
THE REFAL PLUS PROGRAMMING LANGUAGE

Ruten Gurin, Sergei Romanenko

Intertekh
Moscow 1991

CONTENTS

INTRODUCTION

Chapter I. PROGRAMMING IN REFAL PLUS
l.Your first Refal Plus program
2.Data structures

2.1.Ground expressions
2.2.Representation of data by ground expressions
2.3.0bjects and values
2.4.Garbage collection

3.Evaluation and analysis of ground expressions
3.1.Result expressions
3.2.Variables
3.3.Formats of functions
3.4.Patterns
3.5.Paths, rests, and sources
3.6.Delimited paths
3.7.Result expressions as sources
3.8.Right hand sides

4.Functions defined in the program
4.1.Function definitions
4.2.Local variables
4.3.Recursion

S.Failures and errors
S.l.Failures produced by evaluating result expressions and

paths
5.2.Matches
5.3.Failure trapping
5.4.Control over failure trapping
S.S.Meaning of right hand sides
5.6.Failing and unfailing functions

6.Logical conditions
6.1.Conditions and predicates
6.2.Conditionals
6.3.Logical connectives
6.4.Example: formal differentiation
6.5.Example: comparison of sets

7.Direct access selectors
S.Functions returning several results

S.l.Ground expression traversal
8.2.Quicksort

9.Iteration
lO.Search and backtracking

lO.l.The queens problem
10.2.The sequence problem

ll.Example: a compiler for a small imperative language
ll.l.The source language
11.2.The target language
11.3.The general structure of the compiler
11.4.The modules of the compiler and their interfaces
ll.S.The main module

2

11.6.The scanner
11.7.The parser
11.8.The code generator
11.9.The dictionary module

Chapter II. SYNTAX AND SEMANTICS OF REFAL PLUS
l.Notation for syntax description
2.Natural semantics description
3.Lexical structure of program

3.1.Comments
3.2.Tokens
3.3.Key words
3.4.Character symbols
3.5.Word symbols
3.6.Numeric symbols
3.7.Variables
3.8.Normalization of the token stream

4.0bjects and values
S.Ground expressions

S.l.Ground expression syntax
5.2.Static and dynamic symbols
5.3.Symbolic expression names
5.4.Elimination of symbolic expression names

6.Variable values and environments
?.Result expressions

7.1.Syntax
7.2.Evaluation of result expressions
7.3.Examples

8. Patterns
8.1.Syntax
8.2.Pattern matching
8.3.Examples

9.Hard expressions
9.1.Syntax
9.2.Matching against hard expressions
9.3.Examples

lO.Paths
lO.l.Syntax
10.2.Evaluation of paths
10.3.Conditions
10.4.Bindings
lO.S.Searches
10.6.Matches
10.7.Delimited paths
10.8.Negative conditions
10.9.Fences
lO.lO.Cuts
lO.ll.Failures
10.12.Right hand sides
10.13.Error generators
10.14.Error traps
10.15.Alternatives
10.16.Alternative matches

3

10.17.Result expressions as sources
ll.Function definitions
12.Declarations

12.l.Constant declarations
12.2.0bject declarations
12.3.Function declarations
12.4.Trace directives

13.Context dependent restrictions
13.1.Elimination of redundant constructs
13.2.Restrictions imposed by function declarations
13.3.Restrictions on the use of references to functions
13.4.Restrictions on the use of variables
13.5.Restrictions on the use of cuts

14.Modules
lS.Execution of program

Chapter III. LIBRARY OF FUNCTIONS
l.How to use library functions
2.ACCESS: direct access to ground expressions
3.APPLY: application of functions passed as arguments
4.ARITHM: arithmetic operations on integers
S.BOX: box operations
6.CLASS: predicates for determining classes of symbols
?.COMPARE: comparison operations
8.CONVERT: data convertions
9.DOS: calls to the operating system

lO.STDIO: standard input/output
ll.STRING:
12.TABLE:
13.VECTOR:

REFERENCES

string operations
table operations
vector operations

INDEX OF LIBRARY FUNCTIONS

4

INTRODUCTION

Refal Plus is a dialect of the programming language Refal.
Refal (Recursive Function Algorithmic Language) was de­

signed by V.F.Turchin as a tool for describing the semantics of
other algorithmic languages [Tur 86]. Later, when reasonably
efficient Refal implementations had been created [BsR 77],
[Rom 87a], Refal was used as a symbol manipulation language in
such fields as computer algebra, compiler and interpreter writ­
ing, artificial intelligence, etc.

The principal data type in Refal are arbitrary trees, re­
ferred to as ground expressions. In programs and text files
ground expressions are represented by linear sequences of sym­
bols and parentheses, with parentheses being properly paired.
Symbols represent such elementary data objects as characters,
words, numbers and references to objects).

The principal means of analyzing and accessing ground ex­
pressions is pattern matching. Refal patterns may contain sym­
bols, parentheses, and variables. If matching a ground expres­
sion against a pattern succeeds, the pattern's variables are
bound to the corresponding components of the ground expression,
which can be used later for building new ground expressions.

A Refal program may contain function definitions. Each
function takes as argument a ground expression and returns as
its result a ground expression. Functions can call each other.
In particular, a function can call itself (directly as well as
indirectly, through other functions), in which case the function
is said to be recursive. And it is recursion that is the princi­
pal way of structuring the control in Refal programs.

Refal Plus has been developed to take into account the
experience gained from the design, implementation and use of
such languages as Basic Refal [BsR 77], Refal-2 [Rom 87a],
Refal-4 [Rom 87b], Refal-5 [Tur 89], and RL [Rom 88].

As compared to the other Refal dialects, Refal Plus pro­
vides the following features.

*** More advanced modules

interface
The inter­
visible in

the parts of

Each module is divided into two components: the
of the module and the implementation of the module.
face contains the parts of the module that may be
other modules, whereas the implementation contains
the module that are invisible in other modules.

The interface of a module may contain any declarations,
which means that not only function declarations may be exported,
but also declarations of constants and objects (such as boxes
and i/o channels) . When a function declaration is exported, not
only the function name becomes visible, but also the formats of
the function's arguments and results, which enables the calls to
the function to be checked for correctness at compile time,
rather than at run time.

5

For a module to be compiled, there must be known the inter­
faces of other modules, rather than other module's implementa­
tions. Thus, a module can be compiled even if the implementa­
tions of other modules have not been created. Besides, the fact
that a module's implementation has been modified does not neces­
sitate recompiling the modules importing that module. Thus ar­
bitrary intermodule dependencies are allowed (including the
cyclic ones) .

*** Static declarations of dynamic objects

All objects that can be created dynamically at run time
(such as i/o channels, boxes, vectors, and tables) can also be
declared statically, in which case they are given symbolic names
to be used in the program text for referencing the objects.

*** Function declarations

Each Refal Plus function is declared as either failing or
unfailing one. The evaluation of a call to a failing function
can result in returning a special "failure" value. For example,
all predicate functions return either an empty ground expression
or a "failure". On the other hand, an unfailing function never
returns a "failure".

It should be noted that earlier Refal dialects enabled the
programmer to define only unfailing functions.

One more feature of Refal Plus is the possibility of defin­
ing functions accepting several arguments and returning several
results. The number and type of a function's arguments is said
to be the function's arity, whereas the number and type of the
function's results is said to be the function's co-arity.

The arity and co-arity of a function are specified by de­
claring the function's input and output formats, which are pat­
terns containing symbols, parentheses, and variables. The input
format imposes syntax restrictions on the form of the calls to
the function, whereas the output format imposes restrictions on
the contexts in which the calls to the function may appear. By
stripping the input format of all the symbols and parentheses,
we get the variable sequence describing the function's arity. By
stripping the output format, we get the description of the func­
tion's co-arity.

The explicit function format declarations allow many errors
to be detected at compile time, and also reduce the costs of
evaluating the function calls.

It should be noted that earlier Refal dialects assumed each
function to accept a single argument and to return a single
result.

*** Failure and error trapping

6

If evaluating a Refal Plus construct terminates, it either
succeeds, fails, or produces an error.

If the evaluation succeeds, the result returned by the
construct is a ground expressions. (The format of the returned
expression is always known in advance, which permits Refal Plus
implementations to represent the result by a tuple of ground
expressions.)

If the evaluation fails, the result returned is a "fail-
ure".

If the evaluation produces an error, the result returned is
an "error" value containing a ground expressions (which, usual­
ly, is an error message).

Refal Plus provides several constructs enabling failures
and errors to be caught and analyzed.

*** Input/output of ground expressions

Refal Plus provides functions that enable programs to input
and output character strings as well as character representa­
tions of ground expressions, the conversion of ground expres­
sions into character sequences and vice versa being done auto­
matically.

*** Operations on boxes, vectors, and tables

Refal Plus provides a way to deal with dynamically created
objects such as boxes, vectors, strings, and tables. Boxes are
treated in the same way as in Refal-2, whereas vectors, strings,
and tables are a feature of Refal Plus.

A box is an object containing a ground expression.
A vector is an object containing a finite sequence of

ground expressions.
A string is an object containing a finite sequence of char­

acters.
Boxes, vectors, and strings can be accessed via reference

symbols pointing to these objects. Refal Plus provides functions
for creating, accessing and updating boxes, vectors, and
strings, including accessing and updating individual components
of vectors and strings.

A table is an object containing a finite set of keys, each
key associated with its value. The keys as well as values are
ground expressions. A table can be accessed via reference sym­
bols pointing to the table. Refal Plus provides functions for
creating and copying tables, for getting the value associated
with a key in a table, and getting all the keys contained in a
table. Essentially, a table is a representation of a function
with the finite domain.

*** "Vector" representation of ground expressions

7

The present implementations of Refal Plus are based on the
"vector" representations of ground expressions [AbR 88] , which
allows the copying of ground expressions to be reduced to copy­
ing a pair of pointers to the expression's representation.

The cheapness of the copying operation permits Refal pro­
grams to be written in functional style, whereas the earlier
Refal implementations forced the programmer to be careful with
copying, thereby inducing him/her to stick to the imperative
style.

The objects that have become inaccessible to the program
are automatically destroyed by the garbage collector provided by
the Refal Plus implementations.

8

Chapter I. PROGRAMMING IN REFAL PLUS

This chapter gives a step-by-step tutorial introduction to
the language Refal Plus and provides a diverse group of program
examples demonstrating some of the ways in which Refal Plus can
be used to solve problems. A complete description of Refal Plus
is given by Chapter II, "Syntax and Semantics of Refal Plus",
where you can find information about certain subtle points and
technical details. Some of the program examples may contain
calls to unknown functions, in which case you may consult Chap­
ter III, "Library of Functions", as well as "Alphabetical Index
of Functions".

l.YOUR FIRST REFAL PLUS PROGRAM

To maintain the historically established tradition, we
begin by considering a simple program in Refal Plus:

$use STDIO;

Main
= <Println "Hello!">;

/* Import i/o functions */
/* from the module STDIO */
/* Define of the main function */
I* Print a line */

This program consists of two directives. The first direc-
tive

$use STDIO;

states that the program is going to use library input/output
functions, which are to be imported from the module STDIO. The
second directive is the definition of the function Main, and, by
convention, the execution of a Refal Plus program always begins
by evaluating the call to the function Main.

The argument of the function Main must be empty. In the
above program, the function Main calls the library function
Println with the argument "Hello!", thereby causing the charac­
ter string

Hello!

followed by the character "new line", to be sent to the standard
output device. Then the execution of the program terminates.

2.DATA STRUCTURES

2.1.GROUND EXPRESSIONS

All data processed by Refal Plus programs are so-called
ground expressions.

Here are three examples of ground expressions

9

"John" "Smith" 33 "years"
("Dave" 17) ("Mary" 24) ("Elizabeth" 6)
("my" "house") "has" ("large" ("light" "windows"))

The salient feature of the above examples is the use of
parentheses. If we modify the expressions by rearranging the
parentheses, the structure of the expressions will be modified,
changing the implied meaning of the expressions.

In addition to parentheses, the above expressions contain
symbols. Here are a few examples of symbols:

"John" "johN" "bye-bye" 1988 -99999999999999

In general, ground expressions consist of symbols and pa­
rentheses. A ground expression is a sequence of zero or more
ground terms. A ground term is either a symbol or a ground ex­
pression enclosed in parentheses"(" and ")". Thus, a ground
expression is a sequence of symbols and parentheses, in which
the parentheses are "properly paired".

When in computer memory, ground expressions are usually
stored as tree-structured objects. Nevertheless, in order to be
input or output (printed, written to a file, read from a file,
etc.), a ground expressions has to be represented as a linear
sequence of characters.

Refal Plus implementations enable the ground expressions to
be input or output, with all necessary conversions performed
automatically.

A ground expression represented by a character stream is a
sequence of tokens, each token representing either a parenthesis
or a symbol. Tokens may be separated by spaces, which are ig­
nored unless they are essential to separate two consecutive
tokens. (New line characters are considered to be equivalent to
spaces.)

The
grams as
symbols.

following symbols can appear in source Refal Plus pro­
constants: character symbols, word symbols, and numeric

A character symbol corresponds to a printable
sequence of several character symbols is written
string consisting of the corresponding characters
in acute accents.

character. A
as a single
and enclosed

A word symbol corresponds to a character string and is
written as the corresponding string enclosed in double quotes.

If a word symbol begins with either a capital letter, a
question mark (?), or an exclamation mark (!), and contains only
letters, digits, minus signs (-), question marks (?), and excla­
mation marks (!),the double quotes enclosing the symbol may be
omitted.

Here are examples of words:

"John"
"A-Word"
"a-very-very-long-Word"
X-25m3s--

10

"equal?"
?-?
?

A numeric symbol corresponds to a signed integer, and is
written as a non-empty sequence of decimal digits, which may be
preceded by one of the characters"+" or"-". For example:

237
-999
+13

Numeric symbols may be arbitrary large.

2.2.REPRESENTATION OF DATA BY GROUND EXPRESSIONS

Ground expressions are especially convenient for represent­
ing symbolic (i.e. not purely numeric) data.

For example, suppose we want to deal with algebraic formu­
lae represented by ground expressions. In this case, we have to
devise a way of representing constants, variables, and formulae
formed by applying a binary operator to two smaller formulae. We
may choose, for example, the following representation.

Let [p] denote the ground expression that represents the
formula p. Then, numbers may be represented by the corresponding
numeric symbols, variables by the corresponding word symbols,
and formulae formed by applying binary operators according to
the following rules:

[p+q] = ("plus" [p] [q])
[p-q] = ("minus" [p] [q])
[p6q] = ("mult" [p] [q])
[p/q] = ("div" [p] [q])

q
[p 1 = ("power" [p] [q])

Thus the formula

2
(X+Y)-512

is to be represented by the ground expression

("plus" ("minus" X ("power" Y 2)) 512)

The next example is the problem of representing chess posi­
tions by ground expressions.

First of all we have to denote the name and color
piece. For example, ("white" King"), ("black" "Pawn").
have to specify the square occupied by each piece. For
("e" 2), ("h" 7). Now a position may be represented as
quence of ground terms, each term specifying the name,

11

of each
Then we
example,

a se-
color,

and square of a piece. For example

(("white" "King") ("g" 5))
(("black" "King") ("a" 7))
(("white" "Pawn") ("c" 6))
(("white" "Knight") ("g" 1))
(("black" "Knight") ("a" 8))

2.3.0BJECTS AND VALUES

In the broad sense, "object" is usually understood to mean
an entity that exists in time and may vary, but, nevertheless,
does not lose its identity.

A good example of objects is a human, who gets born, grows
up, develops, and dies, but, nevertheless, remains, in a sense,
the same person.

Another classic example is due to Heraclitus (the prime of
whose creative forces falls approximately on the years 504-501
BC). Heraclitus taught that one cannot enter twice the same
river, since, "even if you enter the same river, the water run­
ning against you is always new". Thus, the river may also serve
as a good example of objects.

In the broad sense, "value" is usually understood to mean
an entity that is unable to vary, does not develop, and, in a
sense, exists out of time.

It is unknown whether values exist in real life, but they
are the favorite subject of the mathematicians. For example, the
number 25 is a typical value of that kind.

A value may, certainly, be regarded as a special, degener­
ate, case of object (i.e. as a rigid object unable to develop).
Nevertheless, the term "object" will be usually applied only to
"proper" objects, which are not values.

Since objects may vary, they are more difficult to deal
with than values are. Thus objects are often provided with
names. The basic property of names is that a name is unambigu­
ously associated with an object (i.e. a name unambiguously iden­
tifies the object). In contrast to objects, their names are
typical values, there being no changes in the names in spite of
there being changes in the objects. For example, the state of
the River Thames is continuously changing, but, nevertheless, it
has no effect on the word "Thames". One more example is given by
the particulars of a person: the family name, the first name,
the date and place of birth, etc.

Within the scope of Refal Plus, the terms "object" and
"value" have a more narrow sense.

A Refal Plus value is a ground expression.
A Refal Plus object is a "container", in which there can be

kept ground expressions and other information.
Refal Plus objects may be created at compile time as well

as at run time. Each object is created simultaneously with a
reference symbol, which is said to reference to, and to be the
name of, the object. The basic property of the name of an object

12

is that it must be different from all other reference symbols
existing at the moment the object is being created. Owing to
this property, each reference symbol corresponds to a unique
object, and equal reference symbols correspond to one and the
same object.

The interrelation between the name of an object, the ob­
ject, and the object's contents can be represented by the fol­
lowing picture:

R --> [. . .]

Refal Plus programs deal with object of the following
types.

Function objects contain compiled function definitions, and
are created at compile time.

All other objects may be created statically (i.e. at com­
pile time) as well as dynamically (i.e. at run time).

Box objects are designed for storing ground expressions,
each box containing one ground expression

Table objects are designed for storing unordered sets of
ordered pairs, each pair consisting of two ground expressions.
The first component of a pair is said to be a key, whereas the
second component is said to be the value associated with the
key. All keys appearing in a table must be different from each
other. Thus, each key in a table unambiguously corresponds to
its value. Thus, a key uniquely determines its value.

Channel objects are designed for performing input/output
operations.

Vector objects are designed for storing finite sequences of
ground expressions.

String objects are designed for storing finite character
sequences.

2.4.GARBAGE COLLECTION

In spite of the fact that, at run time, Refal Plus programs
can create objects, there is no explicit way in which the ob­
jects can be destroyed. Thus, the computer memory may well be
filled with new and new objects, although many of them may not
be needed any more. Theoretically, this is no problem, but, in
practice, Refal programs are to be run by real computers with
limited memory capacity. For that reason, all Refal Plus imple­
mentations include a garbage collector.

Garbage collection is automatically started each time the
free memory is exhausted, in order to find and destroy all ob­
jects that, being inaccessible via the references contained in
variable values, are thus unable to influence the program's
behavior.

Figure 2.1 schematically
as several objects along with
the parts of expressions that
facilitate the discussion, all

shows the variable values as well
their contents. The stars denote
are not reference symbols. To
objects are labeled with numbers.

13

The corresponding numbers denote reference symbols appearing in
the ground expressions.

It can be easily seen that reference 1 appearing in the
variable values enables the access to object 1 and, indirectly
(via object 1), to object 4, whereas reference 2 enables the
access to object 2 and, indirectly (via object 2), to objects 4,
5, 6, 3. Thus, there is no way of getting infor.mation from ob­
jects 7 and 8. Therefore, if the garbage collection started at
this moment, objects 7 and 8 would be destroyed. Now, if refer­
ence 1 were removed from the variable values, object 1 would
become inaccessible. But, if reference 1 were retained, and
reference 2 removed, then all the objects would become inacces­
sible, except objects 1 and 4.

VARIABLE VALUES:
[* * 1 * * * * * * 2 * * * * *]

1: [* * * 4]
2: [4 * * 5]
3: [* * 5]
4: [* * *]
5: [* 6 * 3]
6:[**4*]
7:[3*8]
8: [* 7]

Fig.2.1. Objects and references.

3.EVALUATION AND ANALYSIS OF GROUND EXPRESSIONS

3.1.RESULT EXPRESSIONS

Refal Plus result expressions are, in a sense, an analog to
the well-known arithmetic expressions. For example, the arithme­
tic expression X*Y+3 corresponds to the Refal Plus result
expression

<"+" <"*" sX sY> 3>

Each pair of angular brackets designates a function call
of the for.m <Fname Re>, where Fname is the name of the function
to be called, and Re is the argument to be passed to the func­
tion. Thus, the arguments of function calls are always enclosed
in angular "functional" brackets, which eliminates the necessity
to use parentheses for indicating the order in which the subex­
pressions are to be evaluated. For example, the expression
X*(A+B) rewritten in Refal becomes

<"*" sX <"+" sA sB>>

whereas the expression X*A+B is written in Refal as

14

<"+" <"*" sX sA> sB>

Result expressions, similarly to arithmetic expressions in
other languages, are used for producing new values from other
ones. Thus, a result expression is evaluated by replacing all
its variables with their values and evaluating all function
calls. If there are nested function calls, the inner calls are
evaluated before the surrounding ones.

It is obvious that, for a result expression to be evaluat­
ed, it is necessary to know the values of the variables appear­
ing in the expression. The information about the variable values
will be referred to as an environment. The notation

{Vl = Gel, ... ' Vn = Gen}

will be used for denoting the environment in which the variables
Vl, ... , Vn have the respective values Gel, ... , Gen.

As can be seen from the above, the representation of arith­
metic expressions by result expressions is rather clumsy. Never­
theless, it does have certain advantages.

The point is that the choice of one or another notation is
determined by the nature of the objects to be dealt with, as
well as by the set of operations to be applied to the objects.

It is reasonable to choose the notation in such a way that
the most frequently used operations be denoted as concisely as
possible. But the most succinct notation is, certainly, no nota­
tion at all, i.e. an empty place!

As far as arithmetic expressions are concerned, we have two
basic operations: addition and multiplication. One of the opera­
tions may be denoted by empty place, and the common practice is
to omit the operator of multiplication.

On the other hand, the principal data dealt with by Refal
Plus are ground expressions, rather than numbers. Since the
basic operations on ground expression are the concatenation of
two expressions and the enclosing of an expression in parenthe­
ses, it is for these operations that the syntax of Refal Plus
provides a very concise notation.

Namely, if Re' and Re" are result expressions, so is the
construct

Re' Re"

which means that Re' and Re" are to be evaluated and the values
returned are to be concatenated to produce the result of the
whole expression. Thus, if the evaluation of Re' and Re" results
in returning ground expressions Ge' and Ge" respectively, the
ground expression Ge' Ge" is returned as the result of evalu­
ating Re' Re".

If Re is a result expression, so is the construct

(Re)

15

which means that Re is to be evaluated and the value returned is
to be enclosed in parentheses to produce the result of the whole
expression. Thus, if the evaluation of Re results in returning a
ground expression Ge, the ground expression (Ge) is returned
as the result of evaluating (Re)

For example, the result of evaluating the result expression

sX '+' sY (eZ)

in the environment {sX = 25, sY = 36, eZ = A (B C) D}
ground expression

25 '+' 36 (A (B C) D)

3.2.VARIABLES

is the

Each variable in Refal Plus begins with a variable type
designator. The type designator specifies the set of values the
variable can be bound to, and must be one of the four letters:
s, t, v, or e. The variables are, accordingly, distinguished
into four classes: s-variables, t-variables, v-variables, and
a-variables.

A variable's value should be consistent with the type of
the variable: an s-variable's value must be a symbol, a t­
variable's value must be a ground term, a v-variable's value
must be a non-empty ground expression, and, finally, an a­
variable's value may be any ground expression,

In the following, the term "ve-variable" will be understood
to mean "a variable that is either a v-variable or an a­
variable".

3.3.FORMATS OF FUNCTIONS

From the purely formal point of view, all Refal Plus func­
tions are assumed to take a single argument and to return a
single result. In many cases, however, the structure of a func­
tion's argument and result is known in advance. For example, the
function "+" is known to accept a ground expression consisting
of two symbols and to return a ground expression consisting of a
single symbol.

The restrictions imposed on the argument and result of a
function are specified by the declaration of the function. For
example, the declaration of the function "+" has the form:

$func "+" sX sY = sZ;

In general, the declaration of a function Fname has the
form

$func Fname Fin = Fout;

16

where Fin is the input format of the function, and Fout is its
output format. The formats of functions may contain symbols,
parentheses, and variables. The variable indices in formats are
insignificant, serve as comments, and may be omitted.

All input and output formats must be "hard", which means
that any subexpression of a format may contain no more that one
ve-variable at the top level of parentheses. For example, the
format (e) (e) is hard, whereas the format e A e is not hard,
containing as it does two a-variables at the same level of pa­
rentheses.

All inputs to, and results of, a function must have the
structure specified by the function's declaration. The func­
tion's declaration must precede all references to the function
made in the result expressions appearing in the program. If the
function is defined in the program, its declaration must explic­
itly appear in the program prior to the definition. Otherwise,
if the function is defined in other module, its declaration must
be imported into the program by a directive $use.

When the program is being compiled, the compiler verifies
that the argument expressions in the calls to the function are
consistent with the input format of the function. For example,
consider the result expression

<"+" 2 <"+" sX sY>>

The inner call is obviously correct. But, to check the outer
call, we have to make use of the information about the structure
of the results returned by the function"+". Thus, on replacing
<"+" sX sY> with the output format of the function "+" we get
<"+" 2 s>. Now we see that the argument of the outer call con­
forms to the input format of the function "+". On the other
hand, the result expression

<"+" 2 <"+" sX sY> 3>

is regarded as illegal, because the argument of the outer call
consists of three symbols, despite the input format of the func­
tion "+" requiring the argument to consist of two symbols.

Thus, specifying the input and output formats enables many
errors to be found at compile time, rather than at run time.

3.4.PATTERNS

Patterns provide the principal way of analyzing ground
expressions.

Patterns may contain symbols, parentheses, and variables.
For example:

ABC
tx (eY B)

A pattern may be regarded as representing the set of all

17

ground expressions that can be produced from the pattern by
replacing the pattern's variables by some values consistent with
the types of the variables. For example, the pattern A eX
represents the set of ground expressions beginning with the
symbol A, and the pattern sX sY the set of ground expressions
consisting of exactly two symbols.

If there are several occurrences of the same variable in a
pattern, all the occurrences must be bound to the same value.
For example, the pattern tX tx represents the set of ground
expressions consisting of two equal terms.

Let Ge be a ground expression, and P a pattern. Then Ge can
be matched against P to determine whether Ge has the structure
specified by P. If so, the matching of Ge against P is said to
succeed, otherwise to fail.

If the matching of Ge against P succeeds, the variables
appearing in P are bound to the corresponding components of Ge.
Thus, the result of matching Ge against P is an environment Env.
For example, the result of matching the ground expression
AAA BBB CCC against the pattern eX sY is the environment {eX
= AAA BBB, sY =CCC}.

Now let us try to match the ground expression A B C
against the pattern el sX e2. It can be easily seen that the
matching can succeed in three different ways, resulting in three
different environments:

{el = sX = A, e2 = B C}
{el = A, sX = B, e2 = C}
{el = A B, sX = C, e2 = }

What is to be considered the result
situations? Refal Plus solves the problem
All variants of matching are considered to

of matching in
in the following

be acceptable,
some of variants "take precedence" over others.

such
way.
but

More specifically, let Envl and Env2 be different variants
of matching Ge against P. Consider all variables appearing in P.
Since Envl and Env2 are different, P must contain some variables
whose values in Envl and Env2 are different. Let V be the left­
most of such variables, and compare the length of the values
assigned to V by Envl and Env2. If the value assigned by Envl is
shorter than the value assigned by Env2, then Envl is assumed to
"precede" Env2 (i.e. to take precedence over Env2), otherwise
Env2 is assumed to "precede" Envl.

For example, matching the ground expression (Al A2 A3)
(Bl B2) against the pattern el (eX sA eY) e2 results in the
following set of environments

{el = eX = sA = Al, eY = A2 A3, e2 = (Bl B2)}
{el = eX = Al, sA = A2, eY = A3, e2 = (Bl B2)}
{el = eX = Al A2, sA = A3, eY = e2 = (Bl B2)}
{el = (Al A2 A3) , eX = sA = Bl, eY = B2, e2 = }

{el = (Al A2 A3) , eX = Bl, sA = B2, eY = e2 = }

where the variants of matching are listed in accordance with

18

their precedence, i.e. the first variant comes first, etc.
If the variants of matching are ordered as described above,

the matching is said to be done from left to right. Refal Plus,
however, enables the matching to be also done from right to
left, which means that, instead of comparing the values of the
leftmost variable, we have to compare the values of the right­
most variable. The direction of matching can be changed by pre­
fixing the key word $r to the pattern. For example, if the
ground expression (Al A2 A3) (Bl B2) is matched against the
pattern $r el (eX sA eY) e2, the set of variants of matching
will be ordered as follows:

{el = (Al A2 A3) I eX = Bl, sA = B2, eY = e2 = }

{el = (Al A2 A3) I eX = sA = Bl, eY = B2, e2 = }

{el = eX = Al A2, sA = A3, eY = e2 = (Bl B2)}
{el = eX = Al, sA = A2, eY = A3, e2 = (Bl B2)}
{el = eX = sA = Al, eY = A2 A3, e2 = (Bl B2)}

3.5.PATHS, RESTS, AND SOURCES

Result expressions and patterns may be used to construct
larger syntax units, paths. Whereas result expressions may be
considered as an analog to arithmetic expressions, paths are an
analog to statements (such as assignment statements, loop state­
ments, etc.).

A path is evaluated with respect to an environment. If the
evaluation terminates, it returns a value.

Refal Plus is rather sparing in using keywords and delimit­
ers, which may cause some syntactical problems. For example,
some paths begin with result expressions. Let Q be such a path
and Re a result expression. Consider the construct Re Q ob­
tained by juxtaposing Re and Q. This construct is obviously
ambiguous, because it is impossible to determine the boundary
between Re and Q.

This ambiguity can be removed by inserting a delimiter (for
example, a comma) between the result expression and the path:
Re , Q. Radical though this solution may seem, in many cases the
delimiter would be superfluous, Q being easy to separate from
the preceding construct.

