Higher-Order Functions
as a Substitute for Partial Evaluation
(A Tutorial)

Sergei A. Romanenko
sergei.romanenko@supercompilers.ru

Keldysh Institute of Applied Mathematics
Russian Academy of Sciences

Outline

1. Defining a language by an interpreter
 - Interpreters and partial evaluation
 - An example interpreter
 - Representing recursion by cyclic data structures
Outline

1. Defining a language by an interpreter
 - Interpreters and partial evaluation
 - An example interpreter
 - Representing recursion by cyclic data structures

2. Separating binding times
 - What is “binding time”
 - Lifting static subexpressions
 - Liberating control
 - Separating binding times in the interpreter
 - Functionals and the separation of binding times

3. Conclusions
Outline

1. Defining a language by an interpreter
 - Interpreters and partial evaluation
 - An example interpreter
 - Representing recursion by cyclic data structures

2. Separating binding times
 - What is “binding time”
 - Lifting static subexpressions
 - Liberating control
 - Separating binding times in the interpreter
 - Functionals and the separation of binding times

3. Conclusions
Outline

1. Defining a language by an interpreter
 - Interpreters and partial evaluation
 - An example interpreter
 - Representing recursion by cyclic data structures

2. Separating binding times
 - What is “binding time”
 - Lifting static subexpressions
 - Liberating control
 - Separating binding times in the interpreter
 - Functionals and the separation of binding times

3. Conclusions
Suppose, our program is written in Standard ML (a strict functional language). Let us define an “interpreter”, a function `run`, whose type is

\[
\text{val run : prog * input -> result}
\]

Then, somewhere is the program we can write a call

\[
... \text{run (prog, d)} ...
\]

where

- `run` – an interpreter.
- `prog` – a program in the language implemented by `run`.
- `d` – input data.
Removing the overhead due to interpretation

Problem
A naïve interpreter written in a straightforward way is likely to introduce a considerable overhead.

Solution
Refactoring = rewriting = “currying” the interpreter.

```ocaml
val run : prog * input -> result
... run (prog, input) ...
```

can be replaced with

```ocaml
val run : prog -> input -> result
... (run prog) input ...
```
1st Futamura projection in the 1st-order world

1st-order world

- A program p is a text, which cannot be applied to an input d directly.
- We need an explicit function L defining the “meaning” of p, so that Lp is a function and $Lp d$ is the result of applying p to d.

Definition

A specializer is a program $spec$, such that

$L p (s, d) = L (L spec (p, s)) d$

The 1st Futamura projection

$L run (prog, input) = L (L spec(run, prog)) input$
1st Futamura projection in the higher-order world

Higher-order world
- We can pretend that a program \(p \) is a function, so that \(p \, d \) is the result of applying \(p \) to \(d \).

Definition
- A specializer is a program \(\text{spec} \), such that
 \[
 p \,(s, d) = \text{spec} \,(p, s) \, d
 \]

The 1st Futamura projection
- \[
 \text{run} \,(\text{prog}, \text{input}) = \text{spec} \,(\text{run}, \text{prog}) \, \text{input}
 \]

The 2nd Futamura projection
- \[
 \text{run} \,(\text{prog}, \text{input}) = \text{spec} \,(\text{spec}, \text{run}) \, \text{prog} \, \text{input}
 \]
Refactoring \textit{run} to \textit{spec(spec, run)} by hand

\textbf{Observation}

\textit{spec(spec, run)} takes as input a program \textit{prog} and returns a function that can be applied to some input data \textit{input}.

\textbf{An idea}

Let try to manually refactor a naïve, straightforward interpreter \textit{run} to a “compiler”, equivalent to \textit{spec(spec, run)}.

\textbf{The sources of inspiration}

A few old papers (1989–1991) about “fuller laziness” and “free theorems”.

\textbf{What is different}

We shall apply the ideas developed for lazy languages to a strict language.
References – “Fuller laziness”

- Carsten Kehler Holst. Syntactic currying: yet another approach to partial evaluation. Student report 89-7-6, DIKU, University of Copenhagen, Denmark, July 1989.

