
XSG: Fair Language with Built-in Equality

Yuri A. Klimov1 and Anton Yu. Orlov2 ?

1 Keldysh Institute of Applied Mathematics, Russian Academy of Sciences
RU-125047 Moscow, Russia, yuklimov@keldysh.ru

2 Program Systems Institute, Russian Academy of Sciences
RU-152140 Pereslavl-Zalessky, Russia, orlov@mccme.ru

Abstract. We describe the XSG programming language and define a
formal semantics for it.

1 Introduction

XSG is a functional-logic untyped first-order language. Like a functional lan-
guage it has functions which return results (not predicates only as classic logic
languages). And like a logic language it allows implicit definition of variables’
values.

XSG is developed as a model language for metacomputations. It is a successor
of the TSG and NTSG languages used by S. M. Abramov and R. Glück for
formal description of basic metacomputation tools such as driving, PPT and
URA [1,2,3,4,5,6,7].

In XSG the concept of pattern matching is generalized by introducing equa-
tions. Both free and bound variables in equations can go both at the left and
at the right sides. Also a variable can occur in an equation several times. Thus
there is a notion of equality inherent in the language.

Every variable in XSG is a logic variable: it designates a set of possible
values. The equations are global constraints on the variables. Thus there is an
embedded nondeterminism in the language as the program result is an unordered
set of possible answers.

Free variables may also occur in function arguments. In order to find val-
ues for such variables universal resolving algorithm (URA) [2,3,4,5,6,7] is used.
URA guaranties to find every solution for an equation system with such im-
plicitly defined variables in finite time (though, of course, URA itself does not
always terminate). In that sense the language is fair : every solution will be found
eventually.

2 Key Features of XSG

XSG has several particular features that can not be found in the majority of
programming languages.
? Supported by Russian Foundation for Basic Research projects No. 06-01-00574-a,

and No. 07-07-92100-GFEN a, and No. 08-07-00280-a, and Russian Federal Agency
of Science and Innovation project No. 2007-4-1.4-18-02-064.

86 Yuri A. Klimov and Anton Yu. Orlov

A function in XSG can have several arguments and several results (nontrivial
coarity). As XSG is first-order untyped language, coarity is essential for avoiding
dynamic checks of function results.

In the majority of existing programming languages equality is not built-in
construction: for every user-defined data structure the user should provide an
equality test. The user should be aware of the evaluation order while specifying
equality so that it does terminate.

For example in Haskell language library function (==) is defined to work
in the left to right order for tuples. Consequently, the following expression in
Haskell does not terminate:

(undef, ‘A’) == (undef, ‘B’) where undef = undef

Some languages (see Curry [14]) provide built-in strict equality which is sat-
isfied if both sides are reducible to a same ground data. The problem with strict
equality is that it forces evaluation of the ground data even if it can be proven
that there is not any possible one. Consider, for example, the following code in
Curry:

undef = undef

f x = x =:= 0 & x =:= 1

Main1 = f x where x free
Main2 = f undef

Equational constraint (=:=) is evaluated as strict equality in Curry. The
result of the evaluation of Main1 function is an empty set of answers. That is,
the system have proven there is no any possible values for x. But the evaluation
of Main2 function does not terminate.

XSG provides built-in equality which is not strict. Contrary to other pro-
gramming languages, in XSG, condition x = y is always immediately true if
x is textually identical to y up to free variables renaming (note that x and y
can contain variables bounded to function calls but not the calls themselves).
Moreover, in XSG the order of evaluation guaranties that all reachable to the
moment equations will be considered in finite time, so Main2 from the Curry
example above would terminate as well as Main1.

3 Formal Semantics of XSG

3.1 Syntax

Data domain for an XSG program is built by user-defined constructors. Each
constructor has a fixed arity. Atoms are presented as nullary constructors.

XSG has a rather simple grammar (see figure 1). A program consists of a
number of function definitions.

Each function has a fixed number of arguments and a fixed number of results.

