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I NTRODUCTI ON 

Program specialization [Dixon 711 seems to be a promising and 

powerful technique that can lead to new program development methodology. 

By program special iza t ion we understand constructing, when given a 

"general-purpose" program and some restriction on its usage, a more 

efficient "specialized" residual program. Being optimized and simplified 

version of the original program, the residual program, however, must be 

equivalent to the original one when used according to the restriction. 

By specializer we understand a system that, given a program and a 

restriction, will produce a specialized version of the original program. 

Program specialization can be achieved by making use of different 

techniques, such as driving [Turchin 721, fold-unfold method 

[Burstall 771, partial evaluation [Futamura 711, [Beckman 761, mixed 

computation [Ershov 781, [Bulyonkov 841, the analysis of computational 

configurations [Turchin 791, [Turchin 861, variable splitting 

[Sestoft 861, and arity raising [Romanenko 881. 

The above techniques deal, for the most part, with two problems: 

control restructuring and data retyping (i.e. changing representation of 

data). 

As far as the control restructuring is concerned, various 



specialization techniques differ in the extent to which the program is 

reorganized. 

In the case of monovariant specialization any control point in the 

original program gives rise to zero or one cant-rol point in the residual 

program. 

In the case of polyvariant specialization a control point can give 

rise to more than one control point in the residual program. 

In the case of monogenetic specialization any control point in the 

residual program is produced from a single control point of the original 

program. 

In the case of polygenetic specialization a control point in the 

residual program may be produced from several control points of the 

original program. 

As far as the data representation is concerned, various 

specialization techniques differ in the use they make of retyping. 

Driving [ Turchin 72 I and the analysis of configurations 

[Turchin 791, [Turchin 861, which deal with functional programs, can be 

classified as polyvariant polygenetic methods with retyping. 

Monovariant monogenetic techniques for imperative programs are 

studied in [Ershov 781. Papers [Bulyonkov 841, [Barzdin 881 concern 

polyvariant monogenetic specialization techniques for imperative 

programs. 

The transformational approach [Ershov 811, [Ostrovski 881 is 

believed to include, at least potentially, all conceivable techniques of 

program specialization, not excluding the polygenetic ones. 

Of course, the more powerful techniques tend to be rather 

expensive, and it is difficult to make them completely automatic. Thus 

the choice of appropriate specialization techniques depends on the class 

of problems to be solved. 

An interesting application of specializers is compiler generation. 

It was found by Y. Futamura [Futamura 711 that interpreters can be 

converted to compilers by specializing a specializer with respect to the 

interpreters. Several years later it was realized [Beckman 761 that a 

transformer of interpreters into compilers can be produced by 

specializing a specializer with respect to a specializer. 

To put this approach into practice, we have to overcome the 

following difficulty. On the one hand, the specializer has to be 



sophisticated enough to achieve non-trivial specialization. On the other 

hand, to be specializable, the specializer can't afford to be too 

compl icated. 

The group under N.D.Jones at Copenhagen university was the first to 

overcome the above difficulty [Jones 851, [Sestoft 861, [Sestoft 881. 

Since experiments had shown the monovariant specialization to be 

unsatisfactory for this application, the specializer had to do the 

polyvariant specialization. Again, the monogenetic specialization proved 

to be adequate for the purpose (despite there being a lot of problems 

that have to be dealt with by polygenetic specialization [Turchin 821, 

[Wadler 881). 

The usefulness of retyping proved to be more problematic. It was 

found that retyping can be dispensed with at the cost of the residual 

programs having rat her unnatural structure. Suppose, for example, that 

an interpreter is to be specialized with respect to a program. Since the 

interpreter is supposed to accept an arbitrary input program, the number 

of variables in this program cannot be known in advance. Thus the 

variable's values are likely to be represented in the interpreter as a 

single value assigned to one of the interpreter's variables. If the 

specializer is unable to split this variable, the residual program will 

use a single variable to represent all the values. A reasonable residual 

program, however, would keep each value in a separate variable 

[Sestoft 861. 

To rectify the drawback, the author suggested that the Copenhagen 

specializer should be supplemented with an additional phase, whose 

purpose would be to do variable splitting [Romanenko 881. In the case of 

a functional language, variable splitting reduces to increasing the 

number of functions' parameters, for which reason this additional phase 

was given the name arity raiser. As pointed out by T.Mogensen arity 

raising is just a special case of retyping, thus any arity raiser is a 

re t yper . 
The arity raiser was found to improve the structure of residual 

programs without making the specializer excessively slow and intricate. 

The alternative to the arity raiser is to split variables on-line, 

i. e. at the time the residual program is being generated [Turchin 861, 

[Mogensen 881. This approach, however, can result in a mammoth, sluggish 

special izer. 



A short description of the ideas behind the arity raiser can be 

found in [Romanenko 881. The present paper gives a detailed account of 

the structure and principles of operation of an arity raiser dealing 

with programs in a subset of pure Lisp. 