Such "good-looking" paths, easy to separate from the pre­
ceding constructs, are referred to as rests.

Another important class of paths is formed by sources,
whose principal syntactical feature is that a source cannot
contain comma at the top level of curly braces.

Henceforth, we shall denote paths by Q, rests by R, and
sources by S.

Now let us consider several simple kinds of paths, rests,
and sources.

3.6.DELIMITED PATHS

Any path Q can be turned into a rest by prefixing a comma

19

to Q. Thus we get the delimited path

' Q

which in all respects is equivalent to the original path Q
(except that, syntactically, it is a special kind of paths, a
rest) .

3.7.RESULT EXPRESSIONS AS SOURCES

Any result expression Re is a source, and, therefore, a
path. Thus it can be turned into the rest

, Re

by prefixing a comma to Re.
Evaluating a source of the form Re amounts to evaluating

the result expression Re. If this evaluation results in return­
ing a ground expression Ge, then Ge is taken to be the result of
the source Re.

3.8.RIGHT HAND SIDES

A construct of the form

= Q

where Q is a path, is referred to as a right hand side. Syntac­
tically, a right hand side is a rest, and, therefore, a path.

Evaluating a right hand side = Q amounts to evaluating
the path Q. If the evaluation of Q results in returning a ground
expression Ge, then Ge is taken to be the result of the whole
right hand side.

The difference between the path Re and the path = Re
seems to be purely syntactic, but this is not so. Actually, the
subtle semantic difference between the two constructs does exist
and manifest itself in cases where the evaluation of Re results
in returning a failure. Later this question will be given due
consideration, but now we won't dwell on it any more.

4.FUNCTIONS DEFINED IN THE PROGRAM

4.1.FUNCTION DEFINITIONS

A Refal program consists of function definitions, each
definition having either of the two forms:

Fname \{ Sntl; Snt2;
Fname { Sntl; Snt2;

20

Sntn; };
Sntn; };

where Fname is the name of the function being defined, and
Sntl, Snt2, ... , Sntn are sentences. (Being, at present, of no
importance, the subtle difference between "\{" and "{" will be
explained later.)

Each sentence Sntj is of the form Pj Rj, with Pj being the
input pattern of the sentence, and Rj the rest of the sentence.

A function definition specifies the way in which the calls
to the function are to be evaluated. Suppose a call

<Fname Re>

to the function Fname is to be evaluated. Then the result ex­
pression Re is evaluated. If a ground expression Ge is returned,
an attempt is made to match Ge against the input patterns Pl,
P2, ... , Pn, in order to find the first pattern Pj such that
matching Ge against P succeeds. Let Env be the "first" variant
of matching Ge against P. Then the rest Rj is evaluated in the
environment Env. If a ground expression Ge' is returned, this
expression is taken to be the result of evaluating the function
call.

For example, let us consider a function Sumsq computing the
sum of the squares of two numbers. Here is the definition of
this function written in traditional notation

Sumsq(X,Y) = X*X + Y*Y

which may be rewritten in Refal in the following way:

$func Sumsq sX sY = sZ;

Sumsq
{

sX sY = <"+" <"*" sX sX> <"*" sY sY>>;
} ;

It should be noted that the declaration of a function must
precede the function's definition as well as the calls to the
function, since the information provided by the declaration is
necessary for compiling the function's definition as well as the
calls to the function.

If the function declaration has the form

$func Fname Fin = Fout;

the compiler verifies that the input patterns Pl, P2, ... , Pn
are instances of the input format Fin, whereas all the rests
Rl, R2, ... , Rn are certain to return ground expressions satis­
fying the output format Fout.

Some constructs appearing in function definitions may be
abbreviated in the following way.

If a sentence Sntj has the rest Rj consisting of a single
comma, the rest can be omitted, so that the sentence takes the
form Pj.

21

If a function definition contains a single sentence Snt,
i.e. has the form

Fname \{ Snt; };

it can be abbreviated to

Fname Snt;

For example, the above definition of the function Sumsq can
be written as

Sumsq sX sY = <"+" <"*" sX sX> <"*" sY sY>>;

4.2.LOCAL VARIABLES

Consider a function Sq-Sub1 that decreases the argument by
one and squares the number obtained:

Sq-Sub1(X) = (X-1)*(X-1)

This function can be defined in Refal in the following way:

$func Sq-Sub1 sX = sZ;

Sq-Sub1 sX = <"*" <"-" sX 1> <"-" sX 1>>;

An obvious deficiency of this definition is that it in­
volves duplicate calculations: the expression<"-" sX 1> is to
be evaluated twice. But this can be avoided by introducing an
auxiliary function Sq:

$func Sq-Sub1 sX = sZ;
$func Sq sY = sZ;

Sq-Sub1 sX = <Sq <"-" sX 1>>;
Sq sY = <"*" sY sY>;

The function Sq serves the only purpose: it waits for the
argument to be decremented by one, catches the result obtained,
and continues the computation. It is obvious that superfluous
auxiliary functions can make the program obscure and difficult
to understand, for which reason Refal Plus enables us to intro­
duce local variables for denoting intermediate values. This can
be achieved by means of bindings, which are paths of the form

S He R

where S is a source, R is a rest, and He is a so called "hard
expression". The hard expression He, which consists of symbols,
brackets, and variables, must satisfy the following restric­
tions. First, He must not contain two occurrences of the same

22

variable. Second, each subexpression of He can contain no more
than one ve-variable at the top level.

It can be easily seen that, being a hard expression, He can
be regarded as a format expression, and the Refal Plus compiler
verifies that S is certain to return ground expressions satisfy­
ing the format He.

The path S ::HeR is evaluated as follows. First, the
source S is evaluated. If the result returned is a ground ex­
pression Ge, the variables in He are bound to the corresponding
subexpressions of Ge. Then the rest R is evaluated, and the
result returned is taken to be the result of the whole con­
struct.

Now the definition of Sq-Sub1 can be rewritten in the fol­
lowing way:

$func Sq-Sub1 sX = sZ;

Sq-Sub1 sX =
<" -" sX 1> : : sY ,

<"*" sY sY>;

It should be noted that the evaluation of the path
S · · He R begins by evaluating the source S in the environment
in which the whole construct is evaluated. Then the variables in
He are bound, and the environment is extended with the new bind­
ings, so that the rest R is evaluated in the extended environ­
ment. Thus the evaluation of the path

10 0 : : sX, <" +" sX 1> : : sX = sX

returns 101.
The hard expression He in a path S ::HeR may be empty,

in which case the path takes the form S :: R and can be ab­
breviated to S R. This construct (called condition) is usually
used in cases where we are interested in the side effects pro­
duced by evaluating S, rather than in the result returned by S.
For example, evaluating the path

<Println "A">, <Println "B">, <Println "C"> =

causes three lines to be printed, the first line consisting of
the character A, the second of the character B, and the third of
the character C.

The rest R in a path S ::HeR may consist of
comma, in which case the path takes the form S ::He
be abbreviated to S ::He.

4.3.RECURSION

a single
and can

A function definition may contain calls to library func­
tions as well as calls to functions defined in the program. In
particular, a function may call itself (either directly or

23

through other functions), in which case the function definition
is said to be recursive.

A function may have to be defined recursively if the set of
arguments for which the function is defined is infinite, and
there is no limitation on the size of the arguments.

Let us consider, for example, the following problem. Sup­
pose we have to define a function Reverse that "reverses" a
ground expression by rearranging its top-level terms in reverse
order. Thus, if the argument has the form

Gtl Gt2 Gtn

where Gtl, Gt2, ... , Gtn are ground terms, then the function
is to return the ground expression

Gtn ... Gt2 Gtl

If the length of the argument expression were limited, for
example, if we knew that n<=3, we could consider four separate
cases to produce the following function definition

$func Reverse e.Exp = e.Exp;

Reverse
{

= ;
tl = tl;
tl t2 = t2 tl;
tl t2 t3 = t3 t2 tl;
} ;

There is no limit on the length of the input expressions,
however. Thus, the function definition has to consider an infi­
nite number of cases, which seems to imply that the program has
to be infinite in size.

This difficulty, however, can be circumvented by means of
recursion. We can reason in the following way. Let us consider
an argument expression

Gtl Gt2 Gtn

If n=O, then the result to be returned is the empty expres­
sion. Otherwise, if n>=l, the problem can be reduced to a less
difficult one. Namely, by discarding the first term in the argu­
ment expression we get the expression

Gt2 ... Gtn

which is n-1 terms in length. By reversing this expression we
get

Gtn ... Gt2

24

Now, by adding Gtl to the end of the expression, we get the
desired result

Gtn ... Gt2 Gtl

Reasoning in this way, we come to the following recursive
definition of the function Reverse:

Reverse
{
= ;
t.X e.Rest = <Reverse e.Rest> t.X;
} ;

It is interesting that there exists another solution to the
problem of the expression reversion, which is in no way worse
than the above. Namely, the problem can be reduced to a less
difficult one by discarding the last term, rather than the first
one, in which case we get the following solution:

Reverse
{
= ;
e.Rest t.X = t.X <Reverse e.Rest>;
} ;

It can be easily seen that the essence of the solution
consists in dividing the original expression Ge into two smaller
non-empty expressions Gel and Ge2 such that

Ge = Gel Ge2

Now, each of the expressions Gel and Ge2 can be
separately. Let the corresponding expressions obtained
and Ge2'. Then the expression

Ge2' Gel'

reversed
be Gel'

is obviously the result of reversing the original expression Ge.
If Refal Plus is implemented for a multi-processor computer

in such a way that the reversion of Gel and Ge2 can be performed
simultaneously, it is advantageous to make Gel and Ge2 approxi­
mately equal in length. In this way we get the following modifi­
cation of the above function definition, in which there are
calls to library functions from the modules ACCESS and ARITHM.

$func Reverse e.Exp = e.Exp;

Reverse
{
= ;
tl = tl;
eX,

25

} ;

<Length e.X> :: sLen,
<Div sLen 2> :: sDiv,
= <Reverse <Middle sDiv 0 eX>>

<Reverse <Left 0 sDiv eX>>;

5 .FAILURES AND ERRORS

S.l.FAILURES PRODUCED BY EVALUATING RESULT EXPRESSIONS AND PATHS

The evaluation of a path Q has hitherto been assumed to
return a ground expression Ge. It can, however, also result in
failure or error.

In case of failure, the result returned is a special value
"failure", rather that a ground expression.

The simplest way of producing a failure is to evaluate the
rest of the form

$fail

In case of error, the result returned is a special error
value, rather than a ground expression. This value has the form
$error(Ge), where the ground expression Ge is an error message.
The error message usually begins with a word symbol, the symbol
being the name of the function of which the evaluation has
caused the error. For example, an attempt at evaluating the
function call

<DIV 10 O>

causes the error "divide by zero", which results in returning
the value

$error(DIV "Divide by zero")

The values of the form $error(Ge) possess the following
property. Suppose that a construct is to be evaluated, and the
evaluation of a constituent part of the construct results in
returning $error(Ge). Then, the evaluation of the construct
terminates, the result returned being $error(Ge). The only
exception to this rule is the construct $trap specifically
designed for "trapping" errors.

In order for the informal language description to
cise, the detailed consideration of the subtle points
in dealing with errors will be postponed until Chapters
III.

5.2.MATCHES

Consider the following problem. Let Ge be a ground
sion known to contain no less than two character symbols

26

be con­
involved
II and

expres­
'+' at

the top level, and we want this expression Ge to be divided into
three parts GeX, GeA, and GeY, such that Ge = GeX 1 + 1 GeA
1 + 1 GeY, with GeX and GeY not containing 1 + 1 at the top level.
Let us give the function performing this task the name of "++".
Then, for example,

<"++" 1 AAA+BBB+CCC+DDD+EEE 1 > =>
(I AAA I) (I BBB+CCC+DDD I) (I EEE I)

Thus, it is necessary to find the leftmost 1 + 1 in Ge as
well as the rightmost one. The leftmost 1 + 1 can be easily found
by matching Ge against the pattern $1 eX 1 + 1 eP, whereas the
rightmost 1 + 1 can be found by matching Ge against the pattern
$r eQ 1 + 1 eY. Any pattern enables the matching to be done either
from left to right or from right to left, there being no way of
combining the two directions of matching in a single pattern,
for which reason we have to perform the analysis of the expres­
sion in two steps. This can be expressed in the following way:

$func "++"
$func "++Aux"

eZ
(eX) (eP)

= (eX) (eA) (eY) ;
= (eX) (eA) (eY) ;

"++" $1 eX 1 + 1 eP = <"++Aux" (eX) (eP)>;
"++Aux" $r (eX) (eA 1 + 1 eY) = (eX) (eA) (eY);

Thus, to break up the analysis of the expression into two
stages, we have had to introduce an auxiliary function. This
could have been avoided, however, by making use of the construct
"match".

A match is a path of the form

S : Snt

where S is a source, and Snt a sentence of the form P R, the
sentence Snt consisting of the pattern P and the rest R.

If the rest R consists of a single comma, it may be omit­
ted, in which case the match S : P , takes the form S : P .

The evaluation of a match S : P R proceeds as follows.
First, the source S is evaluated. If the value returned is a
failure, the result of evaluating the match is a failure. Other­
wise, if the value returned is a ground expression Ge, Ge is
matched against the pattern P, and consideration is given to the
variants of matching satisfying the following additional re­
striction: if in the environment in which the whole match is
evaluated some variables are bound to values, these variables
must be given the same values in the environment produced by
matching.

For example, suppose the variable sX has been given the
value 1. Then matching the ground expression 1 2 1 2 against
the pattern eA sX eB results in producing only two variants of
matching

{eA = , sX = 1, eB = 2 1 2}

27

{eA = 1 2, sX = 1, eB = 2}

whereas, if there were no restriction of the value of sX, there
would be four variants.

Now, let Env1, Env2, ... , Envn be all the variants of
matching thus obtained listed according to the order relation
introduced above on the set of the variants of matching. Then an
attempt is made to evaluate R in the environment Env1. If the
value returned is a ground expression Ge, this expression is
taken to be the result of the whole match. Otherwise, if the
value returned is a failure, this failure is "caught", i.e. the
first variant of matching is discarded, and the same attempt is
made to evaluate R for all remaining variants of matching.

If, for all the variants of matching, evaluating the rest R
results in a failure, the result of the whole match is a fail­
ure.

For example, evaluating the path

'ABC' $r e1 sX e2, <Print sX> $fail

results in the character sequence 'CBA' being printed, and a
failure being returned as the result.

Now we can give a definition of the function "++" without
introducing an auxiliary function "++Aux":

$func "++" eZ = (eX) (eA) (eY) ;

"++"
$1 eX '+' eP,

eP : $r eA '+' eY
= (eX) (eA) (eY) ;

5.3.FAILURE TRAPPING

A programs written in Refal Plus can determine whether the
evaluation of a path has resulted in returning a failure, the
result of the test being used to control the execution of the
program.

A negative condition is a path of the form

S R

where S is a source, and R a rest. If the rest R consists of a
single comma, it may be omitted, in which case the negative
condition takes the form # S .

Syntactically, a negative condition is a rest.
The evaluation of a negative condition proceeds as follows.

The source S is evaluated. If the value returned is an empty
ground expression, the result of evaluating the whole construct
is a failure. Otherwise, if the value returned is a failure, the
rest R is evaluated to produce the result of the whole con­
struct.

28

An alternative is a path of the form

\{ Q1; Q2; Qn; }

where Q1, Q2, ... ' Qn are paths. Syntactically, an alternative
is a source.

The evaluation of an alternative proceeds as follows. The
path Q1 is evaluated. If the value returned is a ground expres­
sion Ge, this expression is taken to be the result of the whole
alternative. Otherwise, if the result of evaluating Q1 is a
failure, an attempt is made to evaluate \{Q2; ... , Qn;}, and
the value returned is taken to be the result of the whole con­
struct. Thus, alternatives can be used for "catching" failures.

If the evaluation of all the paths Q1, Q2, ... , Qn re­
sults in returning failures, the result of evaluating the whole
construct is taken to be a failure.

For example, consider the path

1 :: sX,
\{ sX : 0 = 1; sX : 1 = 0; }

which is evaluated in the following way. First, the evaluation
of the binding 1 :: sX results in the variable sX being given
the value 1. Then an attempt is made to evaluate the first path
of the alternative, i.e. sX : 0 = 1 . Matching 0 against sX
fails, and, consequently, so does the evaluation of the first
path. Thus, an attempt is made to evaluate the second path
sX : 1 = 0 , which results in returning 0, and this value is
taken to be the result of the whole alternative.

In some cases, however, there may prove to be useful anoth­
er variety of alternatives, which has the form

{ Q1; Q2; ... Qn; }

The difference between the two kinds of alternatives
emerges in cases where the evaluation of all the paths results
in returning failures. On such occasions, instead of returning a
failure, the latter form of alternatives returns an error
$error(Fname "Unexpected fail"), where Fname is the name of the
function in which the alternative appears.

Thus, the pair of brackets \{ ... } can be regarded as
"transparent" for failures, whereas the pair { } can be
regarded as "opaque", the reason being that a failure is incapa­
ble of "jumping" out of an alternative { Q1; Q2; ... Qn; }.

form
Programs written in Refal Plus often contain paths of the

s
s

Ve,
Ve,

\{Ve
{Ve

Snt1; Ve
Snt1; Ve

Snt2;
Snt2;

... '

... '
Ve
Ve

Sntn;}
Sntn;}

where Ve is an a-variable that does not appear in other places
of the function definition, and each sentence Sntj has the form
Pj Rj. Such paths can, correspondingly, be abbreviated to alter-

29

native matches

s
s

\{Snt1; Snt2;
{Snt1; Snt2;

Sntn;}
Sntn;}

where the constructs \{Snt1; Snt2; Sntn;} and {Snt1;
Snt2; Sntn;} are called pattern alternatives.

If a rest Rj consists of a single comma, it can be omitted,
in which case the corresponding sentence Pj Rj takes the form
Pj.

For example, the alternative { sX : 0 = 1; sX
can be abbreviated to the alternative match sX : { 0
0; }, and the alternative \{ sX: A,; sX B,; }
\{A; B; }.

1 =
= 1;
to

0; }
1 =

sX

Syntactically, all alternative matches are sources, which,
for example, enables us to write the paths of the form

sX : { 0 = 1 ; 1 = 0 ; } sY = <"+" sX sY>

The evaluation of this paths begins by evaluating the
source sX : {0 = 1; 1 = 0;}. Then the variable sY is bound to
the value returned, and the path = <"+" sX sY> is evaluated in
the extended environment.

5.4.CONTROL OVER FAILURE TRAPPING

As we have seen, Refal Plus enables failures to be caught,
providing as it does a fairly rich collection of failure trap­
ping constructs. Sometimes, however, we want to produce so pow­
erful a failure as to overcome all the traps waiting for it (or,
at least, some of them) . This can be achieved by means of fences
and cuts.

A fence is a rest of the form \? Q , whereas a cut is a
rest of the form \! Q

Fences and cuts appearing in a program serve as marks con­
trolling the propagation of failures. Each cut \! Q is re­
quired to be enclosed in a fence of the form \? ... \! Q ...
The evaluation of a cut \! Q proceeds as follows. An attempt
is made to evaluate the path Q. If this evaluation terminates
and results in returning a value X, this X is taken to be the
result of the whole construct \? ... \! Q ...

In particular, if X is a failure, so is the result of eval­
uating the whole construct \? ... \! Q ...

The following example illustrates the use of fences and
cuts. Consider the evaluation of the path

eA : e1 '+' e2 '-' e3
= (e1) (e2) (e3)

if the value of the variable eA contains '+' followed by '-' at
the top level, the matching of this value against the pattern
results in finding the leftmost '+' followed by the nearest '-'

30

Now consider the case where eA contains '+' at the top level,
but there is no '-' at the top level. Then the leftmost '+' is
found, and the rest of the expression examined in order to find
a '-'. Since the search for a '-' fails, the value of the vari­
able el is extended, and the search for a '-' repeated. This
needn't be done, however, because, after the failure of the
first search for a '-', the second search is bound to fail as
well.

The constructs \? and\! enable us to avoid the above un­
necessary search. To achieve this, we begin by rewriting the
original match in the following way:

eA : el '+' eX,
eX : e2 '-' e3

= (el) (e2) (e3)

Now, if matching the value of eX against the pattern
fails, an attempt is made to find the next variant of
the value of eA against el '+' eX. This, however,
avoided by inserting \? and\! in the following way:

\? eA : el '+' eX
\! eX : e2 '-' e3

= (el) (e2) (e3)

e2 '-' e3
matching

can be

Now, if the inner match returns a failure, this failure is re­
turned as the result of the whole path.

S.S.MEANING OF RIGHT HAND SIDES

A right hand side, which has the form = Q , where Q is a
path, is an even more powerful means of restricting the search
than fences and cuts.

To explain the meaning of the right hand sides, we have to
introduce a few additional concepts.

Suppose that a construct appears as a component in a larger
construct, and, according to the semantics of Refal Plus, the
result of evaluating the inner construct is taken to be the
result of evaluating the surrounding construct. Then the inner
construct is said to be a vassal of the surrounding construct.
For example, the rest R in a path S :: He R is a vassal, since
the result of evaluating R is taken to be the result of the
whole path.

A construct that is not a vassal of the surrounding con­
structs is said to be a sovereign. For example, the source S in
a path S ::HeR is a sovereign, since its result, in general,
is not the result of the whole construct (despite the fact that
this result may be used in evaluating R).

More specifically, if a function definition has the form
Fname Palt , then the pattern alternative Palt is a sovereign.

If a path has either of the forms: S R S ::HeR,
S P R or # S R then the source S is a sovereign.

31

If a source has the form S : Palt , then the source S is
a sovereign.

Now, let us consider a construct along with all the sover­
eigns surrounding this construct. The smallest of the sover­
eigns, included in all the others, is said to be the patron of
the construct in question. In particular, if a construct is a
sovereign, the construct's patron is the construct itself.

Now we are able to describe the semantics of right hand
sides.

Suppose that the patron of a right hand side = Q is a
surrounding construct ... = Q Then, if the evaluation of
the path Q results in returning a value X, this value X is taken
to be the result of the whole patron ... = Q ...

In particular, if X is a failure, the result of evaluating
the patron ... = Q ... is a failure, in spite of the fact that
there may be failure traps in the patron.

For example, the evaluation of the path

\{ A B C : $1 e sX e, sX : B, sX} sY, sY

proceeds as follows. First, sX is bound to the value A, and an
attempt to match this value against the symbol B fails. Then sX
is bound to the new value B, and the evaluation succeeds, the
result returned being the symbol B. On the other hand, if we
replace the comma with the equality sign, we get the path

\{ A B C : $1 e sX e = sX : B, sX} sY, sY

the evaluation of which fails.
Some restrictions are imposed on the use of fences, cuts,

and right hand sides.
If a cut \! Q is enclosed in a fence \? \! Q

both constructs must have the same patron.
If a cut \! Q is enclosed in a fence \? \! Q

there must be no right hand side = ... \! Q ... surrounding the
cut \! Q, but enclosed in the fence \? ... \! Q ...

5.6.FAILING AND UNFAILING FUNCTIONS

All functions defined and called in Refal Plus programs are
classified as either failing or unfailing.

If a function Fname is an unfailing one, then the evalua­
tion of a call <Fname Re> cannot result in returning a fail­
ure. On the other hand, if a function Fname is a failing one,
then the evaluation of a call <Fname Re> can, in general,
result in returning a failure.

Function declarations have hitherto been assumed to have
the form

$func Fname Fin = Fout;

which is correct only in cases where Fname is an unfailing func-

32

tion. Otherwise, if Fname is a failing function, its declaration
must have the form

$func? Fname Fin = Fout;

Now the semantics of function definitions can be
more accurate description. Let the definition of a
Fname have the form

Fname Palt

given a
function

where Palt is a pattern alternative whose form is either \{Pl
Rl; P2 R2; ... Pn Rn;} or {Pl Rl; P2 R2; ... Pn Rn;}. Then the
evaluation of a call <Fname Re> proceeds as follows. The re­
sult expression Re is evaluated. If the value returned is a
failure, the result of evaluating <Fname Re> is taken to be a
failure, without actually calling the function Fname. Otherwise,
if the value returned is a ground expression Ge, the function
Fname is called, i.e. the source

Ge : Palt

is evaluated in the empty environment (in which no variable is
bound to a value) . Suppose the evaluation of the above source
results in returning a value X. Then there are a few cases to be
considered.

If X is a ground expression, X is taken to be the result of
evaluating the call <Fname Re>. Otherwise, if X is a failure,
the following depends on the Function Fname being a failing one.

If Fname is a failing function, and X is a failure, the
result of evaluating the call <Fname Re> is a failure.

If Fname is an unfailing function, and X is a failure, this
failure is "caught" and transformed into the error $error(Fname
"Unexpected fail"), which is taken to be the result of evaluat­
ing the call <Fname Re>.

6.LOGICAL CONDITIONS

6.1.CONDITIONS AND PREDICATES

In some cases, the program has to test some conditions in
order to select one of the alternative courses of action.

The exact way in which conditions can be written and tested
depends on the programming language. As far as Refal Plus is
concerned, we use the following terminology.

A path Q is said to be a condition, if the value returned
by the path is always either an empty ground expression or a
failure. If the result is an empty expression, the condition is
considered to be satisfied, otherwise, if the result is a fail­
ure, the condition is considered not to be satisfied.

Thus empty expressions and failures may be considered as
corresponding to the well-known truth values "true" and "false".

33

It should be kept in mind, however, that the evaluation of
a condition Q may non-terminate or produce an error, in which
case we consider either the program or the input data to be
incorrect.

Some of the library functions are specifically designed for
testing conditions. Such functions are referred to as predi­
cates. In Refal Plus a predicate returns either an empty expres­
sion (if its arguments satisfy the condition) or a failure (if
the condition is not satisfied). For example, the function "<"
tests whether the first argument is less than the second one. In
other words, let Gel and Ge2 be ground expressions. Then if Gel
is "less" than Ge2, the result of evaluating<"<" (Gel) (Ge2)> is
an empty expressions, otherwise the result is a failure.

If a program defines a predicate function, the declaration
of the function must have the form

$func? Fname Fin = ;

Now we consider several ways of using and combining condi­
tions.

6.2.CONDITIONALS

Suppose we have a condition represented by a source S and
two paths Q' and Q". Consider the path

\? {S \! Q'; \! Q";}

If the result of evaluating S is an empty expression, the path
Q' is evaluated and the value returned is taken to be the result
of the whole construct. Otherwise, if the result of evaluating S
is a failure, the path Q" is evaluated and the value returned is
taken to be the result of the whole construct.

Notice should be taken of the use of cuts \! They prove
to be essential in cases where the evaluation of Q' or Q" fails.
Let us try removing the cuts, and consider the path thus ob­
tained:

{ s 1 Q I ; Qll;}

Now, if the condition S is satisfied, the path Q' is evaluated.
Suppose the evaluation of Q' fails. Then, instead of being re­
turned as the result of the whole construct, the failure is
caught, which causes the evaluation of the path Q". But this,
certainly, was not our intention! Thus the first cut is neces­
sary to prevent the control from "jumping" to the next path in
the alternative.

Now, let us consider the case where the condition is not
satisfied, i.e. the evaluation of S fails. Then the failure is
caught, which causes the evaluation of the path Q". Suppose that
the evaluation of Q" fails. Then the failure is caught and an
attempt is made to evaluate the next path in the alternative.

34

But there is no such path! Hence, an error is generated, which,
again, was not our intention!

Nevertheless, in some cases, the cuts can be omitted. Thus
an alternative of the form

\? { s \! = Q I ; \! = Q";}

can always be, and usually is, rewritten as

{ s = Q I ; = Q";}

As an example let us consider the function Min-Ge, which
takes two ground expressions Gel and Ge2 as arguments, and re­
turns either Gel or Ge2. Namely, if Gel precedes Ge2, the result
is Gel, otherwise the result is Ge2.

$func Min-Ge (eX) (eY) = e.Min-X-Y;

Min-Ge (eX) (eY) =
{

<"<" (eX) (eY) >
= eX;
= eY;

} ;

Now consider the case where a condition is represented by a
path Q, and a path Q1 must be evaluated if the condition is not
satisfied, whereas a path Q" must be evaluated if the condition
is not satisfied. This case can be reduced to the above by en­
closing the condition Q in curly braces thereby making the path
Q into the source \{ Q; } . Now the conditional can be written
as follows:

\? { \{Q;} \! Ql; \! Q";}

6.3.LOGICAL CONNECTIVES

Sometimes we have to test complicated logical conditions.
Complex conditions can often be expressed in terms of more ele­
mentary conditions by means of the logical connectives "AND",
"OR", and "NOT". Although Refal Plus does not provide logical
connectives explicitly, they can be easily represented by other
constructs.

*** Logical "AND"

Suppose we have two conditions and must determine whether
both of them are satisfied.

If both conditions are represented by paths Q 1 and Q", the
compound condition can be tested by evaluating the path

35

\{ Q' ;}, Q"

If the first condition is represented by a source S, and
the second by a path Q, the compound condition can be tested by
evaluating the path S ,):'Q .

And, finally, if both conditions are represented by result
expressions Re' andRe", the compound condition can be tested by
evaluating the result expression Re' Re".

*** Logical "OR"

Suppose we have two conditions and must determine whether
one (or both) of them are satisfied.

If both conditions are represented by paths Q' and Q", the
compound condition can be tested by evaluating the path

\{ Q'; Q";}

*** Logical "NOT"

Suppose we have a condition represented by a path Q, and
must determine whether the condition is not satisfied. This can
be done by evaluating the path

\ {Q;}

which is an abbreviation to the path # \{Q;},
In cases where the condition is represented by a source S,

the negated condition can be tested by evaluating the path

s

which is an abbreviation to the path # S ,
In both cases we take the opportunity of omitting the rests

consisting of a single comma.