References - “Free theorems”

Let us consider an interpreter defined in Standard ML as a function
\(\text{run} \) having type

\[
\text{val run : prog} \to \text{int list} \to \text{int}
\]

We suppose that

- A program \(\text{prog} \) is a list of mutually recursive first-order
 function definitions.
- A function in \(\text{prog} \) accepts a fixed number of integer
 arguments.
- A function in \(\text{prog} \) returns an integer.
- The program execution starts with calling the first function in
 \(\text{prog} \).
Abstract syntax of programs

datatype exp =
 INT of int
| VAR of string
| BIN of string * exp * exp
| IF of exp * exp * exp
| CALL of string * exp list

type prog =
 (string * (string list * exp)) list;
The factorial function

```haskell
fun fact x =
  if x = 0 then 1 else x * fact (x-1)
```

when written in abstract syntax, takes the form

```plaintext
val fact_prog = [
  ("fact", (["x"],
              IF(
                BIN("=" , VAR "x" , INT 0),
                INT 1,
                BIN("*" ,
                     VAR "x" ,
                     CALL("fact" ,
                          [BIN("-" , VAR "x" , INT 1)])))
)) ];
```
First-order interpreter – General structure

fun eval prog ns exp vs =
 case exp of
 | INT i => ...
 | VAR n => ...
 | BIN(name, e1, e2) => ...
 | IF(e0, e1, e2) => ...
 | CALL(fname, es) => ...

and evalArgs prog ns es vs =
 map (fn e => eval prog ns e vs) es

fun run (prog : prog) vals =
 let val (_, (ns0, body0)) = hd prog
 in eval prog ns0 body0 vals end
fun eval prog ns exp vs =
 case exp of
 INT i => i
 | VAR n =>
 getVal (findPos ns n) vs
 | BIN(name, e1, e2) =>
 (evalB name) (eval prog ns e1 vs, eval prog ns e2 vs)
 | IF(e0, e1, e2) =>
 if eval prog ns e0 vs <> 0
 then eval prog ns e1 vs
 else eval prog ns e2 vs
 | CALL(fname, es) => ...
fun eval prog ns exp vs =
 case exp of
 | INT i => ...
 | VAR n => ...
 | BIN(name, e1, e2) => ...
 | IF(e0, e1, e2) => ...
 | CALL(fname, es) =>
 let
 val (ns0, body0) = lookup prog fname
 val vs0 = evalArgs prog ns es vs
 in eval prog ns0 body0 vs0 end
Formally, the present version of `run` is “curried”, i.e. the evaluation of `run prog` returns a function. But, in reality, the evaluation starts only when `run` is given 2 arguments:

```
run prog vals
```

A problem

For the most part, `eval` recursively descends from the current expression to its subexpressions. But, when evaluating a function call, it replaces the current expression with a new one, taken from the whole program `prog`. Thus, if we tried to evaluate `eval` with respect to `exp`, this might result in an infinite unfolding!
"Denotational" approach: a cyclic function environment

Refactoring: replacing `prog` with a function environment `phi`

```
eval prog ns exp vs → eval phi ns exp vs
```

`phi` should map function names to their "meanings", i.e. functions.

A problem

- Recursive calls in `prog` lead to a cyclic functional environment `phi`.
- Standard ML is a strict language, for which reason we cannot directly represent `phi` as an infinite tree.

A solution

Standard ML allows us to use "imperative features": locations, references and destructive updating.
Imperative features of Standard ML

- `ref v` creates a new location, initializes it with `v`, and returns a reference to the new location.
- `! r` returns the contents of the location referenced to by `r`. The contents of the location remains unchanged.
- `r := v` replaces the contents of the location referenced by `r` with a new value `v`.

An idea

- `phi fname` should return a reference to the “meaning” of the function `fname`.
- We can easily create `phi fname` with locations initialized with dummy values and update the locations with correct values at a later time.
fun eval phi ns exp vs =
 case exp of
 | INT i => ... |
 | VAR n => ... |
 | BIN(name, e1, e2) => ... |
 | IF(e0, e1, e2) => ... |
 | CALL(fname, es) =>
 let val r = lookup phi fname
 in (!r) (evalArgs phi ns es vs) end

and evalArgs phi ns es vs =
 map (fn e => eval phi ns e vs) es
Initializing \(\phi \)

\[
\text{fun dummyEval (vs : int list) : int =}
\]
\[
\quad \text{raise Fail "dummyEval"}
\]

\[
\text{fun app f [] = ()}
\]
\[
\quad | \text{app f (x :: xs) = (f x : unit; app f xs)}
\]

\[
\text{fun run (prog : prog) =}
\]
\[
\quad \text{let val phi = map (fn (n,_) => (n,ref dummyEval)) prog}
\]
\[
\quad \quad \text{val (_, r0) = hd phi}
\]
\[
\quad \text{in app (fn (n, (ns, e)) =>}
\]
\[
\quad \quad \quad (\text{lookup phi n) := eval phi ns e)}
\]
\[
\quad \quad \text{prog;}
\]
\[
\quad \text{!r0}
\]
\[
\text{end}
\]
Outline

1. Defining a language by an interpreter
 - Interpreters and partial evaluation
 - An example interpreter
 - Representing recursion by cyclic data structures