1.  THE LANGUAGE MI XWELL 

In the following we consider programs written in the language 

Mixwell, which is a small subset of pure Lisp and was used as the 

subject language in the Copenhagen specializer MIX [Sestoft 861. Here is 

Mixwell's abstract syntax. 

pgm E Program programs 

fd E FnDef function definitions 

exp,e E Exp expressions 

f E FName function names 

x E VName variable names 

58 E Atom Lisp atoms 

6' E SExp Lisp S-expressions 

Pgm . . . =  . fdl; . . . fd,; 

fd . . .  . =  f(xl , . . . .  xml = exp 

exp . . =  . .  X 

I quote€ 

I if exp then exp else exp 
0 1 2 

I call f(expl, . . . ,  expml 
I car(exp1 I cdr(exp1 I cons(exp ,exp21 I 
I atom(exp1 I equal(expl,exp 1 

2 
€ . . .=  . dl I (GI . G2) 

A Mixwell program is a list of function definitions, the first 

function being the goal function. The goal function is to be called 

first, and inputs to the program are through the parameters of this 

function. 

The body of a function is an expression, which is constructed from 

variables appearing in the function's formal parameter list, from 

constants quote and operators car, cdr, cons, atom and equal (as in 



Lisp), conditionals if and defined function calls call. 

The only data type is well-founded (i.e. non-circular) 

S-expressions as known from Lisp. 

All primitive and defined functions, except the conditional if, are 

strict in all positions. All parameters are called by value. 

We use some "sintactic sugar". The keyword call is omitted in cases 

where the name of the function being called is different from the names 

of the primitive functions. quote6 can be written as '6, 

Constants & 1 . E 2 . . . .  6 n . n i 1 . . .  1 )  can be written as 

2.SPLITTING A FORMAL PARAMETER 

Suppose the definition of function f in a program has the form 

f ( .  . . , xkI.. . = exp 

Then the following transformation will be referred to as the splitting 

of the function's k-th parameter. 

Let x' and x" be two variables different from all formal parameters 

of the function f. Then the splitting of x into x' and x" can be done in 

two steps. 

At the first step, the original definition of f is replaced with 

where exp[ x +cons (x' , x" ) 1 denotes the expression obtained from exp by k 
replacing all occurrences of x with cons(x',x"). k 

At the second step, all calls of the function f in all function 

definitions are transformed, each call of the form call f(. . .  ,ek, . .  . 1 

being replaced with call f( . . . ,  car(ek), cdr(ek), . . .  1. 

Thus, the original variable x is replaced by two new variables x' k 
and x" containing enough information for the value of x if needed, to k' 
be reconstructed. To put it more exactly, the value of x can be k 
obtained by evaluating the expression cons(x',x"). 

The fact that the formal parameter x of the function f is to be 

split into two variables x' and x" will, for the brevity's sake, be 



written as f(x + x' : :  x"). 

Example. Consider the program 

Let us perform the splitting g(u ul :: u2). After transforming 

the definition of g, we get 

Then we split the argument in the calls of g and get 

This program can be locally optimized, which results in 

Now we see that variable splitting is capable of producing 

parameters whose values are certain not to be needed. Such parameters 

can be recognized by a kind of backward analysis [Hughes 881 and 

eliminated. In the above program we can remove the parameter ul of the 

function g, which gives the program 

Thus, the principal use of variable splitting consists in paving 

the way for other transformations such as local optimization and 

elimination of unneeded parameters, the latter being, in a sence, a kind 

of "garbage collection at compile time". 

3.CONDITIONS OF THE VARIABLE SPLITTING CORRECTNESS 

The program transformation described above can be incorrect. For 

example, after performing the splitting g(u + ul : :  u2) in the program 

we get 



It is evident that the transformed program is not equivalent to the 

original one, because the original program terminates, with the result 

being the atom 'a, whereas the transformed program fails to apply car or 

cdr to the atom 'a and terminates abnormally. Thus we come to the 

conclusion: 

I 1 
Before splitting a parameter, we must make sure that, 

when the program is run, it is impossible for the para- 

meter's value to be an atom! 
I I 

Hence, to split a variable, we need to have a description of the 

structure of its values. Such descriptions will be referred to as types 

of variables. 

4. ANALYSIS OF RUN TIME TYPES 

To describe the structure of values to be taken by a variable, we 

use the following set of types. 

t E Type 

58 E Atom 

types 

Lisp atoms 

We assume the set of types to be equipped with reflexive partial 

ordering 5 recursively defined by the following rules: 

(i) t 5 any for all types t. 

(ii) I 5 t for all types t. 

(iii) cons(t1,t') 5 cons(tM t") if t' 5 t" and ti r t:. 
1 2  1' 2 1  1  

If t'5t" and tl+t", the type t" is said to be more general than the 



type t'. 

The set of types is a lattice, as for all types t',tM~Type there 

exist their least upper bound t'ut" and their greatest lower bound 

t' n t". Each set of types TEP(Type) has its least upper bound UT. Thus 

the set of types is a pointed continuous partial ordering (CPO) with the 

bottom I [Schmidt 861. It can be easily seen that the set of types has 

no chains of infinite height. In addition, each finite TdP(Type) has its 

greatest lower bound n ~ .  