6.4.EXAMPLE: FORMAL DIFFERENTIATION

Suppose we want to define a function that, given an alge­
braic expression and a variable, will produce the derivative of
the expression with respect to the variable [Hen 80]. To keep
the presentation concise, we deal only with simple formulae
consisting of integers, variables, and binary operators+ and*·
The generalization to more complicated formulae is straightfor­
ward, and is left for the reader as an exercise.

Let x and y stand for arbitrary variables, i for an inte­
ger, and e for a formula. Let Dx(e) denote the result of differ­
entiating e with respect to x. Then the rules of differentiation
can be written as follows:

Dx(x)
Dx(y)

=
=

1
0 (where y is different from x)

36

Dx(i) = 0
= Dx(el) + Dx(e2) Dx(el + e2)

Dx(el * e2) = el * Dx(e2) + e2 * Dx(el)

Before writing the program of differentiating, we have to
represent formulae by ground expressions. Let [e] stand for
the formula e represented by a ground expression. Then we may
choose the representation defined by the following rules:

[x]
[i]
[el + e2]
[el * e2]

=
=
=
=

X

i
(Sum [el]
(Prod [ell

[e2])
[e2])

Now a function Diff can be easily defined whose first argu­
ment is a variable, and the second argument a formula. The func­
tion returns the result of differentiating the formula with
respect to the variable.

$func Diff sX tE = tE;

Diff sX tE =
tE
{
sX = 1;
sY = 0;
(s.Oper t.El t.E2) =

<Diff sX tEl> t.DxEl,
<Diff sX tE2> :: t.DxE2,
s.Oper :
{
Sum = (Sum t.DxEl t.DxE2);
Prod = (Sum (Prod t.El t.DxE2) (Prod t.E2 t.DxEl));
} ;

} ;

An obvious deficiency of the above definition of the func­
tion Diff is that the formulae produced by the function contain
a lot of unnecessary parts. For example, according to the above
rules of differentiation we have

DX(3*(X*X)+S) = (3*((X*l)+(X*))+(X*X)*0)+0

which could have been reduced to

3*(X+X)

by means of evident simplifications. Thus we
definition of the function Diff by making the
the following reductions:

0 + e2
el+ 0

==>
==>

e2
el

37

can enhance the
function perform

0 *
el*
1 *
el*

e2
0
e2
1

==>
==>
==>
==>

0
0
e2
el

(We won't consider more complicated reductions, to keep the
presentation concise.)

There are two ways of implementing the above simplifica­
tions. The first way is to perform the simplifications only
after the result of the differentiation has been completely
built. The second way is to try the simplifications "on the
fly", during the differentiation. And it is the second way that
we are going to implement.

As the first step, we define two functions
each function taking two formulae and returning
sum and the product of the formulae. It is in
that the simplifications are performed.

$func Sum tl t2 = t;
$func Prod tl t2 = t;

Sum
{

0 t2 = t2;
tl 0 = tl;
tl t2 = (Sum tl t2) ;
} ;

Prod
{

0 t2 = 0;
1 t2 = t2;
tl 0 = 0;
tl 1 = tl;
tl t2 = (Prod tl t2);
} ;

Now we can rewrite the above definition
Diff, inserting at appropriate places
Sum and Prod:

Diff sX tE =
tE
{

sX = 1;
sY = 0;
(s.Oper t.El t.E2) =

<Diff sX tEl> t.DxEl,
<Diff sX tE2> :: t.DxE2,
s.Oper :
{

Sum = <Sum t.DxEl t.DxE2>;

the calls

Sum and Prod,
respectively the
these functions

of the function
to the functions

Prod = <Sum <Prod t.El t.DxE2> <Prod t.E2 t.DxEl>>;

38

} ;
} ;

6.5.EXAMPLE: COMPARISON OF SETS

The following example illustrates the use of recursion
along with logical connectives.

According to the set theory, two sets are considered to be
equal, if they contain the same elements. Suppose we want to
define a Refal Plus function testing two sets for equality. The
first thing we have to invent is the representation of sets by
ground expressions. First, let us consider the sets whose ele­
ments may be Refal symbols only. A set of symbols {Gsl, Gs2,
... , Gsn} can, obviously, be represented by the ground expres­
sion

Gsl Gs2 ... Gsn

A feature of this representation is that any non-empty set of
symbols has lots of different representations. For example, the
set {John, Mary} may be represented as John Mary or
Mary John , or even Mary John John Mary . Thus, different rep­
resentations may correspond to equal sets.

It is well known that an element of a set can be a set
itself. So, we must be able to represent sets containing symbols
as well as sets, which may contain sets, etc. How shell we rep­
resent set elements that are sets?

A simple solution is the following. If an element of a set
is a symbol Gs, the element is represented by the symbol Gs.
Otherwise, if an element of a set is a set X, the element is
represented by the ground term (X'), where X' is a representa­
tion of X. For example, the set {A, {A,B}, {A}} may be repre­
sented by the ground expression A (A B) (A)

Now we define the predicate function Eqset? determining
whether its two arguments represent the same set. This function
performs the test for equality by reducing it to several simpler
tests.

Namely, two sets A and B are equal iff A is a subset
of B and B is a subset of A. Further, a set A is a
subset of a set B iff each element X of A belongs to B.

Thus, instead of defining a single function, we have to
define four mutually recursive predicate functions. Eqset? de­
termines whether its two arguments are representations of the
same set. Subset? determines whether the set represented by the
first argument is a subset of the set represented by the second
argument. El? determines whether the first argument represents a
set belonging to the set represented by the second argument.
And, finally, Eqel? determines whether its two arguments repre­
sent the same element of a set.

Note that, to test for equality two set elements that are
sets themselves, we have to test for equality the corresponding
sets, for which reason the function Eqel? has to call the func-

39

tion Eqset?. Thus, finally, Eqset? turns out to be defined in
terms of itself.

$func? Eqset? (eA) (eB) = ;
$func? Subset? (eA) (eB) =
$func? El? tx (eA) =
$func? Eqel? tx tY =;

Eqset? (eA) (eB) =
<Subset? (eA) (eB)><Subset? (eB) (eA)>;

Subset? (eA) (eB) =
eA :
{

= ;
tx eR = <El? tx (eB)><Subset? (eR) (eB)>;
} ;

El? tx (eA) =
eA : tY eR,
\{ <Eqel? tx tY>; <El? tx (eR)>; };

Eqel? tX tY =
\{
tx tY : s s

= tX : tY;
tx tY : (eA) (eB)

= <Eqset? (eA) (eB)>;
} ;

7.DIRECT ACCESS SELECTORS

A typical case where the direct access to ground expres­
sions turns out to be useful is the implementation of the algo­
rithms based on the technique known as "divide and conquer". The
general idea is to solve a problem by dividing it into subprob­
lems - each an instance of the original problem but on inputs of
smaller size - in such a way that the solution of the original
problem can be assembled from the solutions to the subproblems.
The principle "divide and conquer" is usually applied together
with the principle of "balancing" requiring that the original
problem should be divided into subproblems of roughly equal size
[AHU 74] .

A classic application of the principle "divide and conquer"
is the problem of sorting (i.e. arranging in ascending order).

One of the sorting methods is the merge sort [AHU 74] . The
idea is to divide the original set S into two disjoint sets Sl
and S2 of roughly equal size, sort Sl and S2 to produce two
ordered sequences Ql and Q2, and then merge Ql and Q2 into one
ordered sequence Q, thereby obtaining the solution to the origi­
nal problem.

Now let us define the function MSort, which takes an inte-

40

ger sequence as argument, divides it into two parts of approxi­
mately equal size, and calls itself recursively in order to sort
both parts. Then the sequences thus obtained are merged by the
function Merge to produce the final result.

$func MSort eS = eS;
$func Merge (eX) (eY) = eZ;

MSort eS =
<Length eS> :: sLen,
{

<"<=" (sLen) (1) >
= eS;
= <Div sLen 2> : : sK,

<Left 0 sK eS> :: eS1,
<Middle sK 0 eS> :: eS2,

<Merge (<MSort eS1>) (<MSort eS2>)>;
} ;

How we have to define the function Merge, which takes two
ordered integer sequences as arguments and merges them into one
ordered sequence.

Merge (eX) (eY) =
{

eX :
= eY;

eY :
= eX;

(eX) (eY)
= {

(sA eXRest) (sB eYRest)

} ;

} ;

<"<=" (sA) (sB)>
= sA <Merge (eXRest) (eY)>;
= sB <Merge (eX) (eYRest)>;

8.FUNCTIONS RETURNING SEVERAL RESULTS

8.1.GROUND EXPRESSION TRAVERSAL

The following examples illustrate the usefulness of func­
tions returning several results.

Suppose we want to define a function NMB replacing all
symbols appearing in a ground expression with their ordinal
numbers. For example,

<NMB A (B A) C A> => 1 (2 3) 4 5

The main difficulty is that, having encountered a pair of
parentheses, the function cannot know in advance the number of
symbols enclosed in the parentheses. But this information will

41

be necessary for the function to resume the processing of the
top level of the expression after the contents of the parenthe­
ses will be done away with. Therefore, the symbol numbering
function must have two arguments: the expression to be processed
and the number to be assigned to the first symbol in the expres­
sion (if any). This function must return two results: the ex­
pression processed and the first "unused" number. Thus we come
to the following definition of the function NMB (making use of
two auxiliary functions NMB-Exp and NMB-Term) .

$func NMB
$func NMB-Exp
$func NMB-Term

e.Exp
e.Exp
t.Exp

NMB e.Exp =
<NMB-Exp e.Exp 1>

e.Exp;

NMB-Exp e.Exp sN =
e.Exp
{

= sN;
tx e.Rest =

sN
sN

= e.Exp;
= e.Exp sN;
= t.Exp sN;

e.Exp s,

<NMB-Term tX sN> : : tx sN,
<NMB-Exp e.Rest sN> e.Rest sN,

tX e.Rest sN;
} ;

NMB-Term tx sN =
tx :
{

s =
sN <"+" sN 1>;

(eE) =

} ;

<NMB-Exp eE sN>
(eE) sN;

8.2.QUICKSORT

eE sN,

There is a second way we can apply the idea of divide and
conquer to the problem of sorting, the so-called quicksort algo­
rithm [AHU 74].

Suppose we have to sort a set of integers S. The idea is to
choose X, an arbitrary element of S, and to divide S into three
disjoint sets S1, S2, and S3, such that S1 contains integers
that are less than X, S2 contains integers equal to X, and S3
contains integers that are greater that X. Then, by sorting S1,
S2, and S3, we get three ordered sequences Q1, Q2, and Q3 (the
sorting of Q2 is trivial, because all elements of Q2 are equal
to X). Then we can concatenate Q1, Q2, and Q3 into the new se­
quence Q1 Q2 Q3, which gives us the solution to the original

42

problem.
Now we can define the function QSort, which sorts an

ger sequence according to the above method. The auxiliary
tion Split is used for partitioning the input sequence
three subsequences.

$func QSort eS = eQ;
$func Split sX eS = (eSl) (eS2) (eS3);

inte­
func­
into

$func Split-Aux sX (eSl) (eS2) (eS3) eS = (eSl) (eS2) (eS3);

QSort eS =
{

eS :
= ;

eS : t
= eS;

eS : sX e

} ;

= <Split sX eS>
<QSort eSl>

Split sX eS =

(eSl) (eS2) (eS3) ,
eS2 <QSort eS3>;

<Split-Aux sX () () () eS>;

Split-Aux sX (eSl) (eS2) (eS3) eS =
eS
{

=
(eSl) (eS2) (eS3) ;

sY eRest =

} ;

{

<"<" (sY) (sX) >
= <Split-Aux sX (eSl sY) (eS2) (eS3) eRest>;

<">" (sY) (sX) >

} ;

= <Split-Aux sX (eSl) (eS2) (eS3 sY) eRest>;
= <Split-Aux sX (eSl) (eS2 sY) (eS3) eRest>;

9.ITERATION

In Refal Plus, recursion is the principal means of repre­
senting loops. In many cases, however, this means is too univer­
sal, for which reason Refal Plus provides a special search con­
struct, which, syntactically, is a path of the form

S" $iter S' He R

where the sources S" and S' are sovereigns, and the rest R a
vassal (which is essential in cases where S", S', or R contain
right hand sides of the form = Q) .

If the hard expression He is empty, it may be omitted along

43

with the keyword"::". If the rest R consists of a single comma,
it may also be omitted.

A search construct introduces new local variables (in the
same way as a binding S ::HeR does). The initial values of
these variables are obtained by evaluating the source S". Then
an attempt is made to evaluate the rest R. If the evaluation of
R succeeds, the value returned is taken to be the result of the
whole construct. Otherwise, if the evaluation of R fails, the
local variables are bound to new values (obtained by evaluating
the source S' in the old environment associating the local vari­
ables with their old values). Then, again, an attempt is made to
evaluate the rest R, etc.

Thus, in a sense, the search construct tries to find for
the variables in He such values that the evaluation of the rest
R succeeds.

The easiest way to explain the exact meaning of the search
construct consists in defining it in terms of more elementary
constructs, such as bindings and alternatives. Namely, a search
S" $iter S' ::HeR is equivalent to the path

s" : : He , \ { R; S ' $iter S ' : : He R; }

This path, again, contains a search construct, which, again, may
be "unfolded". Thus we get

s" : : He , \ { R;

} ; }

S ' : : He , \ { R;
S' $iter S' He R;

By repeating the unfolding infinitely many times, we can trans­
form the original construct into the infinite path

S" : : He , \ { R;
S ' : : He , \ { R;

S ' : : He , \ { R;

} ; } ; }

The following example illustrates the use of the search
construct.

Let us consider the well-known factorial function, which is
usually given the following recursive definition:

$func Fact sN = sFact;

Fact
{

0 = 1;
sN = <"*" sN <Fact <"-" sN 1>>>;
} ;

The drawback of the above definition is that the call to

44

the function "*" cannot be evaluated until the evaluation of the
internal call to the function Fact has terminated. Thus, the
calls to "*" accumulate. However, the function Fact can be given
a more "iterative" definition (making use of the auxiliary func­
tion Fact-Aux) .

$func Fact sN = sFact;
$func Fact-Aux sR sK = sFact;

Fact sN =
<Fact-Aux 1 sN>;

Fact-Aux sR sK =
{

sK : 0
= sR;
= <Fact-Aux <"*" sR sK> <"-" sK 1>>;

} ;

The same can be expressed with the search construct in the
following way:

$func Fact sN = sFact;

Fact sN =
1 sN

$iter <"*" sR sK> <"-" sK 1>
:: sR sK,

sK : 0,
= sR;

10.SEARCH AND BACKTRACKING

10.1.THE QUEENS PROBLEM

Our next example is the classic Eight Queens Problem
[Hen 80]. Given a chessboard and eight queens, one must place
the queens on the board so that no two queens hold each other in
check; that is, no two queens may lie in the same row, column,
or diagonal.

We shall consider a slightly more general problem of plac­
ing n queens on the board of the size nxn.

Let the rows and columns of the board be numbered from 1 to
n. A chessboard square is said to have the coordinates (i,j),
or, in other words, to be the square (i,j), if it lies in column
i and row j.

Note that all squares lying in the same diagonal running
upwards from left to right have the same sum of the column and
row numbers, whereas all squares lying in the same diagonal
running downwards from left to right have the same difference of
the column and row numbers.

Thus two squares (i,j) and (i1,j1) lie in the same diago-

45

nal, if either i+j = il+jl or i-j = il-jl. This condition is
easy to check. Namely, if the evaluation of the path

\{
<"+" si sJ>
<"-" si sJ>
}

sNl, <"+" sil sJl>
sNl, <"-" sil sJl>

sN2, sNl
sN2, sNl

sN2;
sN2;

succeeds, the squares (i,j) and (il,jl) lie in the same diago­
nal.

Now we need a way to represent a board containing queens in
the first m columns.

It is obvious that we may confine our attention to the
positions in which each column contains no more than one queen,
because two queens lying in the same column would hold each
other in check, thereby preventing the position from being a
solution. On the other hand, the number of the queens to be
placed is equal to the number of columns, implying that each
column must contain exactly one queen. Hence, a position can be
represented by a sequence of integers

Il J2 ... In

where the number Ik represents the queen lying in column k and
row Ik.

The solution will be constructed incrementally, by filling
the columns one by one. Each time, a queen is placed in a col­
umn, it must be checked that no queen puts the new queen in
check. Suppose the board contains k queens lying in the columns
1, 2, ... , k. This partially constructed position can be repre­
sented by the sequence of integers

Il I2 . . . Ik

where the number Im represents the queen lying in column m and
row Im.

Now we can define the predicate Attack?, which
empty expression if the square (i,j) is attacked by
placed on the board, or a failure, if the square
tacked.

$func? Attack? si sJ ePos = ;

Attack? si sJ ePos =
ePos : $r eRest e, eRest
<Length eRest> :: sil,
\{
sil : si;
sJl : sJ;

e sJl,

<"+" si sJ>
<"-" si sJ>
} ;

sNl, <"+" sil sJl>
sNl, <"-" sil sJl>

46

sN2, sNl
sN2, sNl

returns an
the queens

is not at-

sN2;
sN2;

It should be noted that the test il=i could have been
removed, since our program calls the function Attack? in such a
way that the parameter i is guaranteed to be greater than the
column numbers of the queens placed on the board.

Now we can define the function Next-Queen? making an at­
tempt to add a new queen to a partially constructed position.
Next-Queen? tries to place the new queen in different rows. If
the queen can be placed, but this queen is not the last, an
attempt is made to place the next queen, etc. If the current
queen cannot be placed, the program "backtracks": i.e. tries to
change the position of the previous queen.

$func? Next-Queen? si sN ePos = ePos;

si sN ePos = Next-Queen?
1 $iter \{ <"<" (sJ) (sN) > = <"+" sJ 1>; }

:: sJ,
<Attack? si sJ ePos>,
ePos sJ
\? {
si : sN

\! ePos;

ePos,

\! <Next-Queen? <"+" si 1> sN ePos>;
} ;

There are some subtle points in the definition of the func­
tion Next-Queen? deserving special attention.

First, the search construct tries to evaluate its rest,
sequentially binding the variable j to the values 1, 2, ... , n,
and incrementing j by 1 after each failure to evaluate the rest
of the construct.

Second, the evaluation of the rest of the search construct
may fail for two reasons: either the square (i,j) is attacked by
the queens already placed on the board, in which case the evalu­
ation of the call to the function Attack? succeeds, and, there­
fore, the negation of this call fails, or, despite the fact that
the current queen can be placed on the square (i,j), the follow­
ing queens cannot be placed on the board, and, therefore, the
recursive call to the function Next-Queen? fails.

Finally, we can define the function Solution?, which takes
the size of the board as argument and returns either a solution
to the problem, or, if there is no solution, a failure:

$func? Solution? sN = ePos;

Solution? sN =
<Next-Queen? 1 sN >;

10.2.THE SEQUENCE PROBLEM

Now we consider the problem of finding a ground expression
Ge having the following property [Wir 73] :

47

(1) Ge contains no parentheses, and any symbol appearing
in Ge is either 1, 2, or 3.

(2) The length of Ge is equal to a given number Len.
(3) There is no such ground expressions Gea, Geb, and Gee

that Gee is non-empty, and there holds
Ge = Gea Gee Gee Geb

i.e. Ge does not contain two adjacent non-empty equal
subexpressions.

The desired expression can be found in the following way.
We may start with an empty expression, and then try to extend
it, adding digits to it one by one. Upon adding a digit, we have
to check the expression thus obtained, to make sure that the
expression does not have the form Gea Gee Gee Geb, where Gee is
non-empty. A moment's thought reveals that, actually, it is
sufficient to check that the expression obtained by adding a
digit does not have the form

Gea Gee Gee

Here is the definition of the predicate Unacceptable?,
which determines whether the argument has the above form:

$func? Unacceptable? e.String = ;

Unacceptable?
<Div <Length
{

s.Max : 0
= $fail;
= 1

e.String =
e.String> 2> s.Max,

$iter\{<"<" (sK) (s.Max)> = <"+" sK 1>; }

} ;

:: sK,
<Right 0
<Right 0
eU : eV;

sK <Middle 0 sK e.String>> :: eU,
sK e.String> eV,

Now we can define the function Extend? trying to
digit to the expression, until the sequence has the
length. If the expression cannot be extended, the
"backtracks", and tries to change previous digits.

$func? Extend? s.Len e.String = e.String;

Extend? s.Len e.String =
{

<Length e.String> : s.Len
= e.String;

add a
desired

function

= 1 $iter \{ <"<" (s.Digit) (3)> = <"+" s.Digit 1>; }
:: s .Digit,

e.String s.Digit :: e.String,

48

} ;

<Unacceptable? e.String>,
<Extend? s.Len e.String>;

And, finally, we define the function Find-String?, taking
as argument the length of the desired sequence, and returning
either the desired sequence (if found), or a failure (if the
desired sequence does not exist) .

$func? Find-String? s.Len = e.String;

Find-String? s.Len =
<Extend? s.Len >;

ll.EXAMPLE: A COMPILER FOR A SMALL IMPERATIVE LANGUAGE

to consider the
the framework of

a compiler for a
the compiler being

The primary objective of this section is
traditional compiler writing techniques in
Refal Plus. These techniques are applied to
small imperative language, the language and
similar to those described in [War 80] .

Illustrative though this compiler may be,
size all other example programs dealt with in
consists of several modules.

ll.l.THE SOURCE LANGUAGE

it
the

exceeds
book,

in
and

A source language program is a finite sequence of tokens. A
token is represented by a finite character sequence, whose syn­
tax is described by the following grammar (see Chapter II, sec­
tion 1) :

$ Token =
$ KeyWord Identifier I Numeral.
$ KeyWord =
$ ";" I "(" I ")" I "+" I "-" I "*" I "-"
$ II:=" I "<=" '<>' "<" I ">=" ">" "="
$ "DO" I "ELSE" I "IF" I "READ" I "THEN"
$ "WHILE" I "WRITE".
$ Identifier= Letter {Letter I Digit}.
$ Numeral= Digit {Digit}.

The keywords are words reserved for special purposes and
must not be used as normal identifier names.

Keywords are case insensitive, i.e. the small and capital
letters appearing in the keywords are considered as completely
equivalent.

Tokens may be separated by spaces, horizontal tabs, and
newline characters, which cannot occur within tokens and are
ignored unless they are essential to separate two consecutive
tokens.

49

Some token sequences are not syntactically correct
grams. Hence, the token sequence produced by scanning the
character stream must be parsed to see whether it has the
lowing syntax:

$ Program = StatementSequence.
$ StatementSequence =Statement { ";"Statement}.
$ Statement =
$ "IF" Test "THEN" Statement "ELSE" Statement
$ "WHILE" Test "DO" Statement
$ "READ" VariableName I
$ "WRITE" Expression I
$ "(" StatementSequence ")".
$ VariableName ":="Expression
$ Empty.
$ Empty = .
$ Test = Expression CompOperator Expression.
$ CompOperator = "=" I "<=" I "<>" I "<" I ">=" I ">".
$ Expression= Term { AddOperator Term}.
$ Term= Factor { MultOperator Factor}.
$ Factor= VariableName I Value I "("Expression")".
$ AddOperator = "+" I "-".
$ MultOperator = "*" 1 "/".

$ VariableName = Identifier.
$ Value = Integer.

pro­
input
fol-

A program is a statement sequence. The statements are exe­
cuted sequentially, from left to right. Each statement may ac­
cess, and change, the values of variables.

An if statement

IF Cond THEN Stl ELSE St2

tests the condition Cond. If the condition is satisfied, the
statement Stl is executed, otherwise, the statement St2 is exe­
cuted.

A while statement

WHILE Cond DO St

tests the condition Cond. If the condition is
statement St is executed, and the execution of
struct is repeated. Otherwise, if the condition
fied, the execution of the construct terminates.

A read statement

READ Var

satisfied, the
the whole con­
is not satis-

reads an integer from the input device, and assigns the integer
as value to the variable Var.

A write statement

WRITE Expr

50

evaluates the arithmetic expression Expr to produce an integer,
which is written to the output device.

A compound statement

(s tl ; s t2 ; . . . s tN)

specifies the sequential execution of the statements Stl, St2,
... , StN.

An assignment statement

Var := Expr

evaluates the expression Expr to produce an integer, which is
assigned as value to the variable Var.

An empty statements specifies no action.
Conditions and arithmetic expressions have their conven­

tional meaning. The multiplication and division operators have
precedence over the addition and subtraction operators.

The variables appearing in the program don't have to be
declared. The initial variable values are undefined.

Here is an example program, which inputs an integer, and
then computes and outputs the factorial of the integer.

read value;
count:=l;
result:=l;
while count<value do

(
count:=count+l;
result:=result*count
) ;

write result

11.2.THE TARGET LANGUAGE

The target program produced by the compiler is written in
"machine code", and has the following syntax:

$
$
$
$
$
$
$
$
$
$
$

Program= {Directive}.
Directive =

Instruction I "BLOCK"
Instruction =

"," Value

InstructionCode " , " Value " ; " I
InstructionCode =

" . " ,

ADD SUB MUL I DIV I LOAD I STORE
ADDC I SUBC I MULC I DIVC I LOADC I

JUMPEQ I JUMPNE I JUMPLT I JUMPGT I JUMPLE
JUMP I READ I WRITE I HALT.

Value = Integer.

JUMPGE

A program is a directive sequence, each directive being

51

either an "instruction", i.e. machine command, or a memory allo­
cation directive.

We assume the main store of
cells, each cell associated with
negative integer (thus, the cells
may hold either an instruction or

The execution of the program
sell.

the machine to consist of
its address, a unique
are numbered from l) . A
an integer.

non­
cell

always starts from the first

In addition to the main store, the machine has an accumula­
tor, which is capable of containing an integer.

A directive

BLOCK,Int;

specifies that at this place in the program there must be allo­
cated Int store cells containing no instructions. This directive
usually is put at the end of the program, and used for allocat­
ing cells that are to hold the values of the program's vari­
ables.

A machine instruction has the form

Op,Value;

where Op is the instruction's name, and Value the instruction's
operand. The meaning of the operand Value depends on the in­
struction's name. Some instructions assume Value to be the ad­
dress of the cell. Others assume Value to be an integer. There
are instructions, however, which needn't any operand, in which
cases Value must be equal to zero.

An instruction LOAD,Addr; loads the contents of the cell
having the address Addr into the accumulator.

An instruction STORE,Addr; puts the contents of the accu­
mulator into the cell having the address Addr.

An instruction LOADC,Int; loads the integer Int into the
accumulator.

Instructions ADD, SUB, MUL and DIV have the form Op,Addr;
and compute respectively the sum, difference, product, and the
the truncated quotient of two integers. The first integer is the
one contained by the accumulator, and the second the one con­
tained in the cell having the address Addr. The result of the
operation is put into the accumulator.

Instructions ADDC, SUBC, MULC, and DIVC have the form
Op,Int; and compute respectively the sum, difference, product,
and the truncated quotient of two integers. The first integer is
the one contained in the accumulator, and the second integer is
Int, i.e.the one contained in the operand of the instruction.
The result of the operation is put into the accumulator.

An instruction READ,Addr; reads an integer from the input
device and puts it into the cell having the address Addr.

An instruction WRITE,O; writes the integer contained by
the accumulator to the output device.

An instruction HALT,O; halts the execution of the pro-
gram.

52

An instruction JUMP,Addr; causes the control to jump to
the instruction contained in the cell having the address Addr.

And, finally, the last group of instructions comprises the
conditional jumps JUMPEQ, JUMPNE, JUMPLT, JUMPGT, JUMPLE, and
JUMPGE, all having the form Op,Addr;. They are executed in the
following way. First, the contents of the accumulator is com­
pared with zero. If the condition implied by the instruction's
name is satisfied, the control jumps to the instructions con­
tained in the cell having the address Addr, otherwise, to the
next instruction.

Which condition is tested, is determined by the last two
letters in the instruction's name. EQ means testing the accumu­
lator's contents for being equal to 0, NE for not being equal to
0, LT for being less than 0, GT for being greater than 0, LE for
being less than or equal to 0, GE for being greater than or
equal to 0.

The above program computing the factorial will be translat­
ed by the compiler into the following target program in machine
code.

001 READ,21; 008 JUMPGE, 16; 015 JUMP,6;
002 LOADC,1; 009 LOAD, 19; 016 LOAD,20;
003 STORE,19; 010 ADDC,1; 017 WRITE,O;
004 LOADC,1; 011 STORE,19; 018 HALT,O;
005 STORE,20; 012 LOAD,20; 019 BLOCK,3;
006 LOAD, 19; 013 MUL,19;
007 SUB,21; 014 STORE,20;

The address of each directive is shown on the left of the
directive.

11.3.THE GENERAL STRUCTURE OF THE COMPILER

Our compiler has the "classic" structure, and comprises the
following parts.

The source character stream (which is often called the
concrete program) is read and broken up into tokens by the scan­
ner.

Then the token sequence is analyzed by the parser to pro­
duce an abstract syntax tree (which is often called the abstract
program) .

The abstract program is further translated by the code
generator into a program in assembly language. A program in
assembly language is very close to the target program, except
that, instead of concrete cell addresses, it contains labels,
each label representing some (yet) unknown address.

The program in assembly language is then processed by the
assembler, which replaces all the label with concrete addresses,
thereby producing the target machine code program.

The information about the correspondence between the vari­
able names and labels is kept in the dictionary of variables.
Thus the compiler contains a module dealing with the dictionary,

53

which is used by the code generator as well as by the assembler.
In comparison with the simplicity of the source language,

the structure of our compiler may well seem to be rather compli­
cated. And, actually, the compiler could have been simplified by
merging many compiler's components together. For example, this
could have been done with the scanner, parser, and code genera­
tor.

It should be kept in mind, however, that, should the source
language be more complicated, such "unionism" would make the
compiler messy, unreliable and difficult to understand. But, the
purpose of our compiler is just to illustrate, in the framework
of Refal Plus, the traditional compiler writing techniques ap­
plicable to "real-size" compilers.

