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Abstract.  We introduce the notion of a perfect process tree as a model for the
full propagation of information in metacomputation. Starting with constant
propagation we construct step-by-step the driving mechanism used in super-
compila tion which ensures the perfect propagation of information. The concept
of a simple supercompiler based on perfect driving coupled with a simple
folding strategy is explained. As an example we demonstrate that specializing a
naive pattern matcher with respect to a fixed pattern obtains the efficiency of a
matcher generated by the Knuth, Morris & Pratt algorithm.

1 Introduction
Research in the field of program specialization extends the state-of-the-art in two directions:
extending existing methods to new languages and improving the techniques for the
specialization of programs. While the first goal can be stated clearly, the second goal is often
expressed in rather vague terms such as ‘strength’ and ‘transformation depth’. Often new
methods are introduced rather ad hoc and it is hard to see how much has been achieved and
what the limitations are.

How should one assess the quality of a program specialization method? Various criteria are
conceivable. In this paper we propose the notion of a perfect process tree. The goal is to
propagate ‘enough’ information to be able to prune all infeasible program branches at
specialization time. Many existing methods, such as partial evaluation, develop imperfect
process trees. This should not be taken as a negative statement, but — on the contrary — as a
motivation for improving specialization methods further. We present different methods for spe-
cial izing a simple programming language with tree-structured data, called S-Graph. Starting
from constant propagation we develop step-by-step a driving mechanism which ensures the
perfect propagation of information along the specialized program branches. The use of perfect
driving is shown by introducing a supercompiler with a simple folding strategy. As an example
we demonstrate that specializing a naive pattern matcher with respect to a fixed pattern obtains
the efficiency of a matcher generated by the Knuth, Morris & Pratt algorithm.

2 Background: Process-Based Transformation
In this section we review Turchin’s concept of process-based program transformation. A
program p ∈ Pgm, p : Data  → Data , given data d  ∈ Data , defines the behavior of a machine: a
computation process. A computation process is a potentially infinite sequence of states and
transitions. A state may contain a program point and a store. Each state and transition in a
deterministic computation process is fully defined: process(p, d) = s1→ s2→s3→ … (This may be
defined by some well-understood semantics such as operational or denotational semantics, omit-

1Supported by the Austrian Science Foundation (FWF) under grant number J0780-PHY.
  Current address: DIKU, Dept. of Computer Science, University of Copenhagen, Universitetsparken 1,
  DK-2100 Copenhagen Ø, Denmark. Email: glueck@diku.dk.
2Supported by the Russian Foundation for Fundamental Research under grant number 93-12-628 and in
  part by the ‘Österreichische Forschungsgemeinschaft’ under grant number 06/1789.
  Email: And.Klimov@refal.msk.su.



ted here). The set of processes , P = {process(p, d) | d ∈ Data}, captures the semantics of a pro-
gram as a whole. But how can one describe and manipulate the set of processes constructively?

Process Graph. For process-based program transformation one instead uses a process graph. A
process graph is used to describe and manipulate the set of computation processes. In the
following this will be done assuming given a subset of p’s initial states (this is the connection to
program specialization).

Each node in a process graph represents a set of states  and is called a configuration . Any
program graph has a single root node, called initial configuration, representing a subset of
program p ’s initial states. A configuration c  which branches to two or more configurations in a
process graph represents a conditional transition from one set of program states to two or more
sets of program states. An edge originating from a branching configuration c is labeled with a
test on c . Abstractly this could be thought of as selecting the set of states causing control to fol -
low this edge (a configuration which branches usually corresponds to a test in the program p ).

Definition. A process graph g is correct  for a program p  with respect to an initial configura tion
ci iff
(i) the process graph is complete : if program p takes state s into s'  in a computation originating
from an initial state si ∈ ci , and if s is represented by configuration c, then there is a transition
from c to c'  in the process graph of p such that c'  includes s' .
(ii) the nodes branched to from a branching configuration c are uniquely determined by the tests
on c (the configuration c  is divided into disjoint sets of states following the corresponding
branches).

In general, a program p may have many different correct process graphs. A specific computa tion
process follows a unique walk  — a sequence of nodes and edges — in the process graph for
program p . Because of the two requirements above, any computation process of p corresponds
to exactly one walk in a correct process graph for program p (the requirement (i) says there is at
least one walk, and (ii) says there is at most one walk). A process graph g  for a program p is a
model  of p’s computational behavior for a given set of initial states ci. In the following we refer
to process graphs when we mean correct process graphs.