A type represents a set of S-expressions. More specifically, let us 

define an "abstraction" function Abs mapping sets of S-expressions into 

types. Abs is defined in terms of an auxiliary function Abs' mapping 

S-expressions into types. 

Abs E P(SExp) + Type 
Abs' E SExp Type 

Let us define a "concretization" function Co reconstructing the set 

of S-expressions from a type: 

Co E Type + P( SExp) 

Co [ any1 = SExp 

Co[atom(&)l = { A )  

Co[cons(t',t")l = ( (8 '  . 8") 1 &'~Co[t'l and &"~Co[t"l) 

C0[lI = 0 

The following relations hold: 

Abs[Co[tll = t and E c Co[Abs[EIl 

Now let x be a variable in a program. The problem is to find a type 

t such that &~Co[tl for all & that can be taken as value by x when the 

program is run. It can be done by abstract interpretat ion [Jones 861 of 

the program, which amounts to performing the program's computations 

using abstract values in place of the actual ones. 



Suppose we have a program defining f unct ions fl, . . . ,  fh. Let 
F =  {fl, . . . ,  f 1, and, for each ~ E F ,  x be its j-th parameter, a(f) 

h f,j 
be its arity, and bodyf be its body, so that the definition of f has the 

form: 

Let 

8 E Env = VName + Type 

be an environment assigning a type to each parameter of a function. Let 

a E ArgDescr = F -+ Env 

be an argument type description assigning types to each function' s 

parame t ers . Let 

p E ResDescr = F Type 

be a result type description assigning a type to each function's result. 

All the sets above are equipped with reflexive partial orderings as 

follows: 

Env : e's8" e Vx~VName €)'(XI 5 8"(x) 

ArgDescr : a'sa" e V ~ E F  a'(f) 5 a"(f) 

ResDescr: p'sp" e V ~ E F  p'(f) 5 pN(f) 

We define two functions R and A to do the abstract interpretation 

using these ordered sets. 

The function R, given an expression exp, an environment 8, and a 

result type description p, computes the type of an expression's result. 

R E Exp + Env + ResDescr --+ Type 

R[xl 8 p = 8(x) 

Riquote €1 8 p = Abs' [ € 1  
R[if exp then exp' else exp1'I 8 p = 

R[exp'l 8 p U R[exp"l 9 p 

R[call f(expl, . . . ,  expm)l 8 p = p(f) 



if R[expl 8 p = any, 

R[car(exp)l 8 p = if R[exp] 8 p = cons(tJ,t"), 

otherwise. 

if R[expl 8 p = any, 

R[cdr(exp)l 8 p = if R[expl 8 p = cons(tJ,t"), 

otherwise. 

R[cons(exp',exp")l 8 p = 

cons( R[expJ1 8 p, R[expn1 8 p 

R[atom(exp)l 8 p = any 

R[equal(exp',exp")l 8 p = any 

The function A, given an expression exp, an environment 8, an 

argument type description a, and a result type description p, computes a 

new approximation to the final description of each function's parameter 

values . 

A E Exp + Env + ArgDescr + ResDescr + ArgDescr 

A[xl 8 a p = a 

A[quote &I 8 a p = a 

A[if exp then exp' else exp"1 8 a p = 

A[expl 8 a p U A[expJ1 8 a p U A[expn1 8 a p 

Aicall f(exp l,...,expm)l 8 a p = 

a new [fwanew (f) U 8 I ,  where new 

a = {A[exp.l 8 a p)j=l, and new J . . . ,m 
- 'new - [xf, j~ R[exp.l J 

8 plj=], . . . ,m 

We want a final argument type description a that is consistent and 

as low as possible. This description can be determined by finding the 

least fixed point for the following system of simultaneous equations and 



relations: 

where a. and p are defined as follows 
0 

The description a. assigns the type any to the parameters of the 

goal function f since an input parameter may be given as value an 
I '  

arbitrary S-expression. A1 1 other parameters, on the contrary, are 

assigned the type I, there being no a priory information about their 

possible values. 

The description po assigns the type I to the results of all 

functions. 

The least fixed point for the above system does exist because for 

any given program the ordered sets involved have no chains of infinite 

height, and the functions A and R are monotonic. 

To do variable splitting, we need only the argument type 

description a, the result type description p being used only during the 

analysis of types. 

The type analysis above can, in a sense, be regarded as a 

monovariant, monogenetic version of the "configuration analysis" as used 

in the Supercompiler [Turchin 891, [Turchin 861. 

5. US1 NG TYPE INFORMATION FOR VARI ABLE SPLI TTI NG 

The variable splitting transformation as described above splits 

on1 y one of a function's parameters. However, the informat ion provided 

by an argument type description is sufficient for all function's 

parameters to be split at once. 

Suppose a parameter x has the type t. If t contains some 

occurrences of I, Co[ t I = { )  holds, which imp1 ies that no S-expression 



can be taken as value by x, and therefore the function to which the 

parameter belongs never will be called. In this case, all calls of the 

function can be replaced with any construct that forces the program to 

abnormally terminate (for example, with car(quote nil)), and thereafter, 

the definition of the function can be eliminated from the program. 

