
ARITY RAISER AND I T S USE I N PROGRAM SPECIALIZATION

Sergei A. Romanenko

Keldysh Institute of Applied Mathematics
Academy of Sciences of the USSR
Miusskaya Sq.4, SU-125047, Moscow, USSR

Experiments on generating compilers by specializing specializers with
respect to interpreters have shown that the compilers thus obtained have
a natural structure only if the specializer does variable splitting.
Variable splitting can result in a residual program using several
variables to represent the values of a single variable of the original
program. In the case of functional programming variable splitting is
done by raising the arities of functions. The paper describes the
structure and principles of operation of an arity raiser dealing with
programs in a subset of pure Lisp.

Keywords: arity raiser, compiler generator, partial evaluation,
retyping, specializer, variable splitting.

I NTRODUCTI ON

Program specialization [Dixon 711 seems to be a promising and

powerful technique that can lead to new program development methodology.

By program special iza t ion we understand constructing, when given a

"general-purpose" program and some restriction on its usage, a more

efficient "specialized" residual program. Being optimized and simplified

version of the original program, the residual program, however, must be

equivalent to the original one when used according to the restriction.

By specializer we understand a system that, given a program and a

restriction, will produce a specialized version of the original program.

Program specialization can be achieved by making use of different

techniques, such as driving [Turchin 721, fold-unfold method

[Burstall 771, partial evaluation [Futamura 711, [Beckman 761, mixed

computation [Ershov 781, [Bulyonkov 841, the analysis of computational

configurations [Turchin 791, [Turchin 861, variable splitting

[Sestoft 861, and arity raising [Romanenko 881.

The above techniques deal, for the most part, with two problems:

control restructuring and data retyping (i.e. changing representation of

data).

As far as the control restructuring is concerned, various

specialization techniques differ in the extent to which the program is

reorganized.

In the case of monovariant specialization any control point in the

original program gives rise to zero or one cant-rol point in the residual

program.

In the case of polyvariant specialization a control point can give

rise to more than one control point in the residual program.

In the case of monogenetic specialization any control point in the

residual program is produced from a single control point of the original

program.

In the case of polygenetic specialization a control point in the

residual program may be produced from several control points of the

original program.

As far as the data representation is concerned, various

specialization techniques differ in the use they make of retyping.

Driving [Turchin 72 I and the analysis of configurations

[Turchin 791, [Turchin 861, which deal with functional programs, can be

classified as polyvariant polygenetic methods with retyping.

Monovariant monogenetic techniques for imperative programs are

studied in [Ershov 781. Papers [Bulyonkov 841, [Barzdin 881 concern

polyvariant monogenetic specialization techniques for imperative

programs.

The transformational approach [Ershov 811, [Ostrovski 881 is

believed to include, at least potentially, all conceivable techniques of

program specialization, not excluding the polygenetic ones.

Of course, the more powerful techniques tend to be rather

expensive, and it is difficult to make them completely automatic. Thus

the choice of appropriate specialization techniques depends on the class

of problems to be solved.

An interesting application of specializers is compiler generation.

It was found by Y. Futamura [Futamura 711 that interpreters can be

converted to compilers by specializing a specializer with respect to the

interpreters. Several years later it was realized [Beckman 761 that a

transformer of interpreters into compilers can be produced by

specializing a specializer with respect to a specializer.

To put this approach into practice, we have to overcome the

following difficulty. On the one hand, the specializer has to be

sophisticated enough to achieve non-trivial specialization. On the other

hand, to be specializable, the specializer can't afford to be too

compl icated.

The group under N.D.Jones at Copenhagen university was the first to

overcome the above difficulty [Jones 851, [Sestoft 861, [Sestoft 881.

Since experiments had shown the monovariant specialization to be

unsatisfactory for this application, the specializer had to do the

polyvariant specialization. Again, the monogenetic specialization proved

to be adequate for the purpose (despite there being a lot of problems

that have to be dealt with by polygenetic specialization [Turchin 821,

[Wadler 881).

The usefulness of retyping proved to be more problematic. It was

found that retyping can be dispensed with at the cost of the residual

programs having rat her unnatural structure. Suppose, for example, that

an interpreter is to be specialized with respect to a program. Since the

interpreter is supposed to accept an arbitrary input program, the number

of variables in this program cannot be known in advance. Thus the

variable's values are likely to be represented in the interpreter as a

single value assigned to one of the interpreter's variables. If the

specializer is unable to split this variable, the residual program will

use a single variable to represent all the values. A reasonable residual

program, however, would keep each value in a separate variable

[Sestoft 861.

To rectify the drawback, the author suggested that the Copenhagen

specializer should be supplemented with an additional phase, whose

purpose would be to do variable splitting [Romanenko 881. In the case of

a functional language, variable splitting reduces to increasing the

number of functions' parameters, for which reason this additional phase

was given the name arity raiser. As pointed out by T.Mogensen arity

raising is just a special case of retyping, thus any arity raiser is a

re t yper .
The arity raiser was found to improve the structure of residual

programs without making the specializer excessively slow and intricate.

The alternative to the arity raiser is to split variables on-line,

i. e. at the time the residual program is being generated [Turchin 861,

[Mogensen 881. This approach, however, can result in a mammoth, sluggish

special izer.

A short description of the ideas behind the arity raiser can be

found in [Romanenko 881. The present paper gives a detailed account of

the structure and principles of operation of an arity raiser dealing

with programs in a subset of pure Lisp.