Graph Developers.  How can one construct a process graph for a program and an initial config-
uration? Supercompilation [22,24] uses two methods for graph development: driving  and
folding .

Driving . This is a general method for constructing a (potentially infinite) process  tree  (a process
graph that happens to be a tree) by step-wise exploring all possible computations of a program p
starting from an initial configuration ci  [20,22,24]. At any point during driving one has a
perhaps incomplete process tree and a way to extend the process tree by adding a new node.
Driving follows all possible computa tion processes starting from an initial configuration ci and
continues until every leaf of the process tree represents only terminal states. Driving covers the
activities of specializing and unfolding in partial evaluation.

Folding. The ultimate goal is to construct a finite process graph for a program p and an initial
configuration ci . At any point during driving one may, instead of extending the process graph
by driving, try to fold new transitions back into old graph configurations. Folding may include
adding a new edge back from a non-terminal configuration N to another configuration M in the
process graph, or merging two ‘close enough’ configura tions N and M: given a configuration M
with a path to N, one may replace the edges originating from M  and create a new edge instead to
a generalized configuration M' representing a superset of the states represented by M  and N.

Given a finite process graph g  that is correct for program p  and the set of initial states ci, one
may then construct a new program q  from g (this is easy to achieve in practice). We will require
that g  will be correct for q , and q  will be functionally equivalent to p with respect to the set of
ini tial states ci . Our aim, of course, is to make q more efficient than the original program p .



3 Perfect Process Graph
How can one assess the ‘quality’ of a process graph? Clearly, if there is some edge in a process
graph which is not used by any computation process, the process graph can’t be considered as
an ‘optimal’ model of the program’s computational behavior. That is, the process graph
contains at least one edge for which no initial state exists to follow it. We say that the more
infeasible walks exist in a process tree, the worse is the process graph.

Definition. A walk w in a process graph g  is feasible  if at least one initial state exists which
follows w.
Definition. A node n in a process graph g  is feasible  if it belongs at least to one feasible walk w
in g .
Definition. A process graph is perfect  if all its walks are feasible.

Infeasible walks not only increases the size of a process graph, but also reduces the efficiency of
feasible walks. Consider the last feasible node in an otherwise infeasible walk. Since the node is
feasible, at least one feasible walk goes through it. Since the infeasible walk goes through it as
well, the node is a branching node: one branch is feasible, another is infeasible. Each branching
has several conditions which have to be tested. This is extra work. Thus infeasible branches in-
troduce additional tests and thereby degrade the efficiency of feasible walks. The more in terpre-
tive an algorithm is, the less perfect its process graph [23].

Example. Consider the following fragment of a graph (or the program represented by it — we
will not distinguish here). The branches 'B  and 'C are in feasible, and the tests EQA?2 and EQA?3
are redundant. There exists no initial state which follows the branches 'B and 'C .

(IF (EQA?1 x '5)
    (IF (EQA?2 x '5) 'A 'B)
    (IF (EQA?3 x '5) 'C 'D))

Perfect Graph Developers. How can one construct a perfect process graph for a program and a
given initial configuration? Unfortunate ly, no algorithm exists that could transform any program
p into an equivalent finite, perfect process graph (formally proven in [22]). That is, one can not
build a perfect graph developer. However, perfect tree developers for ‘well-formed’ languages
exist which develop perfect process trees for an arbitrary program p  and an initial configuration
ci. This is the case with the programming language presented in this paper. While the problem
of perfect graph development cannot be solved in general, perfect tree development may be
achieved. This is the main motivation for studying it.

Construction guideline. (1) Start by devising a perfect tree developer; (2) make the correspond-
ing graph developer as ‘perfect’ as possible, without sacrificing computabili ty and termination.
Why do we consider this as essential? Because the first goal may be achieved constructive ly for
‘well-formed’ languages, while the second goal can not be achieved in general. Another aspect:
one can not expect to make ‘clever’ folding decisions based on insuf ficient information ob-
tained by driv ing. Once a perfect driving mechanism is constructed, it is a solid ground for the
further refinement of a graph developer. As a result, the problem of approximation in the devel -
opment of process graphs is driven into one corner: folding.