Taking our example compiler as the starting point, the
reader may try to improve it in two respects. First, the source
language can be made more complex and more realistic. Second,
the compiler can be simplified at the expense of making it less
"scientific" and less general.

11.4.THE MODULES OF THE COMPILER AND THEIR INTERFACES

The compiler consists of the following modules:

CMP - the main module
CMPSCN - the scanner
CMPPRS - the parser
CMPGEN - the code generator and assembler
CMPDIC - the dictionary module

The main module does not have the interface part and con­
tains the definition of the goal function Main. All other mod­
ules consist of two parts: the interface and the implementation.

The module CMPSCN has the following interface:

**
** File CMPSCN.RFI

**
$func
$func
$func

!nit-Scanner
Read-Token
Term-Scanner

s.Channel = ;
= s.TokenClass s.Tokeninfo;
= ;

The module exports three functions.
The function !nit-Scanner initializes the scanner. The

parameter s.Channel is a reference to the channel that provides
characters read by the scanner. This channel must have been
opened for reading before calling !nit-Scanner.

The function Term-Scanner must be called after the reading
of the source program has been finished. This enables the scan­
ner to terminate its activities and to get ready for reading
another source program.

54

The function Read-Token returns the source programs's
rent token represented by two symbols: the first symbol
cates the class the token belongs to, while the second
provides additional infor.mation about the token.

The module CMPPRS has the following interface:

**
** File: CMPPRS.RFI
**

$func Parse s.Channel = t.Program;

cur­
indi­

symbol

The interface exports the function Parse, which reads the
source program from the channel s.Channel (via the scanner) and
produces the abstract program t.Program. The channel s.Channel
must have been opened for reading before calling Parse.

If the source program contains syntax errors, the function
Parse returns $error(Ge), where Ge is an error message describ­
ing the first error encountered by Parse.

The module CMPGEN has the following interface:

**
** File: CMPGEN.RFI
**

$func Gen-Code
$func Write-Code

t.Program = t.Code;
t.Code =

The interface exports two functions.
The function Gen-Code takes as argument t.Program, an ab­

stract program, and returns t.Code, the result of compiling
t.Program into the machine code. The program t.Code is repre­
sented by an abstract syntax tree.

The function Write-Code takes as argument a machine code
program represented by an abstract syntax tree, and, upon con­
verting it into the character stream representation, writes it
to the standard output device.

The module CMPDIC has the following interface:

**
** File: CMPDIC.RFI
**

$func Make-Die
$func Lookup-Die
$func Allocate-Die

= s.Dic;
s.Key s.Dic = s.Ref;
s.Dic s.StartAddr = s.FreeAddr;

The interface exports four functions.
The function Make-Die returns a reference to a new empty

dictionary.

55

The function Lookup-Die returns the label associated with
the key s.Key in the dictionary referred to by s.Dic. If the key
s.Key has not been registered in the dictionary, a new unique
label is created, associated with the key s.Key, and returned as
the function's result.

The function Allocate-Die looks through the dictionary
referred to by s.Dic and binds all labels registered in the
dictionary to different addresses. If the dictionary contains N
keys, the labels get bound to consecutive addresses starting
with s.StartAddr. The result returned by the function is the
first free address.

ll.S.THE MAIN MODULE

The main module of the compiler
compiler together. The name of the
assumed to be passed to the compiler
the command line. Thus the compiler
command

CMP FileName

links
source
as the
should

all parts of
program's file
first argument
be called by

the
is
in

the

where FileName is a file name. This name is accessed by the
compiler by means of the library function Arg.

**
** File CMP.RF

**
$use DOS;
$use STDIO;

$use CMPPRS;
$use CMPGEN;

$func Compile e.FileName

Main =
<Arg 1> :: e.FileName,
<Compile e.FileName>;

Compile e.FileName =
<Channel>:: s.Chl,

=

<Open-File s.Chl e.FileName "r">,
<Parse s.Chl> :: t.AProgram,
<Close-Channel s.Chl>,
<Gen-Code t.AProgram> :: t.Code,
<Write-Code t.Code>;

11.6.THE SCANNER

56

;

The result produced by the scanner is a token sequence,
each token being represented by two symbols. The first of the
symbols indicates the class of the token.

In the following we describe the syntax of ground expres­
sions by means of an extended Backus-Naur form (EBNF), with
non-terminals written as Refal Plus variables. The ground ex­
pressions denoted by the non-terminals are assumed to correspond
to the types of the non-terminals.

Thus the syntax of the token sequence produced by the scan­
ner can be described as follows:

$ e.Tokens = { e.Token }.
$ e.Token =
$ Key s.Key I Name s.Name I Value s.Value I
$ Char s.Char.
$ s.Key = s.Word.
$ s.Name = s.Word.
$ s.Value = s.Int.

A token of the form Key s.Key represents a keyword, s.Key
being the word symbol whose character representation corresponds
to the key word. A token of the form Name s.Name represents a
variable name, s.Name being the word symbol whose character
representation corresponds to the variable name (which, syntac­
tically, is an identifier). A token of the form Value s.Value
represents a numeric constant, s.Value being the corresponding
numeric symbol. A token of the form Char s.Char represents an
unidentified character s.Char.

When the reading of the source program has been finished,
the scanner generates the token Key Eof.

The module CMPSCN has the following implementation:

**
** File: CMPSCN.RF

**
$use STDIO;
$use CLASS;
$use CONVERT;
$use BOX;

$func Scan-Token
s.Chl e.Line = s.TokenKey s.Tokeninfo (e.Linel);

$func Scan-Id-Rest
(e.Id-Chars) e.Chars = s.TokenKey s.Word (e.Rest);

$func Scan-Int-Rest
(e.Int-Chars) e.Chars = s.TokenKey s.Int (e.Rest);

$func? Blank?
$func? One-Char-Token?
$func? Compound-Token?
$func? KeyWord?

s.Char = ;
s.Char = ;
s.Char e.Line = s.Word e.Rest;
s.Word =

** Boxes for storing the channel to be read,

57

** and the rest of the current line.

$box Scan-Chl Scan-Line;

!nit-Scanner s.Chl =
<Store &Scan-Chl s.Chl>,
<Store &Scan-Line >;

** Scanner initialization.
** The channel into box.
** The current line is empty.

Term-Scanner =
<Store &Scan-Chl >,
<Store &Scan-Line >;

** Scanner termination.
** Forgetting the channel
** and the current line.

Read-Token = ** The reading of a token.
<? &Scan-Chl> : s.Chl,
<?&Scan-Line>:: e.Line,
<Scan-Token s.Chl e.Line>

:: s.TokenKey s.Tokeninfo (e.Line),
<Store &Scan-Line e.Line>,

= s.TokenKey s.Tokeninfo;

Scan-Token s.Chl e.Line =
e.Line
{

=
{

<Read-Line! s.Chl> ::
= <Scan-Token s.Chl
= Key Eof ();

} ;
s.Char e.Rest =

e.Line
e.Line>;

**
**
**

**

**

The line rest is
empty. Reading the
next line.

End of file.

Examining the
{ ** current character.
<Blank? s.Char>

= <Scan-Token s.Chl e.Rest>;
<Letter? s.Char>

= <Scan-Id-Rest (s.Char) e.Rest>;
<Digit? s.Char>

= <Scan-Int-Rest (s.Char) e.Rest>;
<One-Char-Token? s.Char>

=Key <To-Word s.Char> (e.Rest);
<Compound-Token? s.Char e.Rest> :: s.Word e.Rest

=Key s.Word (e.Rest);
= Char s.Char (e.Rest); ** Unidentified character.

} ;
} ;

** Getting the rest of an identifier.

Scan-Id-Rest (e.Id-Chars) e.Rest =
{

e.Rest : s.Char e.Restl,
\{<Letter? s.Char>; <Digit? s.Char>;}

= <Scan-Id-Rest (e.Id-Chars s.Char) e.Restl>;

58

=<To-Word <To-Upper e.Id-Chars>> : s.Word,
{<KeyWord? s.Word> =Key;= Name;} :: s.TokenKey,
= s.TokenKey s.Word (e.Rest);

} ;

** Getting the rest of an integer.

Scan-Int-Rest (e.Int-Chars) e.Rest =
{

e.Rest : s.Char e.Restl, <Digit? s.Char>
= <Scan-Int-Rest (e.Int-Chars s.Char) e.Restl>;
= Value <To-Int e.Int-Chars> (e.Rest);

} ;

Blank? s.Char =
1 \n\t 1 : e s.Char e;

One-Char-Token? s.Char =
1 ; () +-* 1 1 : e s . Char e;

Compound-Token?
\{
I ·-1 e.Rest = "·-" e.Rest; .- .-
1<=1 e.Rest = "<=" e.Rest;
1<>1 e.Rest = "<>" e.Rest;
1<1 e.Rest = "<" e.Rest;
1>=1 e.Rest = ">=" e.Rest;
1>1 e.Rest = ">" e.Rest;
1=1 e.Rest = "=" e.Rest;
} ;

** A whitespace?

** A one-character token?

** Trying to get a multi­
** character token.

KeyWord?
\{

** Is the identifier a key word?

DO ; ELSE
} ;

IF READ ; THEN ; WHILE ; WRITE

11.7.THE PARSER

The parser, residing in the module CMPPRS, transforms a
token sequence into an abstract program, i.e. a parse tree.

Our parser will use the technique referred to as a recur­
sive-descent analysis.

Consider, for example, the following grammar:

$ Sentence = Subject Predicate.
$ Subject = "cats" I "dogs".
$ Predicate = "sleep" I "eat".

Suppose we are given the token sequence

"dogs" "eat"

59

and want to determine whether this sequence is a well-formed
sentence. This amounts to determining whether this sequence can
be derived from the non-terminal Sentence. But, the grammar
specifies that the set of token sequences generated by the non­
terminal Sentence is equal to the set of sequences generated by
the non-terminal sequence Subject Predicate. Thus, the origi­
nal problem can be reduced to determining whether the input
sequence can be divided into two subsequences such that the
first one can be derived from the non-terminal Subject, and the
second one from the non-terminal Predicate.

How can a sequence be divided into two parts, of which the
first is generated by the non-terminal Subject? It, can, obvi­
ously, be done by testing whether the sequence begins with one
of the tokens "cats" or "dogs".

Thus we come to the following method of analyzing token
sequences.

Each non-terminal A appearing in the grammar is associated
with a function A having the following declaration:

$func? A e.Token = e.Rest;

This function A tests whether the input token sequence e.Token
begins with a sequence derivable from the non-terminal A, and,
if so, deletes this beginning and returns the rest of the input
sequence thus obtained. Otherwise, if the input sequence does
not begin with a sequence derivable from the non-terminal A, the
function A returns a failure.

It goes without saying that the above method is applicable
only in cases where, for each non-terminal A and each input
sequence Z there exists no more than one way of dividing Z into
two subsequences, of which the first is derivable from A. In
many cases, however, the grammar can be rewritten in such a way
that this restriction will be satisfied. An interested reader
may find further details in [Wir 76] .

Proceeding from the above consideration, we can now define
the function "Sentence" either deleting from the input sequence
the beginning derivable from the non-terminal Sentence, or fail­
ing, if this is unfeasible.

$func? "Sentence" e.Token = e.Rest;
$func? "Subject" e.Token = e.Rest;
$func? "Predicate" e.Token = e.Rest;
$func? Token? s? e.Token = e.Rest;

"Sentence" eZ =
<"Subject" eZ> ez,
<"Predicate" eZ> : : eZ,

= eZ;

"Subject" eZ =
\{
<Token? "dogs" eZ> :: eZ = eZ;
<Token? "cats" eZ> : : eZ = eZ ;

60

} ;

"Predicate" eZ =
\{
<Token? "sleep" eZ> : : eZ = eZ;
<Token? "eat" eZ> :: eZ = eZ;
} ;

Token? s? eZ =
eZ : s? eZO

= eZO;

The function Token? is used for deleting a terminal symbol,
which is passed as the first argument.

Now we can return to considering the module CMPPRS, in
which we have to deal with two additional problems.

First, instead of returning the input token sequence as a
whole, the scanner produces tokens one by one. Thus, each of the
parsing functions, instead of taking as argument the whole token
sequence, takes as argument a single token, the one that has
been read last. This token is the one to be analyzed next. Simi­
larly, each of the parsing functions, instead of returning the
whole rest of the token sequence, returns only the first un­
parsed token. (It should be kept in mind, however, that each
token is represented by two Refal Plus symbols.)

Second, in addition to checking the syntax correctness of
the source program, the parser has to transform the token se­
quence into the corresponding abstract program, i.e. into an
abstract syntax tree. Thus, the parsing function associated with
a non-terminal A is usually declared as follows:

$func A sC si = sC si tx;

where sC si represent the current token, and tx is the result
of translating the token sequence consumed by the function into
an abstract syntax tree.

Third, if a syntax error is detected, the parser, instead
of returning a failure, must produce an error $error(Ge), where
Ge is an error message describing the error. For this reason,
the parsing functions are declared as unfailing ones.

Here is the syntax of the abstract programs produced by the
parser:

$ t.Program = (Program t.Statement).
$ t.Statement =
$ (Assign s.Name t.Expr)
$ (If t.Test t.Statement t.Statement)
$ (While t.Test t.Statement)
$ (Read s .Name) I
$ (Write t.Expr) I
$ (Seq t.Statement t.Statement)
$ (Skip) .
$ t.Test = (Test s.Comp-Oper t.Expr t.Expr).

61

$ t.Expr =
$ (Const s.Value)
$ (Name s.Name)
$ (Op t.Oper t.Expr t.Expr).
$ s.Comp-Oper = Eq I Ne I Gt I Ge I Lt I Le.
$ s.Oper =Add I Sub I Div I Mul.
$ s.Name = s.Word.
$ s.Value = s.Int.

Thus, a construction written in abstract syntax usually has
the form

(KeyWord Gtl Gt2 . . . GtN)

where the key word KeyWord is a word symbol representing the
construct's name, and the ground terms Gtl, Gt2, ... , GtN
represent the component constructs also written in abstract
syntax. Since the correspondence between the constructs written
in concrete and abstract syntax is evident, we won't dwell on
this point.

Here is the implementation of the module CMPPRS:

**
** File: CMPPRS.RF

**
$use CMPSCN;

$func Program
$func Statement-Seq
$func Rest-St-Seq
$func Statement
$func Test
$func Expr
$func Rest-Expr
$func Term
$func Rest-Term
$func Factor
$func Comp-Op
$func? Add-Op?
$func? Mul-Op?
$func? Token?
$func Accept
$func? Name?
$func? Value?

Parse s.Chl =
<Init-Scanner s.Chl>,
<Program <Read-Token>>
<Term-Scanner>,
{

sC si : Key Eof

sC si = sC si tx;
sC si = sC si tx;
sC si txO = sC si tx;
sC si = sC si tx;
sC si = sC si tx;
sC si = sC si tx;
sC si txl = sC si tx;
sC si = sC si tx;
sC si txl = sC si tx;
sC si = sC si tx;
sC si = sC si s.Comp-Oper;
sC si = sC si s.Oper;
sC si = sC si s.Oper;
si? sC si = sC si ;

si? sC si = sC si ;
sC si = sC si s.Name;
sC si = sC si s.Value;

sC si t.Program,

** Is the rest of the program
** empty?

62

= t.Program.;
= $error sCsi " instead of Eof after the program";

} ;

Program sC si =
<Statement-Seq sCsi>:: sCsi tx,

=sCsi (Program tx);

Statement-Seq sC si =
<Statement sCsi>:: sCsi txO,

= <Rest-St-Seq sC si txO>;

Rest-St-Seq sC si txO =
\? {
<Token? ";" sCsi> :: sCsi\!

<Statement-Seq sCsi>:: sCsi tx,
=sCsi (Seq txO tx);

\!
= sC si txO;

} ;

Statement sC si =
\? {
<Name? sCsi>:: sCsi s.Name \!

<Accept " : =" sC si> : : sC si,
<Expr sCsi>:: sCsi t.Expr,

=sCsi (Assign s.Name t.Expr);
<Token? "IF" sCsi>:: sCsi\!

<Test sCsi>:: sCsi t.Test,
<Accept "THEN" sCsi>:: sCsi,
<Statement sCsi>:: sCsi t.Then,
<Accept "ELSE" sCsi>:: sCsi,
<Statement sC si> sC si t.Else,

=sCsi (If t.Test t.Then t.Else);
<Token? "WHILE" sCsi>:: sCsi\!

<Test sCsi>:: sCsi t.Test,
<Accept "DO" sC si> : : sC si,
<Statement sCsi>:: sCsi t.Do,

= sC si (While t.Test t.Do);
<Token? "READ" sCsi>:: sCsi\!

<Name? sCsi>:: sCsi s.Name,
= sC si (Read s.Name);

<Token? "WRITE" sCsi>:: sCsi\!
<Expr sCsi>:: sCsi t.Expr,

=sCsi (Write t.Expr);
<Token?"(" sCsi>:: sCsi\!

** Program.

** Statement
** sequence.

** Statement.

<Statement-Seq sC si> sC si t.Stmt,
<Accept ")" sC si> :: sC si,

= sC si t.Stmt;
\!

= sC si (Skip) ;
} ;

63

Test sC si =
<Expr sC si>
<Comp-Op sC si>
<Expr sC si> : :

= sC si (Test

sC si t.Exprl,
sC si t.Op,

sC si t.Expr2,
t.Op t.Exprl t.Expr2);

** Test.

Expr sC si = ** Expression.
<Term sCsi>:: sCsi t.XO,

= <Rest-Expr sC si t.XO>;

Rest-Expr sC si t.Xl =
\? {
<Add-Op? sCsi>:: sCsi s.Op \!

<Term sCsi>:: sCsi t.X2,
= <Rest-Expr sC si (Op s.Op t.Xl t.X2)>;

\!
= sC si t.Xl;

} ;

Term sC si =
<Factor sC si> sC si t.XO,

= <Rest-Term sC si t.XO>;

Rest-Term sC si t.Xl =
\? {
<Mul-Op? sC si> :: sC si s.Op \!

<Factor sC si> sC si t.X2,

** Term.

=<Rest-Term sC si (Op s.Op t.Xl t.X2)>;
\!

= sC si t.Xl;
} ;

Factor sC si =
\? {
<Name? sCsi>:: sCsi s.Name \!

= sC si (Name s.Name);

** Factor.

<Value? sCsi>:: sCsi s.Value \!
= sC si (Const s.Value);

<Token?"(" sCsi>:: sCsi\!
<Expr sCsi>:: sCsi t.Expr,
<Accept")" sCsi>:: sCsi,

= sC si t.Expr;
\!

$error "Invalid factor start: " sC si;
} ;

Comp-Op sC si =
{

sC : Key,

** Comparison operator.

("=" Eq) ("<>" Ne) ("<=" Le) ("<" Lt) (">=" Ge) (">" Gt)
e (si s.Op) e
= <Read-Token> s.Op;
= $error "Invalid comparison operator: " sC si;

64

} ;

Add-Op? Key si = ** Additive operator.
(

11 + 11 Add) (11
-

11 Sub) : e (si s .Op) e
=<Read-Token> s.Op;

Mul-Op? Key si = ** Multiplicative operator.
(

11 * 11 Mul) (11
/

11 Div) : e (si s.Op) e
=<Read-Token> s.Op;

**Tries to consume a key word si?, and
** returns a failure, if this is unfeasible.

Token? si? Key si? = <Read-Token>;

**Tries to consume a key word si?, and
** generates an error, if this is unfeasible.

Accept
{

= <Read-Token>; si? Key si?
si? sC si
} ;

=$error sC si 11 instead of 11 Key si?;

** Variable name.

Name? Name si = <Read-Token> si;

** Value.

Value? Value si = <Read-Token> si;

11.8.THE CODE GENERATOR

Assembler language programs produced by the code generator
are represented by ground ter.ms having the following syntax:

$
$
$
$
$
$
$
$
$
$
$
$
$
$

t.Code =
(Seq { t.Code })
(Instr s.Instr s.Operand)
(Label s.Label) I
(Block s. Value) .

s.Operand = s.Label I s.Value.
s.Label = s.Box.
s.Value = s.Int.

s.Instr =
Add
Ad de
Jumpeq
Jump I

Sub I Div I Mul I Load
Subc I Dive I Mule I Loadc
I Jumpne I Jumplt I Jumpgt
Read I Write I Halt I

65

Store I

Jumple I Jumpge

Assembler language programs may contain labels to be re­
placed with absolute addresses by the assembler. Assembling a
program proceeds in two steps. First, the assembler determines
the addresses associated with instructions and variables, and
puts each address associated with a label into the box referred
to by the label. Second, all labels are replaced with the ad­
dresses associated with them, i.e. each reference to a box is
replaced with the contents of the box.

The module CMPGEN has the following implementation:

**
** File: CMPGEN.RF
**

$use STDIO;
$use CLASS;
$use ARITHM;
$use BOX;

$use CMPDIC;

$func Enc-Program
$func Enc-St
$func Enc-Test
$func Unless-Op
$func Enc-Expr
$func Enc-Sub-Expr
$func Literal-Op
$func Memory-Op
$func Assemble
$func Assemble-Seq
$func Dereference
$func Dereference-Seq
$func Write-Code-Seq

t.Program s.Dic = t.Code;
t.St s.Dic = t.Code;
t.Test s.Label s.Dic = t.TestC;
s.Op = s.Jump-If;
t.Expr s.Dic = t.ExprC;
t.Expr sN s.Dic = t.ExprC;
s.Op = s.OpCode;
s.Op = s.OpCode;
t.Code s.StartAddr = s.FreeAddr;
e.CodeSeq s.Addr = s.FreeAddr;
t.Code = t.Target;
e.CodeSeq = e.CodeSeqD;
e.CodeSeq = ;

** Generates an assembler language program
** from an abstract program.

Gen-Code t.Program =
** Creating an empty dictionary.

<Make-Die>:: s.Dic,
** Generating the abstract program.

<Enc-Program t.Program s.Dic> :: t.Code,
**Allocating memory for the program's instructions.

<Assemble t.Code 1> :: s.FreeAddr,
**Allocating memory for the program's variables.

<Allocate-Die s.Dic s.FreeAddr> :: s.EndAddr,
** Replacing the labels with their addresses.

<Dereference t.Code> :: t.CodeD,
** Generating the directive BLOCK.

<"-" s.EndAddr s.FreeAddr> :: s.BlockLength,
(Seq t.CodeD (Block s.BlockLength)) :: t.Target,

= t.Target;

66

** Encodes a program.

Enc-Program (Program t.St) s.Dic =
<Enc-St t.St s.Dic> :: t.StC,
<Box> :: s .L,

= (Seq t. StC (Instr Halt 0) (Label s. L)) ;

** Encodes a statement.

Enc-St (s.KeyWord e.Info) s.Dic =
(s.KeyWord e.Info)
{

(Assign sX t.Expr) =
<Lookup-Die sX s.Dic> :: s.Addr,
<Enc-Expr t.Expr s.Dic> :: t.ExprC,

= (Seq t.ExprC (Instr Store s.Addr));
(If t.Test t.Then t.Else) =

<Box>:: s.Ll, <Box>:: s.L2,
<Enc-Test t.Test s.Ll s.Dic> :: t.TestC,
<Enc-St t.Then s.Dic> t.ThenC,
<Enc-St t.Else s.Dic> :: t.ElseC,

= (Seq

) ;

t.TestC
t.ThenC
(Instr Jump s.L2)

(Label s . Ll)
t.ElseC

(Label s.L2)

(While t.Test t.Do) =
<Box>:: s.Ll, <Box>:: s.L2,
<Enc-Test t.Test s.L2 s.Dic> :: t.TestC,
<Enc-St t.Do s.Dic> :: t.DoC,

= (Seq

) ;

(Label s. Ll)
t.TestC
t.DoC
(Instr Jump s.Ll)

(Label s.L2)

(Read s.X) =
<Lookup-Die s.X s.Dic> :: s.Addr,

= (Instr Read s.Addr);
(Write t.Expr) =

<Enc-Expr t.Expr s.Dic> t.ExprC,
= (Seq t.ExprC (Instr Write 0));

(Seq t.Stl t.St2) =
<Enc-St t.Stl s.Dic> :: t.StCl,
<Enc-St t.St2 s.Dic> :: t.StC2,

= (Seq t.StCl t.StC2);
(Skip) =

=(Seq);

67

} ;

** Encodes a test.

Enc-Test (Test s.Op t.Argl t.Arg2) s.Label s.Dic =
<Enc-Expr (Op Sub t.Argl t.Arg2) s.Dic> :: t.ExprC,
<Unless-Op s.Op> :: s.Jump-If,

= (Seq t.ExprC (Instr s.Jump-If s.Label));

Unless-Op ** Generates a jump.
{

Eq = Jumpne; Ne = Jumpeq;
Lt = Jumpge; Gt = Jumple;
Le = Jumpgt; Ge = Jumplt;
} ;

** This function compiles an arithmetic expression.
** Auxiliary variables are created to keep
** the values obtained by evaluating subexpressions.
** The evaluation order of the subexpressions is chosen in
** such a way as to reduce the number of auxiliary variables.

Enc-Expr t.Expr s.Dic
= <Enc-Sub-Expr t.Expr 0 s.Dic>;

Enc-Sub-Expr (s.KeyWord e.Info) sN s.Dic =
(s.KeyWord e.Info)
{

(Const sC) =
= (Instr Loadc sC);

(Name sX) =
<Lookup-Die sX s.Dic> :: s.Addr,

= (Instr Load s.Addr);
(Op s.Op t.Exprl t.Expr2) =

t.Expr2 :
{

(Const sC2) =
<Enc-Sub-Expr t.Exprl sN s.Dic> :: t.ExprlC,
<Literal-Op s.Op> :: s.OpCode,

= (Seq t.ExprlC (Instr s.OpCode sC2));
(Name sX2) =

<Enc-Sub-Expr t.Exprl sN s.Dic> :: t.ExprlC,
<Memory-Op s . Op> : : s . OpCode,
<Lookup-Die sX2 s.Dic> :: s.Addr,

= (Seq t.ExprlC (Instr s.OpCode s.Addr));
(Op e) =

<Lookup-Die sN s.Dic> s.Addr,
<Enc-Sub-Expr t.Expr2 sN s.Dic> :: t.Expr2C,
<"+" sN 1> :: sNl,
<Enc-Sub-Expr t.Exprl sNl s.Dic> :: t.ExprlC,
<Memory-Op s . Op> : : s . OpCode,

= (Seq
t.Expr2C

68

(Instr Store s.Addr)
t.ExprlC
(Instr s.OpCode s.Addr)

} ;
} ;

Literal-Op
{

) ;

Add = Addc; Sub = Subc;
Mul = Mule; Div = Dive;
} ;

Memory-Op
{

Add = Add; Sub = Sub;
Mul = Mul; Div = Div;
} ;

** Generates the names of
** the instructions with
** literal operands.

** Generates the names of
** the instructions with
** address operands.

** Allocates memory for the instructions.

Assemble t.Code s.AO =
t.Code
{

(Seq e.CodeSeq) =
=<Assemble-Seq e.CodeSeq s.AO>;

(Instr s s) =
= <"+" s.AO 1>;

(Label s.Label) =
<Store s.Label s.AO>

= s.AO;
} ;

Assemble-Seq e.CodeSeq s.AO =
e.CodeSeq :
{

t.Code e.Rest =
<Assemble t.Code s.AO> :: s.Al,
=<Assemble-Seq e.Rest s.Al>;

=
= s.AO;

} ;

** Replaces the labels with their addresses.

Dereference t.Code =
t.Code :
{

(Seq e.CodeSeq) =
(Seq <Dereference-Seq e.CodeSeq>);

(Instr s.Instr s.Value) =
{

<Int? s.Value>

69

= t.Code;
<Box? s.Value>

= (Instr s.Instr <? s.Value>);
} ;

(Label s.Label) =
(Label <? s.Label>);

} ;

Dereference-Seq
{

t.Code e.CodeSeq =
<Dereference t.Code><Dereference-Seq e.CodeSeq>;

= ;
} ;

** Converts the assembler language program to
** the character sequence, and outputs it to
** the standard output device.

Write-Code
{

(Seq e.CodeSeq) =
<Write-Code-Seq e.CodeSeq>;

(Instr s.Instr s.Value) =
<Print" "><Print s.Instr><Print ",">
<Print s.Value><Print ";\n">;

(Label s.Label) =
<Print s.Label><Print ":\n">;

(Block s.Value) =
<Print " BLOCK,"><Print s.Value><Print ";\n">;

} ;

Write-Code-Seq
{

t.Code e.CodeSeq =
<Write-Code t.Code><Write-Code-Seq e.CodeSeq>;

= ;
} ;

11.9.THE DICTIONARY MODULE

Dictionaries are represented by binary trees [AHU 74] . Each
tree node is represented by a box containing three symbols: a
key, a value associated with the key, a reference to the left
subtree, and a reference to the right subtree. An empty tree is
represented by a reference to an empty box.

The module CMPDIC has the following implementation:

**
** File: CMPDIC.RF
**

70

$use BOX;
$use COMPARE;
$use ARITHM;

** Creates an empty dictionary.

Make-Die
= <Box>;

** Looks up the dictionary s.Dic for the label associated
** with the key s.Key. If the key s.Key is not registered
** in the dictionary, the dictionary is updated:
** the key s.Key is associated with a new unique label.

Lookup-Die s.Key s.Dic =
<? s.Dic>
{

=
<Box> :: s .Ref,
<Store s.Dic s.Key s.Ref <Box> <Box>>,

= s.Ref;
s.Keyl s.Refl s.DicL s.DicR =

<Compare (s.Key) (s.Keyl)>
{

'<' =<Lookup-Die s.Key s.DicL>;
'>' =<Lookup-Die s.Key s.DicR>;
'=' = s.Refl;
} ;

} ;

** Allocates memory for the labels registered in
** the dictionary. s.A is the start address.
** The address corresponding to a label is put
** into the box referred to by the label.