1. THE LANGUAGE MI XWELL

In the following we consider programs written in the language

Mixwell, which is a small subset of pure Lisp and was used as the

subject language in the Copenhagen specializer MIX [Sestoft 861. Here is

Mixwell's abstract syntax.

pgm E Program programs

fd E FnDef function definitions

exp,e E Exp expressions

f E FName function names

x E VName variable names

58 E Atom Lisp atoms

6' E SExp Lisp S-expressions

Pgm . . . = . fdl; . . . fd,;

fd = f(xl , xml = exp

exp . . = . . X

I quote€

I if exp then exp else exp
0 1 2

I call f(expl, . . . , expml
I car(exp1 I cdr(exp1 I cons(exp ,exp21 I
I atom(exp1 I equal(expl,exp 1

2
€ . . .= . dl I (GI . G2)

A Mixwell program is a list of function definitions, the first

function being the goal function. The goal function is to be called

first, and inputs to the program are through the parameters of this

function.

The body of a function is an expression, which is constructed from

variables appearing in the function's formal parameter list, from

constants quote and operators car, cdr, cons, atom and equal (as in

Lisp), conditionals if and defined function calls call.

The only data type is well-founded (i.e. non-circular)

S-expressions as known from Lisp.

All primitive and defined functions, except the conditional if, are

strict in all positions. All parameters are called by value.

We use some "sintactic sugar". The keyword call is omitted in cases

where the name of the function being called is different from the names

of the primitive functions. quote6 can be written as '6,

Constants & 1 . E 2 6 n . n i 1 . . . 1) can be written as

2.SPLITTING A FORMAL PARAMETER

Suppose the definition of function f in a program has the form

f (. . . , xkI.. . = exp

Then the following transformation will be referred to as the splitting

of the function's k-th parameter.

Let x' and x" be two variables different from all formal parameters

of the function f. Then the splitting of x into x' and x" can be done in

two steps.

At the first step, the original definition of f is replaced with

where exp[x +cons (x' , x") 1 denotes the expression obtained from exp by k
replacing all occurrences of x with cons(x',x"). k

At the second step, all calls of the function f in all function

definitions are transformed, each call of the form call f(. . . ,ek, . . . 1

being replaced with call f(. . . , car(ek), cdr(ek), . . . 1.

Thus, the original variable x is replaced by two new variables x' k
and x" containing enough information for the value of x if needed, to k'
be reconstructed. To put it more exactly, the value of x can be k
obtained by evaluating the expression cons(x',x").

The fact that the formal parameter x of the function f is to be

split into two variables x' and x" will, for the brevity's sake, be

written as f(x + x' : : x").

Example. Consider the program

Let us perform the splitting g(u ul :: u2). After transforming

the definition of g, we get

Then we split the argument in the calls of g and get

This program can be locally optimized, which results in

Now we see that variable splitting is capable of producing

parameters whose values are certain not to be needed. Such parameters

can be recognized by a kind of backward analysis [Hughes 881 and

eliminated. In the above program we can remove the parameter ul of the

function g, which gives the program

Thus, the principal use of variable splitting consists in paving

the way for other transformations such as local optimization and

elimination of unneeded parameters, the latter being, in a sence, a kind

of "garbage collection at compile time".

3.CONDITIONS OF THE VARIABLE SPLITTING CORRECTNESS

The program transformation described above can be incorrect. For

example, after performing the splitting g(u + ul : : u2) in the program

we get

It is evident that the transformed program is not equivalent to the

original one, because the original program terminates, with the result

being the atom 'a, whereas the transformed program fails to apply car or

cdr to the atom 'a and terminates abnormally. Thus we come to the

conclusion:

I 1
Before splitting a parameter, we must make sure that,

when the program is run, it is impossible for the para-

meter's value to be an atom!
I I

Hence, to split a variable, we need to have a description of the

structure of its values. Such descriptions will be referred to as types

of variables.

4. ANALYSIS OF RUN TIME TYPES

To describe the structure of values to be taken by a variable, we

use the following set of types.

t E Type

58 E Atom

types

Lisp atoms

We assume the set of types to be equipped with reflexive partial

ordering 5 recursively defined by the following rules:

(i) t 5 any for all types t.

(ii) I 5 t for all types t.

(iii) cons(t1,t') 5 cons(tM t") if t' 5 t" and ti r t:.
1 2 1' 2 1 1

If t'5t" and tl+t", the type t" is said to be more general than the

type t'.

The set of types is a lattice, as for all types t',tM~Type there

exist their least upper bound t'ut" and their greatest lower bound

t' n t". Each set of types TEP(Type) has its least upper bound UT. Thus

the set of types is a pointed continuous partial ordering (CPO) with the

bottom I [Schmidt 861. It can be easily seen that the set of types has

no chains of infinite height. In addition, each finite TdP(Type) has its

greatest lower bound n ~ .

A type represents a set of S-expressions. More specifically, let us

define an "abstraction" function Abs mapping sets of S-expressions into

types. Abs is defined in terms of an auxiliary function Abs' mapping

S-expressions into types.

Abs E P(SExp) + Type
Abs' E SExp Type

Let us define a "concretization" function Co reconstructing the set

of S-expressions from a type:

Co E Type + P(SExp)

Co [any1 = SExp

Co[atom(&)l = { A)

Co[cons(t',t")l = ((8 ' . 8") 1 &'~Co[t'l and &"~Co[t"l)

C0[lI = 0

The following relations hold:

Abs[Co[tll = t and E c Co[Abs[EIl

Now let x be a variable in a program. The problem is to find a type

t such that &~Co[tl for all & that can be taken as value by x when the

program is run. It can be done by abstract interpretat ion [Jones 861 of

the program, which amounts to performing the program's computations

using abstract values in place of the actual ones.

