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INTRODUCTION 

Refal Plus is a dialect of the programming language Refal. 
Refal (Recursive Function Algorithmic Language) was de­

signed by V.F.Turchin as a tool for describing the semantics of 
other algorithmic languages [Tur 86]. Later, when reasonably 
efficient Refal implementations had been created [BsR 77], 
[Rom 87a], Refal was used as a symbol manipulation language in 
such fields as computer algebra, compiler and interpreter writ­
ing, artificial intelligence, etc. 

The principal data type in Refal are arbitrary trees, re­
ferred to as ground expressions. In programs and text files 
ground expressions are represented by linear sequences of sym­
bols and parentheses, with parentheses being properly paired. 
Symbols represent such elementary data objects as characters, 
words, numbers and references to objects). 

The principal means of analyzing and accessing ground ex­
pressions is pattern matching. Refal patterns may contain sym­
bols, parentheses, and variables. If matching a ground expres­
sion against a pattern succeeds, the pattern's variables are 
bound to the corresponding components of the ground expression, 
which can be used later for building new ground expressions. 

A Refal program may contain function definitions. Each 
function takes as argument a ground expression and returns as 
its result a ground expression. Functions can call each other. 
In particular, a function can call itself (directly as well as 
indirectly, through other functions), in which case the function 
is said to be recursive. And it is recursion that is the princi­
pal way of structuring the control in Refal programs. 

Refal Plus has been developed to take into account the 
experience gained from the design, implementation and use of 
such languages as Basic Refal [BsR 77], Refal-2 [Rom 87a], 
Refal-4 [Rom 87b], Refal-5 [Tur 89], and RL [Rom 88]. 

As compared to the other Refal dialects, Refal Plus pro­
vides the following features. 

*** More advanced modules 

interface 
The inter­
visible in 

the parts of 

Each module is divided into two components: the 
of the module and the implementation of the module. 
face contains the parts of the module that may be 
other modules, whereas the implementation contains 
the module that are invisible in other modules. 

The interface of a module may contain any declarations, 
which means that not only function declarations may be exported, 
but also declarations of constants and objects (such as boxes 
and i/o channels) . When a function declaration is exported, not 
only the function name becomes visible, but also the formats of 
the function's arguments and results, which enables the calls to 
the function to be checked for correctness at compile time, 
rather than at run time. 
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For a module to be compiled, there must be known the inter­
faces of other modules, rather than other module's implementa­
tions. Thus, a module can be compiled even if the implementa­
tions of other modules have not been created. Besides, the fact 
that a module's implementation has been modified does not neces­
sitate recompiling the modules importing that module. Thus ar­
bitrary intermodule dependencies are allowed (including the 
cyclic ones) . 

*** Static declarations of dynamic objects 

All objects that can be created dynamically at run time 
(such as i/o channels, boxes, vectors, and tables) can also be 
declared statically, in which case they are given symbolic names 
to be used in the program text for referencing the objects. 

*** Function declarations 

Each Refal Plus function is declared as either failing or 
unfailing one. The evaluation of a call to a failing function 
can result in returning a special "failure" value. For example, 
all predicate functions return either an empty ground expression 
or a "failure". On the other hand, an unfailing function never 
returns a "failure". 

It should be noted that earlier Refal dialects enabled the 
programmer to define only unfailing functions. 

One more feature of Refal Plus is the possibility of defin­
ing functions accepting several arguments and returning several 
results. The number and type of a function's arguments is said 
to be the function's arity, whereas the number and type of the 
function's results is said to be the function's co-arity. 

The arity and co-arity of a function are specified by de­
claring the function's input and output formats, which are pat­
terns containing symbols, parentheses, and variables. The input 
format imposes syntax restrictions on the form of the calls to 
the function, whereas the output format imposes restrictions on 
the contexts in which the calls to the function may appear. By 
stripping the input format of all the symbols and parentheses, 
we get the variable sequence describing the function's arity. By 
stripping the output format, we get the description of the func­
tion's co-arity. 

The explicit function format declarations allow many errors 
to be detected at compile time, and also reduce the costs of 
evaluating the function calls. 

It should be noted that earlier Refal dialects assumed each 
function to accept a single argument and to return a single 
result. 

*** Failure and error trapping 
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If evaluating a Refal Plus construct terminates, it either 
succeeds, fails, or produces an error. 

If the evaluation succeeds, the result returned by the 
construct is a ground expressions. (The format of the returned 
expression is always known in advance, which permits Refal Plus 
implementations to represent the result by a tuple of ground 
expressions.) 

If the evaluation fails, the result returned is a "fail-
ure". 

If the evaluation produces an error, the result returned is 
an "error" value containing a ground expressions (which, usual­
ly, is an error message). 

Refal Plus provides several constructs enabling failures 
and errors to be caught and analyzed. 

*** Input/output of ground expressions 

Refal Plus provides functions that enable programs to input 
and output character strings as well as character representa­
tions of ground expressions, the conversion of ground expres­
sions into character sequences and vice versa being done auto­
matically. 

*** Operations on boxes, vectors, and tables 

Refal Plus provides a way to deal with dynamically created 
objects such as boxes, vectors, strings, and tables. Boxes are 
treated in the same way as in Refal-2, whereas vectors, strings, 
and tables are a feature of Refal Plus. 

A box is an object containing a ground expression. 
A vector is an object containing a finite sequence of 

ground expressions. 
A string is an object containing a finite sequence of char­

acters. 
Boxes, vectors, and strings can be accessed via reference 

symbols pointing to these objects. Refal Plus provides functions 
for creating, accessing and updating boxes, vectors, and 
strings, including accessing and updating individual components 
of vectors and strings. 

A table is an object containing a finite set of keys, each 
key associated with its value. The keys as well as values are 
ground expressions. A table can be accessed via reference sym­
bols pointing to the table. Refal Plus provides functions for 
creating and copying tables, for getting the value associated 
with a key in a table, and getting all the keys contained in a 
table. Essentially, a table is a representation of a function 
with the finite domain. 

*** "Vector" representation of ground expressions 
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The present implementations of Refal Plus are based on the 
"vector" representations of ground expressions [AbR 88] , which 
allows the copying of ground expressions to be reduced to copy­
ing a pair of pointers to the expression's representation. 

The cheapness of the copying operation permits Refal pro­
grams to be written in functional style, whereas the earlier 
Refal implementations forced the programmer to be careful with 
copying, thereby inducing him/her to stick to the imperative 
style. 

The objects that have become inaccessible to the program 
are automatically destroyed by the garbage collector provided by 
the Refal Plus implementations. 
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Chapter I. PROGRAMMING IN REFAL PLUS 

This chapter gives a step-by-step tutorial introduction to 
the language Refal Plus and provides a diverse group of program 
examples demonstrating some of the ways in which Refal Plus can 
be used to solve problems. A complete description of Refal Plus 
is given by Chapter II, "Syntax and Semantics of Refal Plus", 
where you can find information about certain subtle points and 
technical details. Some of the program examples may contain 
calls to unknown functions, in which case you may consult Chap­
ter III, "Library of Functions", as well as "Alphabetical Index 
of Functions". 

l.YOUR FIRST REFAL PLUS PROGRAM 

To maintain the historically established tradition, we 
begin by considering a simple program in Refal Plus: 

$use STDIO; 

Main 
= <Println "Hello!">; 

/* Import i/o functions */ 
/* from the module STDIO */ 
/* Define of the main function */ 
I* Print a line */ 

This program consists of two directives. The first direc-
tive 

$use STDIO; 

states that the program is going to use library input/output 
functions, which are to be imported from the module STDIO. The 
second directive is the definition of the function Main, and, by 
convention, the execution of a Refal Plus program always begins 
by evaluating the call to the function Main. 

The argument of the function Main must be empty. In the 
above program, the function Main calls the library function 
Println with the argument "Hello!", thereby causing the charac­
ter string 

Hello! 

followed by the character "new line", to be sent to the standard 
output device. Then the execution of the program terminates. 

2.DATA STRUCTURES 

2.1.GROUND EXPRESSIONS 

All data processed by Refal Plus programs are so-called 
ground expressions. 

Here are three examples of ground expressions 
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"John" "Smith" 33 "years" 
("Dave" 17) ("Mary" 24) ("Elizabeth" 6) 
("my" "house") "has" ("large" ("light" "windows")) 

The salient feature of the above examples is the use of 
parentheses. If we modify the expressions by rearranging the 
parentheses, the structure of the expressions will be modified, 
changing the implied meaning of the expressions. 

In addition to parentheses, the above expressions contain 
symbols. Here are a few examples of symbols: 

"John" "johN" "bye-bye" 1988 -99999999999999 

In general, ground expressions consist of symbols and pa­
rentheses. A ground expression is a sequence of zero or more 
ground terms. A ground term is either a symbol or a ground ex­
pression enclosed in parentheses"(" and ")". Thus, a ground 
expression is a sequence of symbols and parentheses, in which 
the parentheses are "properly paired". 

When in computer memory, ground expressions are usually 
stored as tree-structured objects. Nevertheless, in order to be 
input or output (printed, written to a file, read from a file, 
etc.), a ground expressions has to be represented as a linear 
sequence of characters. 

Refal Plus implementations enable the ground expressions to 
be input or output, with all necessary conversions performed 
automatically. 

A ground expression represented by a character stream is a 
sequence of tokens, each token representing either a parenthesis 
or a symbol. Tokens may be separated by spaces, which are ig­
nored unless they are essential to separate two consecutive 
tokens. (New line characters are considered to be equivalent to 
spaces.) 

The 
grams as 
symbols. 

following symbols can appear in source Refal Plus pro­
constants: character symbols, word symbols, and numeric 

A character symbol corresponds to a printable 
sequence of several character symbols is written 
string consisting of the corresponding characters 
in acute accents. 

character. A 
as a single 
and enclosed 

A word symbol corresponds to a character string and is 
written as the corresponding string enclosed in double quotes. 

If a word symbol begins with either a capital letter, a 
question mark (?), or an exclamation mark (!), and contains only 
letters, digits, minus signs (-), question marks (?), and excla­
mation marks (!),the double quotes enclosing the symbol may be 
omitted. 

Here are examples of words: 

"John" 
"A-Word" 
"a-very-very-long-Word" 
X-25m3s--

10 



"equal?" 
?-? 
? 

A numeric symbol corresponds to a signed integer, and is 
written as a non-empty sequence of decimal digits, which may be 
preceded by one of the characters"+" or"-". For example: 

237 
-99999999999999999999999999999999999999999999999 
+13 

Numeric symbols may be arbitrary large. 

2.2.REPRESENTATION OF DATA BY GROUND EXPRESSIONS 

Ground expressions are especially convenient for represent­
ing symbolic (i.e. not purely numeric) data. 

For example, suppose we want to deal with algebraic formu­
lae represented by ground expressions. In this case, we have to 
devise a way of representing constants, variables, and formulae 
formed by applying a binary operator to two smaller formulae. We 
may choose, for example, the following representation. 

Let [p] denote the ground expression that represents the 
formula p. Then, numbers may be represented by the corresponding 
numeric symbols, variables by the corresponding word symbols, 
and formulae formed by applying binary operators according to 
the following rules: 

[p+q] = ("plus" [p] [q]) 
[p-q] = ("minus" [p] [q]) 
[p6q] = ("mult" [p] [q]) 
[p/q] = ( "div" [p] [q]) 

q 
[p 1 = ("power" [p] [q]) 

Thus the formula 

2 
(X+Y )-512 

is to be represented by the ground expression 

("plus" ("minus" X ("power" Y 2)) 512) 

The next example is the problem of representing chess posi­
tions by ground expressions. 

First of all we have to denote the name and color 
piece. For example, ("white" King"), ("black" "Pawn"). 
have to specify the square occupied by each piece. For 
("e" 2), ("h" 7). Now a position may be represented as 
quence of ground terms, each term specifying the name, 
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and square of a piece. For example 

(("white" "King") ("g" 5)) 
(("black" "King") ("a" 7)) 
( ("white" "Pawn") ("c" 6)) 
( ("white" "Knight") ("g" 1)) 
(("black" "Knight") ("a" 8)) 

2.3.0BJECTS AND VALUES 

In the broad sense, "object" is usually understood to mean 
an entity that exists in time and may vary, but, nevertheless, 
does not lose its identity. 

A good example of objects is a human, who gets born, grows 
up, develops, and dies, but, nevertheless, remains, in a sense, 
the same person. 

Another classic example is due to Heraclitus (the prime of 
whose creative forces falls approximately on the years 504-501 
BC). Heraclitus taught that one cannot enter twice the same 
river, since, "even if you enter the same river, the water run­
ning against you is always new". Thus, the river may also serve 
as a good example of objects. 

In the broad sense, "value" is usually understood to mean 
an entity that is unable to vary, does not develop, and, in a 
sense, exists out of time. 

It is unknown whether values exist in real life, but they 
are the favorite subject of the mathematicians. For example, the 
number 25 is a typical value of that kind. 

A value may, certainly, be regarded as a special, degener­
ate, case of object (i.e. as a rigid object unable to develop). 
Nevertheless, the term "object" will be usually applied only to 
"proper" objects, which are not values. 

Since objects may vary, they are more difficult to deal 
with than values are. Thus objects are often provided with 
names. The basic property of names is that a name is unambigu­
ously associated with an object (i.e. a name unambiguously iden­
tifies the object). In contrast to objects, their names are 
typical values, there being no changes in the names in spite of 
there being changes in the objects. For example, the state of 
the River Thames is continuously changing, but, nevertheless, it 
has no effect on the word "Thames". One more example is given by 
the particulars of a person: the family name, the first name, 
the date and place of birth, etc. 

Within the scope of Refal Plus, the terms "object" and 
"value" have a more narrow sense. 

A Refal Plus value is a ground expression. 
A Refal Plus object is a "container", in which there can be 

kept ground expressions and other information. 
Refal Plus objects may be created at compile time as well 

as at run time. Each object is created simultaneously with a 
reference symbol, which is said to reference to, and to be the 
name of, the object. The basic property of the name of an object 
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is that it must be different from all other reference symbols 
existing at the moment the object is being created. Owing to 
this property, each reference symbol corresponds to a unique 
object, and equal reference symbols correspond to one and the 
same object. 

The interrelation between the name of an object, the ob­
ject, and the object's contents can be represented by the fol­
lowing picture: 

R --> [ . . . ] 

Refal Plus programs deal with object of the following 
types. 

Function objects contain compiled function definitions, and 
are created at compile time. 

All other objects may be created statically (i.e. at com­
pile time) as well as dynamically (i.e. at run time). 

Box objects are designed for storing ground expressions, 
each box containing one ground expression 

Table objects are designed for storing unordered sets of 
ordered pairs, each pair consisting of two ground expressions. 
The first component of a pair is said to be a key, whereas the 
second component is said to be the value associated with the 
key. All keys appearing in a table must be different from each 
other. Thus, each key in a table unambiguously corresponds to 
its value. Thus, a key uniquely determines its value. 

Channel objects are designed for performing input/output 
operations. 

Vector objects are designed for storing finite sequences of 
ground expressions. 

String objects are designed for storing finite character 
sequences. 

2.4.GARBAGE COLLECTION 

In spite of the fact that, at run time, Refal Plus programs 
can create objects, there is no explicit way in which the ob­
jects can be destroyed. Thus, the computer memory may well be 
filled with new and new objects, although many of them may not 
be needed any more. Theoretically, this is no problem, but, in 
practice, Refal programs are to be run by real computers with 
limited memory capacity. For that reason, all Refal Plus imple­
mentations include a garbage collector. 

Garbage collection is automatically started each time the 
free memory is exhausted, in order to find and destroy all ob­
jects that, being inaccessible via the references contained in 
variable values, are thus unable to influence the program's 
behavior. 

Figure 2.1 schematically 
as several objects along with 
the parts of expressions that 
facilitate the discussion, all 

shows the variable values as well 
their contents. The stars denote 
are not reference symbols. To 
objects are labeled with numbers. 
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The corresponding numbers denote reference symbols appearing in 
the ground expressions. 

It can be easily seen that reference 1 appearing in the 
variable values enables the access to object 1 and, indirectly 
(via object 1), to object 4, whereas reference 2 enables the 
access to object 2 and, indirectly (via object 2), to objects 4, 
5, 6, 3. Thus, there is no way of getting infor.mation from ob­
jects 7 and 8. Therefore, if the garbage collection started at 
this moment, objects 7 and 8 would be destroyed. Now, if refer­
ence 1 were removed from the variable values, object 1 would 
become inaccessible. But, if reference 1 were retained, and 
reference 2 removed, then all the objects would become inacces­
sible, except objects 1 and 4. 

VARIABLE VALUES: 
[* * 1 * * * * * * 2 * * * * *] 

1: [* * * 4] 
2: [4 * * 5] 
3: [* * 5] 
4: [* * *] 
5: [* 6 * 3] 
6:[**4*] 
7:[3*8] 
8: [* 7] 

Fig.2.1. Objects and references. 

3.EVALUATION AND ANALYSIS OF GROUND EXPRESSIONS 

3.1.RESULT EXPRESSIONS 

Refal Plus result expressions are, in a sense, an analog to 
the well-known arithmetic expressions. For example, the arithme­
tic expression X*Y+3 corresponds to the Refal Plus result 
expression 

<"+" <"*" sX sY> 3> 

Each pair of angular brackets designates a function call 
of the for.m <Fname Re>, where Fname is the name of the function 
to be called, and Re is the argument to be passed to the func­
tion. Thus, the arguments of function calls are always enclosed 
in angular "functional" brackets, which eliminates the necessity 
to use parentheses for indicating the order in which the subex­
pressions are to be evaluated. For example, the expression 
X*(A+B) rewritten in Refal becomes 

<"*" sX <"+" sA sB>> 

whereas the expression X*A+B is written in Refal as 
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<"+" <"*" sX sA> sB> 

Result expressions, similarly to arithmetic expressions in 
other languages, are used for producing new values from other 
ones. Thus, a result expression is evaluated by replacing all 
its variables with their values and evaluating all function 
calls. If there are nested function calls, the inner calls are 
evaluated before the surrounding ones. 

It is obvious that, for a result expression to be evaluat­
ed, it is necessary to know the values of the variables appear­
ing in the expression. The information about the variable values 
will be referred to as an environment. The notation 

{Vl = Gel, ... ' Vn = Gen} 

will be used for denoting the environment in which the variables 
Vl, ... , Vn have the respective values Gel, ... , Gen. 

As can be seen from the above, the representation of arith­
metic expressions by result expressions is rather clumsy. Never­
theless, it does have certain advantages. 

The point is that the choice of one or another notation is 
determined by the nature of the objects to be dealt with, as 
well as by the set of operations to be applied to the objects. 

It is reasonable to choose the notation in such a way that 
the most frequently used operations be denoted as concisely as 
possible. But the most succinct notation is, certainly, no nota­
tion at all, i.e. an empty place! 

As far as arithmetic expressions are concerned, we have two 
basic operations: addition and multiplication. One of the opera­
tions may be denoted by empty place, and the common practice is 
to omit the operator of multiplication. 

On the other hand, the principal data dealt with by Refal 
Plus are ground expressions, rather than numbers. Since the 
basic operations on ground expression are the concatenation of 
two expressions and the enclosing of an expression in parenthe­
ses, it is for these operations that the syntax of Refal Plus 
provides a very concise notation. 

Namely, if Re' and Re" are result expressions, so is the 
construct 

Re' Re" 

which means that Re' and Re" are to be evaluated and the values 
returned are to be concatenated to produce the result of the 
whole expression. Thus, if the evaluation of Re' and Re" results 
in returning ground expressions Ge' and Ge" respectively, the 
ground expression Ge' Ge" is returned as the result of evalu­
ating Re' Re". 

If Re is a result expression, so is the construct 

( Re ) 
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which means that Re is to be evaluated and the value returned is 
to be enclosed in parentheses to produce the result of the whole 
expression. Thus, if the evaluation of Re results in returning a 
ground expression Ge, the ground expression ( Ge ) is returned 
as the result of evaluating ( Re ) 

For example, the result of evaluating the result expression 

sX '+' sY (eZ) 

in the environment {sX = 25, sY = 36, eZ = A (B C) D} 
ground expression 

25 '+' 36 (A (B C) D) 

3.2.VARIABLES 

is the 

Each variable in Refal Plus begins with a variable type 
designator. The type designator specifies the set of values the 
variable can be bound to, and must be one of the four letters: 
s, t, v, or e. The variables are, accordingly, distinguished 
into four classes: s-variables, t-variables, v-variables, and 
a-variables. 

A variable's value should be consistent with the type of 
the variable: an s-variable's value must be a symbol, a t­
variable's value must be a ground term, a v-variable's value 
must be a non-empty ground expression, and, finally, an a­
variable's value may be any ground expression, 

In the following, the term "ve-variable" will be understood 
to mean "a variable that is either a v-variable or an a­
variable". 

3.3.FORMATS OF FUNCTIONS 

From the purely formal point of view, all Refal Plus func­
tions are assumed to take a single argument and to return a 
single result. In many cases, however, the structure of a func­
tion's argument and result is known in advance. For example, the 
function "+" is known to accept a ground expression consisting 
of two symbols and to return a ground expression consisting of a 
single symbol. 

The restrictions imposed on the argument and result of a 
function are specified by the declaration of the function. For 
example, the declaration of the function "+" has the form: 

$func "+" sX sY = sZ; 

In general, the declaration of a function Fname has the 
form 

$func Fname Fin = Fout; 
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where Fin is the input format of the function, and Fout is its 
output format. The formats of functions may contain symbols, 
parentheses, and variables. The variable indices in formats are 
insignificant, serve as comments, and may be omitted. 

All input and output formats must be "hard", which means 
that any subexpression of a format may contain no more that one 
ve-variable at the top level of parentheses. For example, the 
format (e) (e) is hard, whereas the format e A e is not hard, 
containing as it does two a-variables at the same level of pa­
rentheses. 

All inputs to, and results of, a function must have the 
structure specified by the function's declaration. The func­
tion's declaration must precede all references to the function 
made in the result expressions appearing in the program. If the 
function is defined in the program, its declaration must explic­
itly appear in the program prior to the definition. Otherwise, 
if the function is defined in other module, its declaration must 
be imported into the program by a directive $use. 

When the program is being compiled, the compiler verifies 
that the argument expressions in the calls to the function are 
consistent with the input format of the function. For example, 
consider the result expression 

<"+" 2 <"+" sX sY>> 

The inner call is obviously correct. But, to check the outer 
call, we have to make use of the information about the structure 
of the results returned by the function"+". Thus, on replacing 
<"+" sX sY> with the output format of the function "+" we get 
<"+" 2 s>. Now we see that the argument of the outer call con­
forms to the input format of the function "+". On the other 
hand, the result expression 

<"+" 2 <"+" sX sY> 3> 

is regarded as illegal, because the argument of the outer call 
consists of three symbols, despite the input format of the func­
tion "+" requiring the argument to consist of two symbols. 

Thus, specifying the input and output formats enables many 
errors to be found at compile time, rather than at run time. 

3.4.PATTERNS 

Patterns provide the principal way of analyzing ground 
expressions. 

Patterns may contain symbols, parentheses, and variables. 
For example: 

ABC 
tx (eY B) 

A pattern may be regarded as representing the set of all 
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ground expressions that can be produced from the pattern by 
replacing the pattern's variables by some values consistent with 
the types of the variables. For example, the pattern A eX 
represents the set of ground expressions beginning with the 
symbol A, and the pattern sX sY the set of ground expressions 
consisting of exactly two symbols. 

If there are several occurrences of the same variable in a 
pattern, all the occurrences must be bound to the same value. 
For example, the pattern tX tx represents the set of ground 
expressions consisting of two equal terms. 

Let Ge be a ground expression, and P a pattern. Then Ge can 
be matched against P to determine whether Ge has the structure 
specified by P. If so, the matching of Ge against P is said to 
succeed, otherwise to fail. 

If the matching of Ge against P succeeds, the variables 
appearing in P are bound to the corresponding components of Ge. 
Thus, the result of matching Ge against P is an environment Env. 
For example, the result of matching the ground expression 
AAA BBB CCC against the pattern eX sY is the environment {eX 
= AAA BBB, sY =CCC}. 