For this reason we assume, henceforth, the type t of any variable 

to be non-empty, i.e. to satisfy the condition Co[tl * 0. 

In the general case a type t assigned to a variable x may contain 

some occurrences of the type any, which are referred to as "gaps". 

It is obvious that all values of the variable x can be different 

only at places corresponding to the gaps, and must be congruent at all 

other places. Therefore, if the type t contains m gaps, any S-expression 

€~Co[tl is completely determined by its parts corresponding to the gaps 

in the type t. This enables the variable x to be retyped by replacing it 

with m new variables, which are to be assigned the parts of the 

variable's values corresponding to the gaps. 

We use the following notation. A finite list of elements 

alp . . . ,  a is written as [al, . . . ,  am I , an empty list as [ 1. The m 
length of a list A is written as len(A). The concatenation of two lists 

A = [a . . . ,  am] and B =  [bl, . . . ,  bnl equal to [al, . . . ,  a 
m' 

bl, . . . ,  b I is denoted by AAB. 
n 

Given a type t, a variable x, and a list of new variables [x 
1' . . . '  

'm I , it is easy to construct an expression synthesizing the value of the 
original variable x from values of the new variables. With this aim in 

view, let us define a few functions. 

The function CountGaps, given a type, produces the natural number 

equal to the number of gaps in the type. 

CountCaps E Type + N 

The function ExpandVar, given a type and a list of new variables, 

constructs an expression synthesizing the original value from the values 

of the new variables. The length of the variable list must be equal to 

the number of gaps in the type. 



?If 

ExpandVar E Type + VName + Exp 

ExpandVarLanyI [XI = x 

ExpandVar[atom($)l [I = quote $ 

ExpandVar[cons(t',t")l X = cons( ExpandVarIt'I X' , ExpandVar[tM1 X" ) 

where XJAX" = X, len(X') = CountGaps[t'l 

and len(Xn) = CountGaps[t"l. 

Let us consider an argument expression exp appearing in a function 

call. Let x be the corresponding formal parameter, t be the type 

assigned to x, and xl, . . . ,  x be m new parameters into which the 
m 

parameter x is to be split. Then the expression exp is to be split into 

m new expressions exp 
1' "" 

expm such that each exp wi 11 produce the 
j 

value to be assigned to the new parameter x The function SplitArg can 
j' 

easily be defined which, given a type, an expression, and a list of new 

variables, produces a list of expressions resulting from splitting the 

original expression. 

* 
SplitArg E Type x Exp -+ Exp 

SplitArgIany, expl = [expl 

SplitArg[atom($), expl = [I 

SplitArg[cons(t',t"), expl = 

[ SplitArg[t',car(exp)I I A [ SplitArg[t",cdr(exp)l I 

Now we are able to describe the splitting of variables throughout 

the program. This can be done in two steps. 

At the first step, the splitting is performed of all formal 

parameters of the functions. Each function definition 

is treated as follows. 

First, each formal parameter is split. Let a parameter x have the 

type t. Then a list of new variables X = [x I ,  ..., xm1 is created 

consisting of m = CountGaps[tl new parameters, the new parameters being 

different from all other formal parameters of the function f. After 

that, x is replaced with the sequence of m new parameters xl, . . . ,  x 
m' 

Thereafter, the transformation is performed of the function's body 



bodyf, which results in all occurrences of the formal parameters being 

replaced with new expressions. To put it more exactly, all occurrences 

of a parameter x are replaced with the expression ExpandVarttI X, where 

t is the type of x, and X = [x . . . , x I is the list of the variables 1' m 
that x has been split into. 

At the second step, the splitting is performed of the argument 

expressions by rep1 ac i ng each argument expression exp with the 

expression sequence expl, . . . ,  exp,, where [expl, . . . , exp,] = 

SplitArg[t,expl, and t is the type assigned to the corresponding formal 

parameter . 
An actual implementation of the above transformation can do the 

replacing of parameters with new expressions and the splitting of 

argument expressions simultaneously. 

6. CODE DUPLI CAT1 ON RISK 

Example. Consider the program 

f(z) = swap(unzip(z,'nil,'nil)); 

unzip(u, x, y) = if u='nil then x : : y else 

unzip(cdr(u),car(car(u)) : :  x, cdr(car(u1) : :  y); 

swap(v) = cdr(v) : :  car(v); 

It is evident that any result produced by the function unzip is of 

the type cons(any,any), hence this type can be assigned to the parameter 

v of the function swap. Thus we are allowed to perform the splitting 

swap(v -+ vl :: v2), which gives the program 

f(z) = swap(car(unzip(z,'nil,'nil)), 

cdr(unzip(z, 'nil, 'nil))); 

unzip(u, x, y) = if u='nil then x : : y else 

unzip(cdr(u),car(car(u)) : :  x, cdr(car(u1) : :  y); 

swap(v1, v2) = v2 : : vl; 

We see that the transformation has given rise to two copies of the 

expression unzip(z, 'nil, 'nil). This is bad for two reasons. First, 

duplicating expressions can result in huge programs being produced. 