Suppose we have a program defining f unct ions fl, . . . , fh. Let
F = {fl, . . . , f 1, and, for each ~ E F , x be its j-th parameter, a(f)

h f,j
be its arity, and bodyf be its body, so that the definition of f has the

form:

Let

8 E Env = VName + Type

be an environment assigning a type to each parameter of a function. Let

a E ArgDescr = F -+ Env

be an argument type description assigning types to each function' s

parame t ers . Let

p E ResDescr = F Type

be a result type description assigning a type to each function's result.

All the sets above are equipped with reflexive partial orderings as

follows:

Env : e's8" e Vx~VName €)'(XI 5 8"(x)

ArgDescr : a'sa" e V ~ E F a'(f) 5 a"(f)

ResDescr: p'sp" e V ~ E F p'(f) 5 pN(f)

We define two functions R and A to do the abstract interpretation

using these ordered sets.

The function R, given an expression exp, an environment 8, and a

result type description p, computes the type of an expression's result.

R E Exp + Env + ResDescr --+ Type

R[xl 8 p = 8(x)

Riquote €1 8 p = Abs' [€ 1
R[if exp then exp' else exp1'I 8 p =

R[exp'l 8 p U R[exp"l 9 p

R[call f(expl, . . . , expm)l 8 p = p(f)

if R[expl 8 p = any,

R[car(exp)l 8 p = if R[exp] 8 p = cons(tJ,t"),

otherwise.

if R[expl 8 p = any,

R[cdr(exp)l 8 p = if R[expl 8 p = cons(tJ,t"),

otherwise.

R[cons(exp',exp")l 8 p =

cons(R[expJ1 8 p, R[expn1 8 p

R[atom(exp)l 8 p = any

R[equal(exp',exp")l 8 p = any

The function A, given an expression exp, an environment 8, an

argument type description a, and a result type description p, computes a

new approximation to the final description of each function's parameter

values .

A E Exp + Env + ArgDescr + ResDescr + ArgDescr

A[xl 8 a p = a

A[quote &I 8 a p = a

A[if exp then exp' else exp"1 8 a p =

A[expl 8 a p U A[expJ1 8 a p U A[expn1 8 a p

Aicall f(exp l,...,expm)l 8 a p =

a new [fwanew (f) U 8 I , where new

a = {A[exp.l 8 a p)j=l, and new J . . . ,m
- 'new - [xf, j~ R[exp.l J

8 plj=], . . . ,m

We want a final argument type description a that is consistent and

as low as possible. This description can be determined by finding the

least fixed point for the following system of simultaneous equations and

relations:

where a. and p are defined as follows
0

The description a. assigns the type any to the parameters of the

goal function f since an input parameter may be given as value an
I '

arbitrary S-expression. A1 1 other parameters, on the contrary, are

assigned the type I, there being no a priory information about their

possible values.

The description po assigns the type I to the results of all

functions.

The least fixed point for the above system does exist because for

any given program the ordered sets involved have no chains of infinite

height, and the functions A and R are monotonic.

To do variable splitting, we need only the argument type

description a, the result type description p being used only during the

analysis of types.

The type analysis above can, in a sense, be regarded as a

monovariant, monogenetic version of the "configuration analysis" as used

in the Supercompiler [Turchin 891, [Turchin 861.

5. US1 NG TYPE INFORMATION FOR VARI ABLE SPLI TTI NG

The variable splitting transformation as described above splits

on1 y one of a function's parameters. However, the informat ion provided

by an argument type description is sufficient for all function's

parameters to be split at once.

Suppose a parameter x has the type t. If t contains some

occurrences of I, Co[t I = {) holds, which imp1 ies that no S-expression

can be taken as value by x, and therefore the function to which the

parameter belongs never will be called. In this case, all calls of the

function can be replaced with any construct that forces the program to

abnormally terminate (for example, with car(quote nil)), and thereafter,

the definition of the function can be eliminated from the program.

For this reason we assume, henceforth, the type t of any variable

to be non-empty, i.e. to satisfy the condition Co[tl * 0.

In the general case a type t assigned to a variable x may contain

some occurrences of the type any, which are referred to as "gaps".

It is obvious that all values of the variable x can be different

only at places corresponding to the gaps, and must be congruent at all

other places. Therefore, if the type t contains m gaps, any S-expression

€~Co[tl is completely determined by its parts corresponding to the gaps

in the type t. This enables the variable x to be retyped by replacing it

with m new variables, which are to be assigned the parts of the

variable's values corresponding to the gaps.

We use the following notation. A finite list of elements

alp . . . , a is written as [al, . . . , am I , an empty list as [1. The m
length of a list A is written as len(A). The concatenation of two lists

A = [a . . . , am] and B = [bl, . . . , bnl equal to [al, . . . , a
m'

bl, . . . , b I is denoted by AAB.
n

Given a type t, a variable x, and a list of new variables [x
1' . . . '

'm I , it is easy to construct an expression synthesizing the value of the
original variable x from values of the new variables. With this aim in

view, let us define a few functions.

The function CountGaps, given a type, produces the natural number

equal to the number of gaps in the type.

CountCaps E Type + N

The function ExpandVar, given a type and a list of new variables,

constructs an expression synthesizing the original value from the values

of the new variables. The length of the variable list must be equal to

the number of gaps in the type.

?If

ExpandVar E Type + VName + Exp

ExpandVarLanyI [XI = x

ExpandVar[atom($)l [I = quote $

ExpandVar[cons(t',t")l X = cons(ExpandVarIt'I X' , ExpandVar[tM1 X")

where XJAX" = X, len(X') = CountGaps[t'l

and len(Xn) = CountGaps[t"l.