Now let us try to match the ground expression A B C 
against the pattern el sX e2. It can be easily seen that the 
matching can succeed in three different ways, resulting in three 
different environments: 

{el = sX = A, e2 = B C} 
{el = A, sX = B, e2 = C} 
{el = A B, sX = C, e2 = } 

What is to be considered the result 
situations? Refal Plus solves the problem 
All variants of matching are considered to 

of matching in 
in the following 

be acceptable, 
some of variants "take precedence" over others. 

such 
way. 
but 

More specifically, let Envl and Env2 be different variants 
of matching Ge against P. Consider all variables appearing in P. 
Since Envl and Env2 are different, P must contain some variables 
whose values in Envl and Env2 are different. Let V be the left­
most of such variables, and compare the length of the values 
assigned to V by Envl and Env2. If the value assigned by Envl is 
shorter than the value assigned by Env2, then Envl is assumed to 
"precede" Env2 (i.e. to take precedence over Env2), otherwise 
Env2 is assumed to "precede" Envl. 

For example, matching the ground expression (Al A2 A3) 
(Bl B2) against the pattern el (eX sA eY) e2 results in the 
following set of environments 

{el = eX = sA = Al, eY = A2 A3, e2 = (Bl B2)} 
{el = eX = Al, sA = A2, eY = A3, e2 = (Bl B2)} 
{el = eX = Al A2, sA = A3, eY = e2 = (Bl B2)} 
{el = (Al A2 A3) , eX = sA = Bl, eY = B2, e2 = } 

{el = (Al A2 A3) , eX = Bl, sA = B2, eY = e2 = } 

where the variants of matching are listed in accordance with 
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their precedence, i.e. the first variant comes first, etc. 
If the variants of matching are ordered as described above, 

the matching is said to be done from left to right. Refal Plus, 
however, enables the matching to be also done from right to 
left, which means that, instead of comparing the values of the 
leftmost variable, we have to compare the values of the right­
most variable. The direction of matching can be changed by pre­
fixing the key word $r to the pattern. For example, if the 
ground expression (Al A2 A3) (Bl B2) is matched against the 
pattern $r el (eX sA eY) e2, the set of variants of matching 
will be ordered as follows: 

{el = (Al A2 A3) I eX = Bl, sA = B2, eY = e2 = } 

{el = (Al A2 A3) I eX = sA = Bl, eY = B2, e2 = } 

{el = eX = Al A2, sA = A3, eY = e2 = (Bl B2)} 
{el = eX = Al, sA = A2, eY = A3, e2 = (Bl B2)} 
{el = eX = sA = Al, eY = A2 A3, e2 = (Bl B2)} 

3.5.PATHS, RESTS, AND SOURCES 

Result expressions and patterns may be used to construct 
larger syntax units, paths. Whereas result expressions may be 
considered as an analog to arithmetic expressions, paths are an 
analog to statements (such as assignment statements, loop state­
ments, etc.). 

A path is evaluated with respect to an environment. If the 
evaluation terminates, it returns a value. 

Refal Plus is rather sparing in using keywords and delimit­
ers, which may cause some syntactical problems. For example, 
some paths begin with result expressions. Let Q be such a path 
and Re a result expression. Consider the construct Re Q ob­
tained by juxtaposing Re and Q. This construct is obviously 
ambiguous, because it is impossible to determine the boundary 
between Re and Q. 

This ambiguity can be removed by inserting a delimiter (for 
example, a comma) between the result expression and the path: 
Re , Q. Radical though this solution may seem, in many cases the 
delimiter would be superfluous, Q being easy to separate from 
the preceding construct. 

Such "good-looking" paths, easy to separate from the pre­
ceding constructs, are referred to as rests. 

Another important class of paths is formed by sources, 
whose principal syntactical feature is that a source cannot 
contain comma at the top level of curly braces. 

Henceforth, we shall denote paths by Q, rests by R, and 
sources by S. 

Now let us consider several simple kinds of paths, rests, 
and sources. 

3.6.DELIMITED PATHS 

Any path Q can be turned into a rest by prefixing a comma 
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to Q. Thus we get the delimited path 

' Q 

which in all respects is equivalent to the original path Q 
(except that, syntactically, it is a special kind of paths, a 
rest) . 

3.7.RESULT EXPRESSIONS AS SOURCES 

Any result expression Re is a source, and, therefore, a 
path. Thus it can be turned into the rest 

, Re 

by prefixing a comma to Re. 
Evaluating a source of the form Re amounts to evaluating 

the result expression Re. If this evaluation results in return­
ing a ground expression Ge, then Ge is taken to be the result of 
the source Re. 

3.8.RIGHT HAND SIDES 

A construct of the form 

= Q 

where Q is a path, is referred to as a right hand side. Syntac­
tically, a right hand side is a rest, and, therefore, a path. 

Evaluating a right hand side = Q amounts to evaluating 
the path Q. If the evaluation of Q results in returning a ground 
expression Ge, then Ge is taken to be the result of the whole 
right hand side. 

The difference between the path Re and the path = Re 
seems to be purely syntactic, but this is not so. Actually, the 
subtle semantic difference between the two constructs does exist 
and manifest itself in cases where the evaluation of Re results 
in returning a failure. Later this question will be given due 
consideration, but now we won't dwell on it any more. 

4.FUNCTIONS DEFINED IN THE PROGRAM 

4.1.FUNCTION DEFINITIONS 

A Refal program consists of function definitions, each 
definition having either of the two forms: 

Fname \{ Sntl; Snt2; 
Fname { Sntl; Snt2; 
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where Fname is the name of the function being defined, and 
Sntl, Snt2, ... , Sntn are sentences. (Being, at present, of no 
importance, the subtle difference between "\{" and "{" will be 
explained later.) 

Each sentence Sntj is of the form Pj Rj, with Pj being the 
input pattern of the sentence, and Rj the rest of the sentence. 

A function definition specifies the way in which the calls 
to the function are to be evaluated. Suppose a call 

<Fname Re> 

to the function Fname is to be evaluated. Then the result ex­
pression Re is evaluated. If a ground expression Ge is returned, 
an attempt is made to match Ge against the input patterns Pl, 
P2, ... , Pn, in order to find the first pattern Pj such that 
matching Ge against P succeeds. Let Env be the "first" variant 
of matching Ge against P. Then the rest Rj is evaluated in the 
environment Env. If a ground expression Ge' is returned, this 
expression is taken to be the result of evaluating the function 
call. 

For example, let us consider a function Sumsq computing the 
sum of the squares of two numbers. Here is the definition of 
this function written in traditional notation 

Sumsq(X,Y) = X*X + Y*Y 

which may be rewritten in Refal in the following way: 

$func Sumsq sX sY = sZ; 

Sumsq 
{ 

sX sY = <"+" <"*" sX sX> <"*" sY sY>>; 
} ; 

It should be noted that the declaration of a function must 
precede the function's definition as well as the calls to the 
function, since the information provided by the declaration is 
necessary for compiling the function's definition as well as the 
calls to the function. 

If the function declaration has the form 

$func Fname Fin = Fout; 

the compiler verifies that the input patterns Pl, P2, ... , Pn 
are instances of the input format Fin, whereas all the rests 
Rl, R2, ... , Rn are certain to return ground expressions satis­
fying the output format Fout. 

Some constructs appearing in function definitions may be 
abbreviated in the following way. 

If a sentence Sntj has the rest Rj consisting of a single 
comma, the rest can be omitted, so that the sentence takes the 
form Pj. 
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If a function definition contains a single sentence Snt, 
i.e. has the form 

Fname \{ Snt; }; 

it can be abbreviated to 

Fname Snt; 

For example, the above definition of the function Sumsq can 
be written as 

Sumsq sX sY = <"+" <"*" sX sX> <"*" sY sY>>; 

4.2.LOCAL VARIABLES 

Consider a function Sq-Sub1 that decreases the argument by 
one and squares the number obtained: 

Sq-Sub1(X) = (X-1)*(X-1) 

This function can be defined in Refal in the following way: 

$func Sq-Sub1 sX = sZ; 

Sq-Sub1 sX = <"*" <"-" sX 1> <"-" sX 1>>; 

An obvious deficiency of this definition is that it in­
volves duplicate calculations: the expression<"-" sX 1> is to 
be evaluated twice. But this can be avoided by introducing an 
auxiliary function Sq: 

$func Sq-Sub1 sX = sZ; 
$func Sq sY = sZ; 

Sq-Sub1 sX = <Sq <"-" sX 1>>; 
Sq sY = <"*" sY sY>; 

The function Sq serves the only purpose: it waits for the 
argument to be decremented by one, catches the result obtained, 
and continues the computation. It is obvious that superfluous 
auxiliary functions can make the program obscure and difficult 
to understand, for which reason Refal Plus enables us to intro­
duce local variables for denoting intermediate values. This can 
be achieved by means of bindings, which are paths of the form 

S He R 

where S is a source, R is a rest, and He is a so called "hard 
expression". The hard expression He, which consists of symbols, 
brackets, and variables, must satisfy the following restric­
tions. First, He must not contain two occurrences of the same 
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variable. Second, each subexpression of He can contain no more 
than one ve-variable at the top level. 

It can be easily seen that, being a hard expression, He can 
be regarded as a format expression, and the Refal Plus compiler 
verifies that S is certain to return ground expressions satisfy­
ing the format He. 

The path S ::HeR is evaluated as follows. First, the 
source S is evaluated. If the result returned is a ground ex­
pression Ge, the variables in He are bound to the corresponding 
subexpressions of Ge. Then the rest R is evaluated, and the 
result returned is taken to be the result of the whole con­
struct. 

Now the definition of Sq-Sub1 can be rewritten in the fol­
lowing way: 

$func Sq-Sub1 sX = sZ; 

Sq-Sub1 sX = 
<" -" sX 1> : : sY , 

<"*" sY sY>; 

It should be noted that the evaluation of the path 
S · · He R begins by evaluating the source S in the environment 
in which the whole construct is evaluated. Then the variables in 
He are bound, and the environment is extended with the new bind­
ings, so that the rest R is evaluated in the extended environ­
ment. Thus the evaluation of the path 

10 0 : : sX, <" +" sX 1> : : sX = sX 

returns 101. 
The hard expression He in a path S ::HeR may be empty, 

in which case the path takes the form S :: R and can be ab­
breviated to S R. This construct (called condition) is usually 
used in cases where we are interested in the side effects pro­
duced by evaluating S, rather than in the result returned by S. 
For example, evaluating the path 

<Println "A">, <Println "B">, <Println "C"> = 

causes three lines to be printed, the first line consisting of 
the character A, the second of the character B, and the third of 
the character C. 

The rest R in a path S ::HeR may consist of 
comma, in which case the path takes the form S ::He 
be abbreviated to S ::He. 

4.3.RECURSION 

a single 
and can 

A function definition may contain calls to library func­
tions as well as calls to functions defined in the program. In 
particular, a function may call itself (either directly or 
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through other functions), in which case the function definition 
is said to be recursive. 

A function may have to be defined recursively if the set of 
arguments for which the function is defined is infinite, and 
there is no limitation on the size of the arguments. 

Let us consider, for example, the following problem. Sup­
pose we have to define a function Reverse that "reverses" a 
ground expression by rearranging its top-level terms in reverse 
order. Thus, if the argument has the form 

Gtl Gt2 Gtn 

where Gtl, Gt2, ... , Gtn are ground terms, then the function 
is to return the ground expression 

Gtn ... Gt2 Gtl 

If the length of the argument expression were limited, for 
example, if we knew that n<=3, we could consider four separate 
cases to produce the following function definition 

$func Reverse e.Exp = e.Exp; 

Reverse 
{ 

= ; 
tl = tl; 
tl t2 = t2 tl; 
tl t2 t3 = t3 t2 tl; 
} ; 

There is no limit on the length of the input expressions, 
however. Thus, the function definition has to consider an infi­
nite number of cases, which seems to imply that the program has 
to be infinite in size. 

This difficulty, however, can be circumvented by means of 
recursion. We can reason in the following way. Let us consider 
an argument expression 

Gtl Gt2 Gtn 

If n=O, then the result to be returned is the empty expres­
sion. Otherwise, if n>=l, the problem can be reduced to a less 
difficult one. Namely, by discarding the first term in the argu­
ment expression we get the expression 

Gt2 ... Gtn 

which is n-1 terms in length. By reversing this expression we 
get 

Gtn ... Gt2 
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Now, by adding Gtl to the end of the expression, we get the 
desired result 

Gtn ... Gt2 Gtl 

Reasoning in this way, we come to the following recursive 
definition of the function Reverse: 

Reverse 
{ 
= ; 
t.X e.Rest = <Reverse e.Rest> t.X; 
} ; 

It is interesting that there exists another solution to the 
problem of the expression reversion, which is in no way worse 
than the above. Namely, the problem can be reduced to a less 
difficult one by discarding the last term, rather than the first 
one, in which case we get the following solution: 

Reverse 
{ 
= ; 
e.Rest t.X = t.X <Reverse e.Rest>; 
} ; 

It can be easily seen that the essence of the solution 
consists in dividing the original expression Ge into two smaller 
non-empty expressions Gel and Ge2 such that 

Ge = Gel Ge2 

Now, each of the expressions Gel and Ge2 can be 
separately. Let the corresponding expressions obtained 
and Ge2'. Then the expression 

Ge2' Gel' 

reversed 
be Gel' 

is obviously the result of reversing the original expression Ge. 
If Refal Plus is implemented for a multi-processor computer 

in such a way that the reversion of Gel and Ge2 can be performed 
simultaneously, it is advantageous to make Gel and Ge2 approxi­
mately equal in length. In this way we get the following modifi­
cation of the above function definition, in which there are 
calls to library functions from the modules ACCESS and ARITHM. 

$func Reverse e.Exp = e.Exp; 

Reverse 
{ 
= ; 
tl = tl; 
eX, 
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} ; 

<Length e.X> :: sLen, 
<Div sLen 2> :: sDiv, 
= <Reverse <Middle sDiv 0 eX>> 

<Reverse <Left 0 sDiv eX>>; 

5 .FAILURES AND ERRORS 

S.l.FAILURES PRODUCED BY EVALUATING RESULT EXPRESSIONS AND PATHS 

The evaluation of a path Q has hitherto been assumed to 
return a ground expression Ge. It can, however, also result in 
failure or error. 

In case of failure, the result returned is a special value 
"failure", rather that a ground expression. 

The simplest way of producing a failure is to evaluate the 
rest of the form 

$fail 

In case of error, the result returned is a special error 
value, rather than a ground expression. This value has the form 
$error(Ge), where the ground expression Ge is an error message. 
The error message usually begins with a word symbol, the symbol 
being the name of the function of which the evaluation has 
caused the error. For example, an attempt at evaluating the 
function call 

<DIV 10 O> 

causes the error "divide by zero", which results in returning 
the value 

$error(DIV "Divide by zero") 

The values of the form $error(Ge) possess the following 
property. Suppose that a construct is to be evaluated, and the 
evaluation of a constituent part of the construct results in 
returning $error(Ge). Then, the evaluation of the construct 
terminates, the result returned being $error(Ge). The only 
exception to this rule is the construct $trap specifically 
designed for "trapping" errors. 

In order for the informal language description to 
cise, the detailed consideration of the subtle points 
in dealing with errors will be postponed until Chapters 
III. 

5.2.MATCHES 

Consider the following problem. Let Ge be a ground 
sion known to contain no less than two character symbols 
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the top level, and we want this expression Ge to be divided into 
three parts GeX, GeA, and GeY, such that Ge = GeX 1 + 1 GeA 
1 + 1 GeY, with GeX and GeY not containing 1 + 1 at the top level. 
Let us give the function performing this task the name of "++". 
Then, for example, 

<"++" 1 AAA+BBB+CCC+DDD+EEE 1 > => 
( I AAA I ) ( I BBB+CCC+DDD I ) ( I EEE I ) 

Thus, it is necessary to find the leftmost 1 + 1 in Ge as 
well as the rightmost one. The leftmost 1 + 1 can be easily found 
by matching Ge against the pattern $1 eX 1 + 1 eP, whereas the 
rightmost 1 + 1 can be found by matching Ge against the pattern 
$r eQ 1 + 1 eY. Any pattern enables the matching to be done either 
from left to right or from right to left, there being no way of 
combining the two directions of matching in a single pattern, 
for which reason we have to perform the analysis of the expres­
sion in two steps. This can be expressed in the following way: 

$func "++" 
$func "++Aux" 

eZ 
(eX) (eP) 

= (eX) (eA) (eY) ; 
= (eX) (eA) (eY) ; 

"++" $1 eX 1 + 1 eP = <"++Aux" (eX) (eP)>; 
"++Aux" $r (eX) (eA 1 + 1 eY) = (eX) (eA) (eY); 

Thus, to break up the analysis of the expression into two 
stages, we have had to introduce an auxiliary function. This 
could have been avoided, however, by making use of the construct 
"match". 

A match is a path of the form 

S : Snt 

where S is a source, and Snt a sentence of the form P R, the 
sentence Snt consisting of the pattern P and the rest R. 

If the rest R consists of a single comma, it may be omit­
ted, in which case the match S : P , takes the form S : P . 

The evaluation of a match S : P R proceeds as follows. 
First, the source S is evaluated. If the value returned is a 
failure, the result of evaluating the match is a failure. Other­
wise, if the value returned is a ground expression Ge, Ge is 
matched against the pattern P, and consideration is given to the 
variants of matching satisfying the following additional re­
striction: if in the environment in which the whole match is 
evaluated some variables are bound to values, these variables 
must be given the same values in the environment produced by 
matching. 

For example, suppose the variable sX has been given the 
value 1. Then matching the ground expression 1 2 1 2 against 
the pattern eA sX eB results in producing only two variants of 
matching 

{eA = , sX = 1, eB = 2 1 2} 
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{eA = 1 2, sX = 1, eB = 2} 

whereas, if there were no restriction of the value of sX, there 
would be four variants. 

Now, let Env1, Env2, ... , Envn be all the variants of 
matching thus obtained listed according to the order relation 
introduced above on the set of the variants of matching. Then an 
attempt is made to evaluate R in the environment Env1. If the 
value returned is a ground expression Ge, this expression is 
taken to be the result of the whole match. Otherwise, if the 
value returned is a failure, this failure is "caught", i.e. the 
first variant of matching is discarded, and the same attempt is 
made to evaluate R for all remaining variants of matching. 

If, for all the variants of matching, evaluating the rest R 
results in a failure, the result of the whole match is a fail­
ure. 

For example, evaluating the path 

'ABC' $r e1 sX e2, <Print sX> $fail 

results in the character sequence 'CBA' being printed, and a 
failure being returned as the result. 

Now we can give a definition of the function "++" without 
introducing an auxiliary function "++Aux": 

$func "++" eZ = (eX) (eA) (eY) ; 

"++" 
$1 eX '+' eP, 

eP : $r eA '+' eY 
= (eX) (eA) (eY) ; 

5.3.FAILURE TRAPPING 

A programs written in Refal Plus can determine whether the 
evaluation of a path has resulted in returning a failure, the 
result of the test being used to control the execution of the 
program. 

A negative condition is a path of the form 

# S R 

where S is a source, and R a rest. If the rest R consists of a 
single comma, it may be omitted, in which case the negative 
condition takes the form # S . 

Syntactically, a negative condition is a rest. 
The evaluation of a negative condition proceeds as follows. 

The source S is evaluated. If the value returned is an empty 
ground expression, the result of evaluating the whole construct 
is a failure. Otherwise, if the value returned is a failure, the 
rest R is evaluated to produce the result of the whole con­
struct. 
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An alternative is a path of the form 

\{ Q1; Q2; Qn; } 

where Q1, Q2, ... ' Qn are paths. Syntactically, an alternative 
is a source. 

The evaluation of an alternative proceeds as follows. The 
path Q1 is evaluated. If the value returned is a ground expres­
sion Ge, this expression is taken to be the result of the whole 
alternative. Otherwise, if the result of evaluating Q1 is a 
failure, an attempt is made to evaluate \{Q2; ... , Qn;}, and 
the value returned is taken to be the result of the whole con­
struct. Thus, alternatives can be used for "catching" failures. 

If the evaluation of all the paths Q1, Q2, ... , Qn re­
sults in returning failures, the result of evaluating the whole 
construct is taken to be a failure. 

For example, consider the path 

1 :: sX, 
\{ sX : 0 = 1; sX : 1 = 0; } 

which is evaluated in the following way. First, the evaluation 
of the binding 1 :: sX results in the variable sX being given 
the value 1. Then an attempt is made to evaluate the first path 
of the alternative, i.e. sX : 0 = 1 . Matching 0 against sX 
fails, and, consequently, so does the evaluation of the first 
path. Thus, an attempt is made to evaluate the second path 
sX : 1 = 0 , which results in returning 0, and this value is 
taken to be the result of the whole alternative. 

In some cases, however, there may prove to be useful anoth­
er variety of alternatives, which has the form 

{ Q1; Q2; ... Qn; } 

The difference between the two kinds of alternatives 
emerges in cases where the evaluation of all the paths results 
in returning failures. On such occasions, instead of returning a 
failure, the latter form of alternatives returns an error 
$error(Fname "Unexpected fail"), where Fname is the name of the 
function in which the alternative appears. 

Thus, the pair of brackets \{ ... } can be regarded as 
"transparent" for failures, whereas the pair { } can be 
regarded as "opaque", the reason being that a failure is incapa­
ble of "jumping" out of an alternative { Q1; Q2; ... Qn; }. 

form 
Programs written in Refal Plus often contain paths of the 

s 
s 

Ve, 
Ve, 

\{Ve 
{Ve 

Snt1; Ve 
Snt1; Ve 

Snt2; 
Snt2; 

... ' 

... ' 
Ve 
Ve 

Sntn;} 
Sntn;} 

where Ve is an a-variable that does not appear in other places 
of the function definition, and each sentence Sntj has the form 
Pj Rj. Such paths can, correspondingly, be abbreviated to alter-
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native matches 

s 
s 

\{Snt1; Snt2; 
{Snt1; Snt2; 

Sntn;} 
Sntn;} 

where the constructs \{Snt1; Snt2; Sntn;} and {Snt1; 
Snt2; Sntn;} are called pattern alternatives. 

If a rest Rj consists of a single comma, it can be omitted, 
in which case the corresponding sentence Pj Rj takes the form 
Pj. 

For example, the alternative { sX : 0 = 1; sX 
can be abbreviated to the alternative match sX : { 0 
0; }, and the alternative \{ sX: A,; sX B,; } 
\{A; B; }. 

1 = 
= 1; 
to 

0; } 
1 = 

sX 

Syntactically, all alternative matches are sources, which, 
for example, enables us to write the paths of the form 

sX : { 0 = 1 ; 1 = 0 ; } sY = <"+" sX sY> 

The evaluation of this paths begins by evaluating the 
source sX : {0 = 1; 1 = 0;}. Then the variable sY is bound to 
the value returned, and the path = <"+" sX sY> is evaluated in 
the extended environment. 

5.4.CONTROL OVER FAILURE TRAPPING 

As we have seen, Refal Plus enables failures to be caught, 
providing as it does a fairly rich collection of failure trap­
ping constructs. Sometimes, however, we want to produce so pow­
erful a failure as to overcome all the traps waiting for it (or, 
at least, some of them) . This can be achieved by means of fences 
and cuts. 

A fence is a rest of the form \? Q , whereas a cut is a 
rest of the form \! Q 

Fences and cuts appearing in a program serve as marks con­
trolling the propagation of failures. Each cut \! Q is re­
quired to be enclosed in a fence of the form \? ... \! Q ... 
The evaluation of a cut \! Q proceeds as follows. An attempt 
is made to evaluate the path Q. If this evaluation terminates 
and results in returning a value X, this X is taken to be the 
result of the whole construct \? ... \! Q ... 

In particular, if X is a failure, so is the result of eval­
uating the whole construct \? ... \! Q ... 