Allocate-Die s.Dic s.A =
<? s.Dic>
{

= s.A;
s.Key s.Ref s.DicL s.DicR =

<Allocate-Die s.DicL s.A>
<Store s.Ref s.A>,
<"+" s .A 1> : : s .A,

s .A,

=<Allocate-Die s.DicR s.A>;
} ;

Write-Die s.Dic =
<? s.Dic> :
{

= <Print "_">;
s.Key s.Ref s.DicL s.DicR =

<Print"(">, <Write-Die s.DicL>, <Print" ">,
<Write s.Key>,

71

} ;

<? s.Ref>
{

= ;
e.Value = <Print "->"> <Write e.Value>;
} I

<Print " ">,
<Write-Die s.DicR>, <Print")">;

72

Chapter II. SYNTAX AND SEMANTICS OF REFAL PLUS

l.NOTATION FOR SYNTAX DESCRIPTION

The syntax is described by means of an extended Backus-Naur
form (EBNF) .

Syntactic entities (non-terminals) are denoted by English
words expressing their intuitive meaning. Terminal symbols of
the language are written between acute accents (') or double
quotes in order to be distinguished from non-terminals.

A syntax definition is a collection of productions. Each
production has the form

S = E.

where S is a non-terminal and E a syntax expression denoting the
set of constructs for which S stands. An expression E has the
form

Tl I T2 I I Tn (n>O)

where the Ti's are the terms of E. Each Ti stands for a set of
constructs, and E denotes their union. Each term T has the form

Fl F2 ... Fn (n>O)

where the Fi's are the factors ofT. Each Fi stands for a set of
constructs, and T denotes their product, i.e. the set of con­
structs of the form Xl X2 ... Xn, where each Xi belongs to the
set denoted by Fi.

Each factor F has either the form

"x"

(x is a terminal symbol, and "x" denotes the singleton set con­
sisting of this single symbol) , or

(E)

(denoting the expression E) , or

[E]

(denoting the union of the set denoted by E and the empty con­
struct) , or

{ E }

(denoting the set consisting of the union of the empty construct
and the sets E, E E, E E E, etc.).

Here are a few examples of syntactic EBNF-expressions along
with the sets of constructs described by the expressions.

73

(AlB) (CID)
A[B]C
A {B A}

{AlB} C

A C, AD, B C, B D
A B C, A C
A, A B A, A B A B A, A B A B A B A,
C, A C, B C, A A C, A B C, B B C, B A C,

In order for the EBNF syntax description to be distingui­
shable from the surrounding English text, all the lines contain­
ing EBNF productions will be marked by the character $ in the
first column.

Since an EBNF-description may be regarded as a text in a
language, the syntax of EBNF-descriptions may also be defined in
terms of EBNF in the following way:

$ Syntax = { SyntFormula } .
$ SyntFormula = Identifier "=" SyntExpression II II .
$ SyntExpression = SyntTerm { "I" SyntTerm } .
$ SyntTerm = SyntFactor { SyntFactor } .
$ SyntFactor = Identifier I I II I Terminal Symbol I II I

$ II (II SyntExpression II) II I II [II SyntExpression II] II

$ "{" SyntExpression II } II •

2.NATURAL SEMANTICS DESCRIPTION

The method that will be used to describe the execution of
Refal Plus programs is known as Natural Semantics or Structural
Operational Semantics [Plotkin 1983], [Apt 1983].

The name Natural Semantics is due to the similarity of this
description technique to Gentzen's Natural Deduction in mathe­
matical logic. When this technique is applied, the semantics of
a language is considered to be an unordered set of judgments
about programs and their fragments.

For example, suppose the language to be described deals
with expressions containing variables, and the evaluation of the
expressions may cause side effects (which may be due to the
input/output operations). Then, the language description may
involve the judgments of the form

Env,St' I-E=> X,St"

where E is a language expression, Env is an environment, which
binds variables to their values in the context of E, St' and St"
are global states before the evaluation of E and after the eval­
uation of E, and X is the result of evaluating E. A global state
may contain the state of the store, the files etc.

Informally, such a judgment may be interpreted in the fol­
lowing way: if the evaluation of E starts in the environment E
and global state St', it may result in producing the value X and
the global state St".

The symbol "I-" (which may be pronounced "implies" or "en­
tails") indicates the dependency of E's evaluation on the cur­
rent environment Env and the global state St'.

74

Thus, to define a language semantics, we have to describe a
set of (true) judgments about programs and their fragments.

A Natural Semantics definition is an unordered collection
of inference rules, which enables true judgments to be derived
from other true judgments.

A rule has basically two parts, a numerator and a
denominator. The numerator of a rule is an unordered collection
of formulae, the premises of the rule, whereas the denominator
is always a single formula, the conclusion. A rule that contains
no premise on the numerator is called an axiom, in which case
the horizontal line may be omitted.

Besides, a rule may contain additional conditions, which
impose certain restrictions on the applicability of the rule.
The restrictions are placed slightly to the right of the rule or
under the rule.

For example, suppose that the language to be described has
the construct if E then E' else E", whose meaning may be infor­
mally defined as follows.

Evaluate E. If the value of E is true, evaluate E' and
assume the value obtained to be the result of the whole con­
struct. Otherwise, if the value of E is false, evaluate E"
assume the value obtained to be the result of the whole
struct.

and
con-

A drawback of the above description is that there
explicit information about the environment in which the
tion of E, E', and E" takes place. Thus, the description
reformulated as follows.

is no
evalua­
may be

If the result of evaluating E in
true, and the result of evaluating E'
X, then X is the result of evaluating
the environment Env.

If the result of evaluating E in
false, and the result of evaluating E"
X, then X is the result of evaluating
the environment Env.

the environment Env
in the environment Env
if E then E' else E"

is
is
in

the environment Env is
in the environment Env is
if E then E' else E" in

This verbose definition may be given a more concise and
comprehensible formulation by means of two inference rules:

Env,St 1- E => true,St'
Env,St' 1- E' => X,St"

Env,St 1- if E then E' else E" => X,St"

Env,St 1- E => false,St'
Env,St' 1- E" => X,St"

Env,St 1- if E then E' else E" => X,St"

Take notice of the fact that, in contrast to the informal
semantics definition, the formal one provides a precise descrip­
tion of the way in which the global state is modified when the

75

program is executed.

3.LEXICAL STRUCTURE OF PROGRAM

A program in Refal Plus is a finite character sequence. The
syntax analysis of programs is done in two steps. First, the
program is scanned, in order to break up the character stream
into tokens. Then the token sequence is parsed to produce an
abstract syntax tree. Thus, the definition of the Refal Plus
syntax comprises two parts. The first part describes the lexical
structure of programs, i.e. how tokens are represented by char­
acter sequences, whereas the second part describes how to con­
struct programs by combining tokens.

$ Program= {Token I WhiteSpace }.

$ WhiteSpace = WhiteStuff { WhiteStuff }.

$ WhiteStuff = Space I HorizontalTab NewLine I Comment.

A program is a finite sequence of tokens. Tokens may be
separated by spaces, horizontal tabs, new line characters, and
comments, which cannot occur within tokens and are ignored un­
less they are essential to separate two consecutive tokens.

3.l.COMMENTS

$ Comment = "*" CommentTail NewLine
$ I " I*" Commen tBody " *I" .
$ CommentTail =
$ any character string not containing NewLine.
$ CommentBody =
$ any character string not containing "*1".

A comment may begin with an asterisk, in
extends to the following new line. Otherwise,
closed in "comment brackets" I* and *I.

* This is a comment.
* And this is a comment.

I* As well as this one! *I

3.2.TOKENS

$ Token =
$ Bracket I KeyWord I
$ CharacterStringLiteral
$ WordLiteral I NumericLiteral
$ Variable.

76

which
it must

case
be

it
en-

$ Bracket = " (" I ") " I " { " "\{" "}" I "<" I ">".

A token is either a bracket, a key word, a character string
literal, a word literal, a numeric literal, or a variable.

3.3.KEY WORDS

$ KeyWord =
$ "$box" I "$channel I "$const" I "$error" I "$fail"
$ "$func" I "$func?" I "$iter" I "$1" I "$r" I
$ "$string" I "$table" I "$trace I I "$traceall"
$ "$trap" I "$use" I "$vector" I "$with" I
$ "#" I "&" I "," I "·" I "··" I ";" I "=" I
$ "\?" I "\!".

The key words that begin with the
insensitive. For example, here are three
tions of the same key word:

character
different

$ are case
representa-

$func $Func $FUNC

3.4.CHARACTER SYMBOLS

CharacterStringLiteral = $
$ "'" { CharacterLiteral I ContinuationToNewLine } IIIII

$ CharacterLiteral =
$ NonSpecialCharacterLiteral I SpecialCharacterLiteral.
$ NonSpecialCharacterLiteral =
$ any ASCII character except acute accent('),
$ double quote ("), back slash (\), and new line.
$ SpecialCharacterLiteral =
$ "\n" I "\t" I "\v" "\b" I "\r" I "\f"
$ "\\" I "\'" I '\"'
$ ContinuationToNewLine =
$ "\" NewLine.

Each character symbol corresponds to an ASCII
and is represented by a character literal enclosed
accents. For instance:

'A' 'a' '7' '$'

character,
in acute

Ordinarily, an ASCII character is represented by itself,
except the following characters:

New line (line feed)
Horizontal tabulation
Vertical tabulation
Backspace
Carriage return

77

HL (LF) '\n'
HT '\t'
VT '\v'
BS '\b'
CR '\r'

Form feed
Back slash
Acute accent
Double quote

FF
\

"

'\f'
'\\'
I\ I I

'\"'

A sequence of several character symbols may be written as a
single string consisting of character literals and enclosed in
acute accents. For instance:

'ABC'
'123'
'\"I don\'t like swimming!\"- said a little girl.'

Thus, the sequence of three character symbols 'A', 'B', and
'C' may be written in any of the following ways:

'A' 'B' 'C'
'A' 'B' 'C'
'ABC'

If a back slash \ followed by a new line (LF) appears in a
character string literal, this back slash and the new line char­
acter are ignored, which enables long strings to be written on
more than one line. For example:

'A\
BC'

3.5.WORD SYMBOLS

WordLiteral =
Identifier

$
$
$ I II I { CharacterLiteral I ContinuationToNewLine } I II I

$
$
$

Identifier = IdentifierHead IdentifierTail.
IdentifierHead = CapitalLetter I "!" "?"
IdentifierTail = {Letter I Digit I "!" "?"

$ Letter = CapitalLetter I SmallLetter.

$
$
$
$

CapitalLetter
"A" I "B"
"J" I "K"
"S" I "T"

$ SmallLetter =
$ "a" I "b"
$ "j" I "k"
$ "s" I "t"

=
I
I
I

$ Digit = "0" "1"
$ I "8" I "9".

"C" "D" "E" "F"
"L" "M" "N" "0"
"U" "V" "W" "X"

"c" "d" "e" "f"
"1" "m" "n" "o"
"u" "v" "w" "x"

"2" "3" "4"

78

"G"
"P"
"Y"

"g"
"p"
"y"

"5" "6"

"-" }.

"H" "I"
"Q" "R"
"Z".

"h" "i"
"q" "r"
"z".

"7"

Each word symbol corresponds to an ASCII character string
and is written as a sequence of character literals enclosed in
double quotes. The character literals appearing in word symbols
are the same as those appearing in character symbols. For exam­
ple:

"ABC"
"123"
"\"I don\'t like swimming!\" - said a little girl."

Notice should be taken of the fact that "ABC" represents a
single word symbol, whereas 'ABC' represents the sequence of
three character symbols. Besides, a word symbols consisting of a
single character is regarded as different from the character
symbol consisting of the same character. For example, the char­
acter symbol 'A' is different from the word symbol "A".

The double quotes enclosing a word symbol may be omitted,
provided that the symbol satisfies the two following restric­
tions.

First, the word symbol may contain only the following ASCII
characters: capital letters, small letters, digits, exclamation
marks, question marks, and minus signs.

Second, the first character of the word symbol must be
either a capital letter, an exclamation mark, or a question
mark.

If a word symbol is written without enclosing double
quotes, it is case insensitive, i.e. all small letters are con­
sidered to be representations of the corresponding capital let­
ters.

For example, here are three representations of the same
word symbol:

!-do-not-like-swimming!
I-DO-NOT-LIKE-SWIMMING!
"I-DO-NOT-LIKE-SWIMMING!"

3.6.NUMERIC SYMBOLS

$ NumericLiteral = ["+" I "-"] Digit { Digit } .

Numeric symbols represent signed integers, which may be
arbitrarily large. For example:

123 +121 -123 -123456789012345678901234567890

3.7.VARIABLES

$ Variable =
$ s-variable t-variable I a-variable I
$ v-variable.

79

$ s-variable = "s" [II II Variableindex. .
$ t-variable = II t" [II II Variableindex. .
$ v-variable = "v" [II II Variableindex. .
$ a-variable = "e" [II II Variableindex. .

$ VariableTypeDesignator = "s" I "t" I "v" I "e".
$ Variable Index = IdentifierTail.

A variable consists of a variable type designator followed
by a variable index. The type designator and the index may be
separated by an optional dot. For example:

tHead eTail e.1 e1 tx s t e

Variable indices are case insensitive. For example, ei,
e.I, ei, and e.i represent the same variable.

Adjacent variables must be separated. For example, sAeB
is a single variable, whereas sA eB is a sequence of two vari­
ables.

The index of a variable may be omitted, which means that
the index is unique and different from the indices of all other
variables appearing in the program. Thus, for example, if the
variables e1000 and e2000 do not appear in the program, the
sequence e e may be replaced with e1000 e2000.

Variables are distinguished into four classes: a-variables,
t-variables, v-variables, and a-variables, the class of a varia­
ble being determined by the type designator.

3.8.NORMALIZATION OF THE TOKEN STREAM

A program is scanned to break up the source character
stream into tokens. Despite being different in form, many tokens
have the same meaning. For example, all the three tokens

125 000125 +125

denotes the same number 125.
It is for this reason that the description of the lexical

structure of programs deals with such terms as "numeric literal"
and "word literal" rather that "number" and "word".

Besides, a token like "character string literal" represents
a sequence of characters rather that a single syntax entity.

Thus, when describing the syntax, we assume the token
stream to have been "normalized", each token having been reduced
to its normal form, so that different tokens always represent
different entities.

In addition we assume each character string literal to have
been broken up into the string of separate tokens, a token rep­
resenting a single character.

The above enables us to describe the syntax in terms of
syntax "entities" rather than "representations of syntax enti­
ties".

80

Here is the correspondence between the source tokens and
the normalized tokens:

CharacterStringLiteral ==>
Character! Character2 ... CharacterN

WordLiteral ==> Word
NumericLiteral ==> Number

The character symbols obtained by scanning a program should
not be confused with the characters appearing in the source text
of the program. For example, parsing the three characters

'A'

results in producing a single character symbol.

4.0BJECTS AND VALUES

"Object" is usually understood to mean an entity that
exists in time and may vary, but, nevertheless, does not lose
its identity.

"Value" is usually understood to mean an entity that is
unable to vary and, in a sense, exists out of time.

A value may, certainly, be regarded as a special, degene­
rate, case of object (i.e. as a rigid object unable to develop).
Nevertheless, the term "object" will be usually applied only to
"proper" objects, which are not values.

Since objects may vary, they are more difficult to deal
with than values are. Thus objects are often provided with
names. The basic property of names is that a name is unambigu­
ously associated with an object (i.e. a name unambiguously iden­
tifies the object). In contrast to objects, their names are
typical values, there being no changes in the names in spite of
there being drastic changes in the objects.

Programs in Refal Plus deal with objects as well as values.
All values manipulated by Refal programs are ground expres­

sions, which are finite sequences of symbols and parentheses,
the parentheses being properly paired. Parentheses are used for
giving a tree structure to ground expressions, whereas symbols
represent basic data, such as characters, numbers, words, and
references to objects.

Objects dealt with by a Refal program may contain ground
expressions, which, in turn, may contain references to objects.
The contents of objects may be modified by the Refal program, in
which case the objects are accessed through their names, refer­
ence symbols.

Objects may be created at compile time as well as at run
time. Theoretically, having been created, an object exists eter­
nally. In practice, however, Refal programs are to be run by
computers with limited memory capacity, thus all Refal implemen­
tations must include a garbage collector, whose purpose is to
automatically destroy objects inaccessible to the program, and,

81

thus, unable to influence the program's behavior.

S.GROUND EXPRESSIONS

S.l.GROUND EXPRESSION SYNTAX

$ GroundExpression = { GroundTerm }.
$ GroundTerm =Symbol I "(" GroundExpression ")".

Henceforth, ground expressions will be denoted by Ge, gr­
ound terms by Gt, and symbols by Gs.

5.2.STATIC AND DYNAMIC SYMBOLS

$ Symbol = StaticSymbol I DynamicSymbol.
$ StaticSymbol = Character I Word I Number.
$ DynamicSymbol = ReferenceToFunction I ReferenceToTable
$ ReferenceToBox I ReferenceToVector I
$ ReferenceToString I ReferenceToChannel.

The symbols are divided into two classes: static symbols
and dynamic symbols.

A static symbol is either a character symbol, a word sym­
bol, or a numeric symbol.

The static symbols exist "objectively": a static
be written to an input/output channel, and then read
symbol read being the same as the symbol written.

symbol may
back, the
Thus, the

static symbols, in a sense, exist before the program is run, and
continue to exist after the program has been run.

A dynamic symbol is a reference to an object. This symbol
contains a pointer to the memory location where the object re­
sides at run time. The object may be either a function defini­
tion, a box, a vector, a string, a table, or a channel.

The dynamic symbols, in contrast to the static ones, exist
"subjectively". A dynamic symbol is created either at the moment
the program is loaded, or when the program is being executed. A
dynamic symbol may be written into an input/output channel, but
it cannot be read back. The execution of a program having been
brought to completion, all dynamic symbols created during the
execution lose any meaning.

A dynamic symbol is either a function reference, a box
reference, a vector reference, a string reference, a table ref­
erence, or a channel reference.

5.3.SYMBOLIC EXPRESSION NAMES

$ NamedExpression = "&" Word.

Ground expressions appearing in a Refal Plus program may be
given symbolic names (which are word symbols) . If a word symbol

82

Gs denotes a ground expression Ge, the construct & Gs may be
used instead of the expression Ge.

Since all references to objects as well as the objects are
created when the program is compiled, loaded or executed, refer­
ences cannot appear in the source program text as literals.
Nevertheless, when an object is declared in a program, the re­
ferences to the object are given a symbolic name, which may be
used in the program for denoting the references.

5.4.ELIMINATION OF SYMBOLIC EXPRESSION NAMES

If a word Gs is a symbolic name for a ground expression
Ge, all occurrences of the name in a program may be eliminated
by replacing each construct &Gs with Ge.

Henceforth, when describing context dependent restrictions
and the syntax of the language, we assume the above transforma­
tion to have been done and, thus, symbolic expression names not
to appear in the program. On the other hand, the transformed
program text may well contain dynamic symbols.

6.VARIABLE VALUES AND ENVIRONMENTS

To evaluate a Refal Plus construct, it is necessary to know
the values of the variables appearing in the construct. The
information about the variable values may be represented in a
natural way by an environment, which is a function with finite
domain that associates each variable from the domain with the
variable's value.

We shall use the following notation.
Let Env be an environment with the domain {Vl, ... ,

Env(Vj) = Gej being the value the variable Vj is bound to.
this environment is denoted by {Vl =Gel, ... , Vn = Gen}.
particular, the empty environment is denoted by {}.

The domain of the environment Env is denoted
dom[Env]. Thus, dom[{Vl =Gel, ... , Vn = Gen}] = {Vl,
Vn}.

Vn},
Then

In

by
... '

All environments are assumed to satisfy the requirement
that a variable's value should be consistent with the type of
the variable. Thus, an s-variable's value must be a symbol, a
t-variable's value must be a ground term, an e-variable's value
must be a ground expression, and a v-variable's value must be a
non-empty ground expression.

Env+Env' denotes the environment Env extended with the
bindings from the environment Env' in the following way.

dom[Env+Env'] contains the variables from dom[Env'], as
well as the variables from dom[Env], whose indices are diffe­
rent from the indices of the variables from dom[Env'].

For all V in dom[Env+Env'], if Env' (V) is defined,
then (Env+Env') (V) = Env' (V), otherwise, if Env' (V) is unde­
fined, then (Env+Env') (V) = Env(V).

83

For example,

{sX = 1, sY = 2} + {sY = 200, sZ = 300}
= {sX = 1, sY = 200, sZ = 300}

{sX = 1, sY = 2} + {eY = 200, sZ = 300}
= {sX = 1, eY = 200, sZ = 300}

?.RESULT EXPRESSIONS

7.1.SYNTAX

$ ResultExpression =
$ { Resul tTerm NamedExpression } .
$ ResultTerm =
$ StaticSymbol Variable I
$ "(" ResultExpression ")" I
$ FunctionCall.
$ FunctionCall =
$ "<" FunctionName CallArgument ">".
$ CallArgument =
$ ResultExpression.

If two different variables appear in the same result ex­
pression, they must have different indices.

Henceforth, result expressions will be denoted by Re,
result terms by Rt, variables by V, a-variables by Ve, and
function names by Fname.

7.2.EVALUATION OF RESULT EXPRESSIONS

A result expression Re may be evaluated in an environment
Env, on condition that Env provides values for all variables
appearing in Re.

If the evaluation of Re terminates, it results in producing
either a ground expression Ge, a failure $fail(O), or an error
$error(Ge), where Ge is an error message.

Evaluating a function call may result in the global program
state being changed (for example, if it involves input/output or
some manipulations with objects) . Hence, if a result expression
contains function calls, evaluating the expression may also
result in the global state being changed.

A judgment Env,St 1- Re => X,St' means that the result of
evaluating the result expression Re in the environment Env is X,
and if the evaluation starts in the global state St, it termi­
nates in the global state St'.

A result expression
variables being replaced
calls being executed.

The evaluation of a

Re is evaluated from left to right, the
with their values, and the function

function call <Fname Re> begins by

84

evaluating the result expression Re. If a ground expression Ge
is returned, the function Fname is applied to Ge.

A judgment St 1- <Fname Ge> => X,St' means that the re­
sult of applying the function Fname to the ground expression
Ge is X, and if the evaluation starts in the global state St, it
terminates in the global state St'.

Env,st 1- => ,st

Env,St 1- Re => Ge' ,St'
Env,St' 1- Rt => Ge" ,St"

Env,St 1- Re Rt => Ge' Ge",St"

Env,St I- Re => Ge' ,St'
Env,St' I- Rt => $fail(O) ,St"

Env,St 1- Re Rt => $fail(O),St"

Env,St I- Re => Ge' ,St'
Env,St' 1- Rt => $error(Ge"),St"

Env,St 1- Re Rt => $error(Ge") ,St"

Env,St I- Re => $fail(O) ,St'

Env,St I-Re Rt => $fail(O),St'

Env,St 1- Re => $error(Ge'),St'

Env,St 1- Re Rt => $error(Ge') ,St'

Env,St 1- Gs => Gs,St

Env,St 1- V => Ge,St
gde Ge=Env(V).

Env,St 1- Re => Ge,St'

Env,St 1- (Re) => (Ge) ,St'

Env,St 1- Re => $fail(O),St'

Env,St I- (Re) => $fail(O) ,St'

85

Env,St 1- Re => $error(Ge) ,St'

Env,St 1- (Re) => $error(Ge) ,St'

Env,St 1- Re => Ge,St'
St' 1- <Fname Ge> => X, St"

Env, St 1- <Fname Re> => X, St"

Env,St I-Re=> $fail(O),St'

Env,St 1- <Fname Re> => $fail(O) ,St'

Env,St 1- Re => $error(Ge) ,St'

Env,St 1- <Fname Re> => $error(Ge),St'

7.3.EXAMPLES

Here are examples of result expressions:

(A B) C D

t.Head e.Tail
While t.Condition Do t.Statement
<"*" sN <Factorial <"-" sN 1>>

The following result expressions are result ter.ms:

(A B)
t.Head
<"*" sN <Factorial <"-" sN 1>>

Let Env1 = {sM = 2, sN = 3, eA = ABC, tB = (DE F)},
"+" be the name of the function that adds integers, and "*" be
the name of the function that multiplies integers. Thus, the
judgments

St 1- <"+" 3 100> => 103, St
St 1- <"*" 2 103> => 206, St

hold for any global state St, because the functions "+" and "*"
do not change the global state.

Then we have

Env1,St I- eA (eA tB) tB =>
ABC (ABC (DE F)) (DE F), St

Env1,St 1- <"*" sM <"+" sN 100>> => 206, St

86

S.PATTERNS

S.l.SYNTAX

$ Pattern = DirectionDesignator PatternExpression.
$ DirectionDesignator = ["$1" I "$r"] .

$ PatternExpression =
$ { PatternTer.m I NamedExpression }.
$ PatternTer.m =
$ StaticSymbol I Variable I
$ "(" PatternExpression ")".

A pattern is a pattern expression, which may be preceded by
a direction designator "$1" or "$r". The designator "$1" indi­
cates that the pattern matching must be done from left to right.
The designator "$r" indicates that it must be done from right to
left. If the direction designator is omitted, the designator
"$1" is implied.

If two different variables appear in the same pattern ex­
pression, they must have different indices.

Henceforth, patterns are denoted by P, pattern expressions
by Pe, pattern terms by Pt, and direction designators by D.

8.2.PATTERN MATCHING

An environment Env is said to be a result of matching a
ground expression Ge against a pattern P in an initial en­
vironment EnvO, if the following conditions holds.

(1) The environment Env
dom[Env] includes dom[EnvO],
holds Env(V)=EnvO(V).

is an extension
and for all

of
V in

EnvO, i.e.
dom[EnvO]

(2) If each variable V appearing in
Env(V), and the direction designator is
expression thus obtained is Ge.

P is replaced with
removed, the ground

This environment Env is said to be a variant of matching
Ge against P in the environment EnvO, and the set of such
variants of matching is denoted by Match(EnvO,Ge,P).

The set Match(EnvO,Ge,P) is assumed to be equipped with
the order relation defined by the following rules.

Suppose Match(EnvO,Ge,P) contains two different variants
of matching Envl and Env2. Consider all occurrences of vari­
ables in P.

If P has the direction designator $1, find the leftmost
occurrence that is given different values by the matching vari­
ants Envl and Env2.

If P has the direction designator $r, find the rightmost
occurrence that is given different values by the matching vari-

87

ants Env1 and Env2.
Suppose the occurrence found is an occurrence of a variable

V. Then compare Env1(V) to Env2(V). If Env1(V) is shorter
than Env2(V), then Env1 is taken to precede Env2. Other­
wise Env2 is taken to precede Env1.

A finite sequence of environments Env1, Env2, ... , Envn
is written as [Env1, Env2, ... , Envn], and the empty sequence
as [].

[EnvO]A[Env1, ... ,Envn] denotes [EnvO, Env1, ... , Envn].
A judgment EnvO 1- Ge: P => [Env1, ... Envn] means that

Match(EnvO,Ge,P) = {Env1, ... ,Envn}, where Envi precedes Envj
for all i<j.

8.3.EXAMPLES

Here are examples of patterns:

t.Head e.Tail
eX (eY)
eA '+' eB
$1 eA '+' eB
$r eA '+' eB

Here are examples of pattern matching:

{} 1- A () C D E : $1 sX tY tz e1
=> [{sX = A, tY = (), tz = c,

{} 1- 1 2 3 : $1 eA eB => [
{eA =
{eA = 1,
{eA = 1 2,
{eA = 1 2 3,

{} 1- 1 2 3 $reA eB => [
{eA = 1 2 3,
{eA = 1 2,
{eA = 1,
{eA =

{eA = 1 2} 1- $1 1 2 3 4 5
=> [{eA = 1 2, eB =

eA eB
3 4 5}]

9.HARD EXPRESSIONS

9.1.SYNTAX

$ HardExpression =
$ { HardCorner }

e1 = D E}]

eB = 1 2 3},
eB = 2 3},
eB = 3},
eB = }]

eB = } '
eB = 3 } '
eB = 2 3 } '
eB = 1 2 3 }]

$ { HardCorner } a-variable { HardCorner } I
$ { HardCorner} v-variable { HardCorner }.
$ HardCorner = { HardTerm I NamedExpression }.

88

$ HardTerm =
$ StaticSy.mbol I s-variable I t-variable I
$ "(" HardExpression ")".

Thus, any subexpression of a hard expression may contain no
more that one occurrence of a-variable or v-variable at the top
level of parentheses.

A variable may appear in a hard expression no more that
once. If two different variables appear in the same hard expres­
sion, they must have different indices.

Henceforth, hard expressions are denoted by He, and hard
terms by Ht.

9.2.MATCHING AGAINST HARD EXPRESSIONS

Hard expressions may be regarded as a particular case of
pattern expressions. A feature of hard expressions is that there
can exist no more that one way of matching a ground expression
Ge against a hard expression He. Thus there holds either {}
1- Ge : He=> [] or {} 1- Ge : He=> [Env].

A judgment Env 1- Ge ::He=> Env' means that {} 1- Ge:
He=> Env" and Env' = Env+Env". Consequently, Env' is pro­
duced from Env in the following way. First, Ge is matched
against He in the empty environment. Thus, the variable values
provided by the current environment Env are not taken into
account. The environment Env" thus obtained contains bindings
for all variables appearing in He. Then the original environ­
ment Env is extended with the bindings from Env" to produce
the final environment Env' .

9.3.EXAMPLES

Here are example hard expressions:

t.Head e.Tail
sX (eY) eZ (A eA)

Here are examples of matching hard expressions

{sX = XXX, eA =AB C} 1- X y z .. sY eA
=> {sX = XXX, eA = y z, sY = X}

{sX = XXX, eA =A B C} 1- X y z .. eA sY
=> {sX = XXX, eA =X Y, sY = Z}

lO.PATHS

lO.l.SYNTAX

$ Path =

89

$ Condition I Binding I Search I Match I
$ Rest I Source.