4 The Language S-Graph
The choice of the subject language is crucial for writing concise and clear algorithms for
program specialization. In order to concentrate on the essence of driving, we limit ourselves to a
pure symbol manipulation language, called S-Graph. As the name implies, one can think of S-
Graph programs as being textual representations of graphs.

S-Graph is a first-order, functional programming language restricted to tail-recursion. The
only data type are well-founded, i.e. non-circular, S-expressions (as known from Lisp). Despite
its simplici ty the language is complete and universal. The semantics of the language is
straightforward. A program is a list of function def initions where each function body is an



Prog ::= [Def*]
Def ::= (DEFINE Fname [Var*] Tree)

Tree ::= (LET  Var  Exp  Tree)  |  (CALL Fname [Arg*])
(IF   Cntr Tree Tree)  |  Exp

Cntr ::= (CONS? Arg Var Var)    |  (EQA? Arg Arg)

Exp ::= Arg  |  (CONS Exp Exp)
Arg ::= Val  |  Var

Val ::= (ATOM Atom)
Var ::= (VAR  Name)

Fig. 1. Syntax of flat S-Graph.

expression built from a few elements: condi tionals IF , local bindings LET , function calls CALL,
constructors CONS and atomic constants (drawn from an infinite set of symbols).

Note the conditional in S-Graph: the test Cntr may update the environment. As in super-
compila tion, we refer to such tests as contractions  [24]. Two elementary contractions are
sufficient for S-expressions:

(EQA? x y) tests the equality of two atoms: x ’s value and y ’s value; if the arguments
are non-atomic then the test is undefined.

(CONS?  x h t) if the value of x  is a pair (CONS a b) , then the test succeeds and the vari-
able h  is bound to a and the variable t to b; otherwise, the test is false.

The arguments of function calls and contractions are restricted to variables and atomic constants
in order to limit the number of places where values may be constructed. Because there are no
nested function calls, we call this variant of the language flat (i.e. it corresponds to a flow-chart
language). This is generalizable to nested function calls at the cost of more complex driving
algorithms. In the fol lowing we will refer to the flat variant of the language simply as S-Graph.

Example. String pattern matching is a typical problem to which various specialization methods
have been applied. The subject program is a naive pattern matcher which checks whether a
string p  (the pattern) occurs within another string s. The matcher is fair ly simple: it returns
'SUCCESS if p occurs in s, 'FAILURE  otherwise. The function LOOP compares the pattern with
the beginning of the string. If the compar ison fails the first element of the string is cut off and
the function tries to match the remaining string against the pattern. This strategy is not optimal
because the same elements in the string may be tested several times. In case of a mismatch the
string is shifted by one and no further information is used for advancing in the string.

Syntactic sugar: we write 'Atom as shorthand for (ATOM Atom) , and lowercase identifiers
as shorthand for (VAR Name).

(DEFINE MATCH [p s]
  (CALL LOOP [p s p s]))                 ; initialize loop

(DEFINE LOOP [p s pp ss]
  (IF (CONS? p phead ptail)
    (IF (CONS? s shead stail)
      (IF (EQA? phead shead)
        (CALL LOOP [ptail stail pp ss])  ; continue
        (CALL NEXT [pp ss]))             ; shift string
      'FAILURE)
    'SUCCESS))

(DEFINE NEXT [p s]
  (IF (CONS? s shead stail)
    (CALL LOOP [p stail p stail])        ; restart loop
    'FAILURE))

Fig. 2. Naive string matcher in S-Graph.



int  :: Tree → Env → Const
cntr :: Cntr → Env → Branch
data Branch  =  TRUE Env | FALSE Env

int (CALL f as) e    =  int t (mkEnv vs as e)
                        where (DEFINE _ vs t) = getDef f

int (LET v x t) e    =  int t (e&[v aaaa   x/e])

int (IF c t' t") e   =  case cntr c e of
                             TRUE  e' → int t' e'
                             FALSE e" → int t" e"
int x e              =  x/e

cntr (EQA? x y) e    =  case (x/e, y/e) of
                             (ATOM a, ATOM a) → TRUE  e
                             (ATOM _, ATOM _) → FALSE e

cntr (CONS? x h t) e =  case x/e of
                             CONS a b → TRUE (e&[h  aaaa a, t aaaa  b])
                             ATOM _   → FALSE e

Fig. 3. Interpretive definition of S-Graph.