Let us consider an argument expression exp appearing in a function

call. Let x be the corresponding formal parameter, t be the type

assigned to x, and xl, . . . , x be m new parameters into which the
m

parameter x is to be split. Then the expression exp is to be split into

m new expressions exp
1' ""

expm such that each exp wi 11 produce the
j

value to be assigned to the new parameter x The function SplitArg can
j'

easily be defined which, given a type, an expression, and a list of new

variables, produces a list of expressions resulting from splitting the

original expression.

*
SplitArg E Type x Exp -+ Exp

SplitArgIany, expl = [expl

SplitArg[atom($), expl = [I

SplitArg[cons(t',t"), expl =

[SplitArg[t',car(exp)I I A [SplitArg[t",cdr(exp)l I

Now we are able to describe the splitting of variables throughout

the program. This can be done in two steps.

At the first step, the splitting is performed of all formal

parameters of the functions. Each function definition

is treated as follows.

First, each formal parameter is split. Let a parameter x have the

type t. Then a list of new variables X = [x I , ..., xm1 is created

consisting of m = CountGaps[tl new parameters, the new parameters being

different from all other formal parameters of the function f. After

that, x is replaced with the sequence of m new parameters xl, . . . , x
m'

Thereafter, the transformation is performed of the function's body

bodyf, which results in all occurrences of the formal parameters being

replaced with new expressions. To put it more exactly, all occurrences

of a parameter x are replaced with the expression ExpandVarttI X, where

t is the type of x, and X = [x . . . , x I is the list of the variables 1' m
that x has been split into.

At the second step, the splitting is performed of the argument

expressions by rep1 ac i ng each argument expression exp with the

expression sequence expl, . . . , exp,, where [expl, . . . , exp,] =

SplitArg[t,expl, and t is the type assigned to the corresponding formal

parameter .
An actual implementation of the above transformation can do the

replacing of parameters with new expressions and the splitting of

argument expressions simultaneously.

6. CODE DUPLI CAT1 ON RISK

Example. Consider the program

f(z) = swap(unzip(z,'nil,'nil));

unzip(u, x, y) = if u='nil then x : : y else

unzip(cdr(u),car(car(u)) : : x, cdr(car(u1) : : y);

swap(v) = cdr(v) : : car(v);

It is evident that any result produced by the function unzip is of

the type cons(any,any), hence this type can be assigned to the parameter

v of the function swap. Thus we are allowed to perform the splitting

swap(v -+ vl :: v2), which gives the program

f(z) = swap(car(unzip(z,'nil,'nil)),

cdr(unzip(z, 'nil, 'nil)));

unzip(u, x, y) = if u='nil then x : : y else

unzip(cdr(u),car(car(u)) : : x, cdr(car(u1) : : y);

swap(v1, v2) = v2 : : vl;

We see that the transformation has given rise to two copies of the

expression unzip(z, 'nil, 'nil). This is bad for two reasons. First,

duplicating expressions can result in huge programs being produced.

Second, code duplication can lead to repeated evaluation of expressions.

Both of the problems arise in the above example.

The risk of code duplication and repeated evaluation can be avoided

by the following principle of "selector non-introduction":

I I
All selectors produced by variable splitting must

be eliminable by means of local optimization.
I I

What is the drawback of the type analysis described above? The

point is that this analysis tells us whether a selector in the program

is certain to be applicable at run time, whereas we need to know whether

the selector can be applied symbolically at the time the program is

being optimized.

To put it another way, when an argument expression exp is to be

split into the two expressions car(exp1 and cdr(exp1, the expression exp

should have the structure permitting the selectors car and cdr to be

eliminated by local optimization.

The feasibility of the simbolic application of a selector to the

expression exp, obviously, depends upon the structure of the expression

itself, rather than on the structure of the result to be produced by exp

at run time.

Let us consider a few different cases.

If exp has the form quote (8' . &"I, the symbolic application is

feasible, car(exp) being reducible to quote e ' , and cdr(exp1 being

reducible to quote &".

If exp has the form exp' : : exp", the symbolic application is

feasible, car(exp1 being reducible to exp', and cdr(exp1 being reducible

to exp".

On the other hand, if exp has the form if exp then exp' else exp"
0

or call f (exp I , . . . ,expml, it is impossible to make the symbolic

application without code duplication.

If exp is a variable x, the symbolic application may seem to be

unfeasible, because car(exp1 is car(x1, and cdr(exp1 is cdr(x1. Thus,

the selectors cannot be eliminated. Consider, however, the following

example.

Example. Suppose we have the program

It is obvious that the parameter u of the function g can be split,

since the argument expression has the form exp' : : exp". On the other

hand, the argument expression in the call of the function h is a

variable, and, for this reason, splitting the parameter v seems to be

unfeasible. Nevertheless, after g(u -+ ul : : u2), we get the program

We see, now, that splitting the parameter u results in the argument

expression u of the function h being replaced with the expression

ul : : u2, which is easy to split! After performing h(v -+ vl : : v2), we

get

Thus, if an expression to be split consists of a single variable,

then, instead of analyzing the original expression, we have to analyze

the new expression by which the original one will be replaced because of

the parameters being split throughout the program.

7. ANALYSIS OF OPT1 MI ZATI ON TI ME TYPES

As can be seen from the above, we need to know the structure of

symbolic values assigned to variables at the time the program is being

optimized, rather than the structure of ordinary values assigned to

variables at the time the program is run. Thus, what we are really

interested in are the optimization time types, rather than the run time

types .
To find them, we can use the same set of types as has been used for

analyzing the run time types.