$ Condition =
$ Source Rest.
$ Binding =
$ Source"::" HardExpression [Rest].
$ Search =
$ Source "$iter" Source
$ [": :" HardExpression] [Rest] .
$ Match =
$ Source "·" Pattern [Rest].

$ Rest =
$ DelimitedPath I NegativeCondition I
$ Fence I Cut I
$ Failure I RightHandSide I ErrorGenerator
$ ErrorTrap.

$ DelimitedPath =
$ ","Path.
$ NegativeCondition =
$ "#" Source [Rest] .
$ Fence =
$ "\?" Path.
$ Cut =
$ "\!" Path.
$ Failure =
$ "$fail".
$ RightHandSide =
$ "=" Path.
$ ErrorGenerator =
$ "$error" Path.
$ ErrorTrap =
$ "$trap" Path "$with" PatternAlternative.

$ Source =
$ Alternative I AlternativeMatch I ResultExpression.

$ Alternative =
$ "\{" PathList "}" I
$ "{" PathList "}".

$ AlternativeMatch =
$ Source":" PatternAlternative.

$ PatternAlternative =
$ "\{" SentenceList "}"
$ " {" SentenceList "}"

$ PathList = { Path ";" }.

$ SentenceList =

90

$ { Sentence ";" }.

$ Sentence = Pattern [Rest] .

Henceforth, paths are denoted by Q, rests by R, sources by
S, pattern alternatives by Palt, and sentences by Snt.

The syntax of paths seems to be rather complicated. This is
due to the desire to save the user the trouble of writing redun­
dant delimiters without real necessity.

This is achieved by distinguishing two particular cases of
paths: "rests" and "sources", which possess some useful syntax
properties. Rests begin with key words, which are easy to recog­
nize. Thus, if a result expression or a pattern is followed by a
rest, there is no danger that they could "stick" together.
Sources cannot contain commas at the top level of curly brack­
ets, for which reason they can be unambiguously separated from
the constructs they are followed by.

10.2.EVALUATION OF PATHS

A path Q is evaluated with respect to an environment Env
and a non-negative integer m. The environment Env associates
variables with their values, which may be necessary to evaluate
the path. The integer m, which is referred to as the "level" of
the path, specifies the number of fences "\?" that surrounds Q
without being closed by cuts "\!".

If the evaluation of Q terminates, it
ground expression Ge, a failure $fail(k), the
ger k being the "level" of the failure, or an
Ge being an error message.

returns either a
non-negative inte­
error $error(Ge),

If evaluating a path at the level m returns a failure
$fail(k), the failure level is certain to satisfy the restric­
tion 0 <= k <= m+l. In particular, if a path is evaluated at
the level 0, there holds either k=O or k=l.

A judgment Env,m,St 1- Q => X,St' means that evaluating
the path Q in the environment at the level m returns X, and if
the evaluation of Q starts in the global state St, it terminates
in the global state St'.

Rests and sources are particular cases of paths, for which
reason the above notation is also used for describing the evalu­
ation of rests and sources.

The meaning of a path Q can often be reduced to the meaning
of other path Q'. To put it more exactly, the evaluation of Q is
done by evaluating Q', and the result thus obtained is taken to
be the result of evaluating Q. This may be formulated by means
of the following inference rule:

Env,m,St 1- Q' => X,St'

Env,m,St I- Q => X,St'

Such rules are rather frequent, for which reason they will

91

be abbreviated in the following way:

Q =>=> Q'

l0.3.CONDITIONS

The evaluation of a path S R proceeds as follows. The
source S is evaluated, and, if the evaluation succeeds, the rest
R is evaluated.

The source S is considered to be at the zero level.

Env,O,St I- S => ,St'
Env,m,St' 1- R => X,St"

Env,m,St I- S R => X,St"

Env,O,St 1- S => $fail(k),St'

Env,m,St I-S R => $fail(O),St'

Env,O,St 1- S => $error(Ge),St'

Env,m,St 1- S R => $error(Ge) ,St'

l0.4.BINDINGS

The evaluation of a path S ::HeR proceeds as follows.
The source S is evaluated, and, if the evaluation succeeds, the
ground expression obtained is matched against He. The variables
from He are bound to new values, and the environments is extend­
ed with the new bindings. Then the tail R is evaluated in the
new environment.

The source S is considered to be at the zero level.
If the rest R is an empty delimited path (which always

returns an empty ground expression), it may be omitted.

s He =>=> S He ,

Env,O,St 1- S => Ge,St'
Env I - Ge : : He => Env'
Env' ,m,St' 1- R => X,St"

Env,m,St I-S ::HeR=> X,St"

92

Env,O,St 1- S => $fail(k) ,St 1

Env,m,St 1- S ::HeR=> $fail(O),St 1

Env,O,St 1- S => $error(Ge),St 1

Env,m,St 1- S ::HeR=> $error(Ge) ,St 1

For example, the evaluation of the path

100 :: sN, <"+" sN 1> :: sN = sN

produces the number 101.

10.5.SEARCHES

The goal of evaluating the path

S" $iter S 1
:: He R

is to find such values for the variables appearing in He that
the evaluation of R succeeds, in which case the result obtained
is taken to be the result of evaluating the whole construct.

An empty hard expression He may be omitted along with the
key word"::". If the rest R is an empty delimited path (which
always returns an empty ground expression), it may be omitted.

S" $iter S 1 =>=> S" $iter S 1

S" $iter S 1 R =>=> S" $iter S 1 R

S" $iter S 1 He =>=> S" $iter S 1
:: He

The initial values for the variables appearing in He are
obtained by evaluating the sourceS", whereas the evaluation of
S 1 enables the new variable values to be obtained from the pre­
vious ones.

The sources S" and S 1 are considered to be at the zero
level.

The search for the variable values proceeds as follows.
First, the initial variable values are found by evaluating the
source S" and matching the ground expression Ge obtained against
the pattern He. Then an attempt is made to evaluate the rest R
in the new environment. If the value returned is a failure
$fail(O), then S 1 is evaluated and a ground expression obtained
is matched against He, and then a new attempt is made to evalu­
ate R, etc.

S" $iter S 1
: : He R =>=>

S" : : He , \ { R; S 1 $iter S 1 He R; }

93

For example, if the values of the variables eA and eB are
not defined in the current environment, the match

eX : $1 eA eB,
<Writeln eA>, <Writeln eB> $fail

is equivalent to the search

() (eX)
$iter \{ eB : tl e2 = (eA tl) (e2); }

(eA) (eB) ,
<Writeln eA>, <Writeln eB> $fail

10.6.MATCHES

The evaluation of a path S : P R proceeds as follows. The
source S is evaluated and a ground expression Ge obtained is
matched against the pattern P to produce a sequence of the vari­
ants of matching. Then an attempt is made to find the first
variant of matching appearing in this sequence such that the
evaluation of the rest R succeeds.

If the rest R is an empty delimited path (which always
returns an empty ground expression), it may be omitted.

To describe the semantics of matches, we need the following
notation. A judgment EnvList,m,St I 1- Q => X,St' means that
the evaluation of the path Q at the level m with the list of
environments EnvList returns X.

Env,m,St 1- Q => Ge,St'

[Env]AEnvList,m,St I 1- Q => Ge,St'

Env,m,St 1- Q => $fail(O),St'
EnvList ,m, St' I I- Q => X, St"

[Env] AEnvList,m, St I 1- Q => X, St"

Env,m,St 1- Q => $fail(k+l),St'

[Env]AEnvList,m,St I 1- Q => $fail(k+l),St'

Env,m,St 1- Q => $error(Ge),St'

[Env]AEnvList,m,St I 1- Q => $error(Ge),St'

94

[],m,St I 1- Q => $fail(O) ,St.

Now we describe the semantics of matches.

s p =>=> s p I

Env,O,St I- S => Ge,St'
Env 1- Ge : P => EnvList
EnvList,m,St' I 1- R => X,St"

Env,m,St 1- S : P R => X,St"

Env,O,St I-S=> $fail(k),St'

Env,m,St 1- S : P R => $fail(O) ,St'

Env,O,St 1- S => $error(Ge),St'

Env,m,St 1- S: P R => $error(Ge),St'

For example, the evaluation of the following path fails,
which results in the character string 'CBA' being printed.

'ABC' : $r e sX e, <Print sX> $fail

10.7.DELIMITED PATHS

Evaluating the rest

I Q

always produces the same result as the evaluation of the path Q.

I Q =>=> Q

10.8.NEGATIVE CONDITIONS

The evaluation of a rest # S R proceeds as follows. The
source S is evaluated. If the result obtained is an empty ground
expression, the evaluation of the whole construct fails, but, if
the result is a failure, the rest R is evaluated, and the result
obtained is taken to be the result of the whole construct. Thus,
this construct enables us to test the "logical negation" of the
condition S.

If the rest R is an empty delimited path (which always

95

returns an empty ground expression), it may be omitted.

s =>=> # s '

Env,O,St 1- S => ,St'

Env,m,St I- # S R => $fail(O) ,St'

Env,O,St 1- S => $fail(k) ,St'
Env,m,St' I- R => X,St"

Env,m,St 1- # S R => X,St"

Env,O,St 1- S => $error(Ge),St'

Env,m,St 1- # S R => $error(Ge) ,St'

10.9.FENCES

The evaluation of a rest \? Q proceeds as
path Q is evaluated. If the result obtained
$fail(k), where k>O, then the "weakened" failure
taken to be the result of the whole construct.
result of evaluating Q is taken to be the result
construct.

follows. The
is a failure
$fail(k-1) is

Otherwise, the
of the whole

The path Q is evaluated at the level m+l, where m is the
level at which the whole construct is evaluated.

Env,m+l,St 1- Q => Ge,St'

Env,m,St 1- \? Q => Ge,St'

Env,m+l,St 1- Q => $fail(O),St'

Env,m,St 1- \? Q => $fail(0) ,St'

Env,m+l,St 1- Q => $fail(k+l) ,St'

Env,m,St 1- \? Q => $fail(k) ,St'

Env,m+l,St 1- Q => $error(Ge) ,St'

Env,m,St 1- \? Q => $error(Ge) ,St'

96

10.10.CUTS

The evaluation of the rest \! Q proceeds as follows. The
path Q is evaluated. If the result obtained is a failure
$fail(k), then the "strengthened" failure $fail(k+1) is taken
to be the result of the whole construct. Otherwise, the result
of evaluating Q is taken to be the result of the whole con­
struct.

The path Q is evaluated at the level m-1, where m is the
level at which the whole construct is evaluated.

Env,m,St 1- Q => Ge,St'

Env,m+1,St 1- \! Q => Ge,St'

Env,m,St 1- Q => $fail(k),St'

Env,m+1,St 1- \! Q => $fail(k+1),St'

Env,m,St 1- Q => $error(Ge),St'

Env,m+1,St 1- \! Q => $error(Ge),St'

For example, the evaluation of the following path results
in the character string 'ABD' being printed, and the result '2'
being returned.

{

\? {
<Print 'A'> $fail;
<Print 'B'> \! $fail;
<Print 'C'> = '1';
} ;

<Print 'D'> = '2';
}

10.11.FAILURES

The evaluation of the rest
failure $fail(O).

$fail

Env,m,St 1- $fail=> $fail(O) ,St

10.12.RIGHT HAND SIDES

97

always returns the

The evaluation of a rest = Q at a level m proceeds as
follows. The path Q is evaluated at the level 0. If the result
obtained is a failure $fail(k), then the whole construct re­
turns the failure $fail(m+l), which is so strong as to overcome
all surrounding fences that are not neutralized by cuts.

Env,O,St 1- Q => Ge,St'

Env,m,St 1- = Q => Ge,St'

Env,O,St 1- Q => $fail(k) ,St'

Env,m,St 1- = Q => $fail(m+l) ,St'

Env,O,St 1- Q => $error(Ge),St'

Env,m,St 1- = Q => $error(Ge) ,St'

10.13.ERROR GENERATORS

The evaluation of a rest $error Q returns an error
$error(Ge), where Ge is the result of evaluating the path Q.

Env,O,St I- Q => Ge,St'

Env,m,St 1- $error Q => $error(Ge) ,St'

Env,O,St 1- Q => $fail(O),St'

Env,m,St 1- $error Q => $error(Fname "Unexpected
Fname is the name of the function in which
struct appears.

Env,O,St 1- Q => $error(Ge),St'

Env,m,St 1- $error Q => $error(Ge) ,St'

10.14.ERROR TRAPS

The evaluation of a rest

$trap Q $with Palt

98

fail") ,St'
the con-

proceeds as follows. An attempt is made to evaluate the path Q.
If the result obtained is an error $error(Ge), then the alter­
native match

Ge : Palt

is evaluated, and the result obtained is taken to be the result
of the whole construct.

The path Q is evaluated at the level 0.

Env,O,St I- Q => Ge,St'

Env,m,St 1- $trap Q $with Palt => Ge,St'

Env,O,St I- Q => $fail(k) ,St'
Env,m,St' 1- Fname "Unexpected fail" : Palt => X,St"

Env,m,St 1- $trap Q $with Palt => X,St"
Fname is the name of the function in which the con­
struct appears.

Env,O,St 1- Q => $error(Ge),St'
Env,m,St' I- Ge : Palt => X,St"

Env ,m, St 1- $trap Q $with Pal t => X, St"

10.15.ALTERNATIVES

The evaluation of a source \{Ql; Q2; ... Qn;} proceeds as
follows. The paths Ql, Q2, ... , Qn are evaluated from left to
right until the evaluation of a path succeeds.

More specifically, consider the result of evaluating the
path Qj.

If the result is a ground expression Ge, then Ge is taken
to be the result of the whole construct. If the result is
$error(Ge), then $error(Ge) is the result of the whole con­
struct. If the result is $fail(k+l), then $fail(k+l) is the
result of the whole construct. And, finally, if the result is
$fail(O), this failure is "caught", i.e. an attempt is made to
evaluate the next path. If there exists no next path (i.e. j=n),
the failure $fail(O) is the result of the whole construct.

An alternative {Ql; Q2; ... Qn;} is equivalent to the
alternative \{ Ql; Q2; ... Qn; $error(Fname "Unexpected fail");
}, where Fname is the name of the function in which the con­
struct appears.

{Ql; Q2; ... Qn;} =>=>

99

\{Ql; Q2; ... Qn;
$error(Fname "Unexpected fail");}

Fname is the name of the function in which the con­
struct appears.

Env,m,St 1- \{} => $fail(O) ,St

Env,m,St 1- Ql => Ge,St'

Env,m,St 1- \{Ql; Q2; ... Qn;} => Ge,St'

Env,m,St 1- Ql => $fail(O),St'
Env,m,St' 1- \{Q2; ... Qn;} => X,St"

Env,m,St 1- \{Ql; Q2; ... Qn;} => X,St"

Env,m,St 1- Ql => $fail(k+l) ,St'

Env,m,St 1- \{Ql; Q2; ... Qn;} => $fail(k+l) ,St'

Env,m,St 1- Ql => $error(Ge) ,St'

Env,m,St 1- \{Ql; Q2; ... Qn;} => $error(Ge) ,St'

10.16.ALTERNATIVE MATCHES

The evaluation of a source S : \{Sntl; ... Sntn;} always
produces the same result as the evaluation of the path S : Ve,
\{Ve : Sntl; ... Ve : Sntn;}, provided that Ve is an a-variable
that does not appear in the program in other places.

A source S : {Sntl; Sntn;} is equivalent to the
source S : \{Sntl; ... Sntn; e $error(Fname "Unexpected fail");
}, where Fname is the name of the function in which the con­
struct appears.

S {Sntl; ... Sntn;} =>=>
S : \{Sntl; ... Sntn;

e $error(Fname "Unexpected fail");}
Fname is the name of the function in which the con­
struct appears.

Env,O,St I- S => Ge,St'
Env,m,St' 1- \{Ge : Sntl; ... Ge : Sntn;} => X,St"

100

Env,m,St 1- S \{Sntl; ... Sntn;} => X,St"

Env,O,St I-S=> $fail(k),St'

Env,m,St 1- S : \{Sntl; ... Sntn;} => $fail(O),St'

Env,O,St 1- S => $error(Ge),St'

Env,m,St 1- S : \{Sntl; ... Sntn;} => $error(Ge) ,St'

10.17.RESULT EXPRESSIONS AS SOURCES

A source of the form Re, where Re is a result expression,
is evaluated by evaluating the result expression Re. The result
thus obtained is taken to be the result of the source.

Env,St I- Re => X,St'

Env,m,St 1- Re => X,St'

ll.FUNCTION DEFINITIONS

$ FunctionDefinition =
$ FunctionName FunctionBody ";"
$ FunctionBody =
$ PatternAlternative I Sentence.

A function's definition binds the function's name to the
function's body, which is a construct that describes the way in
which the function is to be evaluated.

A function definition of the form Fname Snt; is equiva­
lent to the definition Fname \{ Snt; };

Let the definition of a function Fname be of the form

Fname Palt

Then evaluating a function call <Fname Ge> amounts to evaluat­
ing the source Ge : Palt. If the result obtained is a ground
expression Ge' or an error $error(Ge'), it is taken to be the
result of evaluating the call. Otherwise, if the result is a
failure $fail(k), the following actions depend on the function
Fname having been declared either failing or unfailing. If the
function is a failing one, the result returned is $fail(O),
otherwise, if the function is an unfailing one, the result re­
turned is $error(Fname "Unexpected fail").

{},O,St 1- Ge Palt => Ge' ,St'

101

St 1- <Fname Ge> => Ge' ,St'

{},O,St 1- Ge : Palt => $fail(k) ,St'

St 1- <Fname Ge> => $fail(O),St'
where the function Fname is a failing one,
i.e. it has been declared as
$func? Fname Farg = Fres;.

{},O,St I- Ge : Palt => $fail(k) ,St'

St 1- <Fname Ge> => $error(Fname "Unexpected fail"),St'
where the function Fname is an unfailing one,
i.e. it has been declared as
$func Fname Farg = Fres;.

{},O,St 1- Ge : Palt => $error(Ge') ,St'

St 1- <Fname Ge> => $error(Ge') ,St'

The above inference rules assume the function Fname to have
the definition Fname Palt.

12.DECLARATIONS

12.1.CONSTANT DECLARATIONS

$ ConstantDeclaration =
$ "$const" [ConstDecl { "," ConstDecl }] ";".
$ ConstDecl = ExpressionName "=" ConstantExpression.
$ ConstantExpression =
$ { ConstantTer.m I NamedExpression }.
$ ConstantTer.m =
$ StaticSymbol I "(" ConstantExpression ")".
$ ExpressionName = Word.

Constant declarations enable ground expressions to be de­
noted by symbolic names to be used instead of the expressions. A
symbolic name is a word symbol. If a ground expression has been
given a name N, the construct &N is a representation of the
expression Ge. For example, the declaration

$const LF = 10, CR = 13, "***" =A B C;

gives names to three ground expressions, so that &LF
10, &CR denotes 13, and &"***" denotes A B C.

102

denotes

A constant definition may contain references
declarations of constants, boxes, tables, channels,
tions. For example, the declaration

to previous
and func-

$const "CR-LF-***" = &CR &LF &"***";

gives a name to an expression, so that &"CR-LF-***" stands for
13 10 A B C.

12.2.0BJECT DECLARATIONS

$ BoxDeclaration = "$box" { ReferenceName } "." ,
$ VectorDeclaration = "$vector" { ReferenceName } "." ,
$ StringDeclaration = "$string" { ReferenceName } "." ,
$ TableDeclaration = "$table" { ReferenceName } "." ,
$ ChannelDeclaration = "$channel" { ReferenceName } "." ,

$ ReferenceName = Word.

An object declaration associates symbolic names with refer­
ences to boxes, vectors, strings, tables, and channels. These
objects are to be created at the moment the program is loaded.

The symbolic names introduced by an object declaration may
be used for getting references to the objects declared.

For example, the declaration $box X; makes the construct
&X denote a reference to a box. Here are examples of object
declarations:

$box B1 B2 B3;
$vector V1 V2;
$table T1 T2;
$channel Input Output;

12.3.FUNCTION DECLARATIONS

$
$
$
$
$
$
$
$

FunctionDeclaration =
"$func" FunctionName

InputFormat "=" OutputFormat
"$func?" FunctionName

InputFormat "=" OutputFormat
FunctionName = Word.
InputFormat = FormatExpression.
OutputFormat = FormatExpression.

$ FormatExpression = HardExpression.

"." ,

" . " ,

A function declaration introduces a function name.
declaration of a function must precede all references to
function as well as the definition of the function.

The declaration of a function imposes restrictions on
forms that can take the calls to the function, the input

103

The
the

the
pat-

terns in the function's definition and the result expressions
producing the values returned by the function. These restric­
tions will be described in detail below.

The input and output formats must be hard, i.e. any subex­
pression of a format expression may contain no more than one
e-variable or v-variable.

The variable indices appearing in formats serve as com­
ments, thus they have no effect on the meaning of the program
and may be omitted.

It should be noted that the format expressions and the hard
expressions are considered to be different constructs, despite
their having the same context-free syntax. This is due to the
differences in the interpretation of variable indices.

If the declaration of a function begins with the key word
$func, the function is an unfailing one, i.e. evaluating a call
to the function may result in returning either a ground expres­
sion or an error.

If the declaration of a function begins with the key word
$func?, the function is a failing one, i.e. evaluating a call to
the function may result in returning either a ground expression,
a failure, or an error.

Here are function declarations

$func Interpreter (e.Program) (e.Input) = e.Result;
$func? Attempt t.Arg = s.Resultl t.Result2 (e.Result3);

12.4.TRACE DIRECTIVES

$
$
$

TraceDirective =
"$trace" { FunctionName }
"$traceall" ";".

" . " '

A directive "$trace" specifies that some debugging informa­
tion is to be printed at the run time about the functions listed
in the directive. When a function is called, its name is printed
as well as the arguments passed. Then, when the call has been
evaluated, the function name is printed as well as the results
returned by the function.

A directive "$traceall" specifies that the debugging infor­
mation is to be printed about all the functions whose defini­
tions appear below the directive.

13.CONTEXT DEPENDENT RESTRICTIONS

13.1.ELIMINATION OF REDUNDANT CONSTRUCTS

This section describes different context dependent restric­
tions that must be satisfied by any program written in Refal
Plus.

In order for the description to be concise, the program is

104

supposed to have been normalized, which means that all con­
structs considered to be abbreviations for other constructs have
been replaced with their expansions.

The normalization is performed as follows.
The empty hard expressions and empty delimited paths omit­

ted in bindings, searches, and matches are restored.

s . . He => s .. He '
S' $iter S" => S' $iter S"
S' $iter S" He => S' $iter S" He
S' $iter S" R => S' $iter S" R
s p => s p

s => # s '

The empty delimited paths omitted in sentences are re­
stored.

p

The "opaque" curly
and alternative matches
curly brackets"\{".

=> p

brackets "{" appearing
are replaced with

{Sntl; ... Sntn;} =>
\{Sntl; ... Sntn;

in
the

alternatives
"transparent"

$error(Fname "Unexpected fail");}

S {Sntl; Sntn;} =>
S : \{Sntl; ... Sntn;

e $error(Fname "Unexpected fail");}

where Fname is the name of the function in which the construct
appears.

The "opaque" curly brackets "{" appearing in function defi­
nitions are replaced with the "transparent" curly brackets"\{".

Fname {Sntl; ... Sntn;} =>
Fname \{Sntl; ... Sntn;

Farg $error(Fname "Unexpected fail");}

where Farg is the input format provided by
the function Fname (the variable indices in
tions are supposed to be omitted).

the declaration of
function declara-

The function bodies consisting of a sentence are replaced
with the corresponding pattern alternatives.

Fname Snt; => Fname \{ Snt; };

13.2.RESTRICTIONS IMPOSED BY FUNCTION DECLARATIONS

A function declaration may have either of the two forms

105

$func Fname Farg = Fres;
$func? Fname Farg = Fres;

where Farg is the input format of the function, i.e. a format
expression which specifies the structure of the function's argu­
ment, and Fres is the output format of the function, i.e. a
format expression which specifies the structure of the func­
tion's result. As mentioned previously the variable indices
appearing in formats are of no significance, for which reason,
without any loss of generality, they will be supposed to have
been omitted.

The definition of a function must satisfy the restrictions
imposed by the input and output formats of the function. To
formulate these restrictions, we assume the set of format ex­
pressions to be equipped with the following partial ordering.

Let F1 and F2 be two formats. Then F2>>F1
format F1 is an instance of the format F2. The
defined by the following rules.

means that the
relation >> is

(0) F >> F.
(1) If F1' >> F1 and F2' >> F2, then F1' F2' >> F1 F2.
(2) If F1 >> F2, then (F1) >> (F2).
(3) e >> F.
(4) If F is not of the form e e e, then v >> F.
(5) t >> Gs, for all symbols Gs.
(6) t >> s.
(7) t >> (F) .
(8) s >> Gs, for all symbols Gs.

Now consider a program written in Refal Plus and the con­
structs appearing in the program.

Let Re be a result expression appearing in the program. A
format expression F is said to be the format of Re, if F can be
produced from Re by the following transformations.

(1) The indices of all variables appearing in Re are dis­
carded.

(2) All function calls appearing in Re are replaced with
the output formats of the corresponding functions. In other
words, suppose that a function Fname has been declared as
either $func Fname Farg = Fres; or $func? Fname Farg =
Fres; . Then each call <Fname Re'> is replaced with Fres.

Let P be
pression F is
from P by the

a pattern appearing in the program. A
said to be the format of P, if F can
following transformations.

format ex­
be produced

(1) The indices of all variables appearing in P are dis­
carded.

(2) If P has a direction designator, the designator is

106

discarded.

Let He be a hard expression appearing in the program. A
format expression F is said to be the format of He, if F can be
produced from P by discarding the indices of all variables ap­
pearing in He.

Henceforth, the format of a result expression will be
denoted by form[Re], the format of a pattern P by form[P], and
the format of a hard expression He by form[He].

It should be emphasized that not only does the format of a
result expression Re depend on the appearance of Re, but it also
depends on the output formats of the functions called in Re.
Nevertheless, given a particular program, the meaning of
form[Re] is unambiguously defined.

Now we can formulate the restrictions that must be met by
the function definitions. These restrictions are imposed on the
function calls, the input patterns in the function definitions,
and the results returned by the paths.

Suppose the declaration of a function
input format Farg, the output format Fres,
alternative Palt appearing in the function

Fname Palt

has the form \{Pl Rl; ... Pn Rn;}.

Fname contains the
whereas the pattern
definition

Then the following conditions must be satisfied.

The function's input patterns
the restriction Farg >> form[Pj].

Pl, • • • I Pn must satisfy

The calls to the function Fname in all function definitions
must satisfy the following condition.

Let a call to the function Fname have the form
<Fname Re> . Then there must be satisfied the restriction
Farg >> form[Re] .

To describe the restrictions imposed on the results return­
ed by paths, we use the following notation.

The fact that the results returned by a path Q satisfy a
format F will be written as F 1- Q.

Rests, sources, and result expressions may be regarded as
particular cases of paths, for which reason the above notation
is applicable to them as well as to paths.

Similarly, the fact that the results returned by a pattern
alternative Palt satisfy a format F will be written as
F 1- Palt.

Now we can formulate the restrictions imposed on the func­
tion definitions by the output formats of the functions.

107

Let the definition of a function Fname be
the output for.mat Fres. Then there must
Fres 1- Palt.

Fname Palt, and
be satisfied

The relations F 1- Q and F 1- Palt are defined by the
following inference rules.

for.m[] 1- S
F 1- R

F 1- S R

for.m [He] I- S"
for.m [He] 1- S'
F 1- R

for.m [He] 1- S
F 1- R

F 1- S :: He R

F 1- S" $iter S' ::HeR

F 1- R F 1- Q

F 1- S : P R F 1- , Q

F 1- Q F 1- Q

F 1- \? Q F 1- \! Q

F 1- Q
F 1- $error Q

F 1- = Q

F 1- Q
F 1- Palt

F 1- $trap Q $with Palt

F 1- Qj for all j=l, ... ,n

F I - \ { Ql ; . . . Qn; }

F 1- Palt F >> for.m[Re]

F 1- S : Palt F 1- Re

108

for.m[] 1- S
F 1- R

F 1- # S R

F 1- $fail

F 1- Rj for all j=l, ... ,n

F 1- \{Pl Rl; ... Pn Rn;}

13.3.RESTRICTIONS ON THE USE OF REFERENCES TO FUNCTIONS

If a construct &Fname, which is a reference to
tion Fname, appears in a pattern expression or in a
pression, the function Fname must be declared
$func Fname e = e or $func? Fname e = e.

13.4.RESTRICTIONS ON THE USE OF VARIABLES

the func­
result ex­
as either

The variables appearing in a function definition must sat­
isfy certain restrictions.

Namely, a variable appearing in a result expression must
have been already defined. A variable gets defined, when it
appears in a pattern or in a hard expression.

If several different variables have been defined at the
same place, their indices must be different.

Now, to give these restrictions a more exact formulation,
we introduce the following notation.

vars[X] denotes the set of variables appearing in the
construct X.

{} denotes the empty set.
vl+v2 denotes the union of the sets vl and v2.
vl++v2 denotes the variable set vl extended with the vari­

able set v2. To put it more exactly, vl++v2 contains all the
variables from v2, as well as all variables from vl whose indi­
ces are different from the indices of the variables contained in
v2. For example, {sX, sY} ++ {eY, eZ} = {sX, eY, eZ}.

A judgment v 1- Q means that all variables in v have
different indices, and all variables whose values are needed for
the evaluation of the path Q belong to v.

Rests, sources, and result expressions may be regarded as
particular cases of paths, for which reason the above notation
is applicable to them as well as to paths.

Similarly, a judgment v 1- Palt means that all variables
in v have different indices, and all variables whose values are
needed for the evaluation of the pattern alternative Palt belong
to v.

Now we can formulate the restrictions imposed on the use of
variables in the function definitions.

Let the definition of a function Fname be Fname Palt.
Then there must be satisfied {} 1- Palt.