Interpretive Definition.  The semantics of S-Graph is defined by an interpretive definition (this
will be the starting point for defining driving). In order to write the interpreter in a concise way
we use some shorthand notations (the syntax is Haskell-like, the semantics is call-by-value):

[v 1 aaaa c1, … , vn aaaa cn] an environment consisting of a list of variables bindings,
e&[…] the function &  updates the environment e with the list of variable bindings […],
x/e the function / substitutes all variables in the expression x by the values given by

the bindings in the environment e.
The parameter containing the text of the interpreted program is omitted. The function mkEnv
builds a new environment from a list of variables vs , a list of arguments as and an environment
e; the function getDef returns the definition of a function given its name. The evaluation of an
expression Exp  does not ‘compute’ anything, it can only build up a structure. Note that aaaa  is a
sugared version of a constructor.

State. A computation state in S-Graph is fully defined by the current program point and the cur-
rent environment. Variables originating from a program are called program variables  (p-vari-
ables) and are bound to constants in the environment. Since we consider only tail-recursive S-
Graph programs, states include only one program point PPoint  (such as IF, CALL, LET).

State  ::=  PPoint Env
Env    ::=  [Bind*]

Bind   ::=  Var aaaa  Const
Const  ::=  ATOM Atom  |  CONS Const Const

Fig. 4. State in S-Graph.

5 Information Propagation
The main hindrance in removing redundant tests is the lack of sufficient information about
unknown values during program specialization. Starting from constant propagation we will
develop step-by-step a driving mechanism for S-Graph which ensures the full propagation of
information along the specialized program branches. Each step represents a different degree of
information propagation.



5.1 Constant Propagation
Constants are the most elementary form of information that can be propagated during program
specialization. During specialization we do not deal with precise states, but with configurations
representing sets of states. If we do not want to define perfect driving, then we may approximate
the sets of states using covering configura tions that represent larger sets of states.

Configuration. A simple method for representing sets of states constructively uses expressions
with free variables  [24]. We introduce placeholders, called configuration variables (c -
variables), which range over arbitrary constants. A p-variable in the environment of a configu-
ra tion may be bound to a constant or to a c-variable (representing a ‘dynamic’ values). This is
suf ficient for constant propagation.

Conf   ::=  PPoint Cenv
Cenv   ::=  [Bind*]

Bind   ::=  Var aaaa  Cval
Cval   ::=  Const      |  CVAR Name
Const  ::=  ATOM Atom  |  CONS Const Const

Fig. 5. Configuration for constant propagation.

Driving. The first version is obtained by extending the S-Graph interpreter (Fig. 3) to propagate
constants wherever possible and to produce residual code where the involved constants are
‘dynamic’ (Fig. 7).

• If the result of evaluating an expression in a LET  is not a constant then the p-variable is
bound to a fresh c-variable (generated by the function newcvar).

• If a contraction (EQA?, CONS?) can not be decided then both branches have to be driven
(function cntr returns BOTH and an environment for each branch).

This implements what is known as constant propagation , and corresponds to first-order partial
evaluators based on constant propagation (e.g. [12]).

Remark. It was noticed [12] that the test const?  does not require the values proper and may be
approximated in a separate pre-processing phase, called binding-time analysis . This granted the
first self-applica tion of a partial evaluator.

5.2 Partially Static Structures
A simple extension is the propagation of partially static structures in driving. This corresponds
to first-order partial evaluators using partially static structures (e.g. [16,10,2,4]). This extension
completes the construction of the function dev (in the following we will refine the handling of
contractions during driving).

Configuration. The description of a configuration is refined by replacing the definition of Cval.

Conf   ::=  PPoint Cenv
Cenv   ::=  [Bind*]

Bind   ::=  Var aaaa  Cval
Cval   ::=  ATOM Atom  |  CVAR Name  |  CONS Cval Cval

Fig. 6. Configuration for partially static structures.