The following example illustrates the use of fences and 
cuts. Consider the evaluation of the path 

eA : e1 '+' e2 '-' e3 
= (e1) (e2) (e3) 

if the value of the variable eA contains '+' followed by '-' at 
the top level, the matching of this value against the pattern 
results in finding the leftmost '+' followed by the nearest '-' 
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Now consider the case where eA contains '+' at the top level, 
but there is no '-' at the top level. Then the leftmost '+' is 
found, and the rest of the expression examined in order to find 
a '-'. Since the search for a '-' fails, the value of the vari­
able el is extended, and the search for a '-' repeated. This 
needn't be done, however, because, after the failure of the 
first search for a '-', the second search is bound to fail as 
well. 

The constructs \? and\! enable us to avoid the above un­
necessary search. To achieve this, we begin by rewriting the 
original match in the following way: 

eA : el '+' eX, 
eX : e2 '-' e3 

= (el) (e2) (e3) 

Now, if matching the value of eX against the pattern 
fails, an attempt is made to find the next variant of 
the value of eA against el '+' eX. This, however, 
avoided by inserting \? and\! in the following way: 

\? eA : el '+' eX 
\! eX : e2 '-' e3 

= (el) (e2) (e3) 

e2 '-' e3 
matching 

can be 

Now, if the inner match returns a failure, this failure is re­
turned as the result of the whole path. 

S.S.MEANING OF RIGHT HAND SIDES 

A right hand side, which has the form = Q , where Q is a 
path, is an even more powerful means of restricting the search 
than fences and cuts. 

To explain the meaning of the right hand sides, we have to 
introduce a few additional concepts. 

Suppose that a construct appears as a component in a larger 
construct, and, according to the semantics of Refal Plus, the 
result of evaluating the inner construct is taken to be the 
result of evaluating the surrounding construct. Then the inner 
construct is said to be a vassal of the surrounding construct. 
For example, the rest R in a path S :: He R is a vassal, since 
the result of evaluating R is taken to be the result of the 
whole path. 

A construct that is not a vassal of the surrounding con­
structs is said to be a sovereign. For example, the source S in 
a path S ::HeR is a sovereign, since its result, in general, 
is not the result of the whole construct (despite the fact that 
this result may be used in evaluating R). 

More specifically, if a function definition has the form 
Fname Palt , then the pattern alternative Palt is a sovereign. 

If a path has either of the forms: S R S ::HeR, 
S P R or # S R then the source S is a sovereign. 
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If a source has the form S : Palt , then the source S is 
a sovereign. 

Now, let us consider a construct along with all the sover­
eigns surrounding this construct. The smallest of the sover­
eigns, included in all the others, is said to be the patron of 
the construct in question. In particular, if a construct is a 
sovereign, the construct's patron is the construct itself. 

Now we are able to describe the semantics of right hand 
sides. 

Suppose that the patron of a right hand side = Q is a 
surrounding construct ... = Q .... Then, if the evaluation of 
the path Q results in returning a value X, this value X is taken 
to be the result of the whole patron ... = Q ... 

In particular, if X is a failure, the result of evaluating 
the patron ... = Q ... is a failure, in spite of the fact that 
there may be failure traps in the patron. 

For example, the evaluation of the path 

\{ A B C : $1 e sX e, sX : B, sX} sY, sY 

proceeds as follows. First, sX is bound to the value A, and an 
attempt to match this value against the symbol B fails. Then sX 
is bound to the new value B, and the evaluation succeeds, the 
result returned being the symbol B. On the other hand, if we 
replace the comma with the equality sign, we get the path 

\{ A B C : $1 e sX e = sX : B, sX} sY, sY 

the evaluation of which fails. 
Some restrictions are imposed on the use of fences, cuts, 

and right hand sides. 
If a cut \! Q is enclosed in a fence \? \! Q 

both constructs must have the same patron. 
If a cut \! Q is enclosed in a fence \? \! Q 

there must be no right hand side = ... \! Q ... surrounding the 
cut \! Q, but enclosed in the fence \? ... \! Q ... 

5.6.FAILING AND UNFAILING FUNCTIONS 

All functions defined and called in Refal Plus programs are 
classified as either failing or unfailing. 

If a function Fname is an unfailing one, then the evalua­
tion of a call <Fname Re> cannot result in returning a fail­
ure. On the other hand, if a function Fname is a failing one, 
then the evaluation of a call <Fname Re> can, in general, 
result in returning a failure. 

Function declarations have hitherto been assumed to have 
the form 

$func Fname Fin = Fout; 

which is correct only in cases where Fname is an unfailing func-
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tion. Otherwise, if Fname is a failing function, its declaration 
must have the form 

$func? Fname Fin = Fout; 

Now the semantics of function definitions can be 
more accurate description. Let the definition of a 
Fname have the form 

Fname Palt 

given a 
function 

where Palt is a pattern alternative whose form is either \{Pl 
Rl; P2 R2; ... Pn Rn;} or {Pl Rl; P2 R2; ... Pn Rn;}. Then the 
evaluation of a call <Fname Re> proceeds as follows. The re­
sult expression Re is evaluated. If the value returned is a 
failure, the result of evaluating <Fname Re> is taken to be a 
failure, without actually calling the function Fname. Otherwise, 
if the value returned is a ground expression Ge, the function 
Fname is called, i.e. the source 

Ge : Palt 

is evaluated in the empty environment (in which no variable is 
bound to a value) . Suppose the evaluation of the above source 
results in returning a value X. Then there are a few cases to be 
considered. 

If X is a ground expression, X is taken to be the result of 
evaluating the call <Fname Re>. Otherwise, if X is a failure, 
the following depends on the Function Fname being a failing one. 

If Fname is a failing function, and X is a failure, the 
result of evaluating the call <Fname Re> is a failure. 

If Fname is an unfailing function, and X is a failure, this 
failure is "caught" and transformed into the error $error(Fname 
"Unexpected fail"), which is taken to be the result of evaluat­
ing the call <Fname Re>. 

6.LOGICAL CONDITIONS 

6.1.CONDITIONS AND PREDICATES 

In some cases, the program has to test some conditions in 
order to select one of the alternative courses of action. 

The exact way in which conditions can be written and tested 
depends on the programming language. As far as Refal Plus is 
concerned, we use the following terminology. 

A path Q is said to be a condition, if the value returned 
by the path is always either an empty ground expression or a 
failure. If the result is an empty expression, the condition is 
considered to be satisfied, otherwise, if the result is a fail­
ure, the condition is considered not to be satisfied. 

Thus empty expressions and failures may be considered as 
corresponding to the well-known truth values "true" and "false". 
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It should be kept in mind, however, that the evaluation of 
a condition Q may non-terminate or produce an error, in which 
case we consider either the program or the input data to be 
incorrect. 

Some of the library functions are specifically designed for 
testing conditions. Such functions are referred to as predi­
cates. In Refal Plus a predicate returns either an empty expres­
sion (if its arguments satisfy the condition) or a failure (if 
the condition is not satisfied). For example, the function "<" 
tests whether the first argument is less than the second one. In 
other words, let Gel and Ge2 be ground expressions. Then if Gel 
is "less" than Ge2, the result of evaluating<"<" (Gel) (Ge2)> is 
an empty expressions, otherwise the result is a failure. 

If a program defines a predicate function, the declaration 
of the function must have the form 

$func? Fname Fin = ; 

Now we consider several ways of using and combining condi­
tions. 

6.2.CONDITIONALS 

Suppose we have a condition represented by a source S and 
two paths Q' and Q". Consider the path 

\? {S \! Q'; \! Q";} 

If the result of evaluating S is an empty expression, the path 
Q' is evaluated and the value returned is taken to be the result 
of the whole construct. Otherwise, if the result of evaluating S 
is a failure, the path Q" is evaluated and the value returned is 
taken to be the result of the whole construct. 

Notice should be taken of the use of cuts \! They prove 
to be essential in cases where the evaluation of Q' or Q" fails. 
Let us try removing the cuts, and consider the path thus ob­
tained: 

{ s 1 Q I ; Qll;} 

Now, if the condition S is satisfied, the path Q' is evaluated. 
Suppose the evaluation of Q' fails. Then, instead of being re­
turned as the result of the whole construct, the failure is 
caught, which causes the evaluation of the path Q". But this, 
certainly, was not our intention! Thus the first cut is neces­
sary to prevent the control from "jumping" to the next path in 
the alternative. 

Now, let us consider the case where the condition is not 
satisfied, i.e. the evaluation of S fails. Then the failure is 
caught, which causes the evaluation of the path Q". Suppose that 
the evaluation of Q" fails. Then the failure is caught and an 
attempt is made to evaluate the next path in the alternative. 
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But there is no such path! Hence, an error is generated, which, 
again, was not our intention! 

Nevertheless, in some cases, the cuts can be omitted. Thus 
an alternative of the form 

\? { s \! = Q I ; \! = Q";} 

can always be, and usually is, rewritten as 

{ s = Q I ; = Q";} 

As an example let us consider the function Min-Ge, which 
takes two ground expressions Gel and Ge2 as arguments, and re­
turns either Gel or Ge2. Namely, if Gel precedes Ge2, the result 
is Gel, otherwise the result is Ge2. 

$func Min-Ge (eX) (eY) = e.Min-X-Y; 

Min-Ge (eX) (eY) = 
{ 

<"<" (eX) (eY) > 
= eX; 
= eY; 

} ; 

Now consider the case where a condition is represented by a 
path Q, and a path Q1 must be evaluated if the condition is not 
satisfied, whereas a path Q" must be evaluated if the condition 
is not satisfied. This case can be reduced to the above by en­
closing the condition Q in curly braces thereby making the path 
Q into the source \{ Q; } . Now the conditional can be written 
as follows: 

\? { \{Q;} \! Ql; \! Q";} 

6.3.LOGICAL CONNECTIVES 

Sometimes we have to test complicated logical conditions. 
Complex conditions can often be expressed in terms of more ele­
mentary conditions by means of the logical connectives "AND", 
"OR", and "NOT". Although Refal Plus does not provide logical 
connectives explicitly, they can be easily represented by other 
constructs. 

*** Logical "AND" 

Suppose we have two conditions and must determine whether 
both of them are satisfied. 

If both conditions are represented by paths Q 1 and Q", the 
compound condition can be tested by evaluating the path 
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\{ Q' ;}, Q" 

If the first condition is represented by a source S, and 
the second by a path Q, the compound condition can be tested by 
evaluating the path S , ):'Q . 

And, finally, if both conditions are represented by result 
expressions Re' andRe", the compound condition can be tested by 
evaluating the result expression Re' Re". 

*** Logical "OR" 

Suppose we have two conditions and must determine whether 
one (or both) of them are satisfied. 

If both conditions are represented by paths Q' and Q", the 
compound condition can be tested by evaluating the path 

\{ Q'; Q";} 

*** Logical "NOT" 

Suppose we have a condition represented by a path Q, and 
must determine whether the condition is not satisfied. This can 
be done by evaluating the path 

# \ {Q;} 

which is an abbreviation to the path # \{Q;}, 
In cases where the condition is represented by a source S, 

the negated condition can be tested by evaluating the path 

# s 

which is an abbreviation to the path # S , 
In both cases we take the opportunity of omitting the rests 

consisting of a single comma. 

6.4.EXAMPLE: FORMAL DIFFERENTIATION 

Suppose we want to define a function that, given an alge­
braic expression and a variable, will produce the derivative of 
the expression with respect to the variable [Hen 80]. To keep 
the presentation concise, we deal only with simple formulae 
consisting of integers, variables, and binary operators+ and*· 
The generalization to more complicated formulae is straightfor­
ward, and is left for the reader as an exercise. 

Let x and y stand for arbitrary variables, i for an inte­
ger, and e for a formula. Let Dx(e) denote the result of differ­
entiating e with respect to x. Then the rules of differentiation 
can be written as follows: 

Dx(x) 
Dx(y) 

= 
= 

1 
0 (where y is different from x) 
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Dx(i) = 0 
= Dx(el) + Dx(e2) Dx(el + e2) 

Dx(el * e2) = el * Dx(e2) + e2 * Dx(el) 

Before writing the program of differentiating, we have to 
represent formulae by ground expressions. Let [e] stand for 
the formula e represented by a ground expression. Then we may 
choose the representation defined by the following rules: 

[x] 
[i] 
[el + e2] 
[el * e2] 

= 
= 
= 
= 

X 

i 
(Sum [el] 
(Prod [ell 

[e2]) 
[e2]) 

Now a function Diff can be easily defined whose first argu­
ment is a variable, and the second argument a formula. The func­
tion returns the result of differentiating the formula with 
respect to the variable. 

$func Diff sX tE = tE; 

Diff sX tE = 
tE 
{ 
sX = 1; 
sY = 0; 
(s.Oper t.El t.E2) = 

<Diff sX tEl> t.DxEl, 
<Diff sX tE2> :: t.DxE2, 
s.Oper : 
{ 
Sum = (Sum t.DxEl t.DxE2); 
Prod = (Sum (Prod t.El t.DxE2) (Prod t.E2 t.DxEl)); 
} ; 

} ; 

An obvious deficiency of the above definition of the func­
tion Diff is that the formulae produced by the function contain 
a lot of unnecessary parts. For example, according to the above 
rules of differentiation we have 

DX(3*(X*X)+S) = (3*((X*l)+(X*))+(X*X)*0)+0 

which could have been reduced to 

3*(X+X) 

by means of evident simplifications. Thus we 
definition of the function Diff by making the 
the following reductions: 

0 + e2 
el+ 0 

==> 
==> 

e2 
el 

37 

can enhance the 
function perform 



0 * 
el* 
1 * 
el* 

e2 
0 
e2 
1 

==> 
==> 
==> 
==> 

0 
0 
e2 
el 

(We won't consider more complicated reductions, to keep the 
presentation concise.) 

There are two ways of implementing the above simplifica­
tions. The first way is to perform the simplifications only 
after the result of the differentiation has been completely 
built. The second way is to try the simplifications "on the 
fly", during the differentiation. And it is the second way that 
we are going to implement. 

As the first step, we define two functions 
each function taking two formulae and returning 
sum and the product of the formulae. It is in 
that the simplifications are performed. 

$func Sum tl t2 = t; 
$func Prod tl t2 = t; 

Sum 
{ 

0 t2 = t2; 
tl 0 = tl; 
tl t2 = (Sum tl t2) ; 
} ; 

Prod 
{ 

0 t2 = 0; 
1 t2 = t2; 
tl 0 = 0; 
tl 1 = tl; 
tl t2 = (Prod tl t2); 
} ; 

Now we can rewrite the above definition 
Diff, inserting at appropriate places 
Sum and Prod: 

Diff sX tE = 
tE 
{ 

sX = 1; 
sY = 0; 
(s.Oper t.El t.E2) = 

<Diff sX tEl> t.DxEl, 
<Diff sX tE2> :: t.DxE2, 
s.Oper : 
{ 

Sum = <Sum t.DxEl t.DxE2>; 

the calls 

Sum and Prod, 
respectively the 
these functions 

of the function 
to the functions 

Prod = <Sum <Prod t.El t.DxE2> <Prod t.E2 t.DxEl>>; 
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} ; 
} ; 

6.5.EXAMPLE: COMPARISON OF SETS 

The following example illustrates the use of recursion 
along with logical connectives. 

According to the set theory, two sets are considered to be 
equal, if they contain the same elements. Suppose we want to 
define a Refal Plus function testing two sets for equality. The 
first thing we have to invent is the representation of sets by 
ground expressions. First, let us consider the sets whose ele­
ments may be Refal symbols only. A set of symbols {Gsl, Gs2, 
... , Gsn} can, obviously, be represented by the ground expres­
sion 

Gsl Gs2 ... Gsn 

A feature of this representation is that any non-empty set of 
symbols has lots of different representations. For example, the 
set {John, Mary} may be represented as John Mary or 
Mary John , or even Mary John John Mary . Thus, different rep­
resentations may correspond to equal sets. 

It is well known that an element of a set can be a set 
itself. So, we must be able to represent sets containing symbols 
as well as sets, which may contain sets, etc. How shell we rep­
resent set elements that are sets? 

A simple solution is the following. If an element of a set 
is a symbol Gs, the element is represented by the symbol Gs. 
Otherwise, if an element of a set is a set X, the element is 
represented by the ground term (X'), where X' is a representa­
tion of X. For example, the set {A, {A,B}, {A}} may be repre­
sented by the ground expression A (A B) (A) 

Now we define the predicate function Eqset? determining 
whether its two arguments represent the same set. This function 
performs the test for equality by reducing it to several simpler 
tests. 

Namely, two sets A and B are equal iff A is a subset 
of B and B is a subset of A. Further, a set A is a 
subset of a set B iff each element X of A belongs to B. 

Thus, instead of defining a single function, we have to 
define four mutually recursive predicate functions. Eqset? de­
termines whether its two arguments are representations of the 
same set. Subset? determines whether the set represented by the 
first argument is a subset of the set represented by the second 
argument. El? determines whether the first argument represents a 
set belonging to the set represented by the second argument. 
And, finally, Eqel? determines whether its two arguments repre­
sent the same element of a set. 

Note that, to test for equality two set elements that are 
sets themselves, we have to test for equality the corresponding 
sets, for which reason the function Eqel? has to call the func-
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tion Eqset?. Thus, finally, Eqset? turns out to be defined in 
terms of itself. 

$func? Eqset? (eA) (eB) = ; 
$func? Subset? (eA) (eB) = 
$func? El? tx (eA) = 
$func? Eqel? tx tY =; 

Eqset? (eA) (eB) = 
<Subset? (eA) (eB)><Subset? (eB) (eA)>; 

Subset? (eA) (eB) = 
eA : 
{ 

= ; 
tx eR = <El? tx (eB)><Subset? (eR) (eB)>; 
} ; 

El? tx (eA) = 
eA : tY eR, 
\{ <Eqel? tx tY>; <El? tx (eR)>; }; 

Eqel? tX tY = 
\{ 
tx tY : s s 

= tX : tY; 
tx tY : (eA) (eB) 

= <Eqset? (eA) (eB)>; 
} ; 

7.DIRECT ACCESS SELECTORS 

A typical case where the direct access to ground expres­
sions turns out to be useful is the implementation of the algo­
rithms based on the technique known as "divide and conquer". The 
general idea is to solve a problem by dividing it into subprob­
lems - each an instance of the original problem but on inputs of 
smaller size - in such a way that the solution of the original 
problem can be assembled from the solutions to the subproblems. 
The principle "divide and conquer" is usually applied together 
with the principle of "balancing" requiring that the original 
problem should be divided into subproblems of roughly equal size 
[AHU 74] . 

A classic application of the principle "divide and conquer" 
is the problem of sorting (i.e. arranging in ascending order). 

One of the sorting methods is the merge sort [AHU 74] . The 
idea is to divide the original set S into two disjoint sets Sl 
and S2 of roughly equal size, sort Sl and S2 to produce two 
ordered sequences Ql and Q2, and then merge Ql and Q2 into one 
ordered sequence Q, thereby obtaining the solution to the origi­
nal problem. 

Now let us define the function MSort, which takes an inte-
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ger sequence as argument, divides it into two parts of approxi­
mately equal size, and calls itself recursively in order to sort 
both parts. Then the sequences thus obtained are merged by the 
function Merge to produce the final result. 

$func MSort eS = eS; 
$func Merge (eX) (eY) = eZ; 

MSort eS = 
<Length eS> :: sLen, 
{ 

<"<=" (sLen) (1) > 
= eS; 
= <Div sLen 2> : : sK, 

<Left 0 sK eS> :: eS1, 
<Middle sK 0 eS> :: eS2, 

<Merge ( <MSort eS1> ) ( <MSort eS2> )>; 
} ; 

How we have to define the function Merge, which takes two 
ordered integer sequences as arguments and merges them into one 
ordered sequence. 

Merge (eX) (eY) = 
{ 

eX : 
= eY; 

eY : 
= eX; 

(eX) (eY) 
= { 

(sA eXRest) (sB eYRest) 

} ; 

} ; 

<"<=" (sA) (sB)> 
= sA <Merge (eXRest) (eY)>; 
= sB <Merge (eX) (eYRest)>; 

8.FUNCTIONS RETURNING SEVERAL RESULTS 

8.1.GROUND EXPRESSION TRAVERSAL 

The following examples illustrate the usefulness of func­
tions returning several results. 

Suppose we want to define a function NMB replacing all 
symbols appearing in a ground expression with their ordinal 
numbers. For example, 

<NMB A (B A) C A> => 1 (2 3) 4 5 

The main difficulty is that, having encountered a pair of 
parentheses, the function cannot know in advance the number of 
symbols enclosed in the parentheses. But this information will 

41 



be necessary for the function to resume the processing of the 
top level of the expression after the contents of the parenthe­
ses will be done away with. Therefore, the symbol numbering 
function must have two arguments: the expression to be processed 
and the number to be assigned to the first symbol in the expres­
sion (if any). This function must return two results: the ex­
pression processed and the first "unused" number. Thus we come 
to the following definition of the function NMB (making use of 
two auxiliary functions NMB-Exp and NMB-Term) . 

$func NMB 
$func NMB-Exp 
$func NMB-Term 

e.Exp 
e.Exp 
t.Exp 

NMB e.Exp = 
<NMB-Exp e.Exp 1> 

e.Exp; 

NMB-Exp e.Exp sN = 
e.Exp 
{ 

= sN; 
tx e.Rest = 

sN 
sN 

= e.Exp; 
= e.Exp sN; 
= t.Exp sN; 

e.Exp s, 

<NMB-Term tX sN> : : tx sN, 
<NMB-Exp e.Rest sN> e.Rest sN, 

tX e.Rest sN; 
} ; 

NMB-Term tx sN = 
tx : 
{ 

s = 
sN <"+" sN 1>; 

(eE) = 

} ; 

<NMB-Exp eE sN> 
(eE) sN; 

8.2.QUICKSORT 

eE sN, 

There is a second way we can apply the idea of divide and 
conquer to the problem of sorting, the so-called quicksort algo­
rithm [AHU 74]. 

Suppose we have to sort a set of integers S. The idea is to 
choose X, an arbitrary element of S, and to divide S into three 
disjoint sets S1, S2, and S3, such that S1 contains integers 
that are less than X, S2 contains integers equal to X, and S3 
contains integers that are greater that X. Then, by sorting S1, 
S2, and S3, we get three ordered sequences Q1, Q2, and Q3 (the 
sorting of Q2 is trivial, because all elements of Q2 are equal 
to X). Then we can concatenate Q1, Q2, and Q3 into the new se­
quence Q1 Q2 Q3, which gives us the solution to the original 
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problem. 
Now we can define the function QSort, which sorts an 

ger sequence according to the above method. The auxiliary 
tion Split is used for partitioning the input sequence 
three subsequences. 

$func QSort eS = eQ; 
$func Split sX eS = (eSl) (eS2) (eS3); 

inte­
func­
into 

$func Split-Aux sX (eSl) (eS2) (eS3) eS = (eSl) (eS2) (eS3); 

QSort eS = 
{ 

eS : 
= ; 

eS : t 
= eS; 

eS : sX e 

} ; 

= <Split sX eS> 
<QSort eSl> 

Split sX eS = 

(eSl) (eS2) (eS3) , 
eS2 <QSort eS3>; 

<Split-Aux sX () () () eS>; 

Split-Aux sX (eSl) (eS2) (eS3) eS = 
eS 
{ 

= 
(eSl) (eS2) (eS3) ; 

sY eRest = 

} ; 

{ 

<"<" (sY) (sX) > 
= <Split-Aux sX (eSl sY) (eS2) (eS3) eRest>; 

<">" (sY) (sX) > 

} ; 

= <Split-Aux sX (eSl) (eS2) (eS3 sY) eRest>; 
= <Split-Aux sX (eSl) (eS2 sY) (eS3) eRest>; 

9.ITERATION 

In Refal Plus, recursion is the principal means of repre­
senting loops. In many cases, however, this means is too univer­
sal, for which reason Refal Plus provides a special search con­
struct, which, syntactically, is a path of the form 

S" $iter S' He R 

where the sources S" and S' are sovereigns, and the rest R a 
vassal (which is essential in cases where S", S', or R contain 
right hand sides of the form = Q) . 

If the hard expression He is empty, it may be omitted along 
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with the keyword"::". If the rest R consists of a single comma, 
it may also be omitted. 