Second, code duplication can lead to repeated evaluation of expressions. 



Both of the problems arise in the above example. 

The risk of code duplication and repeated evaluation can be avoided 

by the following principle of "selector non-introduction": 

I I 
All selectors produced by variable splitting must 

be eliminable by means of local optimization. 
I I 

What is the drawback of the type analysis described above? The 

point is that this analysis tells us whether a selector in the program 

is certain to be applicable at run time, whereas we need to know whether 

the selector can be applied symbolically at the time the program is 

being optimized. 

To put it another way, when an argument expression exp is to be 

split into the two expressions car(exp1 and cdr(exp1, the expression exp 

should have the structure permitting the selectors car and cdr to be 

eliminated by local optimization. 

The feasibility of the simbolic application of a selector to the 

expression exp, obviously, depends upon the structure of the expression 

itself, rather than on the structure of the result to be produced by exp 

at run time. 

Let us consider a few different cases. 

If exp has the form quote (8' . &"I, the symbolic application is 

feasible, car(exp) being reducible to quote e ' ,  and cdr(exp1 being 

reducible to quote &". 

If exp has the form exp' : : exp", the symbolic application is 

feasible, car(exp1 being reducible to exp', and cdr(exp1 being reducible 

to exp". 

On the other hand, if exp has the form if exp then exp' else exp" 
0 

or call f (exp I , .  . . ,expml, it is impossible to make the symbolic 

application without code duplication. 

If exp is a variable x, the symbolic application may seem to be 

unfeasible, because car(exp1 is car(x1, and cdr(exp1 is cdr(x1. Thus, 

the selectors cannot be eliminated. Consider, however, the following 

example. 



Example. Suppose we have the program 

It is obvious that the parameter u of the function g can be split, 

since the argument expression has the form exp' : : exp". On the other 

hand, the argument expression in the call of the function h is a 

variable, and, for this reason, splitting the parameter v seems to be 

unfeasible. Nevertheless, after g(u -+ ul : :  u2), we get the program 

We see, now, that splitting the parameter u results in the argument 

expression u of the function h being replaced with the expression 

ul : : u2, which is easy to split! After performing h(v -+ vl : : v2), we 

get 

Thus, if an expression to be split consists of a single variable, 

then, instead of analyzing the original expression, we have to analyze 

the new expression by which the original one will be replaced because of 

the parameters being split throughout the program. 

7. ANALYSIS OF OPT1 MI ZATI ON TI ME TYPES 

As can be seen from the above, we need to know the structure of 

symbolic values assigned to variables at the time the program is being 

optimized, rather than the structure of ordinary values assigned to 

variables at the time the program is run. Thus, what we are really 

interested in are the optimization time types, rather than the run time 

types . 
To find them, we can use the same set of types as has been used for 

analyzing the run time types. 

As pointed out previously, no call of a defined function can be 

split without being duplicated. Thus, the results of defined functions 

have to be assigned the type any. For this reason the result type 



description can be dispenced with, which enables the analysis of types 

to be simplified, the only description needed being the argument type 

description. Hence, the above functions R and A have to be redefined. 

The function R, given an expression exp and an environment 8, 

computes the type of an expression's result. 

R E Exp Env Type 

R[xl 8 = 8(x) 

R[ quote €1 8 = Abs' [€I 

R[if exp then exp' else exp"] 8 = any 

R[call f(exp ..,exp 1 1  8 = any I' ' m 

if R[expl 8 = any, 

R[car(exp)l 8 = if R[exp] 8 = cons(t',t"), 

otherwise. 

if R[expl 8 = any, 

~[cdr(exp)l 8 = if R[expl 8 = cons(t', t"), 

otherwise. 

R[cons(exp',expN)I 0 = 

cons( R[exp' I 9, R[expn1 8 ) 

R[atom(exp)l 8 = any 

R[ equal (exp' , exp" 1 1 8 = any 

The function A, given an expression exp, an environment 8, and an 

argument type description a, computes a new approximation to the final 

description of each function's parameter types. 

A E Exp + Env + ArgDescr + ArgDescr 

A[xl 8 a = a 

A[quote €1 8 a = a 

A[if exp then exp' else exp"] 8 a = 

A[expl 8 a U A[expt1 0 a U A[expu1 8 a 

A[call f(expl, . . . ,  expm)l 8 a = 

a  [ f H anew( f U 8 I , where new new 

a = {AIexp .I 8 a ) j = l  and 
new J ,...,m 



We want a final argument type descripton a that is consistent and 

as low as possible. This must be the least fixed point for the following 

system of simultaneous equations and relations: 

where a is defined as follows 0 

The description a. assigns the type any to the parameters of the 

goal function f to prevent these parameters from being split. All 
I' 

other parameters, on the contrary, are assigned the type 1, there being 

no a priori information about their structure. 

The least fixed point for the system above does exist because for 

any given program the ordered sets involved have no chains of infinite 

height, and the functions A and R are monotonic. 