XSG: Fair Language with Built-in Equality 87

Function definition contains a number of sentences. A sentence consists of
left hand side and right hand side parts. Before with all the function results are
constructed. After with there goes a set of conditions and terms. The order of
terms and conditions is not important: they are considered as a whole.

A condition is an equality test of two expressions. As both expressions can
contain free variables it is more general then the equality test and the pattern
matching in traditional programming languages and corresponds to the mathe-
matical notion of an equation. Note that function calls are presented in equations
not directly but by liaison variables introduced in terms. A term is just a function
call assigned to fresh liaison variables.

Free, liaison, and argument variables can repeat in one or several equations
as well as in function arguments in terms.

A particular expression is a result of a function if it can be obtained from the
left hand side of some sentence by applying a substitution which turns all the
equations into identities. That is, all sentences are considered independently.

In each term the number of liaison variables is equal to the number of results
of the corresponding function. The number of arguments in a call is equal to the
number of arguments of the corresponding function.

See section 5 for examples of simple XSG programs.

Grammar

p ∈ Program ::= q+

q ∈ Definition ::= (define f x̄ s∗)
s ∈ Sentence ::= (ē with k∗ t∗)

k ∈ Condition ::= (eq? e e)
t ∈ Term ::= (x̄ := (call f ē))
e ∈ Expression ::= (cons c ē) | x

f ∈ Function name
c ∈ Constructor name

x ∈ Variable

a∗ − set of items of type a
a+ − nonempty set of items of type a

ā − ordered sequence of items of type a

Fig. 1. Abstract syntax of XSG

3.2 Natural Semantics

Natural semantics of XSG is presented in figure 2.
First two rules are usual for logical programming languages such as Prolog.
The first rule says that each sentence result can be obtained by applying a

substitution to the left hand side of the sentence. The substitution assigns ex-
tended values to some free variables. The extended values can contain indefinite
constructors, see “Indefinite Call” rule. The substitution must be correct: after
applying it to the right hand side of the sentence all the equations must become
true.

88 Yuri A. Klimov and Anton Yu. Orlov

The second rule just says that one can obtain a result of a function call from
any sentence from the function definition.

The third rule is the one that differentiate XSG from other logical program-
ming languages. In essence it introduces a possibility for laziness in equality. It
allows one to proceed without computing the actual value of the called function.
The results of the function call are assumed to be some unique indefinite data
— new indefinite constructors. Each indefinite constructor is equal to itself only.

Sentence

∃θ ∀k ∈ k∗ k = (eq? e1 e2) e1/θ = e2/θ
∀t ∈ t∗ t = (x̄ := (call f ēarg)) Γ̀ (call f ēarg/θ) ⇒ x̄/θ

Γ̀ (ē with k∗ t∗) ⇒ ē/θ

Call Indefinite Call

Γ (f) = (define f x̄par s∗)
∃s ∈ s∗ Γ̀ s/[x̄par 7→ ēarg] ⇒ ēres

Γ̀ (call f ēarg) ⇒ ēres

ū− new indefinite constructors

Γ̀ (call f ēarg) ⇒ ū

Fig. 2. Natural semantics of XSG-programs

3.3 Trace Semantics

Now let us consider the semantics of XSG from the interpreter point of view (see
figure 3).

Conditions are simplified (step-by-step) by means of the most general unifi-
cation algorithm (MGU). For a system of equations MGU returns a substitution
for some variables or fails if the system is inconsistent. MGU also changes the
system of equations by removing identities, so we denote the resulting system as
k∗new.

Another way to proceed with a sentence is to fulfil a function call. That
is done by substituting the results from one of the called function sentences
for liaisons. Note that a term to be reduced as well as a sentence from that
term’s function can be chosen arbitrarily. This is nondeterministic step and an
interpreter should try all possible choices.

The “Main” rule says that a given function call can produce a particular
result if there exists such a sequence of MGU- and Call-steps that leads to it.

4 Discussion

We have shown big-step and small-step semantics for the language. In order
to present the possibility of comparing expressions without actually evaluating
them to a ground data we have introduced indefinite constructors.