A search construct introduces new local variables (in the 
same way as a binding S ::HeR does). The initial values of 
these variables are obtained by evaluating the source S". Then 
an attempt is made to evaluate the rest R. If the evaluation of 
R succeeds, the value returned is taken to be the result of the 
whole construct. Otherwise, if the evaluation of R fails, the 
local variables are bound to new values (obtained by evaluating 
the source S' in the old environment associating the local vari­
ables with their old values). Then, again, an attempt is made to 
evaluate the rest R, etc. 

Thus, in a sense, the search construct tries to find for 
the variables in He such values that the evaluation of the rest 
R succeeds. 

The easiest way to explain the exact meaning of the search 
construct consists in defining it in terms of more elementary 
constructs, such as bindings and alternatives. Namely, a search 
S" $iter S' ::HeR is equivalent to the path 

s" : : He , \ { R; S ' $iter S ' : : He R; } 

This path, again, contains a search construct, which, again, may 
be "unfolded". Thus we get 

s" : : He , \ { R; 

} ; } 

S ' : : He , \ { R; 
S' $iter S' He R; 

By repeating the unfolding infinitely many times, we can trans­
form the original construct into the infinite path 

S" : : He , \ { R; 
S ' : : He , \ { R; 

S ' : : He , \ { R; 

} ; } ; } 

The following example illustrates the use of the search 
construct. 

Let us consider the well-known factorial function, which is 
usually given the following recursive definition: 

$func Fact sN = sFact; 

Fact 
{ 

0 = 1; 
sN = <"*" sN <Fact <"-" sN 1>>>; 
} ; 

The drawback of the above definition is that the call to 
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the function "*" cannot be evaluated until the evaluation of the 
internal call to the function Fact has terminated. Thus, the 
calls to "*" accumulate. However, the function Fact can be given 
a more "iterative" definition (making use of the auxiliary func­
tion Fact-Aux) . 

$func Fact sN = sFact; 
$func Fact-Aux sR sK = sFact; 

Fact sN = 
<Fact-Aux 1 sN>; 

Fact-Aux sR sK = 
{ 

sK : 0 
= sR; 
= <Fact-Aux <"*" sR sK> <"-" sK 1>>; 

} ; 

The same can be expressed with the search construct in the 
following way: 

$func Fact sN = sFact; 

Fact sN = 
1 sN 

$iter <"*" sR sK> <"-" sK 1> 
:: sR sK, 

sK : 0, 
= sR; 

10.SEARCH AND BACKTRACKING 

10.1.THE QUEENS PROBLEM 

Our next example is the classic Eight Queens Problem 
[Hen 80]. Given a chessboard and eight queens, one must place 
the queens on the board so that no two queens hold each other in 
check; that is, no two queens may lie in the same row, column, 
or diagonal. 

We shall consider a slightly more general problem of plac­
ing n queens on the board of the size nxn. 

Let the rows and columns of the board be numbered from 1 to 
n. A chessboard square is said to have the coordinates (i,j), 
or, in other words, to be the square (i,j), if it lies in column 
i and row j. 

Note that all squares lying in the same diagonal running 
upwards from left to right have the same sum of the column and 
row numbers, whereas all squares lying in the same diagonal 
running downwards from left to right have the same difference of 
the column and row numbers. 

Thus two squares (i,j) and (i1,j1) lie in the same diago-
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nal, if either i+j = il+jl or i-j = il-jl. This condition is 
easy to check. Namely, if the evaluation of the path 

\{ 
<"+" si sJ> 
<"-" si sJ> 
} 

sNl, <"+" sil sJl> 
sNl, <"-" sil sJl> 

sN2, sNl 
sN2, sNl 

sN2; 
sN2; 

succeeds, the squares (i,j) and (il,jl) lie in the same diago­
nal. 

Now we need a way to represent a board containing queens in 
the first m columns. 

It is obvious that we may confine our attention to the 
positions in which each column contains no more than one queen, 
because two queens lying in the same column would hold each 
other in check, thereby preventing the position from being a 
solution. On the other hand, the number of the queens to be 
placed is equal to the number of columns, implying that each 
column must contain exactly one queen. Hence, a position can be 
represented by a sequence of integers 

Il J2 ... In 

where the number Ik represents the queen lying in column k and 
row Ik. 

The solution will be constructed incrementally, by filling 
the columns one by one. Each time, a queen is placed in a col­
umn, it must be checked that no queen puts the new queen in 
check. Suppose the board contains k queens lying in the columns 
1, 2, ... , k. This partially constructed position can be repre­
sented by the sequence of integers 

Il I2 . . . Ik 

where the number Im represents the queen lying in column m and 
row Im. 

Now we can define the predicate Attack?, which 
empty expression if the square (i,j) is attacked by 
placed on the board, or a failure, if the square 
tacked. 

$func? Attack? si sJ ePos = ; 

Attack? si sJ ePos = 
ePos : $r eRest e, eRest 
<Length eRest> :: sil, 
\{ 
sil : si; 
sJl : sJ; 

e sJl, 

<"+" si sJ> 
<"-" si sJ> 
} ; 

sNl, <"+" sil sJl> 
sNl, <"-" sil sJl> 
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It should be noted that the test il=i could have been 
removed, since our program calls the function Attack? in such a 
way that the parameter i is guaranteed to be greater than the 
column numbers of the queens placed on the board. 

Now we can define the function Next-Queen? making an at­
tempt to add a new queen to a partially constructed position. 
Next-Queen? tries to place the new queen in different rows. If 
the queen can be placed, but this queen is not the last, an 
attempt is made to place the next queen, etc. If the current 
queen cannot be placed, the program "backtracks": i.e. tries to 
change the position of the previous queen. 

$func? Next-Queen? si sN ePos = ePos; 

si sN ePos = Next-Queen? 
1 $iter \{ <"<" (sJ) (sN) > = <"+" sJ 1>; } 

:: sJ, 
# <Attack? si sJ ePos>, 
ePos sJ 
\? { 
si : sN 

\! ePos; 

ePos, 

\! <Next-Queen? <"+" si 1> sN ePos>; 
} ; 

There are some subtle points in the definition of the func­
tion Next-Queen? deserving special attention. 

First, the search construct tries to evaluate its rest, 
sequentially binding the variable j to the values 1, 2, ... , n, 
and incrementing j by 1 after each failure to evaluate the rest 
of the construct. 

Second, the evaluation of the rest of the search construct 
may fail for two reasons: either the square (i,j) is attacked by 
the queens already placed on the board, in which case the evalu­
ation of the call to the function Attack? succeeds, and, there­
fore, the negation of this call fails, or, despite the fact that 
the current queen can be placed on the square (i,j), the follow­
ing queens cannot be placed on the board, and, therefore, the 
recursive call to the function Next-Queen? fails. 

Finally, we can define the function Solution?, which takes 
the size of the board as argument and returns either a solution 
to the problem, or, if there is no solution, a failure: 

$func? Solution? sN = ePos; 

Solution? sN = 
<Next-Queen? 1 sN >; 

10.2.THE SEQUENCE PROBLEM 

Now we consider the problem of finding a ground expression 
Ge having the following property [Wir 73] : 
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(1) Ge contains no parentheses, and any symbol appearing 
in Ge is either 1, 2, or 3. 

(2) The length of Ge is equal to a given number Len. 
(3) There is no such ground expressions Gea, Geb, and Gee 

that Gee is non-empty, and there holds 
Ge = Gea Gee Gee Geb 

i.e. Ge does not contain two adjacent non-empty equal 
subexpressions. 

The desired expression can be found in the following way. 
We may start with an empty expression, and then try to extend 
it, adding digits to it one by one. Upon adding a digit, we have 
to check the expression thus obtained, to make sure that the 
expression does not have the form Gea Gee Gee Geb, where Gee is 
non-empty. A moment's thought reveals that, actually, it is 
sufficient to check that the expression obtained by adding a 
digit does not have the form 

Gea Gee Gee 

Here is the definition of the predicate Unacceptable?, 
which determines whether the argument has the above form: 

$func? Unacceptable? e.String = ; 

Unacceptable? 
<Div <Length 
{ 

s.Max : 0 
= $fail; 
= 1 

e.String = 
e.String> 2> s.Max, 

$iter\{<"<" (sK) (s.Max)> = <"+" sK 1>; } 

} ; 

:: sK, 
<Right 0 
<Right 0 
eU : eV; 

sK <Middle 0 sK e.String>> :: eU, 
sK e.String> eV, 

Now we can define the function Extend? trying to 
digit to the expression, until the sequence has the 
length. If the expression cannot be extended, the 
"backtracks", and tries to change previous digits. 

$func? Extend? s.Len e.String = e.String; 

Extend? s.Len e.String = 
{ 

<Length e.String> : s.Len 
= e.String; 

add a 
desired 

function 

= 1 $iter \{ <"<" (s.Digit) (3)> = <"+" s.Digit 1>; } 
:: s .Digit, 

e.String s.Digit :: e.String, 
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} ; 

# <Unacceptable? e.String>, 
<Extend? s.Len e.String>; 

And, finally, we define the function Find-String?, taking 
as argument the length of the desired sequence, and returning 
either the desired sequence (if found), or a failure (if the 
desired sequence does not exist) . 

$func? Find-String? s.Len = e.String; 

Find-String? s.Len = 
<Extend? s.Len >; 

ll.EXAMPLE: A COMPILER FOR A SMALL IMPERATIVE LANGUAGE 

to consider the 
the framework of 

a compiler for a 
the compiler being 

The primary objective of this section is 
traditional compiler writing techniques in 
Refal Plus. These techniques are applied to 
small imperative language, the language and 
similar to those described in [War 80] . 

Illustrative though this compiler may be, 
size all other example programs dealt with in 
consists of several modules. 

ll.l.THE SOURCE LANGUAGE 

it 
the 

exceeds 
book, 

in 
and 

A source language program is a finite sequence of tokens. A 
token is represented by a finite character sequence, whose syn­
tax is described by the following grammar (see Chapter II, sec­
tion 1) : 

$ Token = 
$ KeyWord Identifier I Numeral. 
$ KeyWord = 
$ ";" I "(" I ")" I "+" I "-" I "*" I "-" 
$ II:=" I "<=" '<>' "<" I ">=" ">" "=" 
$ "DO" I "ELSE" I "IF" I "READ" I "THEN" 
$ "WHILE" I "WRITE". 
$ Identifier= Letter {Letter I Digit}. 
$ Numeral= Digit {Digit}. 

The keywords are words reserved for special purposes and 
must not be used as normal identifier names. 

Keywords are case insensitive, i.e. the small and capital 
letters appearing in the keywords are considered as completely 
equivalent. 

Tokens may be separated by spaces, horizontal tabs, and 
newline characters, which cannot occur within tokens and are 
ignored unless they are essential to separate two consecutive 
tokens. 
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Some token sequences are not syntactically correct 
grams. Hence, the token sequence produced by scanning the 
character stream must be parsed to see whether it has the 
lowing syntax: 

$ Program = StatementSequence. 
$ StatementSequence =Statement { ";"Statement}. 
$ Statement = 
$ "IF" Test "THEN" Statement "ELSE" Statement 
$ "WHILE" Test "DO" Statement 
$ "READ" VariableName I 
$ "WRITE" Expression I 
$ "(" StatementSequence ")". 
$ VariableName ":="Expression 
$ Empty. 
$ Empty = . 
$ Test = Expression CompOperator Expression. 
$ CompOperator = "=" I "<=" I "<>" I "<" I ">=" I ">". 
$ Expression= Term { AddOperator Term}. 
$ Term= Factor { MultOperator Factor}. 
$ Factor= VariableName I Value I "("Expression")". 
$ AddOperator = "+" I "-". 
$ MultOperator = "*" 1 "/". 

$ VariableName = Identifier. 
$ Value = Integer. 

pro­
input 
fol-

A program is a statement sequence. The statements are exe­
cuted sequentially, from left to right. Each statement may ac­
cess, and change, the values of variables. 

An if statement 

IF Cond THEN Stl ELSE St2 

tests the condition Cond. If the condition is satisfied, the 
statement Stl is executed, otherwise, the statement St2 is exe­
cuted. 

A while statement 

WHILE Cond DO St 

tests the condition Cond. If the condition is 
statement St is executed, and the execution of 
struct is repeated. Otherwise, if the condition 
fied, the execution of the construct terminates. 

A read statement 

READ Var 

satisfied, the 
the whole con­
is not satis-

reads an integer from the input device, and assigns the integer 
as value to the variable Var. 

A write statement 

WRITE Expr 
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evaluates the arithmetic expression Expr to produce an integer, 
which is written to the output device. 

A compound statement 

( s tl ; s t2 ; . . . s tN ) 

specifies the sequential execution of the statements Stl, St2, 
... , StN. 

An assignment statement 

Var := Expr 

evaluates the expression Expr to produce an integer, which is 
assigned as value to the variable Var. 

An empty statements specifies no action. 
Conditions and arithmetic expressions have their conven­

tional meaning. The multiplication and division operators have 
precedence over the addition and subtraction operators. 

The variables appearing in the program don't have to be 
declared. The initial variable values are undefined. 

Here is an example program, which inputs an integer, and 
then computes and outputs the factorial of the integer. 

read value; 
count:=l; 
result:=l; 
while count<value do 

( 
count:=count+l; 
result:=result*count 
) ; 

write result 

11.2.THE TARGET LANGUAGE 

The target program produced by the compiler is written in 
"machine code", and has the following syntax: 

$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 

Program= {Directive}. 
Directive = 

Instruction I "BLOCK" 
Instruction = 

"," Value 

InstructionCode " , " Value " ; " I 
InstructionCode = 

" . " , 

ADD SUB MUL I DIV I LOAD I STORE 
ADDC I SUBC I MULC I DIVC I LOADC I 

JUMPEQ I JUMPNE I JUMPLT I JUMPGT I JUMPLE 
JUMP I READ I WRITE I HALT. 

Value = Integer. 

JUMPGE 

A program is a directive sequence, each directive being 
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either an "instruction", i.e. machine command, or a memory allo­
cation directive. 

We assume the main store of 
cells, each cell associated with 
negative integer (thus, the cells 
may hold either an instruction or 

The execution of the program 
sell. 

the machine to consist of 
its address, a unique 
are numbered from l) . A 
an integer. 

non­
cell 

always starts from the first 

In addition to the main store, the machine has an accumula­
tor, which is capable of containing an integer. 

A directive 

BLOCK,Int; 

specifies that at this place in the program there must be allo­
cated Int store cells containing no instructions. This directive 
usually is put at the end of the program, and used for allocat­
ing cells that are to hold the values of the program's vari­
ables. 

A machine instruction has the form 

Op,Value; 

where Op is the instruction's name, and Value the instruction's 
operand. The meaning of the operand Value depends on the in­
struction's name. Some instructions assume Value to be the ad­
dress of the cell. Others assume Value to be an integer. There 
are instructions, however, which needn't any operand, in which 
cases Value must be equal to zero. 

An instruction LOAD,Addr; loads the contents of the cell 
having the address Addr into the accumulator. 

An instruction STORE,Addr; puts the contents of the accu­
mulator into the cell having the address Addr. 

An instruction LOADC,Int; loads the integer Int into the 
accumulator. 

Instructions ADD, SUB, MUL and DIV have the form Op,Addr; 
and compute respectively the sum, difference, product, and the 
the truncated quotient of two integers. The first integer is the 
one contained by the accumulator, and the second the one con­
tained in the cell having the address Addr. The result of the 
operation is put into the accumulator. 

Instructions ADDC, SUBC, MULC, and DIVC have the form 
Op,Int; and compute respectively the sum, difference, product, 
and the truncated quotient of two integers. The first integer is 
the one contained in the accumulator, and the second integer is 
Int, i.e.the one contained in the operand of the instruction. 
The result of the operation is put into the accumulator. 

An instruction READ,Addr; reads an integer from the input 
device and puts it into the cell having the address Addr. 

An instruction WRITE,O; writes the integer contained by 
the accumulator to the output device. 

An instruction HALT,O; halts the execution of the pro-
gram. 
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An instruction JUMP,Addr; causes the control to jump to 
the instruction contained in the cell having the address Addr. 

And, finally, the last group of instructions comprises the 
conditional jumps JUMPEQ, JUMPNE, JUMPLT, JUMPGT, JUMPLE, and 
JUMPGE, all having the form Op,Addr;. They are executed in the 
following way. First, the contents of the accumulator is com­
pared with zero. If the condition implied by the instruction's 
name is satisfied, the control jumps to the instructions con­
tained in the cell having the address Addr, otherwise, to the 
next instruction. 

Which condition is tested, is determined by the last two 
letters in the instruction's name. EQ means testing the accumu­
lator's contents for being equal to 0, NE for not being equal to 
0, LT for being less than 0, GT for being greater than 0, LE for 
being less than or equal to 0, GE for being greater than or 
equal to 0. 

The above program computing the factorial will be translat­
ed by the compiler into the following target program in machine 
code. 

001 READ,21; 008 JUMPGE, 16; 015 JUMP,6; 
002 LOADC,1; 009 LOAD, 19; 016 LOAD,20; 
003 STORE,19; 010 ADDC,1; 017 WRITE,O; 
004 LOADC,1; 011 STORE,19; 018 HALT,O; 
005 STORE,20; 012 LOAD,20; 019 BLOCK,3; 
006 LOAD, 19; 013 MUL,19; 
007 SUB,21; 014 STORE,20; 

The address of each directive is shown on the left of the 
directive. 

11.3.THE GENERAL STRUCTURE OF THE COMPILER 

Our compiler has the "classic" structure, and comprises the 
following parts. 

The source character stream (which is often called the 
concrete program) is read and broken up into tokens by the scan­
ner. 

Then the token sequence is analyzed by the parser to pro­
duce an abstract syntax tree (which is often called the abstract 
program) . 

The abstract program is further translated by the code 
generator into a program in assembly language. A program in 
assembly language is very close to the target program, except 
that, instead of concrete cell addresses, it contains labels, 
each label representing some (yet) unknown address. 

The program in assembly language is then processed by the 
assembler, which replaces all the label with concrete addresses, 
thereby producing the target machine code program. 

The information about the correspondence between the vari­
able names and labels is kept in the dictionary of variables. 
Thus the compiler contains a module dealing with the dictionary, 
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which is used by the code generator as well as by the assembler. 
In comparison with the simplicity of the source language, 

the structure of our compiler may well seem to be rather compli­
cated. And, actually, the compiler could have been simplified by 
merging many compiler's components together. For example, this 
could have been done with the scanner, parser, and code genera­
tor. 

It should be kept in mind, however, that, should the source 
language be more complicated, such "unionism" would make the 
compiler messy, unreliable and difficult to understand. But, the 
purpose of our compiler is just to illustrate, in the framework 
of Refal Plus, the traditional compiler writing techniques ap­
plicable to "real-size" compilers. 

Taking our example compiler as the starting point, the 
reader may try to improve it in two respects. First, the source 
language can be made more complex and more realistic. Second, 
the compiler can be simplified at the expense of making it less 
"scientific" and less general. 

11.4.THE MODULES OF THE COMPILER AND THEIR INTERFACES 

The compiler consists of the following modules: 

CMP - the main module 
CMPSCN - the scanner 
CMPPRS - the parser 
CMPGEN - the code generator and assembler 
CMPDIC - the dictionary module 

The main module does not have the interface part and con­
tains the definition of the goal function Main. All other mod­
ules consist of two parts: the interface and the implementation. 

The module CMPSCN has the following interface: 

** 
** File CMPSCN.RFI 

** 
$func 
$func 
$func 

!nit-Scanner 
Read-Token 
Term-Scanner 

s.Channel = ; 
= s.TokenClass s.Tokeninfo; 
= ; 

The module exports three functions. 
The function !nit-Scanner initializes the scanner. The 

parameter s.Channel is a reference to the channel that provides 
characters read by the scanner. This channel must have been 
opened for reading before calling !nit-Scanner. 

The function Term-Scanner must be called after the reading 
of the source program has been finished. This enables the scan­
ner to terminate its activities and to get ready for reading 
another source program. 
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The function Read-Token returns the source programs's 
rent token represented by two symbols: the first symbol 
cates the class the token belongs to, while the second 
provides additional infor.mation about the token. 

The module CMPPRS has the following interface: 

** 
** File: CMPPRS.RFI 
** 

$func Parse s.Channel = t.Program; 

cur­
indi­

symbol 

The interface exports the function Parse, which reads the 
source program from the channel s.Channel (via the scanner) and 
produces the abstract program t.Program. The channel s.Channel 
must have been opened for reading before calling Parse. 

If the source program contains syntax errors, the function 
Parse returns $error(Ge), where Ge is an error message describ­
ing the first error encountered by Parse. 

The module CMPGEN has the following interface: 

** 
** File: CMPGEN.RFI 
** 

$func Gen-Code 
$func Write-Code 

t.Program = t.Code; 
t.Code = 

The interface exports two functions. 
The function Gen-Code takes as argument t.Program, an ab­

stract program, and returns t.Code, the result of compiling 
t.Program into the machine code. The program t.Code is repre­
sented by an abstract syntax tree. 

The function Write-Code takes as argument a machine code 
program represented by an abstract syntax tree, and, upon con­
verting it into the character stream representation, writes it 
to the standard output device. 

The module CMPDIC has the following interface: 

** 
** File: CMPDIC.RFI 
** 

$func Make-Die 
$func Lookup-Die 
$func Allocate-Die 

= s.Dic; 
s.Key s.Dic = s.Ref; 
s.Dic s.StartAddr = s.FreeAddr; 

The interface exports four functions. 
The function Make-Die returns a reference to a new empty 

dictionary. 
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The function Lookup-Die returns the label associated with 
the key s.Key in the dictionary referred to by s.Dic. If the key 
s.Key has not been registered in the dictionary, a new unique 
label is created, associated with the key s.Key, and returned as 
the function's result. 

The function Allocate-Die looks through the dictionary 
referred to by s.Dic and binds all labels registered in the 
dictionary to different addresses. If the dictionary contains N 
keys, the labels get bound to consecutive addresses starting 
with s.StartAddr. The result returned by the function is the 
first free address. 

ll.S.THE MAIN MODULE 

The main module of the compiler 
compiler together. The name of the 
assumed to be passed to the compiler 
the command line. Thus the compiler 
command 

CMP FileName 

links 
source 
as the 
should 

all parts of 
program's file 
first argument 
be called by 

the 
is 
in 

the 

where FileName is a file name. This name is accessed by the 
compiler by means of the library function Arg. 

** 
** File CMP.RF 

** 
$use DOS; 
$use STDIO; 

$use CMPPRS; 
$use CMPGEN; 

$func Compile e.FileName 

Main = 
<Arg 1> :: e.FileName, 
<Compile e.FileName>; 

Compile e.FileName = 
<Channel>:: s.Chl, 

= 

<Open-File s.Chl e.FileName "r">, 
<Parse s.Chl> :: t.AProgram, 
<Close-Channel s.Chl>, 
<Gen-Code t.AProgram> :: t.Code, 
<Write-Code t.Code>; 

11.6.THE SCANNER 
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The result produced by the scanner is a token sequence, 
each token being represented by two symbols. The first of the 
symbols indicates the class of the token. 

In the following we describe the syntax of ground expres­
sions by means of an extended Backus-Naur form (EBNF), with 
non-terminals written as Refal Plus variables. The ground ex­
pressions denoted by the non-terminals are assumed to correspond 
to the types of the non-terminals. 

Thus the syntax of the token sequence produced by the scan­
ner can be described as follows: 

$ e.Tokens = { e.Token }. 
$ e.Token = 
$ Key s.Key I Name s.Name I Value s.Value I 
$ Char s.Char. 
$ s.Key = s.Word. 
$ s.Name = s.Word. 
$ s.Value = s.Int. 

A token of the form Key s.Key represents a keyword, s.Key 
being the word symbol whose character representation corresponds 
to the key word. A token of the form Name s.Name represents a 
variable name, s.Name being the word symbol whose character 
representation corresponds to the variable name (which, syntac­
tically, is an identifier). A token of the form Value s.Value 
represents a numeric constant, s.Value being the corresponding 
numeric symbol. A token of the form Char s.Char represents an 
unidentified character s.Char. 