As pointed out previously, no call of a defined function can be

split without being duplicated. Thus, the results of defined functions

have to be assigned the type any. For this reason the result type

description can be dispenced with, which enables the analysis of types

to be simplified, the only description needed being the argument type

description. Hence, the above functions R and A have to be redefined.

The function R, given an expression exp and an environment 8,

computes the type of an expression's result.

R E Exp Env Type

R[xl 8 = 8(x)

R[quote €1 8 = Abs' [€I

R[if exp then exp' else exp"] 8 = any

R[call f(exp ..,exp 1 1 8 = any I' ' m

if R[expl 8 = any,

R[car(exp)l 8 = if R[exp] 8 = cons(t',t"),

otherwise.

if R[expl 8 = any,

~[cdr(exp)l 8 = if R[expl 8 = cons(t', t"),

otherwise.

R[cons(exp',expN)I 0 =

cons(R[exp' I 9, R[expn1 8)

R[atom(exp)l 8 = any

R[equal (exp' , exp" 1 1 8 = any

The function A, given an expression exp, an environment 8, and an

argument type description a, computes a new approximation to the final

description of each function's parameter types.

A E Exp + Env + ArgDescr + ArgDescr

A[xl 8 a = a

A[quote €1 8 a = a

A[if exp then exp' else exp"] 8 a =

A[expl 8 a U A[expt1 0 a U A[expu1 8 a

A[call f(expl, . . . , expm)l 8 a =

a [f H anew(f U 8 I , where new new

a = {AIexp .I 8 a) j = l and
new J ,...,m

We want a final argument type descripton a that is consistent and

as low as possible. This must be the least fixed point for the following

system of simultaneous equations and relations:

where a is defined as follows 0

The description a. assigns the type any to the parameters of the

goal function f to prevent these parameters from being split. All
I'

other parameters, on the contrary, are assigned the type 1, there being

no a priori information about their structure.

The least fixed point for the system above does exist because for

any given program the ordered sets involved have no chains of infinite

height, and the functions A and R are monotonic.

8. USEFULNESS OF VARIABLE SPLITTING

The fact that the parameters of a function f have been assigned the

types tl, . . . , tm' for brevity's sake, will be written as f(t ,tm).

Let us consider the following example.

Example.

f(x) = rev(x, 'a : : 'nil);

rev(u, v) = if u = 'nil then v else

rev(cdr(u), car(u) : : v);

The analysis of types tells us that f(any), re~(an~,C~nS(an~,an~)).

After rev(v + vl : : v2), we get the program

f(x) = rev(x, 'a, 'nil);

rev(u,vl, v2) = if u = 'nil then vl : : v2 else

rev(cdr(u1, car(u), vl : : ~2);

We see that the program obtained is by no means superior to the

original one, because no selector has been eliminated owing to variable

splitting.

Thus we see that the parameter splitting based exclusively on the

information obtained by examining the structure of argument expressions,

may we1 1 result in the "arity overraising", i. e. increasing the number

of parameters without reducing the number of selectors in the program.

The types as produced by the above analysis, describing as they do the

feasibi 1 i ty of spl it t ing parameters, however, provide no informat ion on

the usefulness of this splitting. The arity overraising, nevertheless,

can be avoided by "adjusting" the above types in the following way.

Suppose, for example, the type t has been assigned to a parameter

x. Then the splitting of the parameter can be restricted by replacing

some parts of t having the form cons(t t 1 with any. This results in
1' 2

the type t being generalized, i . e. changed to some other type t' such

that t 5 t', the depth of splitting being the less the greater the type

t'. Thus, for instance, the splitting x + xl :: (x2 : : x3) corresponds

to the type cons(any, cons(any,any)), the splitting x + xl :: x2 to the

type cons(any,any), and no splitting to the type any.

Thus we are facing the type generalization problem: given a cons in

a type, we have to decide whether this cons should be retained or

generalized. This decision will be made on the basis of the following

selector elimination principle:

I I
A cons should be retained only if this causes

a selector in the program to disappear.

Being formalized as it is, the selector elimination principle gives

only an approximate description of the intuitive ideas the humans have

about what does it means for a program to have a beautiful and natural

structure. Nevertheless, experience has shown this principle to be

likely to produce reasonable results, without any danger of the program

being spoilt.

9. BACKWARD ANALYSI S

Let us consider the definition of function f

f (. . . , xk, . . . = exp

The k-th parameter of the function may appear at different places

in the function's body exp. Is it any use splitting x ? To answer this
k

question, we have to consider all occurrences of x in exp and to take
k

into account their contexts in exp. To take an example, if exp contains

the subexpression cdr(xk), it makes sense to perform the splitting

x + x' : : x", since this wi 11 cause cdr(x to be replaced with
k k
cdr(x' : : x"), the latter being reducible to x".

Examp 1 e .

In this case the selector elimination principle tells us that it is

no use performing the splitting g(u + ul : : u2).

Exampl e .

f(x) = g(x : : x); g(u) = cdr(u);

In this case the selector elimination principle tells us that the

splitting g(u + ul : : u2) is worth performing, since it will cause the

selector cdr to disappear. And, in fact, after the splitting we get the

program

Thus we see that the natural way of getting information about the

usefulness of splitting is to make use of some kind of backward analysis

[Hughes 88 I.