XSG: Fair Language with Built-in Equality 89

MGU
mgu(k∗) = (k∗

new, θ)

Γ̀ (ē with k∗ t∗) → (ē/θ with k∗
new t∗/θ)

Call

for some t ∈ t∗ t = (x̄ := (call f ēarg)) Γ (f) = (define f x̄par s∗)
for some s ∈ s∗ s/[x̄par 7→ ēarg] = (ēres with k∗

1 t∗1) θ = [x̄ 7→ ēres]

Γ̀ (ē with k∗ t∗) → (ē/θ with k∗/θ k∗
1 (t∗\t)/θ t∗1)

Main

Γ̀ (x̄ with (x̄ := (call f ēarg))) →∗ (ēres with t∗)
ēres does not contain variables from t∗

Γ̀ (call f ēarg) ēres

Fig. 3. Trace semantics of XSG-programs

Indefinite constructors obviously can not be presented in a program answer
as they are abandoned function calls. Apart from that the result for a given
program evaluation by either of the presented semantics is the same. So we can
formulate the following theorem.

Theorem 1. Γ̀ (call f ēarg)⇒ ēres and ēres does not contain indefinite con-
structors iff Γ̀ (call f ēarg) ēres.

Now we have fixed the language semantics, so we can build a perfect process
tree (PPT) for a given program [11]. The amazing fact is that the trace semantics
for an XSG program coincides with the trace semantics for its perfect process
tree.

In other words, PPT can be considered as the language interpreter. This
proves that there exists an interpreter for the XSG language with the following
remarkable property.

Theorem 2 (Fairness). Any result for any function call that can be obtained by
applying any evaluation strategy will be eventually computed by the interpreter.

5 Examples

Due to the embedded URA it is possible to specify a function by its inverse in
XSG.

For example, if we have defined addition, then subtraction definition is trivial.
See figure 4 for addition and subtraction for unary numbers. The definition of
Sub can be read as following: x1−x2 is such number x3 that x2 + x3 is equal to
x1. As can be seen it is precisely the algebraic definition of subtraction.

Another interesting example is shown in figure 5. Similarly to subtraction in
figure 4 we define list splitting as an inverse for concatenation. Note that Split is
different from Sub in two ways: 1) it returns two expressions — two parts of the

90 Yuri A. Klimov and Anton Yu. Orlov

Definitions for Add and Sub

(define Add x1 x2

(x2 with (eq? x1 (cons O)))
((cons I x3) with (eq? x1 (cons I x′

1)) (x3 := (call Add x′
1 x2)))

)

(define Sub x1 x2

(x3 with (eq? x1 x′
1) (x′

1 := (call Add x2 x3)))
)

Fig. 4. XSG-functions for unary addition and subtraction

given list; 2) there is a lot of ways to split the list in two parts, so the function
is nondeterministic.

Function Perm uses nondeterminism of the function Split to (nondetermin-
istically) compute all permutations of the numbers from zero to its argument. It
returns each permutation as a list of that unary numbers. Its definition can be
read as following: 1) if the argument (x1) is zero, then return the only possible
permutation as a list of length one; 2) else find all permutations for x1− 1, split
each in two parts (in all possible ways), and insert x1 between the parts.

6 Conclusion and Future Work

We have defined formal semantics for the XSG language and have shown that it
has some interesting properties which differentiate it from other programming
languages.

The main obstacle for practical programming in XSG is the absence of neg-
ative restrictions. A programmer can specify positive tests (equality) only, and
fails in those tests are not propagated anywhere but silently discarded. Program-
ming without “else” is not very convenient for a lot of tasks, so adding negative
restrictions to the language would be a major achievement.

XSG is developed as a model language for metacomputations simultaneously
with the development of metacomputation tools for it. Another stage of devel-
opment would be a supercompiler for XSG. Here arises the (hopefully, solvable)
problem of splitting a configuration without changing the semantics of a pro-
gram. The matter is identity equation in the original configuration can require
(possibly, infinite) computation in the split one. Further issues for the super-
compilation are raised by the rational XSG data (infinite periodic trees) which
are not discussed in the present paper.

XSG interpreter is implemented in Haskell. All sources for the system and
sample XSG programs are freely available from the web [33].