When the reading of the source program has been finished, 
the scanner generates the token Key Eof. 

The module CMPSCN has the following implementation: 

** 
** File: CMPSCN.RF 

** 
$use STDIO; 
$use CLASS; 
$use CONVERT; 
$use BOX; 

$func Scan-Token 
s.Chl e.Line = s.TokenKey s.Tokeninfo (e.Linel); 

$func Scan-Id-Rest 
(e.Id-Chars) e.Chars = s.TokenKey s.Word (e.Rest); 

$func Scan-Int-Rest 
(e.Int-Chars) e.Chars = s.TokenKey s.Int (e.Rest); 

$func? Blank? 
$func? One-Char-Token? 
$func? Compound-Token? 
$func? KeyWord? 

s.Char = ; 
s.Char = ; 
s.Char e.Line = s.Word e.Rest; 
s.Word = 

** Boxes for storing the channel to be read, 
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** and the rest of the current line. 

$box Scan-Chl Scan-Line; 

!nit-Scanner s.Chl = 
<Store &Scan-Chl s.Chl>, 
<Store &Scan-Line >; 

** Scanner initialization. 
** The channel into box. 
** The current line is empty. 

Term-Scanner = 
<Store &Scan-Chl >, 
<Store &Scan-Line >; 

** Scanner termination. 
** Forgetting the channel 
** and the current line. 

Read-Token = ** The reading of a token. 
<? &Scan-Chl> : s.Chl, 
<?&Scan-Line>:: e.Line, 
<Scan-Token s.Chl e.Line> 

:: s.TokenKey s.Tokeninfo (e.Line), 
<Store &Scan-Line e.Line>, 

= s.TokenKey s.Tokeninfo; 

Scan-Token s.Chl e.Line = 
e.Line 
{ 

= 
{ 

<Read-Line! s.Chl> :: 
= <Scan-Token s.Chl 
= Key Eof (); 

} ; 
s.Char e.Rest = 

e.Line 
e.Line>; 

** 
** 
** 

** 

** 

The line rest is 
empty. Reading the 
next line. 

End of file. 

Examining the 
{ ** current character. 
<Blank? s.Char> 

= <Scan-Token s.Chl e.Rest>; 
<Letter? s.Char> 

= <Scan-Id-Rest (s.Char) e.Rest>; 
<Digit? s.Char> 

= <Scan-Int-Rest (s.Char) e.Rest>; 
<One-Char-Token? s.Char> 

=Key <To-Word s.Char> (e.Rest); 
<Compound-Token? s.Char e.Rest> :: s.Word e.Rest 

=Key s.Word (e.Rest); 
= Char s.Char (e.Rest); ** Unidentified character. 

} ; 
} ; 

** Getting the rest of an identifier. 

Scan-Id-Rest (e.Id-Chars) e.Rest = 
{ 

e.Rest : s.Char e.Restl, 
\{<Letter? s.Char>; <Digit? s.Char>;} 

= <Scan-Id-Rest (e.Id-Chars s.Char) e.Restl>; 
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=<To-Word <To-Upper e.Id-Chars>> : s.Word, 
{<KeyWord? s.Word> =Key;= Name;} :: s.TokenKey, 
= s.TokenKey s.Word (e.Rest); 

} ; 

** Getting the rest of an integer. 

Scan-Int-Rest (e.Int-Chars) e.Rest = 
{ 

e.Rest : s.Char e.Restl, <Digit? s.Char> 
= <Scan-Int-Rest (e.Int-Chars s.Char) e.Restl>; 
= Value <To-Int e.Int-Chars> (e.Rest); 

} ; 

Blank? s.Char = 
1 \n\t 1 : e s.Char e; 

One-Char-Token? s.Char = 
1 ; () +-* 1 1 : e s . Char e; 

Compound-Token? 
\{ 
I ·-1 e.Rest = "·-" e.Rest; .- .-
1<=1 e.Rest = "<=" e.Rest; 
1<>1 e.Rest = "<>" e.Rest; 
1<1 e.Rest = "<" e.Rest; 
1>=1 e.Rest = ">=" e.Rest; 
1>1 e.Rest = ">" e.Rest; 
1=1 e.Rest = "=" e.Rest; 
} ; 

** A whitespace? 

** A one-character token? 

** Trying to get a multi­
** character token. 

KeyWord? 
\{ 

** Is the identifier a key word? 

DO ; ELSE 
} ; 

IF READ ; THEN ; WHILE ; WRITE 

11.7.THE PARSER 

The parser, residing in the module CMPPRS, transforms a 
token sequence into an abstract program, i.e. a parse tree. 

Our parser will use the technique referred to as a recur­
sive-descent analysis. 

Consider, for example, the following grammar: 

$ Sentence = Subject Predicate. 
$ Subject = "cats" I "dogs". 
$ Predicate = "sleep" I "eat". 

Suppose we are given the token sequence 

"dogs" "eat" 
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and want to determine whether this sequence is a well-formed 
sentence. This amounts to determining whether this sequence can 
be derived from the non-terminal Sentence. But, the grammar 
specifies that the set of token sequences generated by the non­
terminal Sentence is equal to the set of sequences generated by 
the non-terminal sequence Subject Predicate. Thus, the origi­
nal problem can be reduced to determining whether the input 
sequence can be divided into two subsequences such that the 
first one can be derived from the non-terminal Subject, and the 
second one from the non-terminal Predicate. 

How can a sequence be divided into two parts, of which the 
first is generated by the non-terminal Subject? It, can, obvi­
ously, be done by testing whether the sequence begins with one 
of the tokens "cats" or "dogs". 

Thus we come to the following method of analyzing token 
sequences. 

Each non-terminal A appearing in the grammar is associated 
with a function A having the following declaration: 

$func? A e.Token = e.Rest; 

This function A tests whether the input token sequence e.Token 
begins with a sequence derivable from the non-terminal A, and, 
if so, deletes this beginning and returns the rest of the input 
sequence thus obtained. Otherwise, if the input sequence does 
not begin with a sequence derivable from the non-terminal A, the 
function A returns a failure. 

It goes without saying that the above method is applicable 
only in cases where, for each non-terminal A and each input 
sequence Z there exists no more than one way of dividing Z into 
two subsequences, of which the first is derivable from A. In 
many cases, however, the grammar can be rewritten in such a way 
that this restriction will be satisfied. An interested reader 
may find further details in [Wir 76] . 

Proceeding from the above consideration, we can now define 
the function "Sentence" either deleting from the input sequence 
the beginning derivable from the non-terminal Sentence, or fail­
ing, if this is unfeasible. 

$func? "Sentence" e.Token = e.Rest; 
$func? "Subject" e.Token = e.Rest; 
$func? "Predicate" e.Token = e.Rest; 
$func? Token? s? e.Token = e.Rest; 

"Sentence" eZ = 
<"Subject" eZ> ez, 
<"Predicate" eZ> : : eZ, 

= eZ; 

"Subject" eZ = 
\{ 
<Token? "dogs" eZ> :: eZ = eZ; 
<Token? "cats" eZ> : : eZ = eZ ; 
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} ; 

"Predicate" eZ = 
\{ 
<Token? "sleep" eZ> : : eZ = eZ; 
<Token? "eat" eZ> :: eZ = eZ; 
} ; 

Token? s? eZ = 
eZ : s? eZO 

= eZO; 

The function Token? is used for deleting a terminal symbol, 
which is passed as the first argument. 

Now we can return to considering the module CMPPRS, in 
which we have to deal with two additional problems. 

First, instead of returning the input token sequence as a 
whole, the scanner produces tokens one by one. Thus, each of the 
parsing functions, instead of taking as argument the whole token 
sequence, takes as argument a single token, the one that has 
been read last. This token is the one to be analyzed next. Simi­
larly, each of the parsing functions, instead of returning the 
whole rest of the token sequence, returns only the first un­
parsed token. (It should be kept in mind, however, that each 
token is represented by two Refal Plus symbols.) 

Second, in addition to checking the syntax correctness of 
the source program, the parser has to transform the token se­
quence into the corresponding abstract program, i.e. into an 
abstract syntax tree. Thus, the parsing function associated with 
a non-terminal A is usually declared as follows: 

$func A sC si = sC si tx; 

where sC si represent the current token, and tx is the result 
of translating the token sequence consumed by the function into 
an abstract syntax tree. 

Third, if a syntax error is detected, the parser, instead 
of returning a failure, must produce an error $error(Ge), where 
Ge is an error message describing the error. For this reason, 
the parsing functions are declared as unfailing ones. 

Here is the syntax of the abstract programs produced by the 
parser: 

$ t.Program = (Program t.Statement). 
$ t.Statement = 
$ (Assign s.Name t.Expr) 
$ (If t.Test t.Statement t.Statement) 
$ (While t.Test t.Statement) 
$ (Read s .Name) I 
$ (Write t.Expr) I 
$ (Seq t.Statement t.Statement) 
$ (Skip) . 
$ t.Test = (Test s.Comp-Oper t.Expr t.Expr). 
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$ t.Expr = 
$ (Const s.Value) 
$ (Name s.Name) 
$ (Op t.Oper t.Expr t.Expr). 
$ s.Comp-Oper = Eq I Ne I Gt I Ge I Lt I Le. 
$ s.Oper =Add I Sub I Div I Mul. 
$ s.Name = s.Word. 
$ s.Value = s.Int. 

Thus, a construction written in abstract syntax usually has 
the form 

(KeyWord Gtl Gt2 . . . GtN) 

where the key word KeyWord is a word symbol representing the 
construct's name, and the ground terms Gtl, Gt2, ... , GtN 
represent the component constructs also written in abstract 
syntax. Since the correspondence between the constructs written 
in concrete and abstract syntax is evident, we won't dwell on 
this point. 

Here is the implementation of the module CMPPRS: 

** 
** File: CMPPRS.RF 

** 
$use CMPSCN; 

$func Program 
$func Statement-Seq 
$func Rest-St-Seq 
$func Statement 
$func Test 
$func Expr 
$func Rest-Expr 
$func Term 
$func Rest-Term 
$func Factor 
$func Comp-Op 
$func? Add-Op? 
$func? Mul-Op? 
$func? Token? 
$func Accept 
$func? Name? 
$func? Value? 

Parse s.Chl = 
<Init-Scanner s.Chl>, 
<Program <Read-Token>> 
<Term-Scanner>, 
{ 

sC si : Key Eof 

sC si = sC si tx; 
sC si = sC si tx; 
sC si txO = sC si tx; 
sC si = sC si tx; 
sC si = sC si tx; 
sC si = sC si tx; 
sC si txl = sC si tx; 
sC si = sC si tx; 
sC si txl = sC si tx; 
sC si = sC si tx; 
sC si = sC si s.Comp-Oper; 
sC si = sC si s.Oper; 
sC si = sC si s.Oper; 
si? sC si = sC si ; 

si? sC si = sC si ; 
sC si = sC si s.Name; 
sC si = sC si s.Value; 

sC si t.Program, 

** Is the rest of the program 
** empty? 
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= t.Program.; 
= $error sCsi " instead of Eof after the program"; 

} ; 

Program sC si = 
<Statement-Seq sCsi>:: sCsi tx, 

=sCsi (Program tx); 

Statement-Seq sC si = 
<Statement sCsi>:: sCsi txO, 

= <Rest-St-Seq sC si txO>; 

Rest-St-Seq sC si txO = 
\? { 
<Token? ";" sCsi> :: sCsi\! 

<Statement-Seq sCsi>:: sCsi tx, 
=sCsi (Seq txO tx); 

\! 
= sC si txO; 

} ; 

Statement sC si = 
\? { 
<Name? sCsi>:: sCsi s.Name \! 

<Accept " : =" sC si> : : sC si, 
<Expr sCsi>:: sCsi t.Expr, 

=sCsi (Assign s.Name t.Expr); 
<Token? "IF" sCsi>:: sCsi\! 

<Test sCsi>:: sCsi t.Test, 
<Accept "THEN" sCsi>:: sCsi, 
<Statement sCsi>:: sCsi t.Then, 
<Accept "ELSE" sCsi>:: sCsi, 
<Statement sC si> sC si t.Else, 

=sCsi (If t.Test t.Then t.Else); 
<Token? "WHILE" sCsi>:: sCsi\! 

<Test sCsi>:: sCsi t.Test, 
<Accept "DO" sC si> : : sC si, 
<Statement sCsi>:: sCsi t.Do, 

= sC si (While t.Test t.Do); 
<Token? "READ" sCsi>:: sCsi\! 

<Name? sCsi>:: sCsi s.Name, 
= sC si (Read s.Name); 

<Token? "WRITE" sCsi>:: sCsi\! 
<Expr sCsi>:: sCsi t.Expr, 

=sCsi (Write t.Expr); 
<Token?"(" sCsi>:: sCsi\! 

** Program. 

** Statement 
** sequence. 

** Statement. 

<Statement-Seq sC si> sC si t.Stmt, 
<Accept ")" sC si> :: sC si, 

= sC si t.Stmt; 
\! 

= sC si (Skip) ; 
} ; 
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Test sC si = 
<Expr sC si> 
<Comp-Op sC si> 
<Expr sC si> : : 

= sC si (Test 

sC si t.Exprl, 
sC si t.Op, 

sC si t.Expr2, 
t.Op t.Exprl t.Expr2); 

** Test. 

Expr sC si = ** Expression. 
<Term sCsi>:: sCsi t.XO, 

= <Rest-Expr sC si t.XO>; 

Rest-Expr sC si t.Xl = 
\? { 
<Add-Op? sCsi>:: sCsi s.Op \! 

<Term sCsi>:: sCsi t.X2, 
= <Rest-Expr sC si (Op s.Op t.Xl t.X2)>; 

\! 
= sC si t.Xl; 

} ; 

Term sC si = 
<Factor sC si> sC si t.XO, 

= <Rest-Term sC si t.XO>; 

Rest-Term sC si t.Xl = 
\? { 
<Mul-Op? sC si> :: sC si s.Op \! 

<Factor sC si> sC si t.X2, 

** Term. 

=<Rest-Term sC si (Op s.Op t.Xl t.X2)>; 
\! 

= sC si t.Xl; 
} ; 

Factor sC si = 
\? { 
<Name? sCsi>:: sCsi s.Name \! 

= sC si (Name s.Name); 

** Factor. 

<Value? sCsi>:: sCsi s.Value \! 
= sC si (Const s.Value); 

<Token?"(" sCsi>:: sCsi\! 
<Expr sCsi>:: sCsi t.Expr, 
<Accept")" sCsi>:: sCsi, 

= sC si t.Expr; 
\! 

$error "Invalid factor start: " sC si; 
} ; 

Comp-Op sC si = 
{ 

sC : Key, 

** Comparison operator. 

( "=" Eq) ( "<>" Ne) ( "<=" Le) ( "<" Lt) ( ">=" Ge) ( ">" Gt) 
e (si s.Op) e 
= <Read-Token> s.Op; 
= $error "Invalid comparison operator: " sC si; 
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} ; 

Add-Op? Key si = ** Additive operator. 
(

11 + 11 Add) ( 11
-

11 Sub) : e (si s .Op) e 
=<Read-Token> s.Op; 

Mul-Op? Key si = ** Multiplicative operator. 
(

11 * 11 Mul) ( 11
/

11 Div) : e (si s.Op) e 
=<Read-Token> s.Op; 

**Tries to consume a key word si?, and 
** returns a failure, if this is unfeasible. 

Token? si? Key si? = <Read-Token>; 

**Tries to consume a key word si?, and 
** generates an error, if this is unfeasible. 

Accept 
{ 

= <Read-Token>; si? Key si? 
si? sC si 
} ; 

=$error sC si 11 instead of 11 Key si?; 

** Variable name. 

Name? Name si = <Read-Token> si; 

** Value. 

Value? Value si = <Read-Token> si; 

11.8.THE CODE GENERATOR 

Assembler language programs produced by the code generator 
are represented by ground ter.ms having the following syntax: 

$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 

t.Code = 
(Seq { t.Code } ) 
(Instr s.Instr s.Operand) 
(Label s.Label) I 
(Block s. Value) . 

s.Operand = s.Label I s.Value. 
s.Label = s.Box. 
s.Value = s.Int. 

s.Instr = 
Add 
Ad de 
Jumpeq 
Jump I 

Sub I Div I Mul I Load 
Subc I Dive I Mule I Loadc 
I Jumpne I Jumplt I Jumpgt 
Read I Write I Halt I 
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Assembler language programs may contain labels to be re­
placed with absolute addresses by the assembler. Assembling a 
program proceeds in two steps. First, the assembler determines 
the addresses associated with instructions and variables, and 
puts each address associated with a label into the box referred 
to by the label. Second, all labels are replaced with the ad­
dresses associated with them, i.e. each reference to a box is 
replaced with the contents of the box. 

The module CMPGEN has the following implementation: 

** 
** File: CMPGEN.RF 
** 

$use STDIO; 
$use CLASS; 
$use ARITHM; 
$use BOX; 

$use CMPDIC; 

$func Enc-Program 
$func Enc-St 
$func Enc-Test 
$func Unless-Op 
$func Enc-Expr 
$func Enc-Sub-Expr 
$func Literal-Op 
$func Memory-Op 
$func Assemble 
$func Assemble-Seq 
$func Dereference 
$func Dereference-Seq 
$func Write-Code-Seq 

t.Program s.Dic = t.Code; 
t.St s.Dic = t.Code; 
t.Test s.Label s.Dic = t.TestC; 
s.Op = s.Jump-If; 
t.Expr s.Dic = t.ExprC; 
t.Expr sN s.Dic = t.ExprC; 
s.Op = s.OpCode; 
s.Op = s.OpCode; 
t.Code s.StartAddr = s.FreeAddr; 
e.CodeSeq s.Addr = s.FreeAddr; 
t.Code = t.Target; 
e.CodeSeq = e.CodeSeqD; 
e.CodeSeq = ; 

** Generates an assembler language program 
** from an abstract program. 

Gen-Code t.Program = 
** Creating an empty dictionary. 

<Make-Die>:: s.Dic, 
** Generating the abstract program. 

<Enc-Program t.Program s.Dic> :: t.Code, 
**Allocating memory for the program's instructions. 

<Assemble t.Code 1> :: s.FreeAddr, 
**Allocating memory for the program's variables. 

<Allocate-Die s.Dic s.FreeAddr> :: s.EndAddr, 
** Replacing the labels with their addresses. 

<Dereference t.Code> :: t.CodeD, 
** Generating the directive BLOCK. 

<"-" s.EndAddr s.FreeAddr> :: s.BlockLength, 
(Seq t.CodeD (Block s.BlockLength)) :: t.Target, 

= t.Target; 
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** Encodes a program. 

Enc-Program (Program t.St) s.Dic = 
<Enc-St t.St s.Dic> :: t.StC, 
<Box> :: s .L, 

= (Seq t. StC (Instr Halt 0) (Label s. L)) ; 

** Encodes a statement. 

Enc-St (s.KeyWord e.Info) s.Dic = 
(s.KeyWord e.Info) 
{ 

(Assign sX t.Expr) = 
<Lookup-Die sX s.Dic> :: s.Addr, 
<Enc-Expr t.Expr s.Dic> :: t.ExprC, 

= (Seq t.ExprC (Instr Store s.Addr)); 
(If t.Test t.Then t.Else) = 

<Box>:: s.Ll, <Box>:: s.L2, 
<Enc-Test t.Test s.Ll s.Dic> :: t.TestC, 
<Enc-St t.Then s.Dic> t.ThenC, 
<Enc-St t.Else s.Dic> :: t.ElseC, 

= (Seq 

) ; 

t.TestC 
t.ThenC 
(Instr Jump s.L2) 

(Label s . Ll) 
t.ElseC 

(Label s.L2) 

(While t.Test t.Do) = 
<Box>:: s.Ll, <Box>:: s.L2, 
<Enc-Test t.Test s.L2 s.Dic> :: t.TestC, 
<Enc-St t.Do s.Dic> :: t.DoC, 

= (Seq 

) ; 

(Label s. Ll) 
t.TestC 
t.DoC 
(Instr Jump s.Ll) 

(Label s.L2) 

(Read s.X) = 
<Lookup-Die s.X s.Dic> :: s.Addr, 

= (Instr Read s.Addr); 
(Write t.Expr) = 

<Enc-Expr t.Expr s.Dic> t.ExprC, 
= (Seq t.ExprC (Instr Write 0)); 

(Seq t.Stl t.St2) = 
<Enc-St t.Stl s.Dic> :: t.StCl, 
<Enc-St t.St2 s.Dic> :: t.StC2, 

= (Seq t.StCl t.StC2); 
(Skip) = 

=(Seq); 
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} ; 

** Encodes a test. 

Enc-Test (Test s.Op t.Argl t.Arg2) s.Label s.Dic = 
<Enc-Expr (Op Sub t.Argl t.Arg2) s.Dic> :: t.ExprC, 
<Unless-Op s.Op> :: s.Jump-If, 

= (Seq t.ExprC (Instr s.Jump-If s.Label)); 

Unless-Op ** Generates a jump. 
{ 

Eq = Jumpne; Ne = Jumpeq; 
Lt = Jumpge; Gt = Jumple; 
Le = Jumpgt; Ge = Jumplt; 
} ; 

** This function compiles an arithmetic expression. 
** Auxiliary variables are created to keep 
** the values obtained by evaluating subexpressions. 
** The evaluation order of the subexpressions is chosen in 
** such a way as to reduce the number of auxiliary variables. 

Enc-Expr t.Expr s.Dic 
= <Enc-Sub-Expr t.Expr 0 s.Dic>; 

Enc-Sub-Expr (s.KeyWord e.Info) sN s.Dic = 
(s.KeyWord e.Info) 
{ 

(Const sC) = 
= (Instr Loadc sC); 

(Name sX) = 
<Lookup-Die sX s.Dic> :: s.Addr, 

= (Instr Load s.Addr); 
(Op s.Op t.Exprl t.Expr2) = 

t.Expr2 : 
{ 

(Const sC2) = 
<Enc-Sub-Expr t.Exprl sN s.Dic> :: t.ExprlC, 
<Literal-Op s.Op> :: s.OpCode, 

= (Seq t.ExprlC (Instr s.OpCode sC2)); 
(Name sX2) = 

<Enc-Sub-Expr t.Exprl sN s.Dic> :: t.ExprlC, 
<Memory-Op s . Op> : : s . OpCode, 
<Lookup-Die sX2 s.Dic> :: s.Addr, 

= (Seq t.ExprlC (Instr s.OpCode s.Addr)); 
(Op e) = 

<Lookup-Die sN s.Dic> s.Addr, 
<Enc-Sub-Expr t.Expr2 sN s.Dic> :: t.Expr2C, 
<"+" sN 1> :: sNl, 
<Enc-Sub-Expr t.Exprl sNl s.Dic> :: t.ExprlC, 
<Memory-Op s . Op> : : s . OpCode, 

= (Seq 
t.Expr2C 
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(Instr Store s.Addr) 
t.ExprlC 
(Instr s.OpCode s.Addr) 

} ; 
} ; 

Literal-Op 
{ 

) ; 

Add = Addc; Sub = Subc; 
Mul = Mule; Div = Dive; 
} ; 

Memory-Op 
{ 

Add = Add; Sub = Sub; 
Mul = Mul; Div = Div; 
} ; 

** Generates the names of 
** the instructions with 
** literal operands. 

** Generates the names of 
** the instructions with 
** address operands. 

** Allocates memory for the instructions. 

Assemble t.Code s.AO = 
t.Code 
{ 

(Seq e.CodeSeq) = 
=<Assemble-Seq e.CodeSeq s.AO>; 

(Instr s s) = 
= <"+" s.AO 1>; 

(Label s.Label) = 
<Store s.Label s.AO> 

= s.AO; 
} ; 

Assemble-Seq e.CodeSeq s.AO = 
e.CodeSeq : 
{ 

t.Code e.Rest = 
<Assemble t.Code s.AO> :: s.Al, 
=<Assemble-Seq e.Rest s.Al>; 

= 
= s.AO; 

} ; 

** Replaces the labels with their addresses. 

Dereference t.Code = 
t.Code : 
{ 

(Seq e.CodeSeq) = 
(Seq <Dereference-Seq e.CodeSeq>); 

(Instr s.Instr s.Value) = 
{ 

<Int? s.Value> 
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= t.Code; 
<Box? s.Value> 

= (Instr s.Instr <? s.Value>); 
} ; 

(Label s.Label) = 
(Label <? s.Label>); 

} ; 

Dereference-Seq 
{ 

t.Code e.CodeSeq = 
<Dereference t.Code><Dereference-Seq e.CodeSeq>; 

= ; 
} ; 

** Converts the assembler language program to 
** the character sequence, and outputs it to 
** the standard output device. 