8. USEFULNESS OF VARIABLE SPLITTING 

The fact that the parameters of a function f have been assigned the 

types tl, . . . ,  tm' for brevity's sake, will be written as f(t ,tm). 

Let us consider the following example. 

Example. 

f(x) = rev(x, 'a : :  'nil); 

rev(u, v )  = if u = 'nil then v else 

rev(cdr(u), car(u) : : v); 



The analysis of types tells us that f(any), re~(an~,C~nS(an~,an~)). 

After rev(v + vl : :  v2), we get the program 

f(x) = rev(x, 'a, 'nil); 

rev(u,vl, v2) = if u = 'nil then vl : : v2 else 

rev(cdr(u1, car(u), vl : :  ~2); 

We see that the program obtained is by no means superior to the 

original one, because no selector has been eliminated owing to variable 

splitting. 

Thus we see that the parameter splitting based exclusively on the 

information obtained by examining the structure of argument expressions, 

may we1 1 result in the "arity overraising", i. e. increasing the number 

of parameters without reducing the number of selectors in the program. 

The types as produced by the above analysis, describing as they do the 

feasibi 1 i ty of spl it t ing parameters, however, provide no informat ion on 

the usefulness of this splitting. The arity overraising, nevertheless, 

can be avoided by "adjusting" the above types in the following way. 

Suppose, for example, the type t has been assigned to a parameter 

x. Then the splitting of the parameter can be restricted by replacing 

some parts of t having the form cons(t t 1 with any. This results in 
1'  2 

the type t being generalized, i . e. changed to some other type t' such 

that t 5 t', the depth of splitting being the less the greater the type 

t'. Thus, for instance, the splitting x + xl :: (x2 : :  x3) corresponds 

to the type cons(any, cons(any,any)), the splitting x + xl :: x2 to the 

type cons(any,any), and no splitting to the type any. 

Thus we are facing the type generalization problem: given a cons in 

a type, we have to decide whether this cons should be retained or 

generalized. This decision will be made on the basis of the following 

selector elimination principle: 

I I 
A cons should be retained only if this causes 

a selector in the program to disappear. 

Being formalized as it is, the selector elimination principle gives 

only an approximate description of the intuitive ideas the humans have 

about what does it means for a program to have a beautiful and natural 



structure. Nevertheless, experience has shown this principle to be 

likely to produce reasonable results, without any danger of the program 

being spoilt. 

9. BACKWARD ANALYSI S 

Let us consider the definition of function f 

f ( .  . . , xk, . . . = exp 

The k-th parameter of the function may appear at different places 

in the function's body exp. Is it any use splitting x ? To answer this 
k 

question, we have to consider all occurrences of x in exp and to take 
k 

into account their contexts in exp. To take an example, if exp contains 

the subexpression cdr(xk), it makes sense to perform the splitting 

x + x' : : x", since this wi 11 cause cdr(x to be replaced with 
k k 
cdr(x' : :  x"), the latter being reducible to x". 

Examp 1 e . 

In this case the selector elimination principle tells us that it is 

no use performing the splitting g(u + ul : :  u2). 

Exampl e . 

f(x) = g(x : : x); g(u) = cdr(u); 

In this case the selector elimination principle tells us that the 

splitting g(u + ul : : u2) is worth performing, since it will cause the 

selector cdr to disappear. And, in fact, after the splitting we get the 

program 

Thus we see that the natural way of getting information about the 

usefulness of splitting is to make use of some kind of backward analysis 

[Hughes 88 I. 



10.ACCESS PATHS AND CONTEXTS 

Let exp be an expression appearing in a larger expression. We want 

to consider all attempts by the surrounding expression at accessing the 

components of exp. For example, if exp is a part of the expression 

then there is an attempt at accessing exp by applying selectors in the 

following order: cdr, cdr, car. The component to be accessed can be 

unambiguous1 y identified by a sequence of selectors. This just if ies the 

following definition. 

Definition. An access path is a finite list (which may be empty) of 

selector names car and cdr. 

The set of all access paths will be denoted by Path. Thus 
* 

Path = {car, cdr) . 
In some cases the surrounding expression tries to access several 

components of the expression under consideration. For this reason we 

have to describe the context by a set of paths, rather than by a single 

path. 

Definition. A set of access paths lT~P(Path) is an access context, 

if it satisfies the following requirements. 

(i) [IETI 

(ii) If nA[carl E TI or nA[cdrl E TI, then n E TI. 

(i) means that an attempt at accessing the expression as a whole 

must be included into the context. This requirement is useful for 

technical reasons. ( i i 1 formal i zes the obvious fact that a subcomponent 

can be accessed only by accessing the components in which the 

subcomponent is inc 1 uded. 

The set of all contexts is denoted by Context. 

Now consider function f with the definition 

f(. . . ,xk,. . . = exp 

Suppose that exp contains m occurrences of the parameter x in the 
k 



contexts TI TI2,. . . ,  TIrn. What should be the total context for all 

occurrences of x ? It is clear that finding all attempts at accessing 
k 

the parameter x amounts to finding all attempts at accessing its 
k 

occurrences, thus lTl u IT2 u . . .  u TIm should be considered to be the 

total context of the parameter x k' 

1l.USING CONTEXTS FOR TYPE GENERALIZATION 

Let a parameter have the type t and the context TI. Then the 

function GenType can be easily defined which generalizes t in accordance 

with TI by replacing all cons(tl,t2) unaccessed by TI with any. 