Authors would like to thank S. M. Abramov and A. S. Mishchenko who par-
ticipated a lot in the development of the language.

XSG: Fair Language with Built-in Equality 91

Definitions for Concat, Split, and Perm

(define Concat x1 x2

(x2 with (eq? x1 (cons Nil)))
((cons Cons x′

1 x3) with (eq? x1 (cons Cons x′
1 x′′

1))
(x3 := (call Concat x′′

1 x2)))
)

(define Split x1

(x2 x3 with (eq? x1 x′
1) (x′

1 := (call Concat x2 x3)))
)

(define Perm x1

(x2 with (eq? x1 (cons O))
(eq? x2 (cons Cons (cons O) (cons Nil))))

(x5 with (eq? x1 (cons I x′
1))

(x2 := (call Perm x′
1))

(x3 x4 := (call Split x2))
(x5 := (call Concat x3 (cons Cons x1 x4))))

)

Fig. 5. XSG-functions for list concatenation, splitting, and permutations gener-
ation

References

1. S. M. Abramov. Metavychislenija i logicheskoe programmirovanie (Metacomputa-
tion and logic programming). Programmirovanie, 3:31–44, 1991. (In Russian).

2. S. M. Abramov, R. Glück. The universal resolving algorithm: inverse computation
in a functional language. In R. Backhouse, J. N. Oliveira (eds.), Mathematics of
Program Construction. Proceedings, LNCS 1837, 187–212. Springer-Verlag, 2000.

3. S. M. Abramov, R. Glück. Inverse Computation and the Universal Resolving
Algorithm. Wuhan University Journal of Natural Sciences, 6(1-2):31–45, 2001.

4. S. M. Abramov, R. Glück. The universal resolving algorithm and its correctness:
inverse computation in a functional language. Science of Computer Programming,
43(2-3):193–229, 2002.

5. S. M. Abramov, R. Glück. Principles of inverse computation and the universal
resolving algorithm. In T. Mogensen, D. Schmidt, I. H. Sudborough (eds.) The
Essence of Computation: Complexity, Analysis, Transformation. Essays Dedicated
to Neil D. Jones, LNCS 2566, 269–295. Springer-Verlag, 2002.

6. S. M. Abramov, R. Glück, Yu. A. Klimov An improved universal resolving al-
gorithm for inverse computation of non-flat languages. In A. K. Ailamazyana
(ed.), Matematika, informatika: teoriya i praktika. Sbornik trudov, posvyashennyi
10-letiyu Universiteta goroda Pereslavlya, 11–23. Pereslavl’-Zalesskii: Izdatel’stvo
“Universitet goroda Pereslavlya”, 2003.

7. S. M. Abramov, R. Glück, Yu. A. Klimov An universal resolving algorithm for
inverse computation of lazy languages. In I. Virbitskaite, A. Voronkov (eds.), Per-
spectives of System Informatics. Proceedings, LNCS 4378, 27–40. Springer-Verlag,
2007.

92 Yuri A. Klimov and Anton Yu. Orlov

8. E. Albert, G. Vidal. The narrowing-driven approach to functional logic program
specialization. New Generation Computing, 20(1):3–26, 2002.

9. A. P. Ershov. On the essence of compilation. In E. Neuhold (ed.), Formal Descrip-
tion of Programming Concepts, 391–420. North-Holland, 1978.

10. R. Bird, O. d. Moor. Algebra of Programming. Prentice Hall International Series
in Computer Science. Prentice Hall, 1997.

11. R. Glück, A. V. Klimov. Occam’s razor in metacomputation: the notion of a perfect
process tree. In P. Cousot, M. Falaschi, G. Filé, A. Rauzy (eds.), Static Analysis.
Proceedings, LNCS 724, 112–123. Springer-Verlag, 1993.

12. R. Glück, M. H. Sørensen. Partial deduction and driving are equivalent. In
M. Hermenegildo, J. Penjam (eds.), Programming Language Implementation and
Logic Programming. Proceedings, LNCS 844, 165–181. Springer-Verlag, 1994.