Write-Code 
{ 

(Seq e.CodeSeq) = 
<Write-Code-Seq e.CodeSeq>; 

(Instr s.Instr s.Value) = 
<Print" "><Print s.Instr><Print ","> 
<Print s.Value><Print ";\n">; 

(Label s.Label) = 
<Print s.Label><Print ":\n">; 

(Block s.Value) = 
<Print " BLOCK,"><Print s.Value><Print ";\n">; 

} ; 

Write-Code-Seq 
{ 

t.Code e.CodeSeq = 
<Write-Code t.Code><Write-Code-Seq e.CodeSeq>; 

= ; 
} ; 

11.9.THE DICTIONARY MODULE 

Dictionaries are represented by binary trees [AHU 74] . Each 
tree node is represented by a box containing three symbols: a 
key, a value associated with the key, a reference to the left 
subtree, and a reference to the right subtree. An empty tree is 
represented by a reference to an empty box. 

The module CMPDIC has the following implementation: 

** 
** File: CMPDIC.RF 
** 
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$use BOX; 
$use COMPARE; 
$use ARITHM; 

** Creates an empty dictionary. 

Make-Die 
= <Box>; 

** Looks up the dictionary s.Dic for the label associated 
** with the key s.Key. If the key s.Key is not registered 
** in the dictionary, the dictionary is updated: 
** the key s.Key is associated with a new unique label. 

Lookup-Die s.Key s.Dic = 
<? s.Dic> 
{ 

= 
<Box> :: s .Ref, 
<Store s.Dic s.Key s.Ref <Box> <Box>>, 

= s.Ref; 
s.Keyl s.Refl s.DicL s.DicR = 

<Compare (s.Key) (s.Keyl)> 
{ 

'<' =<Lookup-Die s.Key s.DicL>; 
'>' =<Lookup-Die s.Key s.DicR>; 
'=' = s.Refl; 
} ; 

} ; 

** Allocates memory for the labels registered in 
** the dictionary. s.A is the start address. 
** The address corresponding to a label is put 
** into the box referred to by the label. 

Allocate-Die s.Dic s.A = 
<? s.Dic> 
{ 

= s.A; 
s.Key s.Ref s.DicL s.DicR = 

<Allocate-Die s.DicL s.A> 
<Store s.Ref s.A>, 
<"+" s .A 1> : : s .A, 

s .A, 

=<Allocate-Die s.DicR s.A>; 
} ; 

Write-Die s.Dic = 
<? s.Dic> : 
{ 

= <Print "_">; 
s.Key s.Ref s.DicL s.DicR = 

<Print"(">, <Write-Die s.DicL>, <Print" ">, 
<Write s.Key>, 
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} ; 

<? s.Ref> 
{ 

= ; 
e.Value = <Print "->"> <Write e.Value>; 
} I 

<Print " ">, 
<Write-Die s.DicR>, <Print")">; 
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Chapter II. SYNTAX AND SEMANTICS OF REFAL PLUS 

l.NOTATION FOR SYNTAX DESCRIPTION 

The syntax is described by means of an extended Backus-Naur 
form (EBNF) . 

Syntactic entities (non-terminals) are denoted by English 
words expressing their intuitive meaning. Terminal symbols of 
the language are written between acute accents (') or double 
quotes in order to be distinguished from non-terminals. 

A syntax definition is a collection of productions. Each 
production has the form 

S = E. 

where S is a non-terminal and E a syntax expression denoting the 
set of constructs for which S stands. An expression E has the 
form 

Tl I T2 I I Tn (n>O) 

where the Ti's are the terms of E. Each Ti stands for a set of 
constructs, and E denotes their union. Each term T has the form 

Fl F2 ... Fn (n>O) 

where the Fi's are the factors ofT. Each Fi stands for a set of 
constructs, and T denotes their product, i.e. the set of con­
structs of the form Xl X2 ... Xn, where each Xi belongs to the 
set denoted by Fi. 

Each factor F has either the form 

"x" 

(x is a terminal symbol, and "x" denotes the singleton set con­
sisting of this single symbol) , or 

( E ) 

(denoting the expression E) , or 

[ E ] 

(denoting the union of the set denoted by E and the empty con­
struct) , or 

{ E } 

(denoting the set consisting of the union of the empty construct 
and the sets E, E E, E E E, etc.). 

Here are a few examples of syntactic EBNF-expressions along 
with the sets of constructs described by the expressions. 
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(AlB) (CID) 
A[B]C 
A {B A} 

{AlB} C 

A C, AD, B C, B D 
A B C, A C 
A, A B A, A B A B A, A B A B A B A, 
C, A C, B C, A A C, A B C, B B C, B A C, 

In order for the EBNF syntax description to be distingui­
shable from the surrounding English text, all the lines contain­
ing EBNF productions will be marked by the character $ in the 
first column. 

Since an EBNF-description may be regarded as a text in a 
language, the syntax of EBNF-descriptions may also be defined in 
terms of EBNF in the following way: 

$ Syntax = { SyntFormula } . 
$ SyntFormula = Identifier "=" SyntExpression II II . 
$ SyntExpression = SyntTerm { "I" SyntTerm } . 
$ SyntTerm = SyntFactor { SyntFactor } . 
$ SyntFactor = Identifier I I II I Terminal Symbol I II I 

$ II ( II SyntExpression II) II I II [II SyntExpression II] II 

$ "{" SyntExpression II } II • 

2.NATURAL SEMANTICS DESCRIPTION 

The method that will be used to describe the execution of 
Refal Plus programs is known as Natural Semantics or Structural 
Operational Semantics [Plotkin 1983], [Apt 1983]. 

The name Natural Semantics is due to the similarity of this 
description technique to Gentzen's Natural Deduction in mathe­
matical logic. When this technique is applied, the semantics of 
a language is considered to be an unordered set of judgments 
about programs and their fragments. 

For example, suppose the language to be described deals 
with expressions containing variables, and the evaluation of the 
expressions may cause side effects (which may be due to the 
input/output operations). Then, the language description may 
involve the judgments of the form 

Env,St' I-E=> X,St" 

where E is a language expression, Env is an environment, which 
binds variables to their values in the context of E, St' and St" 
are global states before the evaluation of E and after the eval­
uation of E, and X is the result of evaluating E. A global state 
may contain the state of the store, the files etc. 

Informally, such a judgment may be interpreted in the fol­
lowing way: if the evaluation of E starts in the environment E 
and global state St', it may result in producing the value X and 
the global state St". 

The symbol "I-" (which may be pronounced "implies" or "en­
tails") indicates the dependency of E's evaluation on the cur­
rent environment Env and the global state St'. 
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Thus, to define a language semantics, we have to describe a 
set of (true) judgments about programs and their fragments. 

A Natural Semantics definition is an unordered collection 
of inference rules, which enables true judgments to be derived 
from other true judgments. 

A rule has basically two parts, a numerator and a 
denominator. The numerator of a rule is an unordered collection 
of formulae, the premises of the rule, whereas the denominator 
is always a single formula, the conclusion. A rule that contains 
no premise on the numerator is called an axiom, in which case 
the horizontal line may be omitted. 

Besides, a rule may contain additional conditions, which 
impose certain restrictions on the applicability of the rule. 
The restrictions are placed slightly to the right of the rule or 
under the rule. 

For example, suppose that the language to be described has 
the construct if E then E' else E", whose meaning may be infor­
mally defined as follows. 

Evaluate E. If the value of E is true, evaluate E' and 
assume the value obtained to be the result of the whole con­
struct. Otherwise, if the value of E is false, evaluate E" 
assume the value obtained to be the result of the whole 
struct. 

and 
con-

A drawback of the above description is that there 
explicit information about the environment in which the 
tion of E, E', and E" takes place. Thus, the description 
reformulated as follows. 

is no 
evalua­
may be 

If the result of evaluating E in 
true, and the result of evaluating E' 
X, then X is the result of evaluating 
the environment Env. 

If the result of evaluating E in 
false, and the result of evaluating E" 
X, then X is the result of evaluating 
the environment Env. 

the environment Env 
in the environment Env 
if E then E' else E" 

is 
is 
in 

the environment Env is 
in the environment Env is 
if E then E' else E" in 

This verbose definition may be given a more concise and 
comprehensible formulation by means of two inference rules: 

Env,St 1- E => true,St' 
Env,St' 1- E' => X,St" 

Env,St 1- if E then E' else E" => X,St" 

Env,St 1- E => false,St' 
Env,St' 1- E" => X,St" 

Env,St 1- if E then E' else E" => X,St" 

Take notice of the fact that, in contrast to the informal 
semantics definition, the formal one provides a precise descrip­
tion of the way in which the global state is modified when the 
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program is executed. 

3.LEXICAL STRUCTURE OF PROGRAM 

A program in Refal Plus is a finite character sequence. The 
syntax analysis of programs is done in two steps. First, the 
program is scanned, in order to break up the character stream 
into tokens. Then the token sequence is parsed to produce an 
abstract syntax tree. Thus, the definition of the Refal Plus 
syntax comprises two parts. The first part describes the lexical 
structure of programs, i.e. how tokens are represented by char­
acter sequences, whereas the second part describes how to con­
struct programs by combining tokens. 

$ Program= {Token I WhiteSpace }. 

$ WhiteSpace = WhiteStuff { WhiteStuff }. 

$ WhiteStuff = Space I HorizontalTab NewLine I Comment. 

A program is a finite sequence of tokens. Tokens may be 
separated by spaces, horizontal tabs, new line characters, and 
comments, which cannot occur within tokens and are ignored un­
less they are essential to separate two consecutive tokens. 

3.l.COMMENTS 

$ Comment = "*" CommentTail NewLine 
$ I " I*" Commen tBody " *I" . 
$ CommentTail = 
$ any character string not containing NewLine. 
$ CommentBody = 
$ any character string not containing "*1". 

A comment may begin with an asterisk, in 
extends to the following new line. Otherwise, 
closed in "comment brackets" I* and *I. 

* This is a comment. 
* And this is a comment. 

I* As well as this one! *I 

3.2.TOKENS 

$ Token = 
$ Bracket I KeyWord I 
$ CharacterStringLiteral 
$ WordLiteral I NumericLiteral 
$ Variable. 
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$ Bracket = " (" I ") " I " { " "\{" "}" I "<" I ">". 

A token is either a bracket, a key word, a character string 
literal, a word literal, a numeric literal, or a variable. 

3.3.KEY WORDS 

$ KeyWord = 
$ "$box" I "$channel I "$const" I "$error" I "$fail" 
$ "$func" I "$func?" I "$iter" I "$1" I "$r" I 
$ "$string" I "$table" I "$trace I I "$traceall" 
$ "$trap" I "$use" I "$vector" I "$with" I 
$ "#" I "&" I "," I "·" I "··" I ";" I "=" I 
$ "\?" I "\!". 

The key words that begin with the 
insensitive. For example, here are three 
tions of the same key word: 

character 
different 

$ are case 
representa-

$func $Func $FUNC 

3.4.CHARACTER SYMBOLS 

CharacterStringLiteral = $ 
$ "'" { CharacterLiteral I ContinuationToNewLine } IIIII 

$ CharacterLiteral = 
$ NonSpecialCharacterLiteral I SpecialCharacterLiteral. 
$ NonSpecialCharacterLiteral = 
$ any ASCII character except acute accent('), 
$ double quote ("), back slash (\), and new line. 
$ SpecialCharacterLiteral = 
$ "\n" I "\t" I "\v" "\b" I "\r" I "\f" 
$ "\\" I "\'" I '\"' 
$ ContinuationToNewLine = 
$ "\" NewLine. 

Each character symbol corresponds to an ASCII 
and is represented by a character literal enclosed 
accents. For instance: 

'A' 'a' '7' '$' 

character, 
in acute 

Ordinarily, an ASCII character is represented by itself, 
except the following characters: 

New line (line feed) 
Horizontal tabulation 
Vertical tabulation 
Backspace 
Carriage return 
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Form feed 
Back slash 
Acute accent 
Double quote 

FF 
\ 

" 

'\f' 
'\\' 
I\ I I 

'\"' 

A sequence of several character symbols may be written as a 
single string consisting of character literals and enclosed in 
acute accents. For instance: 

'ABC' 
'123' 
'\"I don\'t like swimming!\"- said a little girl.' 

Thus, the sequence of three character symbols 'A', 'B', and 
'C' may be written in any of the following ways: 

'A' 'B' 'C' 
'A' 'B' 'C' 
'ABC' 

If a back slash \ followed by a new line (LF) appears in a 
character string literal, this back slash and the new line char­
acter are ignored, which enables long strings to be written on 
more than one line. For example: 

'A\ 
BC' 

3.5.WORD SYMBOLS 

WordLiteral = 
Identifier 

$ 
$ 
$ I II I { CharacterLiteral I ContinuationToNewLine } I II I 

$ 
$ 
$ 

Identifier = IdentifierHead IdentifierTail. 
IdentifierHead = CapitalLetter I "!" "?" 
IdentifierTail = {Letter I Digit I "!" "?" 

$ Letter = CapitalLetter I SmallLetter. 

$ 
$ 
$ 
$ 

CapitalLetter 
"A" I "B" 
"J" I "K" 
"S" I "T" 

$ SmallLetter = 
$ "a" I "b" 
$ "j" I "k" 
$ "s" I "t" 

= 
I 
I 
I 

$ Digit = "0" "1" 
$ I "8" I "9". 

"C" "D" "E" "F" 
"L" "M" "N" "0" 
"U" "V" "W" "X" 

"c" "d" "e" "f" 
"1" "m" "n" "o" 
"u" "v" "w" "x" 

"2" "3" "4" 
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"G" 
"P" 
"Y" 

"g" 
"p" 
"y" 

"5" "6" 

"-" }. 

"H" "I" 
"Q" "R" 
"Z". 

"h" "i" 
"q" "r" 
"z". 

"7" 



Each word symbol corresponds to an ASCII character string 
and is written as a sequence of character literals enclosed in 
double quotes. The character literals appearing in word symbols 
are the same as those appearing in character symbols. For exam­
ple: 

"ABC" 
"123" 
"\"I don\'t like swimming!\" - said a little girl." 

Notice should be taken of the fact that "ABC" represents a 
single word symbol, whereas 'ABC' represents the sequence of 
three character symbols. Besides, a word symbols consisting of a 
single character is regarded as different from the character 
symbol consisting of the same character. For example, the char­
acter symbol 'A' is different from the word symbol "A". 

The double quotes enclosing a word symbol may be omitted, 
provided that the symbol satisfies the two following restric­
tions. 

First, the word symbol may contain only the following ASCII 
characters: capital letters, small letters, digits, exclamation 
marks, question marks, and minus signs. 

Second, the first character of the word symbol must be 
either a capital letter, an exclamation mark, or a question 
mark. 

If a word symbol is written without enclosing double 
quotes, it is case insensitive, i.e. all small letters are con­
sidered to be representations of the corresponding capital let­
ters. 

For example, here are three representations of the same 
word symbol: 

!-do-not-like-swimming! 
I-DO-NOT-LIKE-SWIMMING! 
"I-DO-NOT-LIKE-SWIMMING!" 

3.6.NUMERIC SYMBOLS 

$ NumericLiteral = [ "+" I "-" ] Digit { Digit } . 

Numeric symbols represent signed integers, which may be 
arbitrarily large. For example: 

123 +121 -123 -123456789012345678901234567890 

3.7.VARIABLES 

$ Variable = 
$ s-variable t-variable I a-variable I 
$ v-variable. 
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$ s-variable = "s" [ II II Variableindex. . 
$ t-variable = II t" [ II II Variableindex. . 
$ v-variable = "v" [ II II Variableindex. . 
$ a-variable = "e" [ II II Variableindex. . 

$ VariableTypeDesignator = "s" I "t" I "v" I "e". 
$ Variable Index = IdentifierTail. 

A variable consists of a variable type designator followed 
by a variable index. The type designator and the index may be 
separated by an optional dot. For example: 

tHead eTail e.1 e1 tx s t e 

Variable indices are case insensitive. For example, ei, 
e.I, ei, and e.i represent the same variable. 

Adjacent variables must be separated. For example, sAeB 
is a single variable, whereas sA eB is a sequence of two vari­
ables. 

The index of a variable may be omitted, which means that 
the index is unique and different from the indices of all other 
variables appearing in the program. Thus, for example, if the 
variables e1000 and e2000 do not appear in the program, the 
sequence e e may be replaced with e1000 e2000. 

Variables are distinguished into four classes: a-variables, 
t-variables, v-variables, and a-variables, the class of a varia­
ble being determined by the type designator. 

3.8.NORMALIZATION OF THE TOKEN STREAM 

A program is scanned to break up the source character 
stream into tokens. Despite being different in form, many tokens 
have the same meaning. For example, all the three tokens 

125 000125 +125 

denotes the same number 125. 
It is for this reason that the description of the lexical 

structure of programs deals with such terms as "numeric literal" 
and "word literal" rather that "number" and "word". 

Besides, a token like "character string literal" represents 
a sequence of characters rather that a single syntax entity. 

Thus, when describing the syntax, we assume the token 
stream to have been "normalized", each token having been reduced 
to its normal form, so that different tokens always represent 
different entities. 

In addition we assume each character string literal to have 
been broken up into the string of separate tokens, a token rep­
resenting a single character. 

The above enables us to describe the syntax in terms of 
syntax "entities" rather than "representations of syntax enti­
ties". 
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Here is the correspondence between the source tokens and 
the normalized tokens: 

CharacterStringLiteral ==> 
Character! Character2 ... CharacterN 

WordLiteral ==> Word 
NumericLiteral ==> Number 

The character symbols obtained by scanning a program should 
not be confused with the characters appearing in the source text 
of the program. For example, parsing the three characters 

'A' 

results in producing a single character symbol. 

4.0BJECTS AND VALUES 

"Object" is usually understood to mean an entity that 
exists in time and may vary, but, nevertheless, does not lose 
its identity. 

"Value" is usually understood to mean an entity that is 
unable to vary and, in a sense, exists out of time. 

A value may, certainly, be regarded as a special, degene­
rate, case of object (i.e. as a rigid object unable to develop). 
Nevertheless, the term "object" will be usually applied only to 
"proper" objects, which are not values. 

Since objects may vary, they are more difficult to deal 
with than values are. Thus objects are often provided with 
names. The basic property of names is that a name is unambigu­
ously associated with an object (i.e. a name unambiguously iden­
tifies the object). In contrast to objects, their names are 
typical values, there being no changes in the names in spite of 
there being drastic changes in the objects. 

Programs in Refal Plus deal with objects as well as values. 
All values manipulated by Refal programs are ground expres­

sions, which are finite sequences of symbols and parentheses, 
the parentheses being properly paired. Parentheses are used for 
giving a tree structure to ground expressions, whereas symbols 
represent basic data, such as characters, numbers, words, and 
references to objects. 

Objects dealt with by a Refal program may contain ground 
expressions, which, in turn, may contain references to objects. 
The contents of objects may be modified by the Refal program, in 
which case the objects are accessed through their names, refer­
ence symbols. 

Objects may be created at compile time as well as at run 
time. Theoretically, having been created, an object exists eter­
nally. In practice, however, Refal programs are to be run by 
computers with limited memory capacity, thus all Refal implemen­
tations must include a garbage collector, whose purpose is to 
automatically destroy objects inaccessible to the program, and, 
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thus, unable to influence the program's behavior. 

S.GROUND EXPRESSIONS 

S.l.GROUND EXPRESSION SYNTAX 

$ GroundExpression = { GroundTerm }. 
$ GroundTerm =Symbol I "(" GroundExpression ")". 

Henceforth, ground expressions will be denoted by Ge, gr­
ound terms by Gt, and symbols by Gs. 

5.2.STATIC AND DYNAMIC SYMBOLS 

$ Symbol = StaticSymbol I DynamicSymbol. 
$ StaticSymbol = Character I Word I Number. 
$ DynamicSymbol = ReferenceToFunction I ReferenceToTable 
$ ReferenceToBox I ReferenceToVector I 
$ ReferenceToString I ReferenceToChannel. 

The symbols are divided into two classes: static symbols 
and dynamic symbols. 

A static symbol is either a character symbol, a word sym­
bol, or a numeric symbol. 

The static symbols exist "objectively": a static 
be written to an input/output channel, and then read 
symbol read being the same as the symbol written. 

symbol may 
back, the 
Thus, the 

static symbols, in a sense, exist before the program is run, and 
continue to exist after the program has been run. 

A dynamic symbol is a reference to an object. This symbol 
contains a pointer to the memory location where the object re­
sides at run time. The object may be either a function defini­
tion, a box, a vector, a string, a table, or a channel. 

The dynamic symbols, in contrast to the static ones, exist 
"subjectively". A dynamic symbol is created either at the moment 
the program is loaded, or when the program is being executed. A 
dynamic symbol may be written into an input/output channel, but 
it cannot be read back. The execution of a program having been 
brought to completion, all dynamic symbols created during the 
execution lose any meaning. 

A dynamic symbol is either a function reference, a box 
reference, a vector reference, a string reference, a table ref­
erence, or a channel reference. 

5.3.SYMBOLIC EXPRESSION NAMES 

$ NamedExpression = "&" Word. 

Ground expressions appearing in a Refal Plus program may be 
given symbolic names (which are word symbols) . If a word symbol 
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Gs denotes a ground expression Ge, the construct & Gs may be 
used instead of the expression Ge. 

Since all references to objects as well as the objects are 
created when the program is compiled, loaded or executed, refer­
ences cannot appear in the source program text as literals. 
Nevertheless, when an object is declared in a program, the re­
ferences to the object are given a symbolic name, which may be 
used in the program for denoting the references. 

5.4.ELIMINATION OF SYMBOLIC EXPRESSION NAMES 

If a word Gs is a symbolic name for a ground expression 
Ge, all occurrences of the name in a program may be eliminated 
by replacing each construct &Gs with Ge. 

Henceforth, when describing context dependent restrictions 
and the syntax of the language, we assume the above transforma­
tion to have been done and, thus, symbolic expression names not 
to appear in the program. On the other hand, the transformed 
program text may well contain dynamic symbols. 

6.VARIABLE VALUES AND ENVIRONMENTS 

To evaluate a Refal Plus construct, it is necessary to know 
the values of the variables appearing in the construct. The 
information about the variable values may be represented in a 
natural way by an environment, which is a function with finite 
domain that associates each variable from the domain with the 
variable's value. 

We shall use the following notation. 
Let Env be an environment with the domain {Vl, ... , 

Env(Vj) = Gej being the value the variable Vj is bound to. 
this environment is denoted by {Vl =Gel, ... , Vn = Gen}. 
particular, the empty environment is denoted by {}. 

The domain of the environment Env is denoted 
dom[Env]. Thus, dom[ {Vl =Gel, ... , Vn = Gen} ] = {Vl, 
Vn}. 

Vn}, 
Then 

In 

by 
... ' 

All environments are assumed to satisfy the requirement 
that a variable's value should be consistent with the type of 
the variable. Thus, an s-variable's value must be a symbol, a 
t-variable's value must be a ground term, an e-variable's value 
must be a ground expression, and a v-variable's value must be a 
non-empty ground expression. 

Env+Env' denotes the environment Env extended with the 
bindings from the environment Env' in the following way. 

dom[Env+Env'] contains the variables from dom[Env'], as 
well as the variables from dom[Env], whose indices are diffe­
rent from the indices of the variables from dom[Env']. 