GenType : Type + Context + Type 

GenTypeitI TI = ,-,{GenType1[t1n I n~lT) 

GenTypel : Type -+ Path + Type 

GenTypel[anyln = any 

GenType'[atom(l)ln = atom(d) 

GenType'[cons(tl,t")l([l) = any 

GenType'[cons(tl,t")I([carl^n) = cons( GenTypel[t'ln, any ) 

GenType'[cons(t',t")I([cdrl^n) = cons( any, GenTypel[t"ln ) 

GenTypel[lln = I 

It should be noted that for all t~Type and RETI the relation 

t 5 GenTypel[tln holds, therefore the set {GenTypel[tln I T I  is 

finite, in spite of the fact that TI may well be infinite. Consequently, 

the greatest lower bound of this set does exist. 

12.LATENT SELECTORS 

The above considerations might have produced the expression that 

the context of a parameter can be determined by examining only the 

definition of the function concerned, without the program being globally 

analyzed. This is not really the case, however. 

Exam~l e . 

f(x) = g(x : :  'a); g(u) = h(u); h(v) = cdr(v); 



The type analysis tells us that f(any), g(cons(any,atom(a))), 

h(cons(any,atom(a)) ) .  The variable v has the context { [  1 ,  [cdrl). But 

what is the context of the variable u? At the first glance, it may 

appear to be {[I), because there seems to be no selectors in the program 

attempting at accessing the variable u. Thus we, erroneously, come to 

the conclusion that the types should be generalized as follows: f(any), 

g(any), h(cons(any, atom(a))). The only acceptable splitting is 

therefore h(v vl :: v2). By performing it we get 

f(x) = g(x : : 'a); g(u) = h(car(u), cdr(u)); 

h(vl,v2) = v2; 

This result is far from being satisfactory, because there have 

appeared two new selectors car and cdr, not present in the original 

program. This makes us draw the conclusion that the parameter access 

analysis has to take into account not only the selectors explicitly 

appearing in the program, but also the latent selectors to be introduced 

by the splitting of parameters. 

Thus, if ek is an argument expression in the function call 

call f( . . . .  ek . . . .  1, it would be incorrect to take its context to be 

I ,  because there should be taken into account all attempts at 

accessing e due to the splitting of ek. This can be done in the k 
following way. 

Let the k-th formal parameter of the function f be assigned the 

type t, and the total context of all its occurrences be Il. Let 

t' = GenType[tlII. Then the generalized type t' gives all information 

about the way in which ek is to be split. The function TypeToContext can 

be easily defined which converts t' into the context providing the 

information about all the attempts at accessing e due to the splitting 
k 

of e in accordance with t'. 
k 

TypeToContext : Type + Context 



where we use the notation 

car*TI = { [car I ̂ n I ~ETI) 

cdr*TI = { [ cdrl ̂ n I neTI). 

Now we can determine the context of the expression e assuming the k' 
k-th parameter to be assigned the type t, and the total context of all 

its occurrences to be TI. This context is equal to 

13.SYSTEM OF EQUATIONS FOR FINDING CONTEXTS 

For each function f with the definition 

let tf, l, . . . ,  t stand for the types of its parameters, and c f1m f, 1' 
. . . ,  c stand for the contexts of its parameters. 

f, m 
Let C x [expl TI be the total context of all occurrences of the 

variable x in the expression exp, the expression exp itself being in the 

context TI. 

We have the following set of equations 

where C x [expl Il is defined as follows: 

C E VName -+ Exp + Context -+ Context 

C x  [XI T I = T I  

C x [yl TI= {[I}, where xsy. 

C x [quote 81 TI = {[I) 

C x [if exp then exp' else exp"] TI = 

C x [expl {[I) u C x [exp'l {[I) u C x [exp"] {[I) 
C x [call f(expl, . . . ,  expm)l TI = 

u { C x [ e x p I c  } 
j f,j j=1, ...,m 

C x [car(exp)l IT = C x [expl ({[I) u car*TI) 

C x [cdr(exp)l TI = C x [expl ({[I) u cdr*TI) 



C x [cons(exp',exp")l TI = 

C x [exp'l ({[I) w lT/car) w C x [exp"] ({[I) u TI/cdr) 

C x [atom(exp)l TI = C x [expl {[I) 

C x [equal(expl,exp")l TI = C x [exp'l {[I) w C x [exp"] {[I) 

where we use the notation 

We assume the set of contexts to be equipped with natural partial 

ordering, lTfsTI" being equivalent to lTfm". The functions TypeToContext, 

GenType, and C are monotonic with respect to contexts, therefore the 

minimal fixed point for the above system of equations does exist. 

Moreover, since c C TypeToContext[t I ,  there exist only a 
f, j f, j 

finite number of contexts that can be taken as value by c 
f, j' 

hence the 

minimal fixed point can be found by a finite number of iterations. 