The relations v 1- Q and v 1- Palt are defined by the
following inference rules.

109

v 1- s
v 1- R

v 1- S R

v 1- S"
v++vars[He] 1- S'
v++vars[He] 1- R

v 1- s
v++vars[He] 1- R

v 1- S :: He R

v 1- s
v+vars[P] 1- R

vI-S" $~ter S' ::HeR vI-S: P R

v 1- Q

v 1- ' Q

v 1- Q

v 1- \! Q

v 1- Q

v 1- s
v 1- R

v 1- # S R

v 1- $fa~l

v 1- Q
v 1- Palt

v 1- Q

v 1- \? Q

v 1- Q

v 1- = Q

v 1- $error Q v 1- $trap Q $w~th Palt

v 1- Qj for all j=l, ... ,n

v I - \ { Ql ; . . . Qn; }

v 1- s
v 1- Palt

v 1- S : Palt

all var~ables ~n v have d~fferent ~nd~ces
all var~ables ~n vars[Re] belong to v

v 1- Re

v+vars[Pj] 1- Rj for all j=l, ... ,n

v 1- \{Pl Rl; ... Pn Rn;}

110

13.5.RESTRICTIONS ON THE USE OF CUTS

Each path appearing in a function definition can be assign­
ed a non-negative integer k, the level of the path. If we move
forward along a path, the level increases by 1 each time we pass
over"\?", and decreases by 1 each time we pass over"\!". Thus,
each cut "\!" unambiguously corresponds to its "pair" fence
"\?".

Now, to give this requirement a more exact formulation, we
introduce the following notation.

Let k be a non-negative integer, and Q a path. The judgment
k 1- Q means that the path Q can be assigned the level k.

Rests, sources, and result expressions may be regarded as
particular cases of paths, for which reason the above notation
is applicable to them as well as to paths.

Similarly, let Palt be a pattern alternative. Then the
judgment k 1- Palt means that the pattern alternative Palt can
be assigned the level k.

Now we can formulate the restrictions imposed on the use of
cuts in the function definitions.

Let the definition of a function Fname be Fname Palt.
Then there must be satisfied 0 1- Palt.

The relations k 1- Q and k 1- Palt are defined by the
following inference rules.

0 1- s
k 1- R

k 1- S R

0 1- S"
0 1- S'
k 1- R

0 1- s
k 1- R

k 1- S :: He R

0 1- s
k 1- R

k I - S" $iter S' : : He R k 1- S: P R

0 1- s
k 1- Q k 1- R k+1 1- Q

k 1- ' Q k 1- # S R k 1- \? Q

k 1- Q 0 1- Q
k 1- $fail

k+1 1- \! Q k 1- = Q

111

0 1- Q
0 1- Q k 1- Palt

k 1- $error Q k 1- $trap Q $with Palt

k 1- Qj for all j=l, ... ,n

k 1- \{Ql; ... Qn;}

0 1- s
k 1- Palt

k 1- Re
k 1- S : Palt

k 1- Rj for all j=l, ... ,n

k 1- \{Pl Rl; ... Pn Rn;}

14.MODULES

A program written in Refal Plus consists of one or more
modules. Each module comprises two components: the interface of
the module and the implementation of the module.

The interface of a module contains the parts of the module
that may be visible in other modules, whereas the implementation
of the module contains the parts of the module that are invisi­
ble in other modules.

In the operating system MSDOS each module MMMM occupies two
files. Namely, the interface of the module is kept in the file
MMMM.RFI, and the implementation in the file MMMM.RF.

$ Moduleinterface =
$ {Declaration }.
$ Declaration =
$ ConstantDeclaration I BoxDeclaration I
$ VectorDeclaration I StringDeclaration
$ TableDeclaration I ChannelDeclaration
$ FunctionDeclaration.

$ Moduleimplementation =
$ { Import} { ImplementationDirective }.
$ ImplementationDirective =
$ Declaration I
$ TraceDirective I
$ FunctionDefinition.

112

$
$

Import = "$use" { ModuleName }
ModuleName = Word.

" . " '

The names declared in the interface of a module YYYY can be
made visible in the implementation of a module XXXX by putting
the directive $use YYYY into the implementation of the module
XXXX in the following way:

I* File XXXX.RFI *I
I* The interface of the module XXXX. *I

I* File XXXX.RF *I
$use ... YYYY ...
I* Henceforth, the names declared in YYYY.RFI *I
I* will be visible. *I

I* File YYYY.RFI *I
I* The interface of the module YYYY. *I

I* File YYYY.RF *I
I* The implementation of the module YYYY. *I

lS.EXECUTION OF PROGRAM

A program in Refal Plus may consist of several modules, one
of which must export the function Main. This function is said to
be the main function of the program, and must have the following
declaration:

$func Main = e;

If a function with the name Main is declared in some other way,
but, nevertheless, is exported by a module, this situation is
considered to be an error.

The execution of the Refal program amounts to evaluating
the call to the function Main, the argument of the call being
empty.

<Main >

The module that contains the definition of the main func­
tion is permitted to have no interface part, in which case the
Refal Plus compiler assumes the module's interface to consist of
the single function declaration:

$func Main = e;

113

Chapter III. LIBRARY OF FUNCTIONS

l.HOW TO USE LIBRARY FUNCTIONS

An essential part of the Refal Plus system is the library
of functions, consisting of several modules.

If a user-written module contains references to library
functions defined in a library module MMMM, then, at the begin­
ning of the user-written module, there must appear the directive

$use MMMM;

which imports into the user-written module the declarations of
all functions defined in the library module MMMM.

At present, the library of functions comprises the follow­
ing modules:

ACCESS
APPLY
ARITHM
BOX
CLASS
COMPARE
CONVERT
DOS
STDIO
STRING
TABLE
VECTOR

direct access to ground expressions.
- application of functions passed as arguments.
- arithmetic operations on integers.
- box operations.
- predicates for determining classes of symbols.
- comparison operations.
- data conversions.
- calls to the operating system.
- standard input/output.
- string operations.
- table operations.
- vector operations.

In future, the library of function may be extended with
other modules.

2.ACCESS: DIRECT ACCESS TO GROUND EXPRESSIONS

$func LENGTH e.Exp = s.ExpLen;
$func? LEFT s.Left s.Len e.Exp = e.SubExp;
$func? RIGHT s.Right s.Len e.Exp = e.SubExp;
$func? MIDDLE s.Left s.Right e.Exp = e.SubExp;
$func? L s.Left e.Exp = t.SubExp;
$func? R s.Right e.Exp = t.SubExp;

These functions provide direct access to the components of
ground expressions. The arguments s.Left, s.Right, and s.Len
must be non-negative integers. e.Exp may be any ground expres­
sion.

If s.Left, s.Right, and s.Len are not non-negative inte­
gers, the functions return the error $error(Fname "Invalid
argument"), where Fname is the function's name.

LENGTH returns the length of the expression e.Exp measured
in terms. In other words, a ground expression Ge of the form

114

Gtl Gt2 ... GtN is assumed to have the length N.
For example:

<LENGTH >
<LENGTH A B C>
<LENGTH (A B) C (D E)>

=>
=>
=>

0
3
3

LEFT removes the first s.Left terms from e.Exp, and then
returns the first s.Len terms of the remaining expression.

RIGHT removes the last s.Right terms from e.Exp, and then
returns the last s.Len terms of the remaining expression.

MIDDLE removes the first s.Left and the last s.Right terms
from e.Exp, and returns the remaining expression.

L removes the first s.Left terms from e.Exp, and returns
the first term of the remaining expression.

R removes the last s.Right terms from e.Exp, and returns
the last term of the remaining expression.

If the length of e.Exp is not sufficient for the operation
to be performed, all the above functions return $fail(O).

For example:

<MIDDLE 2 3 AB C D E F> => c
<MIDDLE 2 3 AB CD> => $fail(O)
<MIDDLE 0 0 AB C> => ABC
<LEFT 2 3 AB C D E F> => C D E
<LEFT 2 3 AB CD> => $fail(O)
<LEFT 0 0 AB C> =>
<RIGHT 2 3 AB C D E F> => B C D
<RIGHT 2 3 AB CD> => $fail(O)
<RIGHT 0 0 AB C> =>
<L 2 AB c D E F> => c
<L 2 A B> => $fail(O)
<R 2 A B C D E F> => D
<R 2 A B> => $fail(O)

The operations MIDDLE, LEFT, and RIGHT may be depicted in
the following way:

s.Left s.Right
+-------+-------+-------+

IXXXXXXXI <MIDDLE s.Left s.Right e.Exp>
+-------+-------+-------+
s.Left s.Len

+-------+-------+-------+
IXXXXXXXI <LEFT s.Left s.Len e.Exp>

+-------+-------+-------+
s.Len s.Right

+-------+-------+-------+
I I xxxxxxx I I <RIGHT s.Right s.Len e.Exp>
+-------+-------+-------+

115

3.APPLY: APPLICATION OF FUNCTIONS PASSED AS ARGUMENTS

$func? APPLY s.Name e.Exp = e.Exp;

APPLY returns the result of applying the function referred
to by the reference s.Name to the expression e.Exp.

4.ARITHM: ARITHMETIC OPERATIONS ON INTEGERS

$func "+" s.Int1 s.Int2 = s.Int;
$func "-" s.Int1 s.Int2 = s.Int;
$func "*" s.Int1 s.Int2 = s.Int;
$func DIV-REM s.Int1 s.Int2 = s.Quo s.Rem;
$func DIV s.Int1 s.Int2 = s.Quo;
$func REM s.Int1 s.Int2 = s.Rem;
$func GCD s.Int1 s.Int2 = s.Gcd;

These functions provide operations on signed integers of
arbitrary size. Each of the arguments of the arithmetic func­
tions must be a single numeric symbol.

If one of the arguments of an arithmetic function is not a
numeric symbols, the function returns the error $error(Fname
"Invalid argument"), where Fname is the function's name.

If both arguments of an arithmetic function are numeric
symbols, the function produces the result, depending on the
function.

"+" returns the sum of its arguments, "-" the difference of
its arguments, "*" the product of its arguments, DIV and REM
respectively the quotient AND the remainder of its arguments,
DIV-REM both the quotient and the remainder of its arguments,
GCD the greatest common divisor of its arguments.

If the result produced by one of the operations "+", "-"
or "*" exceeds the size limit imposed by the Refal Plus imple­
mentation, the value returned is the error $error(Fname "Size
limit exceeded"), where Fname is the function's name.

For example:

<"+" 3 5> => 8
<"+" 3 -5> => -2
<"-" 3 -5> => 8
<"*" -2 3> => -6
<DIV 5 2> => 2
<REM 5 2> => 1
<DIV-REM 5 2> => 2 1
<DIV 6 2> => 3
<REM 6 2> => 0
<DIV-REM 6 2> => 3 0

The signs of the quotient and the remainder are determined
according to the following rule. If the sign of the dividend is
the same as that of the divisor, the quotient must be positive,

116

otherwise the quotient must be negative. The sign
mainder must be the same as that of the dividend.
must always hold the equation

of the re­
Thus, there

dividend = (quotient * divisor) + remainder

For example:

<DIV 5 3> => 1
<REM 5 3> => 2
<DIV 5 -3> => -1
<REM 5 -3> => 2
<DIV -5 3> => -1
<REM -5 3> => -2
<DIV -5 -3> => 1
<REM -5 -3> => -2

An attempt at dividing a number by zero results in return­
ing the error $error(Fname "Divide by zero"), where Fname is
the function's name. For example:

<DIV 5 0> =>
<REM 5 0> =>
<DIV-REM 5 0> =>

$error(DIV "Divide by zero")
$error(REM "Divide by zero")
$error(DIV-REM "Divide by zero")

The function GCD, unless both its arguments are equal to
zero, returns a positive integer, the greatest common divisor of
its arguments. Otherwise, if both arguments are equal to zero,
the result is the error $error(GCD "Zero arguments"). For
example:

<GCD 6 15> =>
<GCD -6 15> =>
<GCD 15 1> =>
<GCD 15 0> =>
<GCD 0 0> =>

5.BOX: BOX OPERATIONS

$func BOX
$func ?
$func STORE

e.Exp = s.Box;
s.Box = e.Exp;
s.Box e.Exp =

3
3
1
15
$error(GCD "Zero arguments")

BOX creates a new box, puts the expression e.Exp into the
box, and returns a reference to the box.

"?" returns the contents of the box referred to by s.Box.
STORE puts the expression e.Box into the box referred to by

s.Box.

6.CLASS: PREDICATES FOR DETERMINING CLASSES OF SYMBOLS

117

$func? BOX? e.Exp =
$func? CHANNEL? e.Exp =
$func? CHAR? e.Exp =
$func? DIGIT? e.Exp = ;
$func? FUNC? e.Exp =
$func? INT? e.Exp =
$func? LETTER? e.Exp =
$func? STRING? e.Exp = ;
$func? TABLE? e.Exp =
$func? VECTOR? e.Exp =
$func? WORD? e.Exp = ;

These functions provides a way to determine whether e.Exp
is a symbol belonging to a certain class of symbol.

If e.Exp is not a single symbol, the functions return
$fail(O).

If e.Exp is a symbol, the test
symbol belongs to the corresponding
value returned is an empty ground
value returned is $fail(O).

is performed whether
class of symbols. If so,
expression. Otherwise,

the
the
the

The correspondence between the predicate functions and the
sets of symbols is as follows.

BOX?
CHANNEL?
CHAR?
DIGIT?

- references to boxes.
- references to channels.
- character symbols.
- character symbols corresponding to

digits.
- references to functions.
- references to integers.

decimal

FUNC?
INT?
LETTER? - character symbols corresponding to small and

STRING?
TABLE?
VECTOR?
WORD?

capital letters.
- references to strings.
- references to tables.
- references to vectors.
- word symbols.

?.COMPARE: COMPARISON OPERATIONS

$func? "=" (e.Expl) (e.Exp2) =
$func? "/=" (e.Expl) (e.Exp2) = ;

$func? ">=" (e.Expl) (e.Exp2) =
$func? ">" (e.Expl) (e.Exp2) = ;
$func? "<=" (e.Expl) (e.Exp2) = ;
$func? "<" (e.Expl) (e.Exp2) = ;

These functions compare two expressions e.Expl and e.Exp2
to determine whether the corresponding relation between the
arguments holds. The correspondence between the functions and
the relations is as follows. "="corresponds to "equal to", "/="
to "not equal to", ">=" to "greater than or equal to", ">" to
"greater than", "<=" to "less than or equal to", "<" to "less

118

than".
If the condition is satisfied, the value returned by the

functions is an empty ground expression, otherwise $fail(O).

$func COMPARE (e.Expl) (e.Exp2) = s.Res; I* '<', '>', '=' *I

e.Expl and e.Exp2,
than e.Exp2, '>',

e.Expl is equal

COMPARE compares two expressions
returns either '<', if e.Expl is less
e.Expl is greater than e.Exp2, or '=', if
e.Exp2.

and
if
to

Ground expressions are compared according to the following
linear ordering relation <.

For all two ground expressions Ge' and Ge", there holds
either Ge'<Ge", Ge'=Ge", or Ge"<Ge'.

Two expressions Ge' = Gtl' ... Gtm' and Ge" =
Gtn" are compared lexicographically, which means that
level terms are compared pairwise from left to right,
pair is found of two unequal terms Gtk' and Gtk".
Gtk' < Gtk", it is assumed that Ge' < Ge".

Gtl" ...
their top
until a

Then, if

If Ge' turns out to be shorter than Ge", and all top level
terms in Ge' are equal to the corresponding terms in Ge", it is
assumed that Ge' < Ge".

Formally speaking, for all ground expressions Ge, Ge', Ge"
and for all ground terms Gt, Gt', Gt" the following holds:

If Ge' < Ge", then Gt Ge' < Gt Ge".
If Gt' < Gt", then Gt' Ge' < Gt" Ge".
[] < Gt Ge.

where [] denotes an empty ground expression.
The ordering of the ground terms is defined as follows.
Symbols are assumed to be less than the terms of the form

(Ge). In other words, for all symbols Gs and ground expressions
Ge,

Gs < (Ge)

Comparing the terms of the form (Ge) is reduced to compar­
ing their contents according to the rule:

If Ge ' < Ge" , then (Ge ') < (Ge") .

Each symbol belongs to one and only one of the following
sets of symbols:

character symbols
word symbols
numeric symbols
reference symbols

These sets will be referred to as symbol classes. We
the set of symbol classes as equipped with a linear
the ordering being given by the above list of symbol

119

consider
ordering,
classes.

Thus the set of character symbols precedes the set of word sym-
bols, etc.

If two symbols Gs'
Class' and Class",
that Gs ' < Gs" .

and
and Gs" belong to two different
Class' <Class", then it is

classes
assumed

If two symbols belong to the same class, they are compared
according the following rules.

Character symbols are ordered according their ASCII codes.
Word symbols are converted to corresponding sequences of

character symbols, which are compared as described above.
Numeric symbols are compared as corresponding numbers.
The ordering on the set of reference symbols depends on

the Refal Plus implementation.

8.CONVERT: DATA CONVERSIONS

$func TO-LOWER e.Char = e.Char;
$func TO-UPPER e.Char = e.Char;
$func CHARS-TO-BYTES e.Char = e.Int;
$func BYTES-TO-CHARS e.Int = e.Char;
$func TO-CHARS e.Exp = e.Char;
$func TO-WORD e.Exp = s.Word;
$func? TO-INT e.Exp = s.Int;

TO-LOWER converts a sequence of character symbols to a
character sequence in which all capital letters are replaced
with the correspondent small letters.

TO-UPPER converts a sequence of character symbols to a
character sequence in which all small letters are replaced with
the corresponding capital letters.

CHARS-TO-BYTES converts a sequence of character symbols to
a sequence of numbers, each number being the ASCII code of the
corresponding character.

If one of the above functions is given an argument that is
not a sequence of character symbols, the value returned is
$error(Fname "Invalid argument"), where Fname is the function's
name.

For example:

<TO-LOWER 'AbCd+'> =>
<TO-LOWER 25> =>

'abed+'

$error(TO-LOWER "Invalid argument")
<TO-UPPER 'AbCd+'> => 'ABCD+'
<TO-UPPER 25> =>

$error(TO-UPPER "Invalid argument")

<CHARS-TO-BYTES 'ABC'> => 65 66 67

BYTES-TO-CHARS takes as argument a sequence of
each number ranging between 0 and 255, and converts
sequence of character symbols, each character having
code equal to the corresponding number.

120

numbers,
it to a

the ASCII

For example:

<BYTES-TO-CHARS 65 66 67> => 'ABC'

TO-CHARS, TO-WORD, and TO-INT take an arbitrary ground
expression as argument, and, first of all, convert it to a char­
acter sequence. The conversion is performed as follows. Charac­
ter symbols are replaced with the corresponding characters, the
parentheses are replaced with the characters '(' and ') ', word
symbols are replaced with the corresponding character sequences,
numeric symbols are replaced with their character representa­
tions, references to strings are replaced with the contents of
the strings, all other references are replaced with their char­
acter representations, which depend on the Refal Plus implemen­
tation.

If the character sequence thus obtained exceeds the size
limit imposed by the Refal Plus implementation, the value re­
turned by the functions is $error(Fname "Argument too large for
conversion"), where Fname is the function's name.

Then the functions TO-CHARS, TO-WORD, and TO-INT proceed in
the following way.

TO-CHARS just returns the character sequence thus obtained
as its result.

<TO-CHARS "John"> => 'John'
<TO-CHARS 'John'> => 'John'
<TO-CHARS 326> => '326'
<TO-CHARS -326> => '-326'
<TO-CHARS (-326) "John"> => '(-326)John'

TO-WORD converts the character sequence thus obtained to
the corresponding word.

<TO-WORD "John"> => "John"
<TO-WORD 'John'> => "John"
<TO-WORD 326> => "326"
<TO-WORD -326> => "-326"
<TO-WORD (-326) "John"> => "(-326)John"

TO-INT considers the character sequence thus obtained as
the character representation of an integer, and converts it to
the corresponding numeric symbol. If the character string is not
a correct representation of an integer, the value returned is
$fail(O).

For example:

<TO-INT '326'> => 326
<TO-INT '+326'> => 326
<TO-INT "-3" '26'> => -326
<TO-INT -32 006> => -326
<TO-INT 'John'> => $fail(O)

121

9.DOS: CALLS TO THE OPERATING SYSTEM

$func
$func
$func
$func

ARG s.Int = e.Arg;
GETENV e.VarName = e.Value;
TIME
EXIT

= e.String;
s.ReturnCode = ;

These functions provide some ways of calling the operating
system.

The arguments of the functions must satisfy the following
restrictions. s.Int must be a non-negative integer, e.VarName a
sequence of character and word symbols, s.ReturnCode an integer
ranging from 0 to 255. If one or more of the above restrictions
are violated, the result returned by the functions is
$error(Fname "Invalid argument"), where Fname is the function's
name.

ARG returns the command line argument having the number
s.Int. If there is no such argument, an empty ground expression
is returned.

GETENV returns the value associated in the MSDOS environ­
ment with the variable having the name e.VarName.

TIME returns the current date and time represented by a
ground expression of the form

DD MMM YYYY HH:MM:SS.SS

where DD is the month's day, MMM the abbreviated month name
("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep",
"Oct", "Nov", "Dec"), YYYY the year number, HH:MM:SS.SS the
ours, minutes, seconds, and hundredth of a second. DD, YYYY, HH,
MM, SS are represented by integers, MMM by a word. The separa-
tors are character symbols ' ':' i '.'.

EXIT terminates the execution of the program, with the
completion code being equal to s.ReturnCode. If the program
terminates in the normal way, i.e. the evaluation of the call to
the main function Main terminates, the completion code depends
on the result returned by the function Main. If the result is a
ground expression, the completion code is equal to 0. Otherwise,
if the result has the form $error(Ge), the completion code is
equal to 100.

lO.STDIO: STANDARD INPUT/OUTPUT

$channel STDIN STDOUT STDERR;

STDIN, STDOUT, and STDERR are
channels, which are automatically
execution starts, and automatically
execution has terminated.

$func CHANNEL= s.Channel;

122

the standard
opened before
closed after

input/output
the program
the program

CHANNEL creates a new channel s.Channel.

$func? OPEN-FILE s.Channel e.FileName s.Mode =
$func CLOSE-CHANNEL s.Channel =

it
sym­

with:

OPEN-FILE opens the channel s.Channel and associates
with the file having the name e.FileName. s.Mode is a word
bol specifying the mode in which the file is to be dealt
"r" or "R" indicates that data are to be read from the file, "w"
or "W" that data are to be written to the file, "a" or "A" that
data are to be appended to the existing file. If the file cannot
be opened, OPEN-FILE returns $fail(O).

CLOSE-CHANNEL closes the channel s.Channel.

$func? EOF? s.Channel = ;

EOF? tests whether the current position in the file associ­
ated with the channel s.Channel is at the end of the file.

$func? READ = t.Term;
$func? READ-CHAR = s.Char;
$func? READ-LINE = e.Char;
$func WRITE e.Exp =
$func WRITELN e.Exp =
$func PRINT e.Exp =
$func PRINTLN e.Exp =

READ reads the current character representation of a ground
term from the channel &STDIN. If there is no term to be read,
the function returns $fail(O).

READ-CHAR reads the current character from the channel
&STDIN. If there is no character to be read, the function re­
turns $fail(O).

READ-LINE reads the characters from the channel &STDIN up
to the nearest newline character (inclusive), and returns the
characters as the result (not including the newline character) .
If there is no character to be read, the function returns
$fail(O).

WRITE writes the character representation of the expression
e.Exp to the channel &STDOUT (if e.Exp does not contain dynamic
symbols, the terms comprising the expression can later be read
back by the function READ) .

WRITELN works in the same way as WRITE does, except that it
adds a newline character to the end of the expression's repre­
sentation.

PRINT converts the expression e.Exp to a character
in the way the function TO-CHARS does, and writes this
to the channel &STDOUT.

sequence
sequence

PRINTLN works in the same way as PRINT does, except that it
adds a newline character to the end of the character sequence.

$func? READ! s.Channel = t.Term;
$func? READ-CHAR! s.Channel = s.Char;

123

$func? READ-LINE! s.Channel = e.Char;
$func WRITE! s.Channel e.Exp = ;
$func WRITELN! s.Channel e.Exp =
$func PRINT! s.Channel e.Exp = ;
$func PRINTLN! s.Channel e.Exp =

These functions work in the same way as the corresponding
functions without the exclamation marks do, except that the
operations are performed on the channel s.Channel.

ll.STRING: STRING OPERATIONS

$func STRING e.Source = s.String;
$func STRING-INIT s.String s.Len s.Fill = ;
$func STRING-FILL s.String s.Fill = ;
$func STRING-LENGTH s.String = s.Len;
$func STRING-REF s.String s.Index = s.Char;
$func STRING-SET s.String s.Index s.Char = ;
$func STRING-REPLACE s.String e.Source = ;
$func SUBSTRING s.String s.Index s.Len = s.NewString;
$func SUBSTRING-FILL s.String s.Index s.Len s.Fill =

These functions provide a way to create, modify, and access
strings. The arguments of the functions must satisfy the follow­
ing restrictions. s.String must be a reference to a string,
s.Index and s.Len non-negative integers, s.Fill a character
symbol, e.Source a sequence of references to strings, word sym­
bols, and character symbols.

If one or more of the above restrictions are violated, the
result returned by the functions is $error(Fname "Invalid
argument"), where Fname is the function's name.

At any moment, a string contains a finite sequence (which
may be empty) of character symbols, which is said to be the
contents of the string. A string containing a sequence of N+l
character symbols GcO, Gel, ... , GcN is said to have the
length N+l. The contents of the string will be written as

GcO Gel ... GcN

Thus the string components GcO, Gc2, ... , GcN are num­
bered starting from zero.

STRING creates a new string and returns a reference to the
new string. The contents of the new string is formed from
e.Source in the following way.

Suppose the parameter e.Source has the form Gsl Gs2
GsM, where each symbol Gsj is either a character symbol, a word
symbol, or a reference to a string. Then each symbol Gsj is
transformed as follows.

If Gsj is a character symbol Gc, Gsj is left unchanged.
If Gsj is a word symbol, Gsj is replaced with the character

sequence that is the contents of the word.
If Gsj is a reference to a string, Gsj is replaced with the

124

contents of the string (without changing the state of the
string) .

The value of the parameter e.Source thus transformed be­
comes the contents of the new string.

STRING-INIT replaces the contents of the string referred to
by s.String with a new contents of length s.Len where all the
characters are s.Fill.

STRING-FILL replaces each character in the string referred
to by s.String with s.Fill. The length of the string remains
unchanged.

STRING-LENGTH returns the length of the string referred to
by s.String.

STRING-REF returns the character contained in the position
s.Index in the string referred to by s.String.

STRING-SET replaces the character contained in the position
s.Index in the string referred to by s.String with s.Char. The
length of the string remains unchanged.

STRING-REPLACE replaces the contents of the string referred
to by s.String with the new contents formed from s.Source in the
same way as it is done by the function STRING.

SUBSTRING creates a new string, and returns a reference to
the new string, the contents of which is formed in the following
way. Let the contents of the string referred to by s.String be
GcO Gel ... GeN. Then the contents of the new string is obtained
by removing the first s.Index characters from this sequence, and
selecting the first s.Len characters of the remaining sequence.

The contents of the source string remains unchanged.
SUBSTRING-FILL replaces s.Len consecutive characters in the

string referred to by s.String with s.Char, starting from the
character in the position s.Index. The length of the string
remains unchanged.

If the length of the string is not sufficient for one of
the above operations to be performed, the string remains un­
changed, and the value returned by the functions is $error(Fname
"Index out of range"), where Fname is the function's name.

If one of the above operations has to create a string
tents whose length exceeds the size limit imposed by the
Plus implementation, the string remains unchanged, and the
returned by the functions is $error(Fname "Size
exceeded"), where Fname is the function's name.

12.TABLE: TABLE OPERATIONS

$func TABLE = s.Tab;
$func BIND s.Tab (e. Key) (e. Val) = ;
$func UNBIND s.Tab e.Key =
$func? LOOKUP s.Tab e.Key = e.Val;
$func? IN-TABLE? s.Tab e.Key =
$func DOMAIN s.Tab = e.Domain ;
$func TABLE-COPY s.Tab = s.TabCopy;
$func REPLACE-TABLE s.TargetTable s.SourceTable = ;

125

con­
Refal
value
limit

TABLE creates a new empty table, and returns a reference to
this table.

BIND binds the key e.Key to the value e.Val in the table
referred to by s.Tab.

UNBIND removes the key e.Key as well as the value associat­
ed with the key in the table referred to by s.Tab. If the table
does not contain the key e.Key, the state of the table remains
unchanged.

LOOKUP returns the value associated with the key e.Key in
the table referred s.Tab. If the table does not contain the key
e.Key, the function returns $fail(O).

IN-TABLE? tests whether the table referred to by s.Tab
contains the key e.Key.

DOMAIN returns the list of the keys registered in the table
referred to by s.Tab. Let the set of the keys registered in the
table be {Gel, Ge2, ... , Gen}, then e.Domain has the form

(Gel) (Ge2) (Gen)

where the order of the keys depends on the Refal Plus implemen­
tation.

TABLE-COPY creates a new table, copies into
the contents of the table referred to by s.Tab,
reference to the new table.

REPLACE-TABLE replaces the contents of the
to by s.TargetTable with a copy of the contents
referred to by s.SourceTable.