For all V in dom[Env+Env'], if Env' (V) is defined, 
then (Env+Env') (V) = Env' (V), otherwise, if Env' (V) is unde­
fined, then (Env+Env') (V) = Env(V). 
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For example, 

{sX = 1, sY = 2} + {sY = 200, sZ = 300} 
= {sX = 1, sY = 200, sZ = 300} 

{sX = 1, sY = 2} + {eY = 200, sZ = 300} 
= {sX = 1, eY = 200, sZ = 300} 

?.RESULT EXPRESSIONS 

7.1.SYNTAX 

$ ResultExpression = 
$ { Resul tTerm NamedExpression } . 
$ ResultTerm = 
$ StaticSymbol Variable I 
$ "(" ResultExpression ")" I 
$ FunctionCall. 
$ FunctionCall = 
$ "<" FunctionName CallArgument ">". 
$ CallArgument = 
$ ResultExpression. 

If two different variables appear in the same result ex­
pression, they must have different indices. 

Henceforth, result expressions will be denoted by Re, 
result terms by Rt, variables by V, a-variables by Ve, and 
function names by Fname. 

7.2.EVALUATION OF RESULT EXPRESSIONS 

A result expression Re may be evaluated in an environment 
Env, on condition that Env provides values for all variables 
appearing in Re. 

If the evaluation of Re terminates, it results in producing 
either a ground expression Ge, a failure $fail(O), or an error 
$error(Ge), where Ge is an error message. 

Evaluating a function call may result in the global program 
state being changed (for example, if it involves input/output or 
some manipulations with objects) . Hence, if a result expression 
contains function calls, evaluating the expression may also 
result in the global state being changed. 

A judgment Env,St 1- Re => X,St' means that the result of 
evaluating the result expression Re in the environment Env is X, 
and if the evaluation starts in the global state St, it termi­
nates in the global state St'. 

A result expression 
variables being replaced 
calls being executed. 

The evaluation of a 

Re is evaluated from left to right, the 
with their values, and the function 

function call <Fname Re> begins by 
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evaluating the result expression Re. If a ground expression Ge 
is returned, the function Fname is applied to Ge. 

A judgment St 1- <Fname Ge> => X,St' means that the re­
sult of applying the function Fname to the ground expression 
Ge is X, and if the evaluation starts in the global state St, it 
terminates in the global state St'. 

Env,st 1- => ,st 

Env,St 1- Re => Ge' ,St' 
Env,St' 1- Rt => Ge" ,St" 

Env,St 1- Re Rt => Ge' Ge",St" 

Env,St I- Re => Ge' ,St' 
Env,St' I- Rt => $fail(O) ,St" 

Env,St 1- Re Rt => $fail(O),St" 

Env,St I- Re => Ge' ,St' 
Env,St' 1- Rt => $error(Ge"),St" 

Env,St 1- Re Rt => $error(Ge") ,St" 

Env,St I- Re => $fail(O) ,St' 

Env,St I-Re Rt => $fail(O),St' 

Env,St 1- Re => $error(Ge'),St' 

Env,St 1- Re Rt => $error(Ge') ,St' 

Env,St 1- Gs => Gs,St 

Env,St 1- V => Ge,St 
gde Ge=Env(V). 

Env,St 1- Re => Ge,St' 

Env,St 1- (Re) => (Ge) ,St' 

Env,St 1- Re => $fail(O),St' 

Env,St I- (Re) => $fail(O) ,St' 
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Env,St 1- Re => $error(Ge) ,St' 

Env,St 1- (Re) => $error(Ge) ,St' 

Env,St 1- Re => Ge,St' 
St' 1- <Fname Ge> => X, St" 

Env, St 1- <Fname Re> => X, St" 

Env,St I-Re=> $fail(O),St' 

Env,St 1- <Fname Re> => $fail(O) ,St' 

Env,St 1- Re => $error(Ge) ,St' 

Env,St 1- <Fname Re> => $error(Ge),St' 

7.3.EXAMPLES 

Here are examples of result expressions: 

(A B) C D 

t.Head e.Tail 
While t.Condition Do t.Statement 
<"*" sN <Factorial <"-" sN 1>> 

The following result expressions are result ter.ms: 

(A B) 
t.Head 
<"*" sN <Factorial <"-" sN 1>> 

Let Env1 = {sM = 2, sN = 3, eA = ABC, tB = (DE F)}, 
"+" be the name of the function that adds integers, and "*" be 
the name of the function that multiplies integers. Thus, the 
judgments 

St 1- <"+" 3 100> => 103, St 
St 1- <"*" 2 103> => 206, St 

hold for any global state St, because the functions "+" and "*" 
do not change the global state. 

Then we have 

Env1,St I- eA (eA tB) tB => 
ABC (ABC (DE F)) (DE F), St 

Env1,St 1- <"*" sM <"+" sN 100>> => 206, St 
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S.PATTERNS 

S.l.SYNTAX 

$ Pattern = DirectionDesignator PatternExpression. 
$ DirectionDesignator = [ "$1" I "$r" ] . 

$ PatternExpression = 
$ { PatternTer.m I NamedExpression }. 
$ PatternTer.m = 
$ StaticSymbol I Variable I 
$ "(" PatternExpression ")". 

A pattern is a pattern expression, which may be preceded by 
a direction designator "$1" or "$r". The designator "$1" indi­
cates that the pattern matching must be done from left to right. 
The designator "$r" indicates that it must be done from right to 
left. If the direction designator is omitted, the designator 
"$1" is implied. 

If two different variables appear in the same pattern ex­
pression, they must have different indices. 

Henceforth, patterns are denoted by P, pattern expressions 
by Pe, pattern terms by Pt, and direction designators by D. 

8.2.PATTERN MATCHING 

An environment Env is said to be a result of matching a 
ground expression Ge against a pattern P in an initial en­
vironment EnvO, if the following conditions holds. 

(1) The environment Env 
dom[Env] includes dom[EnvO], 
holds Env(V)=EnvO(V). 

is an extension 
and for all 

of 
V in 

EnvO, i.e. 
dom[EnvO] 

(2) If each variable V appearing in 
Env(V), and the direction designator is 
expression thus obtained is Ge. 

P is replaced with 
removed, the ground 

This environment Env is said to be a variant of matching 
Ge against P in the environment EnvO, and the set of such 
variants of matching is denoted by Match(EnvO,Ge,P). 

The set Match(EnvO,Ge,P) is assumed to be equipped with 
the order relation defined by the following rules. 

Suppose Match(EnvO,Ge,P) contains two different variants 
of matching Envl and Env2. Consider all occurrences of vari­
ables in P. 

If P has the direction designator $1, find the leftmost 
occurrence that is given different values by the matching vari­
ants Envl and Env2. 

If P has the direction designator $r, find the rightmost 
occurrence that is given different values by the matching vari-
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ants Env1 and Env2. 
Suppose the occurrence found is an occurrence of a variable 

V. Then compare Env1(V) to Env2(V). If Env1(V) is shorter 
than Env2(V), then Env1 is taken to precede Env2. Other­
wise Env2 is taken to precede Env1. 

A finite sequence of environments Env1, Env2, ... , Envn 
is written as [Env1, Env2, ... , Envn], and the empty sequence 
as []. 

[EnvO]A[Env1, ... ,Envn] denotes [EnvO, Env1, ... , Envn]. 
A judgment EnvO 1- Ge: P => [Env1, ... Envn] means that 

Match(EnvO,Ge,P) = {Env1, ... ,Envn}, where Envi precedes Envj 
for all i<j. 

8.3.EXAMPLES 

Here are examples of patterns: 

t.Head e.Tail 
eX (eY) 
eA '+' eB 
$1 eA '+' eB 
$r eA '+' eB 

Here are examples of pattern matching: 

{} 1- A () C D E : $1 sX tY tz e1 
=> [ {sX = A, tY = (), tz = c, 

{} 1- 1 2 3 : $1 eA eB => [ 
{eA = 
{eA = 1, 
{eA = 1 2, 
{eA = 1 2 3, 

{} 1- 1 2 3 $reA eB => [ 
{eA = 1 2 3, 
{eA = 1 2, 
{eA = 1, 
{eA = 

{eA = 1 2} 1- $1 1 2 3 4 5 
=> [ {eA = 1 2, eB = 

eA eB 
3 4 5} ] 

9.HARD EXPRESSIONS 

9.1.SYNTAX 

$ HardExpression = 
$ { HardCorner } 

e1 = D E} ] 

eB = 1 2 3}, 
eB = 2 3}, 
eB = 3}, 
eB = } ] 

eB = } ' 
eB = 3 } ' 
eB = 2 3 } ' 
eB = 1 2 3 } ] 

$ { HardCorner } a-variable { HardCorner } I 
$ { HardCorner} v-variable { HardCorner }. 
$ HardCorner = { HardTerm I NamedExpression }. 
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$ HardTerm = 
$ StaticSy.mbol I s-variable I t-variable I 
$ "(" HardExpression ")". 

Thus, any subexpression of a hard expression may contain no 
more that one occurrence of a-variable or v-variable at the top 
level of parentheses. 

A variable may appear in a hard expression no more that 
once. If two different variables appear in the same hard expres­
sion, they must have different indices. 

Henceforth, hard expressions are denoted by He, and hard 
terms by Ht. 

9.2.MATCHING AGAINST HARD EXPRESSIONS 

Hard expressions may be regarded as a particular case of 
pattern expressions. A feature of hard expressions is that there 
can exist no more that one way of matching a ground expression 
Ge against a hard expression He. Thus there holds either {} 
1- Ge : He=> [ ] or {} 1- Ge : He=> [Env]. 

A judgment Env 1- Ge ::He=> Env' means that {} 1- Ge: 
He=> Env" and Env' = Env+Env". Consequently, Env' is pro­
duced from Env in the following way. First, Ge is matched 
against He in the empty environment. Thus, the variable values 
provided by the current environment Env are not taken into 
account. The environment Env" thus obtained contains bindings 
for all variables appearing in He. Then the original environ­
ment Env is extended with the bindings from Env" to produce 
the final environment Env' . 

9.3.EXAMPLES 

Here are example hard expressions: 

t.Head e.Tail 
sX (eY) eZ (A eA) 

Here are examples of matching hard expressions 

{sX = XXX, eA =AB C} 1- X y z .. sY eA 
=> {sX = XXX, eA = y z, sY = X} 

{sX = XXX, eA =A B C} 1- X y z .. eA sY 
=> {sX = XXX, eA =X Y, sY = Z} 

lO.PATHS 

lO.l.SYNTAX 

$ Path = 
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$ Condition I Binding I Search I Match I 
$ Rest I Source. 

$ Condition = 
$ Source Rest. 
$ Binding = 
$ Source"::" HardExpression [Rest]. 
$ Search = 
$ Source "$iter" Source 
$ [ ": :" HardExpression ] [ Rest ] . 
$ Match = 
$ Source "·" Pattern [Rest]. 

$ Rest = 
$ DelimitedPath I NegativeCondition I 
$ Fence I Cut I 
$ Failure I RightHandSide I ErrorGenerator 
$ ErrorTrap. 

$ DelimitedPath = 
$ ","Path. 
$ NegativeCondition = 
$ "#" Source [ Rest ] . 
$ Fence = 
$ "\?" Path. 
$ Cut = 
$ "\!" Path. 
$ Failure = 
$ "$fail". 
$ RightHandSide = 
$ "=" Path. 
$ ErrorGenerator = 
$ "$error" Path. 
$ ErrorTrap = 
$ "$trap" Path "$with" PatternAlternative. 

$ Source = 
$ Alternative I AlternativeMatch I ResultExpression. 

$ Alternative = 
$ "\{" PathList "}" I 
$ "{" PathList "}". 

$ AlternativeMatch = 
$ Source":" PatternAlternative. 

$ PatternAlternative = 
$ "\{" SentenceList "}" 
$ " {" SentenceList "}" 

$ PathList = { Path ";" }. 

$ SentenceList = 
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$ { Sentence ";" }. 

$ Sentence = Pattern [ Rest ] . 

Henceforth, paths are denoted by Q, rests by R, sources by 
S, pattern alternatives by Palt, and sentences by Snt. 

The syntax of paths seems to be rather complicated. This is 
due to the desire to save the user the trouble of writing redun­
dant delimiters without real necessity. 

This is achieved by distinguishing two particular cases of 
paths: "rests" and "sources", which possess some useful syntax 
properties. Rests begin with key words, which are easy to recog­
nize. Thus, if a result expression or a pattern is followed by a 
rest, there is no danger that they could "stick" together. 
Sources cannot contain commas at the top level of curly brack­
ets, for which reason they can be unambiguously separated from 
the constructs they are followed by. 

10.2.EVALUATION OF PATHS 

A path Q is evaluated with respect to an environment Env 
and a non-negative integer m. The environment Env associates 
variables with their values, which may be necessary to evaluate 
the path. The integer m, which is referred to as the "level" of 
the path, specifies the number of fences "\?" that surrounds Q 
without being closed by cuts "\!". 

If the evaluation of Q terminates, it 
ground expression Ge, a failure $fail(k), the 
ger k being the "level" of the failure, or an 
Ge being an error message. 

returns either a 
non-negative inte­
error $error(Ge), 

If evaluating a path at the level m returns a failure 
$fail(k), the failure level is certain to satisfy the restric­
tion 0 <= k <= m+l. In particular, if a path is evaluated at 
the level 0, there holds either k=O or k=l. 

A judgment Env,m,St 1- Q => X,St' means that evaluating 
the path Q in the environment at the level m returns X, and if 
the evaluation of Q starts in the global state St, it terminates 
in the global state St'. 

Rests and sources are particular cases of paths, for which 
reason the above notation is also used for describing the evalu­
ation of rests and sources. 

The meaning of a path Q can often be reduced to the meaning 
of other path Q'. To put it more exactly, the evaluation of Q is 
done by evaluating Q', and the result thus obtained is taken to 
be the result of evaluating Q. This may be formulated by means 
of the following inference rule: 

Env,m,St 1- Q' => X,St' 

Env,m,St I- Q => X,St' 

Such rules are rather frequent, for which reason they will 
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be abbreviated in the following way: 

Q =>=> Q' 

l0.3.CONDITIONS 

The evaluation of a path S R proceeds as follows. The 
source S is evaluated, and, if the evaluation succeeds, the rest 
R is evaluated. 

The source S is considered to be at the zero level. 

Env,O,St I- S => ,St' 
Env,m,St' 1- R => X,St" 

Env,m,St I- S R => X,St" 

Env,O,St 1- S => $fail(k),St' 

Env,m,St I-S R => $fail(O),St' 

Env,O,St 1- S => $error(Ge),St' 

Env,m,St 1- S R => $error(Ge) ,St' 

l0.4.BINDINGS 

The evaluation of a path S ::HeR proceeds as follows. 
The source S is evaluated, and, if the evaluation succeeds, the 
ground expression obtained is matched against He. The variables 
from He are bound to new values, and the environments is extend­
ed with the new bindings. Then the tail R is evaluated in the 
new environment. 

The source S is considered to be at the zero level. 
If the rest R is an empty delimited path (which always 

returns an empty ground expression), it may be omitted. 

s He =>=> S He , 

Env,O,St 1- S => Ge,St' 
Env I - Ge : : He => Env' 
Env' ,m,St' 1- R => X,St" 

Env,m,St I-S ::HeR=> X,St" 
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Env,O,St 1- S => $fail(k) ,St 1 

Env,m,St 1- S ::HeR=> $fail(O),St 1 

Env,O,St 1- S => $error(Ge),St 1 

Env,m,St 1- S ::HeR=> $error(Ge) ,St 1 

For example, the evaluation of the path 

100 :: sN, <"+" sN 1> :: sN = sN 

produces the number 101. 

10.5.SEARCHES 

The goal of evaluating the path 

S" $iter S 1 
:: He R 

is to find such values for the variables appearing in He that 
the evaluation of R succeeds, in which case the result obtained 
is taken to be the result of evaluating the whole construct. 

An empty hard expression He may be omitted along with the 
key word"::". If the rest R is an empty delimited path (which 
always returns an empty ground expression), it may be omitted. 

S" $iter S 1 =>=> S" $iter S 1 

S" $iter S 1 R =>=> S" $iter S 1 R 

S" $iter S 1 He =>=> S" $iter S 1 
:: He 

The initial values for the variables appearing in He are 
obtained by evaluating the sourceS", whereas the evaluation of 
S 1 enables the new variable values to be obtained from the pre­
vious ones. 

The sources S" and S 1 are considered to be at the zero 
level. 

The search for the variable values proceeds as follows. 
First, the initial variable values are found by evaluating the 
source S" and matching the ground expression Ge obtained against 
the pattern He. Then an attempt is made to evaluate the rest R 
in the new environment. If the value returned is a failure 
$fail(O), then S 1 is evaluated and a ground expression obtained 
is matched against He, and then a new attempt is made to evalu­
ate R, etc. 

S" $iter S 1 
: : He R =>=> 

S" : : He , \ { R; S 1 $iter S 1 He R; } 
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For example, if the values of the variables eA and eB are 
not defined in the current environment, the match 

eX : $1 eA eB, 
<Writeln eA>, <Writeln eB> $fail 

is equivalent to the search 

() (eX) 
$iter \{ eB : tl e2 = (eA tl) (e2); } 

(eA) (eB) , 
<Writeln eA>, <Writeln eB> $fail 

10.6.MATCHES 

The evaluation of a path S : P R proceeds as follows. The 
source S is evaluated and a ground expression Ge obtained is 
matched against the pattern P to produce a sequence of the vari­
ants of matching. Then an attempt is made to find the first 
variant of matching appearing in this sequence such that the 
evaluation of the rest R succeeds. 

If the rest R is an empty delimited path (which always 
returns an empty ground expression), it may be omitted. 

To describe the semantics of matches, we need the following 
notation. A judgment EnvList,m,St I 1- Q => X,St' means that 
the evaluation of the path Q at the level m with the list of 
environments EnvList returns X. 

Env,m,St 1- Q => Ge,St' 

[Env]AEnvList,m,St I 1- Q => Ge,St' 

Env,m,St 1- Q => $fail(O),St' 
EnvList ,m, St' I I- Q => X, St" 

[Env] AEnvList,m, St I 1- Q => X, St" 

Env,m,St 1- Q => $fail(k+l),St' 

[Env]AEnvList,m,St I 1- Q => $fail(k+l),St' 

Env,m,St 1- Q => $error(Ge),St' 

[Env]AEnvList,m,St I 1- Q => $error(Ge),St' 
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[],m,St I 1- Q => $fail(O) ,St. 

Now we describe the semantics of matches. 

s p =>=> s p I 

Env,O,St I- S => Ge,St' 
Env 1- Ge : P => EnvList 
EnvList,m,St' I 1- R => X,St" 

Env,m,St 1- S : P R => X,St" 

Env,O,St I-S=> $fail(k),St' 

Env,m,St 1- S : P R => $fail(O) ,St' 

Env,O,St 1- S => $error(Ge),St' 

Env,m,St 1- S: P R => $error(Ge),St' 

For example, the evaluation of the following path fails, 
which results in the character string 'CBA' being printed. 

'ABC' : $r e sX e, <Print sX> $fail 

10.7.DELIMITED PATHS 

Evaluating the rest 

I Q 

always produces the same result as the evaluation of the path Q. 

I Q =>=> Q 

10.8.NEGATIVE CONDITIONS 

The evaluation of a rest # S R proceeds as follows. The 
source S is evaluated. If the result obtained is an empty ground 
expression, the evaluation of the whole construct fails, but, if 
the result is a failure, the rest R is evaluated, and the result 
obtained is taken to be the result of the whole construct. Thus, 
this construct enables us to test the "logical negation" of the 
condition S. 

If the rest R is an empty delimited path (which always 
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returns an empty ground expression), it may be omitted. 

# s =>=> # s ' 

Env,O,St 1- S => ,St' 

Env,m,St I- # S R => $fail(O) ,St' 

Env,O,St 1- S => $fail(k) ,St' 
Env,m,St' I- R => X,St" 

Env,m,St 1- # S R => X,St" 

Env,O,St 1- S => $error(Ge),St' 

Env,m,St 1- # S R => $error(Ge) ,St' 

10.9.FENCES 

The evaluation of a rest \? Q proceeds as 
path Q is evaluated. If the result obtained 
$fail(k), where k>O, then the "weakened" failure 
taken to be the result of the whole construct. 
result of evaluating Q is taken to be the result 
construct. 

follows. The 
is a failure 
$fail(k-1) is 

Otherwise, the 
of the whole 

The path Q is evaluated at the level m+l, where m is the 
level at which the whole construct is evaluated. 

Env,m+l,St 1- Q => Ge,St' 

Env,m,St 1- \? Q => Ge,St' 

Env,m+l,St 1- Q => $fail(O),St' 

Env,m,St 1- \? Q => $fail(0) ,St' 

Env,m+l,St 1- Q => $fail(k+l) ,St' 

Env,m,St 1- \? Q => $fail(k) ,St' 

Env,m+l,St 1- Q => $error(Ge) ,St' 

Env,m,St 1- \? Q => $error(Ge) ,St' 
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10.10.CUTS 

The evaluation of the rest \! Q proceeds as follows. The 
path Q is evaluated. If the result obtained is a failure 
$fail(k), then the "strengthened" failure $fail(k+1) is taken 
to be the result of the whole construct. Otherwise, the result 
of evaluating Q is taken to be the result of the whole con­
struct. 

The path Q is evaluated at the level m-1, where m is the 
level at which the whole construct is evaluated. 

Env,m,St 1- Q => Ge,St' 

Env,m+1,St 1- \! Q => Ge,St' 

Env,m,St 1- Q => $fail(k),St' 

Env,m+1,St 1- \! Q => $fail(k+1),St' 

Env,m,St 1- Q => $error(Ge),St' 

Env,m+1,St 1- \! Q => $error(Ge),St' 

For example, the evaluation of the following path results 
in the character string 'ABD' being printed, and the result '2' 
being returned. 

{ 

\? { 
<Print 'A'> $fail; 
<Print 'B'> \! $fail; 
<Print 'C'> = '1'; 
} ; 

<Print 'D'> = '2'; 
} 

10.11.FAILURES 

The evaluation of the rest 
failure $fail(O). 

$fail 

Env,m,St 1- $fail=> $fail(O) ,St 

10.12.RIGHT HAND SIDES 
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The evaluation of a rest = Q at a level m proceeds as 
follows. The path Q is evaluated at the level 0. If the result 
obtained is a failure $fail(k), then the whole construct re­
turns the failure $fail(m+l), which is so strong as to overcome 
all surrounding fences that are not neutralized by cuts. 

Env,O,St 1- Q => Ge,St' 

Env,m,St 1- = Q => Ge,St' 

Env,O,St 1- Q => $fail(k) ,St' 

Env,m,St 1- = Q => $fail(m+l) ,St' 

Env,O,St 1- Q => $error(Ge),St' 

Env,m,St 1- = Q => $error(Ge) ,St' 

10.13.ERROR GENERATORS 

The evaluation of a rest $error Q returns an error 
$error(Ge), where Ge is the result of evaluating the path Q. 

Env,O,St I- Q => Ge,St' 

Env,m,St 1- $error Q => $error(Ge) ,St' 

Env,O,St 1- Q => $fail(O),St' 

Env,m,St 1- $error Q => $error(Fname "Unexpected 
Fname is the name of the function in which 
struct appears. 

Env,O,St 1- Q => $error(Ge),St' 

Env,m,St 1- $error Q => $error(Ge) ,St' 

10.14.ERROR TRAPS 

The evaluation of a rest 

$trap Q $with Palt 
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proceeds as follows. An attempt is made to evaluate the path Q. 
If the result obtained is an error $error(Ge), then the alter­
native match 

Ge : Palt 

is evaluated, and the result obtained is taken to be the result 
of the whole construct. 

The path Q is evaluated at the level 0. 

Env,O,St I- Q => Ge,St' 

Env,m,St 1- $trap Q $with Palt => Ge,St' 

Env,O,St I- Q => $fail(k) ,St' 
Env,m,St' 1- Fname "Unexpected fail" : Palt => X,St" 

Env,m,St 1- $trap Q $with Palt => X,St" 
Fname is the name of the function in which the con­
struct appears. 