13. M. Hanus. The integration of functions into logic programming: from theory to
practice. Journal of Logic Programming, 19&20:583–628, 1994.

14. M. Hanus. Curry: an integrated functional logic language (version 0.8). Report,
University of Kiel, 2003.

15. J. Hatcliff. An introduction to online and offline partial evaluation using a sim-
ple flowchart language. In J. Hatcliff, T. Mogensen, P. Thiemann (eds.), Partial
Evaluation. Practice and Theory, LNCS 1706, 20–82. Springer-Verlag, 1999.

16. B. Hoffmann, D. Plump. Implementing term rewriting by jungle evaluation. In-
formatique Theorique et Applications/Theoretical Informatics and Applications,
25(5):445–472, 1991.

17. N. D. Jones. The essence of program transformation by partial evaluation and driv-
ing. In N. D. Jones, M. Hagiya, M. Sato (eds.), Logic, Language and Computation,
LNCS 792, 206–224. Springer-Verlag, 1994.

18. S. Katsumata, A. Ohori. Proof-directed de-compilation of Java bytecode. In
D. Sands (ed.), Programming Languages and Systems. Proceedings, LNCS 2028,
352–366. Springer-Verlag, 2001.

19. R. Kowalski. Predicate logic as programming language. In J. L. Rosenfeld (ed.),
Information Processing 74, 569–574. North-Holland, 1974.

20. J. W. Lloyd. Foundations of Logic Programming. Second, extended edition.
Springer-Verlag, 1987.

21. J. McCarthy. Recursive functions of symbolic expressions. Communications of the
ACM, 3(4):184–195, 1960.

22. T. Æ. Mogensen, A. Bondorf. Logimix: a self-applicable partial evaluator for Pro-
log. In K.-K. Lau, T. Clement (eds.), Logic Program Synthesis and Transformation,
Workshops in Computing. Springer-Verlag, 1993.

23. J. J. Moreno-Navarro, M. Rodriguez-Artalejo. Logic programming with functions
and predicates: the language Babel. Journal of Logic Programming, 12(3):191–223,
1992.

24. S.-C. Mu, R. Bird. Inverting functions as folds. In E. A. Boiten, B. Möller
(eds.), Mathematics of Program Construction. Proceedings, LNCS 2386, 209–232.
Springer-Verlag, 2002.

25. A. Y. Romanenko. The generation of inverse functions in Refal. In D. Bjørner, A. P.
Ershov, N. D. Jones (eds.), Partial Evaluation and Mixed Computation, 427–444.
North-Holland, 1988.

26. J. P. Secher. Perfect Supercompilation. M. Sc. thesis, Department of Computer
Science, University of Copenhagen, 1998.

27. J. P. Secher. Driving in the jungle. In O. Danvy, A. Filinsky (eds.), Programs as
Data Objects. Proceedings, LNCS 2053, 198–217. Springer-Verlag, 2001.

XSG: Fair Language with Built-in Equality 93

28. J. P. Secher, M. H. Sørensen. On perfect supercompilation. In D. Bjørner, M. Broy,
A. Zamulin (eds.), Perspectives of System Informatics. Proceedings, LNCS 1755,
113–127. Springer-Verlag, 2000.

29. J. P. Secher, M. H. Sørensen. From checking to inference via driving and DAG
grammars. In ACM SIGPLAN Workshop on Partial Evaluation and Semantics-
Based Program Manipulation, 41–51. ACM Press, 2002.

30. M. H. Sørensen, R. Glück, N. D. Jones. A positive supercompiler. Journal of
Functional Programming, 6(6):811–838, 1996.

31. V. F. Turchin. The use of metasystem transition in theorem proving and program
optimization. In J. W. de Bakker, J. van Leeuwen (eds.), Automata, Languages
and Programming, LNCS 85, 645–657. Springer-Verlag, 1980.

32. V. F. Turchin. The concept of a supercompiler. ACM Transactions on Program-
ming Languages and Systems, 8(3):292–325, 1986.

33. XSG web resources. http://botik.ru/˜xsg/

