨_⟩⟩ $ ⟨⟨_⟩⟩ ∘ clean

Pushing filtering over generation

filter ∘ naive-mrsc $ ⟨⟨_⟩⟩ ∘ clean ∘ lazy-mrsc
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Removing graphs with bad configurations (filtering)

A graph is “bad” if it contains a bad configuration.

bad-graph : {C : Set} (bad : C → Bool)

(g : Graph C) → Bool

bad-graph* : {C : Set} (bad : C → Bool)

(gs : List (Graph C)) → Bool

bad-graph bad (back c) = bad c

bad-graph bad (forth c gs) = bad c ∨ bad-graph* bad gs

bad-graph* bad [] = false

bad-graph* bad (g :: gs) =

bad-graph bad g ∨ bad-graph* bad gs

fl-bad-conf : {C : Set} (bad : C → Bool)

(gs : List (Graph C)) → List (Graph C)

fl-bad-conf bad gs = filter (not ∘ bad-graph bad) gs
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Removing graphs with bad configuration (cleaning) 1/2

cl-bad-conf : {C : Set} (bad : C → Bool)

(l : LazyGraph C) → LazyGraph C

cl-bad-conf* : {C : Set} (bad : C → Bool)

(ls : List (LazyGraph C)) → List (LazyGraph C)

cl-bad-conf⇒ : {C : Set} (bad : C → Bool)

(lss : List (List (LazyGraph C))) →
List (List (LazyGraph C))

cl-bad-conf* bad [] = []

cl-bad-conf* bad (l :: ls) =

cl-bad-conf bad l :: cl-bad-conf* bad ls

cl-bad-conf⇒ bad [] = []

cl-bad-conf⇒ bad (ls :: lss) =

cl-bad-conf* bad ls :: (cl-bad-conf⇒ bad lss)
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Removing graphs with bad configuration (cleaning) 2/2

cl-bad-conf bad Ø = Ø

cl-bad-conf bad (stop c) =

if bad c then Ø else (stop c)

cl-bad-conf bad (build c lss) =

if bad c then Ø else (build c (cl-bad-conf⇒ bad lss))

A “metasystem transition”. . .

Instead of removing bad graphs, we remove parts of the program that
would generate bad graphs!

Correctness

cl-bad-conf-correct : {C : Set} (bad : C → Bool) →
⟨⟨_⟩⟩ ∘ cl-bad-conf bad $ fl-bad-conf bad ∘ ⟨⟨_⟩⟩
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Decompising lazy-mrsc

By using codata and corecursion, we can decompose lazy-mrsc:

lazy-mrsc $ prune-cograph ∘ build-cograph

build-cograph constructs a (potentially) infinite tree (a
LazyCograph).

prune-cograph traverses this tree and turns it into a (finite)
LazyGraph C.

LazyCograph C differs from LazyGraph C only in ∞ in the type of lss.

data LazyCograph (C : Set) : Set where

Ø : LazyCograph C

stop : (c : C) → LazyCograph C

build : (c : C) (lss : ∞(List (List (LazyCograph C)))) →
LazyCograph C
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Building lazy cographs

build-cograph can be derived from the function lazy-mrsc by removing
the machinery related to whistles.

build-cograph′ h c with foldable? h c

... | yes f = stop c

... | no ¬f =

build c (♯ build-cograph⇒ h c (c ⇒))

build-cograph* h [] = []

build-cograph* h (c :: cs) =

build-cograph′ h c :: build-cograph* h cs

build-cograph⇒ h c [] = []

build-cograph⇒ h c (cs :: css) =

build-cograph* (c :: h) cs :: build-cograph⇒ h c css

build-cograph c = build-cograph′ [] c
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Pruning lazy cographs

prune-cograph can be derived from lazy-mrsc by removing the machinery
related to generation of nodes.

prune-cograph′ h b Ø = Ø

prune-cograph′ h b (stop c) = stop c

prune-cograph′ h b (build c lss) with �? h

... | yes w = Ø

... | no ¬w with b

... | now bz with ¬w bz

... | ()

prune-cograph′ h b (build c lss) | no ¬w | later bs =

build c (map (prune-cograph* (c :: h) (bs c)) (♭ lss))

prune-cograph* h b [] = []

prune-cograph* h b (l :: ls) =

prune-cograph′ h b l :: (prune-cograph* h b ls)

prune-cograph l = prune-cograph′ [] bar[] l
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Promoting some cleaners over the whistle

Suppose clean∞ is a cograph cleaner such that

clean ∘ prune-cograph $ prune-cograph ∘ clean∞

then

clean ∘ lazy-mrsc $
clean ∘ prune-cograph ∘ build-cograph $
prune-cograph ∘ clean∞ ∘ build-cograph

What is good?

build-cograph and clean∞ work in a lazy way, generating subtrees by
demand.
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Removing cographs with bad configurations

cl-bad-conf∞ bad Ø =

Ø

cl-bad-conf∞ bad (stop c) =

if bad c then Ø else (stop c)

cl-bad-conf∞ bad (build c lss) with bad c

... | true = Ø

... | false = build c (♯ (cl-bad-conf∞⇒ bad (♭ lss)))

cl-bad-conf∞* bad [] = []

cl-bad-conf∞* bad (l :: ls) =

(cl-bad-conf∞ bad l) :: cl-bad-conf∞* bad ls

cl-bad-conf∞⇒ bad [] = []

cl-bad-conf∞⇒ bad (ls :: lss) =

cl-bad-conf∞* bad ls :: (cl-bad-conf∞⇒ bad lss)
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Conclusions

Big-step multi-result supercompilation can be decomposed into two
stages. The result of the first stage (a “lazy graph”) is interpreted at
the second stage, to produce a collection of residual graphs.

A lazy graph is a compact representation for a collection of residual
graphs (and can be regarded as a “program”).

Filtering a collection of graphs can be replaced with cleaning a lazy
graph. In some cases of practical importance, cleaning can be
performed in linear time.

By using codata and corecursion, the generator of lazy graphs can be
decomposed into two stages: building an infinite tree and pruning this
tree to produce a (finite) lazy graph.

Some cleaners of lazy graphs can be turned into cleaners of cographs,
so that cleaning can be pushed over the whistle.
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