Driving. The propagation of partially static structures is obtained by replacing the LET clause in
function dev  (Fig. 7) by

dev (LET v x t) e  =  dev t (e&[v aaaa   x/e])



dev   :: Tree → Cenv → Tree
cntr  :: Cntr → Cenv → Branch
const :: Cval → Bool
data Branch  =  TRUE Cenv | FALSE Cenv | BOTH Cntr Cenv Cenv

dev (CALL f as) e  =  dev t (mkEnv vs as e)
                      where (DEFINE _ vs t) = getDef f

dev (LET v x t) e  =  let x' = x/e in
                      if const? x'
                         then dev t (e&[v  aaaa x'])
                         else LET v' x' (dev t (e&[v  aaaa v']))
                              where v' = newcvar

dev (IF c t' t") e =  case cntr c e of
                           TRUE  e'       → dev t' e'
                           FALSE e"       → dev t" e"
                           BOTH  c' e' e" → IF  c' (dev t' e')
                                                 (dev t" e")
dev x e            =  x/e

cntr (EQA? x y) e  =
     let x' = x/e; y' = y/e in
     case (x', y') of
          (ATOM a, ATOM a) → TRUE  e
          (ATOM _, ATOM _) → FALSE e
          (CVAR _, CVAR _) → BOTH (EQA? x' y') e e
          (CVAR _, ATOM _) → BOTH (EQA? x' y') e e
          (ATOM _, CVAR _) → BOTH (EQA? x' y') e e

cntr (CONS? x h t) e =
     let x' = x/e in
     case x' of
          CONS a b → TRUE (e&[h  aaaa a, t aaaa  b])
          ATOM _   → FALSE e
          CVAR _   → BOTH (CONS? x' h' t') e' e
                    where h' = newcvar; t' = newcvar
                        e' = e&[h aaaa  h', t aaaa  t']
const? (ATOM _)    =  True
const? (CVAR _)    =  False
const? (CONS a b)  =  and (const? a) (const? b)

Fig. 7. Constant propagation in S-Graph.

5.3 Propagation of Contraction Information
Using constant propagation and partially static structures we are able to prune many infeasible
branches, but not all (see example in Sect. 3).

Configuration. In addition to the propagation of information by substitution (which we refer to
as positive information, or assertions), we need to propagate the negation of this information
(restrictions ). We refine configurations by adding a list of restrictions on c-variables. A
restriction of the form Rval # Rval  states which values must not be equal. The restriction list
may contain zero, one or more restrictions for each c-variable. Otherwise the configura tion
remains unchanged (Fig. 8). The aaaa and #  are sugared versions of constructors.

Assertions. Propagating assertions requires updating the bindings of p-variables (cor responding
to the well-known concept of unification). To capture the information that two unknown values
are equal, we exploit the equality of c-variables . This is done by adding an extra case for equal
c-variables to the EQA?  clause. This goes beyond constant propagation. For example, the asser-
tion x='5 is passed into the then-branch simply by replacing the c-variable cx  by '5 :

([x aaaa  cx],[])  (EQA? x '5)  ⇒   then-branch: ([x aaaa  '5],[])



Conf ::=  PPoint Cenv
Cenv ::=  [Bind*] [Restr*]

Bind ::=  Var aaaa Cval
Cval ::=  ATOM Atom  |  CVAR Name  |  CONS Cval Cval

Restr ::=  Rval # Rval
Rval ::=  ATOM Atom  |  CVAR Name  |  CONS

Fig. 8. Configuration for perfect driving.

Restrictions. Propagating restrictions requires updating a list of restrictions on c-variables. For
example, the restriction x≠'5 is passed into the else-branch by adding a restriction on the c-
variable cx :

([x aaaa  cx],[])  (EQA? x '5)  ⇒   else-branch: ([x aaaa  cx],[cx  # '5])

The mechanism for checking restrictions is separated into the function both which is common
for both contractions. If a contraction can not be decided using the list of p-variable bindings,
then the list of restrictions is checked whether, possibly, a restriction exists which can be used to
decide the contraction. In case such a restriction is found one can cut off the infeasible then-
branch. This is done in function both by checking whether a substitution in the list of
restrictions leads to a contradic tion.

Auxiliary functions.  To simplify the definition we provide the following three functions for
manipulating a configuration environment e : the function &  adds new bindings to e, the
function \  adds new restrictions to e, and the substitution /  is extended to substitute variables in
the configuration environment. In our case these functions may be defined as follows (the
function ++  is list append, the function b2r converts a Bind into a Restr):

(b,r) & bs  =  ((b++bs), r)
(b,r) / bs  =  ((b/bs), (r/(b2r bs)))
(b,r) \ bs  =  ( b,     (r++(b2r bs)))

During driving, c-variables are generated and may disappear as result of a substitution, leaving
‘dangling’ restrictions or tautologies, such as 'A # 'B . They may be cleared out (e.g. after / ),
though this does not interfere with driving.