The context analysis above resembles, in some respects, the 

"neighborhood analysis" as used in the Supercompiler [Turchin 861, 

[Turchin 881. 

14.PRACTICAL IMPLEMENTATION OF THE CONTEXT ANALYSIS 

Some programming tricks may prove to be useful for implementing the 

above backward analysis . 

First, what we really use in splitting parameters are types 

generalized with respect to contexts, rather than contexts themselves. 

Thus, instead of computing 'f, j* we can compute the type 

tk, = GenType [ t I c 
f, j f, j' 

Second, since t 5 t' 
f, j f, j' 

we can replace t and t' with a 
f, j f, j 

single marked type mt having the syntax 
f. j 

mt E MType marked types 

mt : :=  any 

I atom($) 

I cons(tl,tN) 

I cons! (mtl,mt") 

I 1 



The feature of the marked type is that some cons are marked with 

the exclamation mark, which indicates that these cons belong both to the 

type tisj and to the type t 
f, j' 

On the contrary, if a cons is not 

marked, it means that it belongs only to t 
f, j' 

the corresponding place 

in t' being any. 
f, j 
Thus, t can be extracted from mt by removing all exclamation 

f, j f, j 
marks, whereas t' can be extracted from mt by replacing all cons! 

f, j f, j 
with cons, and all cons(tJ, t") with any. If we need, however, the 

context c 
f, j' 

rather than the type tf, j, the context c can be 
f, j 

extracted from mt 
f, j 

directly, without finding t' by means of the 
f, j' 

function Restore!. 

Restore! E MType + Context 

Restore! [any] = { [ 1) 
Restore![atom(sO)l = {[I) 

~estore![cons(t',t")1 = {[I) 

Restore![cons!(mt',mt")l = {[I) u 

car*Restore! [mt'l v cdr*Restore! [mt"] 

Next improvement concerns the representation of contexts. Being 

sets of paths, contexts are difficult to deal with directly, but we can 

replace contexts with their representations having the syntax 

crep E ContextRep 

crep : : = car( crep) 

I cdr(crep1 

I mtype(mt) 

Given a context's representation, we can reconstruct the context by 

the function Restore. 

Restore E ContextRep 

As a matter of fact, all functions which the access path analysis 

involves can be easily modified so that they will deal with the 



representation of contexts, rather than with the contexts themselves. 

The first obvious generalization concerns splitting the results of 

functions. In the language Mixwell each function has fixed arity, which 

means that this function is to be given a fixed number of arguments 

(zero, one, or more). On the other hand, each function can produce one 

and only one result, for which reason we had to draw the conclusion that 

a defined function call call f(exp ..,exp,) cannot be split and, 
I" 

therefore, has to be assigned the type any. Nevertheless, in addition to 

the concept of arity, we can introduce the concept of coarity by letting 

each function produce a fixed number of results (zero, one, or more). 

The implementation of multi-result functions can cause no problems: when 

a function having the arity m and the coarity n is to be called, we have 

to put m values into the parameter stack. Then the function takes from 

the stack the input values and pushes onto the stack n output values. 

A function being able to produce several results allows the 

function's results to be split without splitting the definition of the 

function. This extention of the arity raiser has been implemented by 

Ruten Gurin. 

Another possible extension is to make an arity raiser deal with 

data structures that are more complicated than Lisp S-expressions are. 

To take an example, in the case of the languages Refal [Turchin 791, 

[Turchin 861 and RL [Romanenko 881, the main data type is the set of 

object expressions. The difficulty is that, instead of the single 

constructor cons, we have two constructors: "enclosing an expression in 

parentheses" and "concatenating two expressions". The concatenation is 

an associative operation, and the last element of an expression can be 

accessed as we1 1 as its first element. A consequence is that two types 

t ' and t" may happen not to have the least upper bound, in which case, 

during the type analysis, we have to satisfy ourselves with finding a 

type t such that t'st, t"'t, but t is not "too high". The arity raiser 

built into the "Moscow" specializer [Romanenko 881, uses a set of types 

with the above feature. 



CONCLUSIONS 

In order for the results produced by variable splitting to be 

reasonable, we need information obtained by two preliminary global 

analyses of the program. The first, forward, analysis tells us whether 

the splitting is feasible, whereas the second, backward, analysis tells 

us whether the splitting is useful. 

The first, forward, analysis results in the parameters of the 

functions being assigned types, which describe the structure of the 

argument expressions in the function calls. 

The second, backward, analysis results in the parameters of 

the functions being assigned contexts, which provide information about 

attempts at accessing the parameters. 

Then the information obtained is used to perform variable 

splitting. The type information is used to avoid introducing new 

selectors into the program as well as code duplication, whereas the 

context information makes it possible to avoid useless variable 

splitting that does not cause some selectors in the program to be 

eliminated. 

Introducing an arity raiser as a separate phase into a specializer 

enhances the structure of residual programs generated without affecting 

the other phases of the specializer. The structure of the specializer, 

thus, can be kept natural and understandable. 
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