2. Separating binding times
 - What is “binding time”
 - Lifting static subexpressions
 - Liberating control
 - Separating binding times in the interpreter
 - Functionals and the separation of binding times

3. Conclusions
In an expression like

\[(\text{fn } x \Rightarrow \text{fn } y \Rightarrow \text{fn } z \Rightarrow e)\]

- \(x\) is bound \textit{before} \(y\), \(y\) is bound \textit{before} \(z\).
- The variables that are bound first are called \textit{early}, and the ones that are bound later are called \textit{late} (Holst, 1990).
- The early variables are said to be more \textit{static} than the late ones, whereas the late variables are said to be more \textit{dynamic} than the earlier ones.
Consider the declarations

\[
\text{val } h = \text{fn } x \Rightarrow \\
\quad \text{fn } y \Rightarrow \\
\quad \quad \sin x \times \cos y \\
\text{val } h' = h \ 0.1 \\
\text{val } v = h' \ 1.0 + h' \ 2.0
\]

When \(h' \) is declared, no real evaluation takes place, because the value of \(y \) is not known yet. Hence, \(\sin 0.1 \) will be evaluated twice, when evaluating the declaration of \(v \).
This can be avoided by “lifting” \(\sin x \) in the following way:

\[
\text{val } h = \text{fn } x => \\
\quad \text{let val } \sin_x = \sin x \\
\quad \text{in fn } y => \sin_x * \cos y \text{ end}
\]

The transformation of that kind, when applied to a program in a lazy language, is known as transforming the program to a “fully lazy form” (Holst 1990).
Lifting may be unsafe

A danger

In the case of a strict language, the lifting of subexpressions may change termination properties of the program!

For example, if \texttt{monster} is a function that never terminates, then evaluating
\begin{verbatim}
val h = fn x => fn y => monster x * cos y
val h' = h 0.1
\end{verbatim}
terminates, while the evaluation of
\begin{verbatim}
val h = fn x =>
 let val monster_x = monster x
 in fn y => monster_x * cos y end
val h' = h 0.1
\end{verbatim}
does not terminate.
Lifting a condition

```plaintext
fn x =>
  fn y => if (p x) then (f x y) else (g x y)
```

By lifting \((p \ x) \) we get

```plaintext
fn x =>
  let val p_x = (p x)
  in
  fn y => if p_x then (f x y) else (g x y)
  end
```

The result is not as good as we’d like

- Lifting the condition \((p \ x) \) does not remove the conditional.
- We still cannot lift \((f \ x) \) and \((g \ x) \), because this would result in unnecessary computation.
Let us return to the expression

\[
\text{fn } x \Rightarrow \\
\text{fn } y \Rightarrow \text{if } (p \ x) \text{ then } (f \ x \ y) \text{ else } (g \ x \ y)
\]

Instead of lifting the test \((p \ x)\), we can push \(\text{fn } y \Rightarrow\) over \(\text{if } (p \ x)\) into the branches of the conditional!

\[
\text{fn } x \Rightarrow \\
\text{if } (p \ x) \text{ then} \\
\text{fn } y \Rightarrow (f \ x \ y) \\
\text{else} \\
\text{fn } y \Rightarrow (g \ x \ y)
\]
Safely lifting static subexpression inside each branch

Finally, \((f \, x)\) and \((g \, x)\) can be lifted, because this will not necessary lead to unnecessary computation.

\[
\text{fn } x \Rightarrow \\
\text{ if (p \, x) then } \\
\text{ let val f_x = (f \, x) } \\
\text{ in (fn y => f_x \, y) end } \\
\text{ else } \\
\text{ let val g_x = (g \, x) } \\
\text{ in (fn y => g_x \, y) end }
\]

A subtlety

Evaluating \((f \, x)\) or \((g \, x)\) may be still useless, if the function returned by the expression is never called.
Pushing \(\text{fn } y => \) into branches of a case

\(\text{fn } y => \) can also be pushed into other control constructs, containing conditional branches. For example,

\[
\text{fn } x => \\
\text{fn } y => \\
\text{case } f \ x \ \text{of} \\
\text{A} => g \ x \ y \\
\text{B} => h \ x \ y
\]

can be rewritten as

\[
\text{fn } x => \\
\text{case } f \ x \ \text{of} \\
\text{A} => \text{fn } y => g \ x \ y \\
\text{B} => \text{fn } y => h \ x \ y
\]
The function `run` is good enough already, and need not be revised. So let us consider the definition of the function

```haskell
fun eval phi ns exp vs =
  case exp of
    INT i => i
  ...
```