Correctness and Perfectness. In order to verify S-Graph driving we have to prove that the
mechanism is correct and perfect. The correctness of driving with respect to the interpretive
definition of S-Graph ensures that the process tree contain at least all necessary (and maybe
some infeasible) branches. The perfectness of driving guarantees that the process tree contains
no infeasible branches. The existence of a perfectness theorem guarantees that driving propa-
gates all information sufficient for pruning the process tree to its minimal size (omitted due to
lack of space). This completes the task of defining perfect driving for S-Graph (Fig. 9).

Remark. In order to keep the presented perfect tree developer as simple as possible and at the
same time to preserve the termination properties of the subject programs in the residual pro-
grams, we require that subject programs do not go ‘wrong’, i.e. atomic equality EQA? is not
applied to non-atomic arguments. This may be guaranteed by adding a CONS? test for each non-
atomic argument of EQA? in the subject programs.

6 Perfect Driving of a Naive Pattern Matcher
By special iz ing the naive pattern matcher (Fig. 2) with respect to a fixed pattern we show that
perfect driving coupled with a simple folding strategy obtains the efficiency of a matcher
generated by the Knuth, Morris & Pratt (KMP) algorithm [15]. This effect is achieved without
the need for an ‘insightful reprogramming’ of the naive matcher as necessary for partial
evaluation [5,11]. The complexity of the specialized algorithm is O (n), where n is the length of
the string. The naive algorithm has complexity O(m.n), where m  is the length of the pattern.



dev  :: Tree → Cenv → Tree
cntr :: Cntr → Cenv → Branch
both :: Cntr → Cenv → Cenv → [Bind] → Branch
contradict :: Cenv → Bool
data Branch  =  TRUE Cenv | FALSE Cenv | BOTH Cntr Cenv Cenv

dev (CALL f as) e  =  dev t (mkEnv vs as e)
                      where (DEFINE _ vs t) = getDef f

dev (LET v x t) e  =  dev t (e&[v  aaaa   x/e])

dev (IF c t' t") e =  case cntr c e of
                           TRUE  e'       → dev t' e'
                           FALSE e"       → dev t" e"
                           BOTH  c' e' e" → IF  c' (dev t' e')
                                                  (dev t" e")
dev x e            =  x/e

cntr (EQA? x y) e  =
     let x' = x/e; y' = y/e in
     case (x', y') of
          (ATOM a, ATOM a) → TRUE  e
          (ATOM _, ATOM _) → FALSE e
          (CVAR a, CVAR a) → TRUE  e
          (CVAR _, CVAR _) → both (EQA? x' y') e e [x' aaaa   y']
          (CVAR _, ATOM _) → both (EQA? x' y') e e [x' aaaa   y']
          (ATOM _, CVAR _) → both (EQA? x' y') e e [y' aaaa   x']

cntr (CONS? x h t) e  =
     let x' = x/e in
     case x' of
          CONS a b → TRUE (e&[h  aaaa a, t aaaa  b])
          ATOM _   → FALSE e
          CVAR _   → both (CONS? x' h' t') e' e [x'  aaaa CONS h' t']
                    where h' = newcvar; t' = newcvar
                         e' = e&[h  aaaa h', t aaaa  t']
both c' te fe b  =
     let e' = te/b; e" = fe\b in
     if  contradict e' then FALSE e"
                       else BOTH  c' e' e"
contradict (b,r) =
     or (map contradict' r)
     where contradict' (x #  x)  =  True
           contradict' (_ #  _)  =  False

Fig. 9. Perfect driving in S-Graph.

Folding. At any point during driving one has a way to examine a non-terminal configuration
and to decide to do one of: (i) fold the current configuration into an existing configuration; (ii)
drive the configuration further. Two questions are relevant for folding:

1) Which program points  do we consider for folding?
2) What is the criterion for folding?