10.ACCESS PATHS AND CONTEXTS

Let exp be an expression appearing in a larger expression. We want

to consider all attempts by the surrounding expression at accessing the

components of exp. For example, if exp is a part of the expression

then there is an attempt at accessing exp by applying selectors in the

following order: cdr, cdr, car. The component to be accessed can be

unambiguous1 y identified by a sequence of selectors. This just if ies the

following definition.

Definition. An access path is a finite list (which may be empty) of

selector names car and cdr.

The set of all access paths will be denoted by Path. Thus
*

Path = {car, cdr) .
In some cases the surrounding expression tries to access several

components of the expression under consideration. For this reason we

have to describe the context by a set of paths, rather than by a single

path.

Definition. A set of access paths lT~P(Path) is an access context,

if it satisfies the following requirements.

(i) [IETI

(ii) If nA[carl E TI or nA[cdrl E TI, then n E TI.

(i) means that an attempt at accessing the expression as a whole

must be included into the context. This requirement is useful for

technical reasons. (i i 1 formal i zes the obvious fact that a subcomponent

can be accessed only by accessing the components in which the

subcomponent is inc 1 uded.

The set of all contexts is denoted by Context.

Now consider function f with the definition

f(. . . ,xk,. . . = exp

Suppose that exp contains m occurrences of the parameter x in the
k

contexts TI TI2,. . . , TIrn. What should be the total context for all

occurrences of x ? It is clear that finding all attempts at accessing
k

the parameter x amounts to finding all attempts at accessing its
k

occurrences, thus lTl u IT2 u . . . u TIm should be considered to be the

total context of the parameter x k'

1l.USING CONTEXTS FOR TYPE GENERALIZATION

Let a parameter have the type t and the context TI. Then the

function GenType can be easily defined which generalizes t in accordance

with TI by replacing all cons(tl,t2) unaccessed by TI with any.

GenType : Type + Context + Type

GenTypeitI TI = ,-,{GenType1[t1n I n~lT)

GenTypel : Type -+ Path + Type

GenTypel[anyln = any

GenType'[atom(l)ln = atom(d)

GenType'[cons(tl,t")l([l) = any

GenType'[cons(tl,t")I([carl^n) = cons(GenTypel[t'ln, any)

GenType'[cons(t',t")I([cdrl^n) = cons(any, GenTypel[t"ln)

GenTypel[lln = I

It should be noted that for all t~Type and RETI the relation

t 5 GenTypel[tln holds, therefore the set {GenTypel[tln I T I is

finite, in spite of the fact that TI may well be infinite. Consequently,

the greatest lower bound of this set does exist.

12.LATENT SELECTORS

The above considerations might have produced the expression that

the context of a parameter can be determined by examining only the

definition of the function concerned, without the program being globally

analyzed. This is not really the case, however.

Exam~l e .

f(x) = g(x : : 'a); g(u) = h(u); h(v) = cdr(v);

The type analysis tells us that f(any), g(cons(any,atom(a))),

h(cons(any,atom(a))) . The variable v has the context { [1 , [cdrl). But

what is the context of the variable u? At the first glance, it may

appear to be {[I), because there seems to be no selectors in the program

attempting at accessing the variable u. Thus we, erroneously, come to

the conclusion that the types should be generalized as follows: f(any),

g(any), h(cons(any, atom(a))). The only acceptable splitting is

therefore h(v vl :: v2). By performing it we get

f(x) = g(x : : 'a); g(u) = h(car(u), cdr(u));

h(vl,v2) = v2;

This result is far from being satisfactory, because there have

appeared two new selectors car and cdr, not present in the original

program. This makes us draw the conclusion that the parameter access

analysis has to take into account not only the selectors explicitly

appearing in the program, but also the latent selectors to be introduced

by the splitting of parameters.

Thus, if ek is an argument expression in the function call

call f(. . . . ek 1, it would be incorrect to take its context to be

I , because there should be taken into account all attempts at

accessing e due to the splitting of ek. This can be done in the k
following way.

Let the k-th formal parameter of the function f be assigned the

type t, and the total context of all its occurrences be Il. Let

t' = GenType[tlII. Then the generalized type t' gives all information

about the way in which ek is to be split. The function TypeToContext can

be easily defined which converts t' into the context providing the

information about all the attempts at accessing e due to the splitting
k

of e in accordance with t'.
k

TypeToContext : Type + Context

where we use the notation

car*TI = { [car I ̂ n I ~ETI)

cdr*TI = { [cdrl ̂ n I neTI).

Now we can determine the context of the expression e assuming the k'
k-th parameter to be assigned the type t, and the total context of all

its occurrences to be TI. This context is equal to

13.SYSTEM OF EQUATIONS FOR FINDING CONTEXTS

For each function f with the definition

let tf, l, . . . , t stand for the types of its parameters, and c f1m f, 1'
. . . , c stand for the contexts of its parameters.

f, m
Let C x [expl TI be the total context of all occurrences of the

variable x in the expression exp, the expression exp itself being in the

context TI.

We have the following set of equations

where C x [expl Il is defined as follows:

C E VName -+ Exp + Context -+ Context

C x [XI T I = T I

C x [yl TI= {[I}, where xsy.

C x [quote 81 TI = {[I)

C x [if exp then exp' else exp"] TI =

C x [expl {[I) u C x [exp'l {[I) u C x [exp"] {[I)
C x [call f(expl, . . . , expm)l TI =

u { C x [e x p I c }
j f,j j=1, ...,m

C x [car(exp)l IT = C x [expl ({[I) u car*TI)

C x [cdr(exp)l TI = C x [expl ({[I) u cdr*TI)

C x [cons(exp',exp")l TI =

C x [exp'l ({[I) w lT/car) w C x [exp"] ({[I) u TI/cdr)

C x [atom(exp)l TI = C x [expl {[I)

C x [equal(expl,exp")l TI = C x [exp'l {[I) w C x [exp"] {[I)

where we use the notation

We assume the set of contexts to be equipped with natural partial

ordering, lTfsTI" being equivalent to lTfm". The functions TypeToContext,

GenType, and C are monotonic with respect to contexts, therefore the

minimal fixed point for the above system of equations does exist.