13.VECTOR: VECTOR OPERATIONS

$func VECTOR e.Source = s.Vector;
$func VECTOR-TO-EXP s.Vector = e.Exp;
$func VECTOR-INIT s.Vector s.Len e.Fill = ;
$func VECTOR-FILL s.Vector e.Fill = ;
$func VECTOR-LENGTH s.Vector = s.Len;
$func VECTOR-REF s.Vector s.Index = e.Exp;
$func VECTOR-SET s.Vector s.Index e.Exp = ;
$func VECTOR-REPLACE s.Vector e.Source = ;

the new table
and returns a

table referred
of the table

$func SUBVECTOR s.Vector s.Index s.Len = s.NewVector;
$func SUBVECTOR-FILL s.Vector s.Index s.Len e.Fill =

These functions provide a way to create, modify, and access
vectors. The arguments of the functions must satisfy the follow­
ing restrictions. s.Vector must be a reference to a vector,
s.Index and s.Len non-negative integers, e.Fill an arbitrary
ground expression, e.Source a sequence of references to vectors
and terms of the form (Ge) .

If one or more of the above restrictions are violated, the
result returned by the functions is $error(Fname "Invalid
argument"), where Fname is the function's name.

At any moment, a vector contains a finite sequence (which
may be empty) of ground expressions, which is said to be the

126

contents of the vector. A vector containing a sequence of N+l
ground expressions GeO, Gel, ... , GeN is said to have the
length N+l. The contents of the vector will be written as

(GeO) (Gel) (GeN)

Thus the vector components GeO, Ge2, ... , GeN are num­
bered starting from zero.

VECTOR creates a new vector and returns a reference to the
new vector. The contents of the new vector is formed from
e.Source in the following way.

Suppose the parameter e.Source has the form Gtl Gt2 ...
GtM, where each ground term Gtj either is a reference to a vec­
tor, or has the form (Ge). Then each term Gtj is transformed as
follows.

If Gtj has the form (Ge), Gtj is left unchanged.
If Gtj is a reference to a vector, Gtj is replaced with the

contents of the vector (without changing the state of the vec­
tor) .

The value of the parameter e.Source thus transformed be­
comes the contents of the new vector.

VECTOR-TO-EXP returns the ground expression representing
the contents of the vector referred to by s.Vector.

VECTOR-INIT replaces the contents of the vector referred to
by s.Vector with a new contents of length s.Len where all the
components are e.Fill.

VECTOR-FILL replaces each component in the vector referred
to by s.Vector with e.Fill. The length of the vector remains
unchanged.

VECTOR-LENGTH returns the length of the vector referred to
by s.Vector.

VECTOR-REF returns the ground expression contained in the
position s.Index in the vector referred to by s.Vector.

VECTOR-SET replaces the ground expression contained in the
position s.Index in the vector referred to by s.Vector with
e.Exp. The length of the vector remains unchanged.

VECTOR-REPLACE replaces the contents of the vector referred
to by s.Vector with the new contents formed from e.Source in the
same way as it is done by the function VECTOR.

SUBVECTOR creates a new vector, and returns a reference to
the new vector, the contents of which is formed in the following
way. Let the contents of the vector referred to by s.Vector be
(GeO) (Gel) (GeN) . Then the contents of the new vector is
obtained by removing the first s.Index terms from this sequence,
and selecting the first s.Len terms of the remaining sequence.

The contents of the source vector remains unchanged.
SUBVECTOR-FILL replaces s.Len consecutive components in the

vector referred to by s.Vector with e.Exp, starting from the
component in the position s.Index. The length of the vector
remains unchanged.

If the length of the vector is not
the above operations to be performed,
changed, and the value returned by the

127

sufficient for one of
the vector remains un­
functions is $error(Fname

"Index out of range"), where Fname is the function's name.
If one of the above operations has to create a vector

tents whose length exceeds the size limit imposed by the
Plus implementation, the vector remains unchanged, and the
returned by the functions is $error(Fname "Size
exceeded"), where Fname is the function's name.

128

con­
Refal
value
limit

REFERENCES

[AbR 88]
S.M.Abramov, S.A.Romanenko. How to Represent Ground Expres­

sions by Vectors in Implementations of the Language Refal. Pre­
print, Inst. Appl. Mathern., the USSR Academy of Sciences, 1988,
N 186. (In Russian)

[AHU 74]
A.V.Aho, J.E.Hopcroft, J.D.Ullman. The Design and Analysis

of Computer Algorithms. Addison-Wesley, Reading, Mass., 1974.

[Apt 1983]
K.R.Apt. Formal Justification of a Proof System for Commu­

nicating Sequential Processes, Journal Assoc. Comput. Machin.,
30(1)' pp.197-216, 1983.

[BjJ 82]
D.Bjorner, C.B.Jones. Formal Specification and Software

Development. Prentice-Hall International, London, 1982.

[BsR 77]
Basic Refal and its Implementation on Computers. GOSSTROJ

SSSR, TsNIPIASS, Moscow, 1977. The authors are not indicated in
the book. They are: V.F.Khoroshevski, And.V.Klimov, Ark.V.Klim­
ov, A.G.Krasovski, S.A.Romanenko, I.B.Shchenkov, and V.F.Tur­
chin. (In Russian)

[Hen 80]
P.Henderson. Functional Programming: Application and Imple­

mentation. Prentice-Hall, 1980.

[Plotkin 1983]
G.D.Plotkin. An Operational Semantics for CSP, in: D.Bjor­

ner (ed.), Formal Description of Programming Concepts II, North­
Holland, Amsterdam, pp.199-223.

[Rom 87a]
S.A.Romanenko. Refal-2 Implementation. Inst. Appl. Mathern.,

the USSR Academy of Sciences, 1987. (In Russian)

[Rom 87b]
S.A.Romanenko. Refal-4, an Extension of Refal-2 enabling

the results of Driving to be represented. Preprint, Inst. Appl.
Mathern., the USSR Academy of Sciences, 1987, N 147. (In Russian)

[Rom 88]
S.A.Romanenko. A Compiler Generator Produced by a Self­

Applicable Specializer Can Have a Surprisingly Natural and Un­
derstandable Structure. In D.Bjorner, A.P.Ershov and N.D.Jones,
editors, Partial Evaluation and Mixed Computation, pages 445-
463, North-Holland, 1988.

129

[Sch 86]
D.A.Schmidt. Denotational Semantics. Allyn and Bacon, Bos­

ton, 1986.

[Tur 86]
V.F.Turchin. The concept of a supercompiler.

tions on Programming Languages and Systems, Vo1.8,
1986, pp.292-325.

[Tur 89]

ACM Transac­
No.3, July

V.F.Turchin. Refal-5, Programming Guide and Reference Manu­
al. New England Publishing Co., Holyoke, 1989.

[War 80]
D.H.D.Warren. Logic Programming and Compiler Writing. Soft­

ware - Practice and Experience, Vo1.10, 97-125 (1980).

[Wir 73]
N.Wirth. Systematic Programming. An Introduction. Prentice­

Hall, Inc., Englewood Cliffs, New Jersey, 1973.

[Wir 76]
N.Wirth. Algorithms + Data Structures = Programs. Prentice­

Hall, Inc., Englewood Cliffs, New Jersey, 1976.

130

$func
$func
$func
$func?
$func?
$func?
$func?
$func?
$func?
$func
$func?
$func
$func
$func
$func?
$func
$func
$func?
$func?
$func
$func
$func
$func?
$func
$func
$func?
$func?
$func
$func?
$func
$func
$func?
$func?
$func?
$func?
$func
$func?
$func?
$func?
$func?
$func
$func
$func
$func
$func?
$func?
$func?
$func?
$func?
$func?
$func?

"*"
"+"
"-"
"/="
"<"
"<="
"="
">"
">="
?
APPLY
ARG
BIND

INDEX OF LIBRARY FUNCTIONS

s.Intl s.Int2 = s.Int;
s.Intl s.Int2 = s.Int;
s.Intl s.Int2 = s.Int;
(e.Expl) (e.Exp2) = ;
(e.Expl) (e.Exp2) =
(e.Expl) (e.Exp2) = ;
(e.Expl) (e.Exp2) =
(e.Expl) (e.Exp2) = ;
(e.Expl) (e.Exp2) = ;
s.Box = e.Exp;
s.Name e.Exp = e.Exp;
s.Int = e.Arg;
s.Tab (e.Key) (e.Va1) =

BOX e.Exp = s.Box;
BOX? e.Exp = ;
BYTES-TO-CHARS e.Char = e.Int;
CHANNEL = s.Channel;
CHANNEL? e.Exp = ;
CHAR? e.Exp = ;
CHARS-TO-BYTES e.Int = e.Char;
CLOSE-CHANNEL s.Channel = ;
COMPARE (e.Expl) (e.Exp2) = s.Res;
DIGIT?
DIV
DIV-REM
DOMAIN
EOF?
EXIT
FUNC?
GCD
GETENV
IN-TABLE?
INT?
L
LEFT
LENGTH
LETTER?
LOOKUP
MIDDLE
OPEN-FILE
PRINT
PRINT!
PRINTLN
PRINTLN!
R

e.Exp = ;
s.Intl s.Int2 = s.Quo;
s.Intl s.Int2 = s.Quo s.Rem;
s.Tab = e.KeyList ;
s.Channel = ;
s.ReturnCode = ;
e.Exp = ;
s.Intl s.Int2 = s.Gcd;
e.VarName = e.Value;
s.Tab e.Key = ;
e.Exp =
s.Left e.Exp = t.SubTerm;
s.Left s.Len e.Exp = e.SubExp;
e.Exp = s.ExpLen;
e.Exp =
s.Tab e.Key = e.Val;
s.Left s.Right e.Exp = e.SubExp;
s.Channel e.FileName s.Mode = ;
e.Expr = ;
s.Channel e.Expr = ;
e.Expr = ;
s.Channel e.Expr = ;
s.Right e.Exp = t.SubTerm;

READ = t. Term;
READ! s.Channel = t.Term;
READ-CHAR = s.Char;
READ-CHAR! s.Channel = s.Char;
READ-LINE = e.Char;
READ-LINE! s.Channel = e.Char;

131

ARITHM
ARITHM
ARITHM
COMPARE
COMPARE
COMPARE
COMPARE
COMPARE
COMPARE
BOX
APPLY
DOS
TABLE
BOX
CLASS
CONVERT
STDIO
CLASS
CLASS
CONVERT
STDIO
COMPARE
CLASS
ARITHM
ARITHM
TABLE
STDIO
DOS
CLASS
ARITHM
DOS
TABLE
CLASS
ACCESS
ACCESS
ACCESS
CLASS
TABLE
ACCESS
STDIO
STDIO
STDIO
STDIO
STDIO
ACCESS
STDIO
STDIO
STDIO
STDIO
STDIO
STDIO

$func
$func
$func?
$func
$func
$func
$func
$func
$func
$func
$func
$func?
$func
$func
$func
$func
$func
$func
$func?
$func
$func
$func?
$func
$func
$func
$func
$func
$func
$func
$func
$func
$func
$func
$func
$func?
$func?
$func
$func
$func
$func

REM s.Intl s.Int2 = s.Rem;
REPLACE-TABLE s.TargetTab s.SourceTab = ;
RIGHT s.Right s.Len e.Exp = e.SubExp;
STORE
STRING
STRING-FILL
STRING-INIT

s.Box e.Exp = ;
e.Source = s.String;
s.String s.Fill = ;
s.String s.Len s.Fill = ;

STRING-LENGTH s.String = s.Len;
STRING-REF s.String s.Index = s.Char;
STRING-REPLACE s.String e.Source = ;
STRING-SET s.String s.Index s.Char = ;
STRING? e.Exp = ;
SUBSTRING s.String s.Index s.Len = s.NewString;
SUBSTRING-FILL s.String s.Index s.Len s.Fill =;
SUBVECTOR s.Vector s.Ind s.Len = s.Vector;
SUBVECTOR-FILL s.Vector s.Index s.Len e.Fill =;
TABLE = s.Tab;
TABLE-COPY s.Tab = s.TabCopy
TABLE?
TIME
TO-CHARS
TO-INT
TO-LOWER
TO-UPPER
TO-WORD
UNBIND
VECTOR
VECTOR-FILL
VECTOR-INIT

e.Exp = ;
= e.String;
e.Exp = e.Char;
e.Char = s.Int;
e.Char = e.Char;
e.Char = e.Char;
e.Char = s.Word;
s.Tab e.Key = ;

e.Source = s.Vector;
s.Vector e.Fill = ;
s.Vector s.Len e.Fill = ;

VECTOR-LENGTH s.Vector = s.Len;
VECTOR-REF s.Vector s.Index = e.Exp;
VECTOR-REPLACE s.Vector e.Source = ;
VECTOR-SET s.Vector s.Index e.Exp = ;
VECTOR-TO-EXP s.Vector = e.Exp;
VECTOR? e.Exp = ;
WORD? e.Exp = ;
WRITE e.Expr = ;
WRITE! s.Channel e.Expr = ;
WRITELN e.Expr = ;
WRITELN! s.Channel e.Expr = ;

132

ARITHM
TABLE
ACCESS
BOX
STRING
STRING
STRING
STRING
STRING
STRING
STRING
CLASS
STRING
STRING
VECTOR
VECTOR
TABLE
TABLE
CLASS
DOS
CONVERT
CONVERT
CONVERT
CONVERT
CONVERT
TABLE
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
VECTOR
CLASS
CLASS
STDIO
STDIO
STDIO
STDIO

ADDITIONAL FEATURES OF REFAL PLUS
--

HEXADECIMAL NUMERIC AND CHARACTER CONSTANTS

Non-negative integers can be written as follows

OxZZZ ... zz

where ZZZ ... ZZ stands for a non-empty sequence of hexadecimal
digits.

For example, OxFF and Oxff are both equivalent to 255.
The representations of characters appearing in character

string literals and word literals may be written as follows

\xZZ

where ZZ stands for two hexadecimal digits, specifying the ASCII
code of the character. A word literal containing such character
representations must be enclosed in double quotes.

For example, "\x2A" and "\x2a" are both equivalent to "*"

NEW LIBRARY FUNCTIONS

*** BIT: BITWISE OPERATIONS

The functions providing bitwise operations are defined in
the module BIT.

These functions deal with sequences of binary digits repre­
sented by signed integers.

Each integer represents a sequence of binary digits, which
is infinite to the left, and can be obtained by writing the
integer as a two's complement binary number of infinite size. If
the integer is non-negative, the sequence thus obtained contains
a finite number of ones. Otherwise, if the integer is negative,
the sequence contains a finite number of zeros. For example:

+3
+2
+1
+0
-1
-2
-3

The
right to

... 000011

... 000010

... 000001

... 000000

... 111111

... 111110

... 111101

positions in the binary sequence are numbered from
left, starting from zero.

$func BIT-OR s.Int1 s.Int2 = s.Int;
$func BIT-AND s.Int1 s.Int2 = s.Int;

133

$func BIT-XOR s.Int1 s.Int2 = s.Int;

BIT-OR returns the bitwise logical "or" of the arguments.
BIT-AND returns the bitwise logical "and" of the arguments.
BIT-XOR returns the bitwise logical "exclusive or" of the

arguments.

$func BIT-NOT s.Int = s.Int;

BIT-NOT returns the bitwise logical "not" of the argument.

$func
$func

BIT-LEFT
BIT-RIGHT

s.Int s.Shift = s.Int;
s.Int s.Shift = s.Int;

BIT-LEFT returns the result of logically shifting s.Int by
the number of positions specified by s.Shift. If s.Shift is
non-negative, s.Int is shifted left, the new bits being zero­
filled. Otherwise, if s.Shift is negative, s.Int is shifted
right.

BIT-RIGHT returns the result of logically shifting s.Int by
the number of positions specified by s.Shift. If s.Shift is
non-negative, s.Int is shifted right. Otherwise, if s.Shift is
negative, s.Int is shifted left, the new bits being zero-filled.

$func? BIT-TEST s.Int s.Pos = ;

BIT-TEST returns a failure, if the position s.Pos in s.Int
is equal to zero, otherwise, it returns an empty ground expres­
sion.

$func
$func

BIT-SET
BIT-CLEAR

s.Int s.Pos = s.Int;
s.Int s.Pos = s.Int;

BIT-SET sets the position s.Pos in s.Int to 1, and returns
the integer thus obtained.

BIT-CLEAR sets the position s.Pos in s.Int to 0, and re­
turns the integer thus obtained.

$func BIT-LENGTH s.Int = s.Len;

BIT-LENGTH returns the "length" of s.Int. Namely, if s.Int
is non-negative, the function returns the position of the right­
most 0 such that there is no 1 to the left of this 0. Otherwise,
if s.Int is negative, the function returns the position of the
rightmost 1 such that there is no 0 to the left of this 1.

For example:

<BIT-LENGTH 3> ==> 2
<BIT-LENGTH 2> ==> 2
<BIT-LENGTH 1> ==> 1
<BIT-LENGTH 0> ==> 0
<BIT-LENGTH -1> ==> 0
<BIT-LENGTH -2> ==> 1

134

<BIT-LENGTH -3> ==> 2

*** DOS: CALLS TO THE OPERATING SYSTEM

The module DOS is extended with the following functions.

$func
$func
$func
$func

DELAY s.MSeconds = ;
SLEEP s.Seconds = ;
RANDOM s.Max = s.Rand;
RANDOMIZE = ;

I* 0 <= s.Rand < s.Max */

DELAY suspends the current program from execution for the
number of milliseconds specified by s.MSeconds. The interval is
accurate only to the nearest hundredth of a second, or the accu­
racy or the MSDOS clock, whichever is less accurate.

SLEEP suspends the current program from execution for the
number of seconds specified by s.Seconds. The interval is accu­
rate only to the nearest hundredth of a second, or the accuracy
or the MSDOS clock, whichever is less accurate.

RANDOM returns a pseudorandom integer in the range 0 to
s.Max minus 1.

RANDOMIZE initializes the random number generator with a
random value.

SCREEN INPUT/OUTPUT

*** SCREEN POSITIONS

Each screen position is specified by two non-negative inte­
gers s.Pos s.Col, where s.Pos is the row, and s.Col the column
of the position. The rows and columns are numbered starting from
0, the top left corner of the screen being at row 0, column 0.

*** WINDOWS

A window is an area on the screen, possibly surrounded by a
border. Each window has an attached number ranging from 1 to
255. The screen is considered to be a special, fictitious window
having the number 0.

When you create the window, you give the coordinates for
the upper left corner, and the number of rows and columns the
window should occupy. At any moment, one of the windows is con­
sidered to be the current one (which may be fictitious window
number 0, if there is no "true" window on the screen).

When a window is created, it becomes the current window,
and all output will automatically be sent to it. However, you
may make any other window the current one, thereby redirecting
the input and output.

135

Unless otherwise stated, all input/output functions de­
scribed later operate relative to the current window, the screen
positions being specified with respect to the upper left corner
of the current window. Each window has an attached cursor posi­
tion, which the program remembers as you shift between windows.

When you remove a window, the contents of the screen behind
the window is automatically reestablished.

You can use the same number more than once for creating
windows, but only the last window created with a given number
can be accessed by the functions dealing with windows.

*** ERRORS

The screen coordinates, as well as the window and field
sizes, must be integers. The color attribute values must be
integers ranging from 0 to 255. Window numbers must be integers
ranging from 0 to 255.

If a function is given arguments violating the above condi­
tions, the function returns $error(Fname "Invalid argument").

If a function is given screen coordinates lying outside the
screen, the function return $error(Fname "Invalid cursor
values").

If a function is required to perform an operation on a
window that does not exist, the function returns $error(Fname
"Unknown window")

If a function is required to perform an operation on the
current window, and there exists no window (except window number
0), the function returns $error(Fname "No window").

If a function is required to perform an operation on the
frame of a window, and the window has no frame, the function
returns $error(Fname "No frame").

If a function is required to created a window such that
some parts of the window lie outside the screen, the function
returns $error(Fname "Invalid argument").

*** CONIC: CONSOLE INPUT/OUTPUT

$func? KEY-PRESSED? = ;
$func READ-KEY = s.Char;

KEY-PRESSED? returns an empty ground expression if a key on
the keyboard has been pressed, otherwise, it returns a failure.

READ-KEY returns a single character from the keyboard, if a
key has been pressed. Otherwise it waits for a key to be
pressed. A number of keys, including the function and cursor
keys, will return two characters, where the first is ASCII 0.

$func
$func
$func

GET-SCR-CHAR-ATTR s.Row s.Col = s.Ch s.Attr;
PUT-SCR-CHAR s.Row s.Col s.Ch =
PUT-SCR-ATTR s.Row s.Col s.Attr = ;

136

GET-SCR-CHAR-ATTR returns the character s.Ch along with its
attribute s.Attr at position s.Row s.Col.

PUT-SCR-CHAR writes the character s.Ch on the screen at
position s.Row s.Col. The attribute at the position remains
unchanged.

PUT-SCR-ATTR sets the attribute of the character at posi­
tion s.Row s.Col to the value s.Attr. The character at the posi­
tion remains unchanged.

$func
$func
$func

GET-FIELD-STR s.Row s.Col s.Length = s.Chars;
PUT-FIELD-STR s.Row s.Col s.Length s.Chars = ;
PUT-FIELD-ATTR s.Row s.Col s.Length s.Attr = ;

These functions deal with fields. A field is specified by
its starting position s.Pos s.Col, and its length s.Length, and
must fit inside the current window.

GET-FIELD-STR returns the text occupying the field repre­
sented by a word symbol.

PUT-FIELD-STR writes the text s.Chars represented by a word
symbol into the field. If s.Chars contains more characters than
s.Length indicates, only the first s.Length characters are writ­
ten. If s.Chars is shorter than s.Length, the rest of the field
will be filled with blank spaces. The attributes of all the
positions in the field remain unchanged.

PUT-FIELD-ATTR gives the attribute s.Attr to all the posi­
tions in the field.

$func GET-CURSOR = s.Row s.Col;
$func SET-CURSOR s.Row s.Col = ;

GET-CURSOR returns the current cursor position in the cur­
rent window.

SET-CURSOR moves the cursor to the indicated position s.Row
s.Col relative to (0,0) in the current window.

$func
$func

GET-CURSOR-FORM = s.StartLine s.EndLine;
SET-CURSOR-FORM s.StartLine s.EndLine = ;

The height and vertical position of the cursor
single-character display area (cell) is determined by
scan line number and the end scan line number, which
non-negative integers s.StartLine and s.Endline.

$func
$func

GET-CURSOR-FORM returns the current cursor form.
SET-CURSOR-FORM sets the current cursor form.

GET-ATTRIBUTE = s.Attr;
SET-ATTRIBUTE s.Attr = ;

within a
the start
are small

Each window has its own write attribute, which is given to
the characters written to this window. When you create a window,
the write attribute automatically receives the value of the
window attribute.

GET-ATTRIBUTE returns the current write attribute of the

137

current window.
SET-ATTRIBUTE sets the write attribute of the current win­

dow to the new value s.Attr.

$func GET-TEXT-MODE = s.Rows s.Cols;

GET-TEXT-MODE returns the current screen size.

$func CLEAR-SCREEN = ;

CLEAR-SCREEN clears the screen within the limits of
current window. All the positions in the window are filled
blank spaces with the attributes set to the write attribute
the window.

$func CWRITE e.Exp =
$func CWRITELN e.Exp = ;
$func CPRINT e.Exp =
$func CPRINTLN e.Exp =

the
with

of

CWRITE writes the character representation of the ground
expression e.Exp to the current window.

CWRITELN works in the same way as CWRITE does, except that,
after e.Exp has been written, it causes a carriage return/line­
feed sequence to be sent to the current window.

CPRINT converts the ground expression e.Exp to a character
sequence in the same way as the function TO-CHARS does, and
writes the sequence to the current window.

CPRINTLN works in the same way as CPRINT does, except that,
after e.Exp has been written, it causes a carriage­
return/linefeed sequence to be sent to the current window.

Writing a carriage-return character causes the cursor to
move to the start of the current line. Writing a linefeed char­
acter causes the cursor to move to the next line without chang­
ing its horizontal position. Thus, to move the cursor to the
start of the next line, we have to write two characters: a car­
riage-return and a linefeed.

* * * WINDOW: WINDOW HANDLING

$const NO-FRAME = -1;

$func MAKE-WINDOW
s.WindowNo s.WindowAtt s.FrameAtt s.FrameStr
s.Row s.Col s.Height s.Width = ;

$func MAKE-WINDOW!
s.WindowNo s.WindowAtt s.FrameAtt s.FrameStr
s.Row s.Col s.Height s.Width
s.ClearWindow s.FrameStrPos s.FrameTypeStr = ;

MAKE-WINDOW and MAKE-WINDOW! create a new window on the
screen, which becomes the current one. There must be specified

138

the following arguments.
s.WindowNo is the number of the window. Each window is

identified by a number, which you use when selecting the active
window.

s.WindowAtt is the window write attribute.
s.FrameAtt is the attribute of the frame and title of the

window. If this argument is equal to -1, the window will have
neither a frame nor a title, in which case the arguments
s.FrameStr, s.FramePos and s.FrameTypeStr are ignored.

s.FrameStr is the title of the window represented by a word
symbol. The title will appear in the top border line. If the
title is empty, no text will appear in the top border. If the
title is longer than the border, it will be truncated.

s.Row and s.Col are the row and column positions of the top
left corner of the window, relative to the whole screen.

s.Height is the height of the window, in ter.ms of rows
(including the frame, if any).

s.Width is the width of the window, in ter.ms of columns
(including the frame, if any).

s.ClearWindow specifies whether the program will clear the
text area of the window after creating it. If the argument is
equal to 0, the text area of the newly created window is
cleared. If the argument is equal 1, the text area is filled
with blank spaces.

s.FrameStrPos specifies where the window title will be
located (within the top border of the frame). If the argument is
equal to 255, the title will be centered. If the argument is an
integer ranging from 0 to 254, the title will be placed at the
specified position (column), relative to the left border of the
window.

s.FrameTypeStr specifies how to draw the window frame. This
argument must be a word symbol containing exactly six charac­
ters, which will be used for drawing the following elements of
the frame:

1st char Upper left corner
2nd char Upper right corner
3rd char Lower left corner
4th char Lower right corner
5th char Horizontal line
6th char Vertical line

MAKE-WINDOW enables only the first eight of the above argu­
ments to be specified, the remaining arguments being given the
following default values:

s.ClearWindow
s.FrameStrPos
s.FrameTypeStr

1 (the window is cleared)
255 (the title is centered)
"\xDA\xBF\xCO\xD9\xC4\xB3"

(a single-line border)

$func CURRENT-WINDOW-NO = s.WindowNo;
$func CURRENT-WINDOW =

139

s.WindowNo s.WindowAtt s.FrameAtt s.FrameStr
s.Row s.Col s.Height s.Width;

$func CURRENT-WINDOW! =
s.WindowNo s.WindowAtt s.FrameAtt s.FrameStr
s.Row s.Col s.Height s.Width
s.ClearWindow s.FrameStrPos s.BorderChars ;

These functions enable the program to get the parameters of
the current window. If there is no "true" window on the screen,
the parameters of fictitious window number 0 (corresponding to
the whole screen) are returned.

$func? EXIST-WINDOW? s.WindowNo = ;
$func SHIFT-WINDOW s.WindowNo =
$func REMOVE-WINDOW = ;
$func REMOVE-WINDOW! s.WindowNo s.Refresh = ;

EXIST-WINDOW returns a failure if there is no window number
s.WindowNo. Otherwise, it returns an empty ground expression.

SHIFT-WINDOW changes the current window to the one referred
to by s.WindowNo. (The contents of the previously active window
and the cursor position in it are stored.) The new current win­
dow is then refreshed, in case it has been overwritten since its
last activation. (Fictitious window number 0 can't be shifted.)

REMOVE-WINDOW removes the current window from the screen,
and refreshes any windows behind this window. (Fictitious window
number 0 can't be removed.)

REMOVE-WINDOW removes the window specified by s.WindowNo,
which doesn't have to be the current one. (Fictitious window
number 0 can't be removed.) The value of s.Refresh determines
whether windows behind the removed one will be refreshed. If
s.Refresh is equal to 0, the windows won't be refreshed. If
s.Refresh is equal to 1, the windows will be refreshed.

$func RESIZE-WINDOW! s.Row s.Col s.Height s.Width = ;

RESIZE-WINDOW! changes position and size of the
window. Its arguments specify the new position (starting
column) and dimensions (number of rows and columns)
window.

SET-WINDOW-ATTR s.Attr = ;
SET-FRAME-ATTR s.Attr = ;

current
row and

for the

$func
$func
$func SET-WINDOW-FRAME s.FrameAtt s.FrameStr s.FrameStrPos

s.BorderChars = ;

SET-WINDOW-ATTR sets the write attribute of the current
window to s.Attr, and sets all the attribute values in the text
area of the window to s.Attr.

SET-FRAME-ATTR changes the attribute for the frame of the
current window.

SET-WINDOW-FRAME changes attribute and characters for the
frame of the current window. The window must have a frame, i.e.

140

the previous value of the frame attribute must be different from
-1.

$func SCROLL s.NoOfRows s.NoOfCols = ;

SCROLL scrolls the contents of the current window up (or
down) and left (or right). s.NoOfRows indicates the number of
lines to be scrolled up or down. A positive number scrolls up; a
negative number scrolls down. s.NoOfCols indicates the number of
columns to be scrolled left or right. A positive number scrolls
left; a negative number scrolls right.

$func
$func

GET-WINDOW-STR = s.ScreenString;
PUT-WINDOW-STR s.ScreenString = ;

GET-WINDOW-STR returns the contents of the text area of the
current window represented by a word symbol s.ScreenString. The
contents of the symbol is formed in the following way.
s.ScreenString contains the same number of lines as there are
lines in the current window. The length of each line is deter­
mined by the last non-blank character in that line. Each line in
s.ScreenString is terminated by a newline character.

PUT-WINDOW-STR puts the text contained by the word symbol
s.ScreenString to the current window according to the following
criteria:

* If there are more lines in the text than lines in the
window, PUT-WINDOW-STR writes lines until the window
space is exhausted.

* If there are fewer lines in the string than in the
window, PUT-WINDOW-STR fills out the remaining lines
in the window with blank spaces.

* If there are more characters on a text line than are
available on a window line, PUT-WINDOW-STR truncates
the text line to fit.

* If there are fewer characters in a line than columns
in the window, PUT-WINDOW-STR fills out the line with
blank spaces.

141