First of all, let us move `vs` to the right hand side:

```haskell
fun eval phi ns exp =
  fn vs =>
    case exp of
      INT i => i
  ...
```
Now we can push \(\text{fn vs =>} \) into the \text{case} construct:

\[
\text{fun eval phi ns exp = case exp of} \\
\text{INT i => (fn vs => i)} \\
\ldots
\]

so that the right hand side of each match rule begins with \(\text{fn vs =>} \), and can be transformed further, independently from the other right hand sides.
Refactoring eval: final result for INT, VAR, BIN

fun eval phi ns exp =
 case exp of
 | INT i => (fn vs => i)
 | VAR n =>
 getVal’(findPos ns n)
 | BIN(name, e1, e2) =>
 let val b = evalB name
 val c1 = eval phi ns e1
 val c2 = eval phi ns e2
 in (fn vs => b (c1 vs, c2 vs)) end
 | IF(e0, e1, e2) => ...
 | CALL(fname, es) => ...

and evalArgs phi ns [] = ...
Refactoring eval: final result for IF

fun eval phi ns exp =
 case exp of
 INT i => ...
 | VAR n => ...
 | BIN(name, e1, e2) => ...
 | IF(e0, e1, e2) =>
 let val c0 = eval phi ns e0
 val c1 = eval phi ns e1
 val c2 = eval phi ns e2
 in fn vs => if c0 vs <> 0 then c1 vs else c2 vs
 end
 | CALL(fname, es) => ...

and evalArgs phi ns [] = ...
Refactoring `eval`: final result for `CALL`

```haskell
fun eval phi ns exp =
  case exp of
    INT i => ...
  | VAR n => ...
  | BIN(name, e1, e2) => ...
  | IF(e0, e1, e2) => ...
  | CALL(fname, es) =>
    let
      val r = lookup phi fname
      val c = evalArgs phi ns es
    in fn vs => (!r) (c vs) end

and evalArgs phi ns [] = ...
```
Refactoring `eval`: final result for `getVal'` and `evalArgs`

```ml
fun getVal' 0 = hd
| getVal' n = 
  let val sel = getVal' (n-1)
  in fn vs => sel (tl vs) end

fun eval phi ns exp = ... 

and evalArgs phi ns [] = (fn vs => [])
| evalArgs phi ns (e :: es) = 
  let val c' = eval phi ns e
      val c'' = evalArgs phi ns es
  in fn vs => c' vs :: c'' vs end
```
We do not know how to lift static subexpressions appearing in the arguments of higher-order functions:

```
  and evalArgs phi ns es vs =
      map (fn e => eval phi ns e vs) es
```

A straightforward solution consists in replacing functionals with explicit recursion:

```
  and evalArgs phi ns [] vs = []
  | evalArgs phi ns (e :: es) vs =
      eval phi ns e vs ::
      evalArgs phi ns es vs
```
Functionals and the separation of binding times

Separating binding times without removing functionals

A suggestion by Holst and Hughes (1990)

Binding times can be separated by applying commutative-like laws, which can be derived from the types of polymorphic functions using the “free-theorem” approach (Wadler 1989).

For example, for the function `map` a useful law is

\[
\text{map} \ (d \circ s) \ \text{xs} = \text{map} \ d \ (\text{map} \ s \ \text{xs})
\]

because, if \(s \) and \(\text{xs} \) are static subexpressions, and \(d \) a dynamic one, then `map s xs` is a static subexpression, which can be lifted.
Refactoring evalArgs without removing map

The following subexpression in the definition of \texttt{evalArgs}

\[
\text{map (fn e => eval phi ns e vs) es}
\]

can be transformed into

\[
\text{map ((fn c => c vs) o (eval phi ns)) es}
\]

and then into

\[
\text{map (fn c => c vs)}
\]
\[
\quad \text{(map (eval phi ns) es)}
\]

Now the subexpression

\[
\text{(map (eval phi ns) es)}
\]

is purely static, and can be lifted out.
Outline

1. Defining a language by an interpreter
 - Interpreters and partial evaluation
 - An example interpreter
 - Representing recursion by cyclic data structures

2. Separating binding times
 - What is “binding time”
 - Lifting static subexpressions
 - Liberating control
 - Separating binding times in the interpreter
 - Functionals and the separation of binding times

3. Conclusions
If we write language definitions in a first-order language, we badly need a partial evaluator in order to remove the overhead introduced by the interpretation.

If the language provides functions as first-class values, an interpreter can be relatively easily rewritten in such a way that it becomes more similar to a compiler, rather than to an interpreter.

The language in which the interpreters are written need not be a lazy one, but, if the language is strict, some attention should be paid by the programmer to preserving termination properties.