It is sufficient to couple perfect driving with folding of identical configurations  for obtaining
efficient matchers from a naive pattern matcher and a given pattern. Driving can be coupled
with more sophisticated folding strategies, but this is beyond the scope of this paper (and not
needed for the example). Folding of identical configurations answers the questions as follows:

1) Dynamic conditionals are considered for folding.
2) Two configurations represent the same set of states.



The method of dynamic conditionals is a well-known technique in program specialization
[22,3]: only those program points are considered for folding which introduce a branching (the
conditional can not be decided, it is ‘dynamic’).

When the descriptions of two configurations are identical (i.e. contain the same bindings
and restrictions, modulo variable renaming) they represent the same set of states and one may,
instead of continuing driving, add a new transition back from the current configuration into the
old configuration.

(DEFINE F1 [s]
  (IF (CONS? s shead-1 stail-2)
    (IF (EQA? shead-1 'A)
      (IF (CONS? stail-2 shead-3 stail-4)
        (IF (EQA? shead-3 'A)
          (CALL F5 [stail-4])
          (CALL F1 [stail-4]))
        'FAILURE)
      (CALL F1 [stail-2]))
    'FAILURE))

(DEFINE F5 [stail-4]
  (IF (CONS? stail-4 shead-5 stail-6)
    (IF (EQA? shead-5 'B)
      'SUCCESS
      (IF (EQA? shead-5 'A)
        (CALL F5 [stail-6])
        (CALL F1 [stail-6])))
    'FAILURE))

Fig. 10. KMP-like residual program for the pattern AAB.

7 Related Work
The principles of driving were first formulated in the early seventies by Turchin [20,21] and
further developed in the eighties [22,24]. From its very inception, supercompilation has been
tied to a specific programming language, called Refal [24]. Applications of supercompilation
include, among others, program specialization, program inversion and theorem proving. Other
related aspects have been investigated in [1,7,8,13,14,17,18,26]. The notion of perfect process
graphs and perfect driving were introduced in [22,23].

The language S-Graph is closely related to Turchin’s Refal graphs [25]. But due to S-
Graph’s simpler data structure, untyped variables and only two elementary contractions, one
may build rather clear and concise driving algorithms. In particular, there is only one way to
compose and decompose S-expressions (as opposed to Refal data structures). There is a close
relation between driving and the neighborhood analysis for S-Graph [1]. Another ‘graph-like’
language representing decision trees, was used by Bondorf for the implementation of a self -
applicable partial evaluator Treemix [2].

Specializing a naive string matcher is a typical problem to which various methods of
program manipulation have been applied. A partial evaluator can achieve the same non-trivial
result after identifying static components in the naive matcher and reprogramming the subject
program [5,11]. Clearly, doing this by using an “automatic insight” frees the user from
performing such subtle tasks. Generalized Partial Computation (GPC), another principle for
program specialization based on partial evaluation and theorem proving, achieves the same
optimal version [6]. In its essence GPC is related to driving, but differs in the propagation of
arbitrary predicates, assuming the use of a theorem prover. Disunification in GPC was
considered in [19]. It is not surprising, that the same optimal pattern matcher can be achieved by
a Refal supercompiler [9]. Note that we used only a small part of the supercompilation method-
ology: perfect driving for a language with tree-structured data coupled with a simple folding
strategy.



8 Conclusion
We introduced a simple model for assessing the ‘quality’ of program specialization: the closer a
process tree is to a perfect one, the better the method. This enables us to rate various special iza-
tion techniques. Although specialization methods vary from language to language, they all have
the same goal in common: propagating as much information as possible in order to increase the
efficiency of the resulting programs.

We showed that a mechanism for perfect driving can be constructed for a simple language,
called S-Graph. On the one hand the propagation of additional information requires extra work
dur ing specialization, but on the other hand less time is spent for developing infeasible branch-
es. Most important, the efficiency of the resulting programs may be improved considerably. In
particular, perfect driving coupled with a simple folding strategy obtains the efficiency of a
matcher generated by the Knuth, Morris & Pratt algorithm without ‘insightful reprogrammig’ of
the naive matcher. This reveals that the power of Turchin’s supercompilation method is inde-
pendent of the language used to express it (i.e. Refal) and that the principles may be applied to
other languages. Partial evaluation and supercompilation do not contradict each other and the
question of integrating them is on the agenda. How far these principles can be taken, how they
can be applied to more realistic languages and what their limitations are will be a task for future
research.
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