Moreover, since c C TypeToContext[t I , there exist only a
f, j f, j

finite number of contexts that can be taken as value by c
f, j'

hence the

minimal fixed point can be found by a finite number of iterations.

The context analysis above resembles, in some respects, the

"neighborhood analysis" as used in the Supercompiler [Turchin 861,

[Turchin 881.

14.PRACTICAL IMPLEMENTATION OF THE CONTEXT ANALYSIS

Some programming tricks may prove to be useful for implementing the

above backward analysis .

First, what we really use in splitting parameters are types

generalized with respect to contexts, rather than contexts themselves.

Thus, instead of computing 'f, j* we can compute the type

tk, = GenType [t I c
f, j f, j'

Second, since t 5 t'
f, j f, j'

we can replace t and t' with a
f, j f, j

single marked type mt having the syntax
f. j

mt E MType marked types

mt : := any

I atom($)

I cons(tl,tN)

I cons! (mtl,mt")

I 1

The feature of the marked type is that some cons are marked with

the exclamation mark, which indicates that these cons belong both to the

type tisj and to the type t
f, j'

On the contrary, if a cons is not

marked, it means that it belongs only to t
f, j'

the corresponding place

in t' being any.
f, j
Thus, t can be extracted from mt by removing all exclamation

f, j f, j
marks, whereas t' can be extracted from mt by replacing all cons!

f, j f, j
with cons, and all cons(tJ, t") with any. If we need, however, the

context c
f, j'

rather than the type tf, j, the context c can be
f, j

extracted from mt
f, j

directly, without finding t' by means of the
f, j'

function Restore!.

Restore! E MType + Context

Restore! [any] = { [1)
Restore![atom(sO)l = {[I)

~estore![cons(t',t")1 = {[I)

Restore![cons!(mt',mt")l = {[I) u

car*Restore! [mt'l v cdr*Restore! [mt"]

Next improvement concerns the representation of contexts. Being

sets of paths, contexts are difficult to deal with directly, but we can

replace contexts with their representations having the syntax

crep E ContextRep

crep : : = car(crep)

I cdr(crep1

I mtype(mt)

Given a context's representation, we can reconstruct the context by

the function Restore.

Restore E ContextRep

As a matter of fact, all functions which the access path analysis

involves can be easily modified so that they will deal with the

representation of contexts, rather than with the contexts themselves.

The first obvious generalization concerns splitting the results of

functions. In the language Mixwell each function has fixed arity, which

means that this function is to be given a fixed number of arguments

(zero, one, or more). On the other hand, each function can produce one

and only one result, for which reason we had to draw the conclusion that

a defined function call call f(exp ..,exp,) cannot be split and,
I"

therefore, has to be assigned the type any. Nevertheless, in addition to

the concept of arity, we can introduce the concept of coarity by letting

each function produce a fixed number of results (zero, one, or more).

The implementation of multi-result functions can cause no problems: when

a function having the arity m and the coarity n is to be called, we have

to put m values into the parameter stack. Then the function takes from

the stack the input values and pushes onto the stack n output values.

A function being able to produce several results allows the

function's results to be split without splitting the definition of the

function. This extention of the arity raiser has been implemented by

Ruten Gurin.

Another possible extension is to make an arity raiser deal with

data structures that are more complicated than Lisp S-expressions are.

To take an example, in the case of the languages Refal [Turchin 791,

[Turchin 861 and RL [Romanenko 881, the main data type is the set of

object expressions. The difficulty is that, instead of the single

constructor cons, we have two constructors: "enclosing an expression in

parentheses" and "concatenating two expressions". The concatenation is

an associative operation, and the last element of an expression can be

accessed as we1 1 as its first element. A consequence is that two types

t ' and t" may happen not to have the least upper bound, in which case,

during the type analysis, we have to satisfy ourselves with finding a

type t such that t'st, t"'t, but t is not "too high". The arity raiser

built into the "Moscow" specializer [Romanenko 881, uses a set of types

with the above feature.

CONCLUSIONS

In order for the results produced by variable splitting to be

reasonable, we need information obtained by two preliminary global

analyses of the program. The first, forward, analysis tells us whether

the splitting is feasible, whereas the second, backward, analysis tells

us whether the splitting is useful.

The first, forward, analysis results in the parameters of the

functions being assigned types, which describe the structure of the

argument expressions in the function calls.

The second, backward, analysis results in the parameters of

the functions being assigned contexts, which provide information about

attempts at accessing the parameters.

Then the information obtained is used to perform variable

splitting. The type information is used to avoid introducing new

selectors into the program as well as code duplication, whereas the

context information makes it possible to avoid useless variable

splitting that does not cause some selectors in the program to be

eliminated.

Introducing an arity raiser as a separate phase into a specializer

enhances the structure of residual programs generated without affecting

the other phases of the specializer. The structure of the specializer,

thus, can be kept natural and understandable.

REFERENCES

[Barzdin 881

G. Barzdin. Mixed Computat ion and Compiler Basis. In D. Bjorner,

A.P.Ershov and N.D.Jones, editors, Partial Evaluation and Mixed

Computation, pages 15-26, Nort h-Hol land, 1988.

[Beckman 761

L. Beckman, A. Haraldson, 0. Oskarsson, E. Sandewall. A Partial

Evaluator, and Its Use as a Programming Tool. Artificial Intelligence,

7(4) : 319-357, 1976.

[Bul yonkov 84 I
M.A.Bulyonkov. Polyvariant Mixed Computation for Analyzer Programs.

Acta Informatica, 21:473-484, 1984.

[Burstall 771

R.M.Burstal1 and J.Darlington. A Transformation System for

Developing Recursive Programs. Journal of the ACM, 24(1):44-67, 1977.

[Dixon 711

J.Dixon. The Specializer, a Method of Automatically Writing

Computer Programs. Division of Computer Research and Technology,

National Institute of Health, Bethenda, Maryland, 1971.

[Ershov 781

On the Essence of Compilation. In E.J.Neuhold, editor, Formal

Description of Programming Concepts, pages 391-420, North-Holland, 1978.

[Ershov 811

A.P.Ershov. The Transformational Machine: Theme and Variations. In

J.Grushka and M.Chyti1, editors, Mathematical Foundations of Computer

Science, Ztrbskd Pleso, Czechoslovakia, pages 16-32, Lecture Notes in

Computer Science, Vo1.118, Springer-Verlag, 1981.

[Futamura 711

Partial Evaluation of Computation Process - An Approach to a

Compiler-Compiler. Systems, Computers, Controls, 2(5):45-50, 1971.

[Hughes 881

J. Hughes. Backward Analysis of Functional Programs. In D. Bjorner,

A.P.Ershov and N.D.Jones, editors, Partial Evaluation and Mixed

Computation, pages 187-208, North-Holland, 1988.

[Jones 85 I
N.D.Jones, P.Sestoft and H.Sondergaard. An Experiment in Partial

Evaluation: The Generat ion of a Compi ler Generator. In J. -P. Jouannaud,

editor, Rewriting Techniques and Applications, Dijon, France, pages

124-140, Lecture Notes in Computer Science, Vo1.202, Springer-Verlag,

1985.

[Jones 861

N.D. Jones and A.Mycroft. Data Flow Analysis of Applicative Programs

Using Minimal Function Graphs. In Thirteens ACM Symposium on Principles

of Programming Languages, St.Petersburg, Florida, pages 296-306, ACM,

1986.

[Jones 88 1
Automatic Program Specialization: A Re-Examination from Basic

Principles. In D. Bjorner, A. P. Ershov and N. D. Jones, editors, Partial

Evaluation and Mixed Computation, pages 225-282, North-Holland, 1988.

[Mogensen 88 I
T. Mogensen. Partially Static Structures in a Self-Appl icable

Partial Evaluator. In D. Bjorner, A. P. Ershov and N. D. Jones, editors,

Partial Evaluation and Mixed Computation, pages 325-347, North-Holland,

1988.

[Ostrovski 881

B.N.Ostrowski. Implementation of Controlled Mixed Computation in

System for Automatic Development of Language-Oriented Parsers. In

D.Bjorner, A.P.Ershov and N.D.Jones, editors, Partial Evaluation and

Mixed Computation, pages 385-403, North-Holland, 1988.

[Romanenko 88 I
S. A. Romanenko. A Compi ler Generator Produced by a Self -Appl icable

Specializer Can Have a Surprisingly Natural and Understandable

Structure. In D. Bjorner, A . P. Ershov and N. D. Jones, editors, Partial

Evaluation and Mixed Computation, pages 445-463, Nort h-Hol land, 1988.

[Sestoft 861

The Structure of a Self-Applicable Partial Evaluator. In

H.Ganzinger and N.D.Jones, editors, Programs as Data Objects,

Copenhagen, Denmark, 1985, pages 236-256, Lecture Notes in Computer

Science, Vol . 217, Springer-Verlag, 1986.

[Schmidt 861

D. A. Schmidt. Denotat ional Semantics. A1 lyn and Bacon, Boston, 1986.

[Sestoft 881

P. Sestoft. Automatic Call Unfolding in a Partial Evaluator. In

D. Bjorner, A. P. Ershov and N. D. Jones, editors, Partial Evaluation and

Mixed Computation, pages 485-506, North-Hol land, 1988.

[Turchin 721

V. F. Turchin. Equivalent Transformat ion of Recursive Functions

Defined in Ref a1 . In Teori ya Yazykov i Metody Programmirovaniya. Trudy

Simposiuma, pages 31-42, Alushta-Kiev, 1972 (in Russian).

[Turchin 791

V. F. Turchin. A Supercompi ler System Based on the Language Ref a1 .
SIGPLAN Notices, 14(2):46-54, February 1979.

[Turchin 821

V. F. Turchin, R. M. Nirenberg and D. V. Turchin. Experiments with a

Supercompiler. In 1982 ACM Symposium on Lisp and Functional Programming,

Pi t tsburgh, Pennsylvania, pages 47-55, ACM, 1982.

[Turchin 861

V. F. Turchi n. The Concept of a Supercompi ler . ACM Transact ions on

Programming Languages and Systems, 8(3):292-325, July 1986.

[Turchin 881

V. F. Turchin. The Algorithm of Generalization in the Supercompi ler.

In D. Bjorner, A. P. Ershov and N. D. Jones, editors, Partial Evaluation and

Mixed Computation, pages 531-549, North-Holland, 1988.

[Wadler 881

P. Wadler. Deforestat ion: Transforming Programs to El iminate Trees.

In European Symposium on Programming, Lecture Notes in Computer Science,

Springer-Ver lag, 1988.