Env,O,St 1- Q => $error(Ge),St' 
Env,m,St' I- Ge : Palt => X,St" 

Env ,m, St 1- $trap Q $with Pal t => X, St" 

10.15.ALTERNATIVES 

The evaluation of a source \{Ql; Q2; ... Qn;} proceeds as 
follows. The paths Ql, Q2, ... , Qn are evaluated from left to 
right until the evaluation of a path succeeds. 

More specifically, consider the result of evaluating the 
path Qj. 

If the result is a ground expression Ge, then Ge is taken 
to be the result of the whole construct. If the result is 
$error(Ge), then $error(Ge) is the result of the whole con­
struct. If the result is $fail(k+l), then $fail(k+l) is the 
result of the whole construct. And, finally, if the result is 
$fail(O), this failure is "caught", i.e. an attempt is made to 
evaluate the next path. If there exists no next path (i.e. j=n), 
the failure $fail(O) is the result of the whole construct. 

An alternative {Ql; Q2; ... Qn;} is equivalent to the 
alternative \{ Ql; Q2; ... Qn; $error(Fname "Unexpected fail"); 
}, where Fname is the name of the function in which the con­
struct appears. 

{Ql; Q2; ... Qn;} =>=> 
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\{Ql; Q2; ... Qn; 
$error(Fname "Unexpected fail");} 

Fname is the name of the function in which the con­
struct appears. 

Env,m,St 1- \{} => $fail(O) ,St 

Env,m,St 1- Ql => Ge,St' 

Env,m,St 1- \{Ql; Q2; ... Qn;} => Ge,St' 

Env,m,St 1- Ql => $fail(O),St' 
Env,m,St' 1- \{Q2; ... Qn;} => X,St" 

Env,m,St 1- \{Ql; Q2; ... Qn;} => X,St" 

Env,m,St 1- Ql => $fail(k+l) ,St' 

Env,m,St 1- \{Ql; Q2; ... Qn;} => $fail(k+l) ,St' 

Env,m,St 1- Ql => $error(Ge) ,St' 

Env,m,St 1- \{Ql; Q2; ... Qn;} => $error(Ge) ,St' 

10.16.ALTERNATIVE MATCHES 

The evaluation of a source S : \{Sntl; ... Sntn;} always 
produces the same result as the evaluation of the path S : Ve, 
\{Ve : Sntl; ... Ve : Sntn;}, provided that Ve is an a-variable 
that does not appear in the program in other places. 

A source S : {Sntl; Sntn;} is equivalent to the 
source S : \{Sntl; ... Sntn; e $error(Fname "Unexpected fail"); 
}, where Fname is the name of the function in which the con­
struct appears. 

S {Sntl; ... Sntn;} =>=> 
S : \{Sntl; ... Sntn; 

e $error(Fname "Unexpected fail");} 
Fname is the name of the function in which the con­
struct appears. 

Env,O,St I- S => Ge,St' 
Env,m,St' 1- \{Ge : Sntl; ... Ge : Sntn;} => X,St" 
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Env,m,St 1- S \{Sntl; ... Sntn;} => X,St" 

Env,O,St I-S=> $fail(k),St' 

Env,m,St 1- S : \{Sntl; ... Sntn;} => $fail(O),St' 

Env,O,St 1- S => $error(Ge),St' 

Env,m,St 1- S : \{Sntl; ... Sntn;} => $error(Ge) ,St' 

10.17.RESULT EXPRESSIONS AS SOURCES 

A source of the form Re, where Re is a result expression, 
is evaluated by evaluating the result expression Re. The result 
thus obtained is taken to be the result of the source. 

Env,St I- Re => X,St' 

Env,m,St 1- Re => X,St' 

ll.FUNCTION DEFINITIONS 

$ FunctionDefinition = 
$ FunctionName FunctionBody ";" 
$ FunctionBody = 
$ PatternAlternative I Sentence. 

A function's definition binds the function's name to the 
function's body, which is a construct that describes the way in 
which the function is to be evaluated. 

A function definition of the form Fname Snt; is equiva­
lent to the definition Fname \{ Snt; }; 

Let the definition of a function Fname be of the form 

Fname Palt 

Then evaluating a function call <Fname Ge> amounts to evaluat­
ing the source Ge : Palt. If the result obtained is a ground 
expression Ge' or an error $error(Ge'), it is taken to be the 
result of evaluating the call. Otherwise, if the result is a 
failure $fail(k), the following actions depend on the function 
Fname having been declared either failing or unfailing. If the 
function is a failing one, the result returned is $fail(O), 
otherwise, if the function is an unfailing one, the result re­
turned is $error(Fname "Unexpected fail"). 

{},O,St 1- Ge Palt => Ge' ,St' 

101 



St 1- <Fname Ge> => Ge' ,St' 

{},O,St 1- Ge : Palt => $fail(k) ,St' 

St 1- <Fname Ge> => $fail(O),St' 
where the function Fname is a failing one, 
i.e. it has been declared as 
$func? Fname Farg = Fres;. 

{},O,St I- Ge : Palt => $fail(k) ,St' 

St 1- <Fname Ge> => $error(Fname "Unexpected fail"),St' 
where the function Fname is an unfailing one, 
i.e. it has been declared as 
$func Fname Farg = Fres;. 

{},O,St 1- Ge : Palt => $error(Ge') ,St' 

St 1- <Fname Ge> => $error(Ge') ,St' 

The above inference rules assume the function Fname to have 
the definition Fname Palt. 

12.DECLARATIONS 

12.1.CONSTANT DECLARATIONS 

$ ConstantDeclaration = 
$ "$const" [ ConstDecl { "," ConstDecl } ] ";". 
$ ConstDecl = ExpressionName "=" ConstantExpression. 
$ ConstantExpression = 
$ { ConstantTer.m I NamedExpression }. 
$ ConstantTer.m = 
$ StaticSymbol I "(" ConstantExpression ")". 
$ ExpressionName = Word. 

Constant declarations enable ground expressions to be de­
noted by symbolic names to be used instead of the expressions. A 
symbolic name is a word symbol. If a ground expression has been 
given a name N, the construct &N is a representation of the 
expression Ge. For example, the declaration 

$const LF = 10, CR = 13, "***" =A B C; 

gives names to three ground expressions, so that &LF 
10, &CR denotes 13, and &"***" denotes A B C. 

102 

denotes 



A constant definition may contain references 
declarations of constants, boxes, tables, channels, 
tions. For example, the declaration 

to previous 
and func-

$const "CR-LF-***" = &CR &LF &"***"; 

gives a name to an expression, so that &"CR-LF-***" stands for 
13 10 A B C. 

12.2.0BJECT DECLARATIONS 

$ BoxDeclaration = "$box" { ReferenceName } "." , 
$ VectorDeclaration = "$vector" { ReferenceName } "." , 
$ StringDeclaration = "$string" { ReferenceName } "." , 
$ TableDeclaration = "$table" { ReferenceName } "." , 
$ ChannelDeclaration = "$channel" { ReferenceName } "." , 

$ ReferenceName = Word. 

An object declaration associates symbolic names with refer­
ences to boxes, vectors, strings, tables, and channels. These 
objects are to be created at the moment the program is loaded. 

The symbolic names introduced by an object declaration may 
be used for getting references to the objects declared. 

For example, the declaration $box X; makes the construct 
&X denote a reference to a box. Here are examples of object 
declarations: 

$box B1 B2 B3; 
$vector V1 V2; 
$table T1 T2; 
$channel Input Output; 

12.3.FUNCTION DECLARATIONS 

$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 

FunctionDeclaration = 
"$func" FunctionName 

InputFormat "=" OutputFormat 
"$func?" FunctionName 

InputFormat "=" OutputFormat 
FunctionName = Word. 
InputFormat = FormatExpression. 
OutputFormat = FormatExpression. 

$ FormatExpression = HardExpression. 

"." , 

" . " , 

A function declaration introduces a function name. 
declaration of a function must precede all references to 
function as well as the definition of the function. 

The declaration of a function imposes restrictions on 
forms that can take the calls to the function, the input 
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terns in the function's definition and the result expressions 
producing the values returned by the function. These restric­
tions will be described in detail below. 

The input and output formats must be hard, i.e. any subex­
pression of a format expression may contain no more than one 
e-variable or v-variable. 

The variable indices appearing in formats serve as com­
ments, thus they have no effect on the meaning of the program 
and may be omitted. 

It should be noted that the format expressions and the hard 
expressions are considered to be different constructs, despite 
their having the same context-free syntax. This is due to the 
differences in the interpretation of variable indices. 

If the declaration of a function begins with the key word 
$func, the function is an unfailing one, i.e. evaluating a call 
to the function may result in returning either a ground expres­
sion or an error. 

If the declaration of a function begins with the key word 
$func?, the function is a failing one, i.e. evaluating a call to 
the function may result in returning either a ground expression, 
a failure, or an error. 

Here are function declarations 

$func Interpreter (e.Program) (e.Input) = e.Result; 
$func? Attempt t.Arg = s.Resultl t.Result2 (e.Result3); 

12.4.TRACE DIRECTIVES 

$ 
$ 
$ 

TraceDirective = 
"$trace" { FunctionName } 
"$traceall" ";". 

" . " ' 

A directive "$trace" specifies that some debugging informa­
tion is to be printed at the run time about the functions listed 
in the directive. When a function is called, its name is printed 
as well as the arguments passed. Then, when the call has been 
evaluated, the function name is printed as well as the results 
returned by the function. 

A directive "$traceall" specifies that the debugging infor­
mation is to be printed about all the functions whose defini­
tions appear below the directive. 

13.CONTEXT DEPENDENT RESTRICTIONS 

13.1.ELIMINATION OF REDUNDANT CONSTRUCTS 

This section describes different context dependent restric­
tions that must be satisfied by any program written in Refal 
Plus. 

In order for the description to be concise, the program is 
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supposed to have been normalized, which means that all con­
structs considered to be abbreviations for other constructs have 
been replaced with their expansions. 

The normalization is performed as follows. 
The empty hard expressions and empty delimited paths omit­

ted in bindings, searches, and matches are restored. 

s . . He => s .. He ' 
S' $iter S" => S' $iter S" 
S' $iter S" He => S' $iter S" He 
S' $iter S" R => S' $iter S" R 
s p => s p 

# s => # s ' 

The empty delimited paths omitted in sentences are re­
stored. 

p 

The "opaque" curly 
and alternative matches 
curly brackets"\{". 

=> p 

brackets "{" appearing 
are replaced with 

{Sntl; ... Sntn;} => 
\{Sntl; ... Sntn; 

in 
the 

alternatives 
"transparent" 

$error(Fname "Unexpected fail");} 

S {Sntl; Sntn;} => 
S : \{Sntl; ... Sntn; 

e $error(Fname "Unexpected fail");} 

where Fname is the name of the function in which the construct 
appears. 

The "opaque" curly brackets "{" appearing in function defi­
nitions are replaced with the "transparent" curly brackets"\{". 

Fname {Sntl; ... Sntn;} => 
Fname \{Sntl; ... Sntn; 

Farg $error(Fname "Unexpected fail");} 

where Farg is the input format provided by 
the function Fname (the variable indices in 
tions are supposed to be omitted). 

the declaration of 
function declara-

The function bodies consisting of a sentence are replaced 
with the corresponding pattern alternatives. 

Fname Snt; => Fname \{ Snt; }; 

13.2.RESTRICTIONS IMPOSED BY FUNCTION DECLARATIONS 

A function declaration may have either of the two forms 
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$func Fname Farg = Fres; 
$func? Fname Farg = Fres; 

where Farg is the input format of the function, i.e. a format 
expression which specifies the structure of the function's argu­
ment, and Fres is the output format of the function, i.e. a 
format expression which specifies the structure of the func­
tion's result. As mentioned previously the variable indices 
appearing in formats are of no significance, for which reason, 
without any loss of generality, they will be supposed to have 
been omitted. 

The definition of a function must satisfy the restrictions 
imposed by the input and output formats of the function. To 
formulate these restrictions, we assume the set of format ex­
pressions to be equipped with the following partial ordering. 

Let F1 and F2 be two formats. Then F2>>F1 
format F1 is an instance of the format F2. The 
defined by the following rules. 

means that the 
relation >> is 

(0) F >> F. 
(1) If F1' >> F1 and F2' >> F2, then F1' F2' >> F1 F2. 
(2) If F1 >> F2, then (F1) >> (F2). 
(3) e >> F. 
(4) If F is not of the form e e e, then v >> F. 
(5) t >> Gs, for all symbols Gs. 
(6) t >> s. 
(7) t >> (F) . 
(8) s >> Gs, for all symbols Gs. 

Now consider a program written in Refal Plus and the con­
structs appearing in the program. 

Let Re be a result expression appearing in the program. A 
format expression F is said to be the format of Re, if F can be 
produced from Re by the following transformations. 

(1) The indices of all variables appearing in Re are dis­
carded. 

(2) All function calls appearing in Re are replaced with 
the output formats of the corresponding functions. In other 
words, suppose that a function Fname has been declared as 
either $func Fname Farg = Fres; or $func? Fname Farg = 
Fres; . Then each call <Fname Re'> is replaced with Fres. 

Let P be 
pression F is 
from P by the 

a pattern appearing in the program. A 
said to be the format of P, if F can 
following transformations. 

format ex­
be produced 

(1) The indices of all variables appearing in P are dis­
carded. 

(2) If P has a direction designator, the designator is 
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discarded. 

Let He be a hard expression appearing in the program. A 
format expression F is said to be the format of He, if F can be 
produced from P by discarding the indices of all variables ap­
pearing in He. 

Henceforth, the format of a result expression will be 
denoted by form[Re], the format of a pattern P by form[P], and 
the format of a hard expression He by form[He]. 

It should be emphasized that not only does the format of a 
result expression Re depend on the appearance of Re, but it also 
depends on the output formats of the functions called in Re. 
Nevertheless, given a particular program, the meaning of 
form[Re] is unambiguously defined. 

Now we can formulate the restrictions that must be met by 
the function definitions. These restrictions are imposed on the 
function calls, the input patterns in the function definitions, 
and the results returned by the paths. 

Suppose the declaration of a function 
input format Farg, the output format Fres, 
alternative Palt appearing in the function 

Fname Palt 

has the form \{Pl Rl; ... Pn Rn;}. 

Fname contains the 
whereas the pattern 
definition 

Then the following conditions must be satisfied. 

The function's input patterns 
the restriction Farg >> form[Pj]. 

Pl, • • • I Pn must satisfy 

The calls to the function Fname in all function definitions 
must satisfy the following condition. 

Let a call to the function Fname have the form 
<Fname Re> . Then there must be satisfied the restriction 
Farg >> form[Re] . 

To describe the restrictions imposed on the results return­
ed by paths, we use the following notation. 

The fact that the results returned by a path Q satisfy a 
format F will be written as F 1- Q. 

Rests, sources, and result expressions may be regarded as 
particular cases of paths, for which reason the above notation 
is applicable to them as well as to paths. 

Similarly, the fact that the results returned by a pattern 
alternative Palt satisfy a format F will be written as 
F 1- Palt. 

Now we can formulate the restrictions imposed on the func­
tion definitions by the output formats of the functions. 
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Let the definition of a function Fname be 
the output for.mat Fres. Then there must 
Fres 1- Palt. 

Fname Palt, and 
be satisfied 

The relations F 1- Q and F 1- Palt are defined by the 
following inference rules. 

for.m[] 1- S 
F 1- R 

F 1- S R 

for.m [He] I- S" 
for.m [He] 1- S' 
F 1- R 

for.m [He] 1- S 
F 1- R 

F 1- S :: He R 

F 1- S" $iter S' ::HeR 

F 1- R F 1- Q 

F 1- S : P R F 1- , Q 

F 1- Q F 1- Q 

F 1- \? Q F 1- \! Q 

F 1- Q 
F 1- $error Q 

F 1- = Q 

F 1- Q 
F 1- Palt 

F 1- $trap Q $with Palt 

F 1- Qj for all j=l, ... ,n 

F I - \ { Ql ; . . . Qn; } 

F 1- Palt F >> for.m[Re] 

F 1- S : Palt F 1- Re 

108 

for.m[] 1- S 
F 1- R 

F 1- # S R 

F 1- $fail 



F 1- Rj for all j=l, ... ,n 

F 1- \{Pl Rl; ... Pn Rn;} 

13.3.RESTRICTIONS ON THE USE OF REFERENCES TO FUNCTIONS 

If a construct &Fname, which is a reference to 
tion Fname, appears in a pattern expression or in a 
pression, the function Fname must be declared 
$func Fname e = e or $func? Fname e = e. 

13.4.RESTRICTIONS ON THE USE OF VARIABLES 

the func­
result ex­
as either 

The variables appearing in a function definition must sat­
isfy certain restrictions. 

Namely, a variable appearing in a result expression must 
have been already defined. A variable gets defined, when it 
appears in a pattern or in a hard expression. 

If several different variables have been defined at the 
same place, their indices must be different. 

Now, to give these restrictions a more exact formulation, 
we introduce the following notation. 

vars[X] denotes the set of variables appearing in the 
construct X. 

{} denotes the empty set. 
vl+v2 denotes the union of the sets vl and v2. 
vl++v2 denotes the variable set vl extended with the vari­

able set v2. To put it more exactly, vl++v2 contains all the 
variables from v2, as well as all variables from vl whose indi­
ces are different from the indices of the variables contained in 
v2. For example, {sX, sY} ++ {eY, eZ} = {sX, eY, eZ}. 

A judgment v 1- Q means that all variables in v have 
different indices, and all variables whose values are needed for 
the evaluation of the path Q belong to v. 

Rests, sources, and result expressions may be regarded as 
particular cases of paths, for which reason the above notation 
is applicable to them as well as to paths. 

Similarly, a judgment v 1- Palt means that all variables 
in v have different indices, and all variables whose values are 
needed for the evaluation of the pattern alternative Palt belong 
to v. 

Now we can formulate the restrictions imposed on the use of 
variables in the function definitions. 

Let the definition of a function Fname be Fname Palt. 
Then there must be satisfied {} 1- Palt. 

The relations v 1- Q and v 1- Palt are defined by the 
following inference rules. 
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v 1- s 
v 1- R 

v 1- S R 

v 1- S" 
v++vars[He] 1- S' 
v++vars[He] 1- R 

v 1- s 
v++vars[He] 1- R 

v 1- S :: He R 

v 1- s 
v+vars[P] 1- R 

vI-S" $~ter S' ::HeR vI-S: P R 

v 1- Q 

v 1- ' Q 

v 1- Q 

v 1- \! Q 

v 1- Q 

v 1- s 
v 1- R 

v 1- # S R 

v 1- $fa~l 

v 1- Q 
v 1- Palt 

v 1- Q 

v 1- \? Q 

v 1- Q 

v 1- = Q 

v 1- $error Q v 1- $trap Q $w~th Palt 

v 1- Qj for all j=l, ... ,n 

v I - \ { Ql ; . . . Qn; } 

v 1- s 
v 1- Palt 

v 1- S : Palt 

all var~ables ~n v have d~fferent ~nd~ces 
all var~ables ~n vars[Re] belong to v 

v 1- Re 

v+vars[Pj] 1- Rj for all j=l, ... ,n 

v 1- \{Pl Rl; ... Pn Rn;} 
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13.5.RESTRICTIONS ON THE USE OF CUTS 

Each path appearing in a function definition can be assign­
ed a non-negative integer k, the level of the path. If we move 
forward along a path, the level increases by 1 each time we pass 
over"\?", and decreases by 1 each time we pass over"\!". Thus, 
each cut "\!" unambiguously corresponds to its "pair" fence 
"\?". 

Now, to give this requirement a more exact formulation, we 
introduce the following notation. 

Let k be a non-negative integer, and Q a path. The judgment 
k 1- Q means that the path Q can be assigned the level k. 

Rests, sources, and result expressions may be regarded as 
particular cases of paths, for which reason the above notation 
is applicable to them as well as to paths. 

Similarly, let Palt be a pattern alternative. Then the 
judgment k 1- Palt means that the pattern alternative Palt can 
be assigned the level k. 

Now we can formulate the restrictions imposed on the use of 
cuts in the function definitions. 

Let the definition of a function Fname be Fname Palt. 
Then there must be satisfied 0 1- Palt. 

The relations k 1- Q and k 1- Palt are defined by the 
following inference rules. 

0 1- s 
k 1- R 

k 1- S R 

0 1- S" 
0 1- S' 
k 1- R 

0 1- s 
k 1- R 

k 1- S :: He R 

0 1- s 
k 1- R 

k I - S" $iter S' : : He R k 1- S: P R 

0 1- s 
k 1- Q k 1- R k+1 1- Q 

k 1- ' Q k 1- # S R k 1- \? Q 

k 1- Q 0 1- Q 
k 1- $fail 

k+1 1- \! Q k 1- = Q 
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0 1- Q 
0 1- Q k 1- Palt 

k 1- $error Q k 1- $trap Q $with Palt 

k 1- Qj for all j=l, ... ,n 

k 1- \{Ql; ... Qn;} 

0 1- s 
k 1- Palt 

k 1- Re 
k 1- S : Palt 

k 1- Rj for all j=l, ... ,n 

k 1- \{Pl Rl; ... Pn Rn;} 

14.MODULES 

A program written in Refal Plus consists of one or more 
modules. Each module comprises two components: the interface of 
the module and the implementation of the module. 

The interface of a module contains the parts of the module 
that may be visible in other modules, whereas the implementation 
of the module contains the parts of the module that are invisi­
ble in other modules. 

In the operating system MSDOS each module MMMM occupies two 
files. Namely, the interface of the module is kept in the file 
MMMM.RFI, and the implementation in the file MMMM.RF. 

$ Moduleinterface = 
$ {Declaration }. 
$ Declaration = 
$ ConstantDeclaration I BoxDeclaration I 
$ VectorDeclaration I StringDeclaration 
$ TableDeclaration I ChannelDeclaration 
$ FunctionDeclaration. 

$ Moduleimplementation = 
$ { Import} { ImplementationDirective }. 
$ ImplementationDirective = 
$ Declaration I 
$ TraceDirective I 
$ FunctionDefinition. 
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$ 
$ 

Import = "$use" { ModuleName } 
ModuleName = Word. 

" . " ' 

The names declared in the interface of a module YYYY can be 
made visible in the implementation of a module XXXX by putting 
the directive $use YYYY into the implementation of the module 
XXXX in the following way: 

I* File XXXX.RFI *I 
I* The interface of the module XXXX. *I 

I* File XXXX.RF *I 
$use ... YYYY ... 
I* Henceforth, the names declared in YYYY.RFI *I 
I* will be visible. *I 

I* File YYYY.RFI *I 
I* The interface of the module YYYY. *I 

I* File YYYY.RF *I 
I* The implementation of the module YYYY. *I 

lS.EXECUTION OF PROGRAM 

A program in Refal Plus may consist of several modules, one 
of which must export the function Main. This function is said to 
be the main function of the program, and must have the following 
declaration: 

$func Main = e; 

If a function with the name Main is declared in some other way, 
but, nevertheless, is exported by a module, this situation is 
considered to be an error. 

The execution of the Refal program amounts to evaluating 
the call to the function Main, the argument of the call being 
empty. 

<Main > 

The module that contains the definition of the main func­
tion is permitted to have no interface part, in which case the 
Refal Plus compiler assumes the module's interface to consist of 
the single function declaration: 

$func Main = e; 
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Chapter III. LIBRARY OF FUNCTIONS 

l.HOW TO USE LIBRARY FUNCTIONS 

An essential part of the Refal Plus system is the library 
of functions, consisting of several modules. 

If a user-written module contains references to library 
functions defined in a library module MMMM, then, at the begin­
ning of the user-written module, there must appear the directive 

$use MMMM; 

which imports into the user-written module the declarations of 
all functions defined in the library module MMMM. 

At present, the library of functions comprises the follow­
ing modules: 

ACCESS 
APPLY 
ARITHM 
BOX 
CLASS 
COMPARE 
CONVERT 
DOS 
STDIO 
STRING 
TABLE 
VECTOR 

direct access to ground expressions. 
- application of functions passed as arguments. 
- arithmetic operations on integers. 
- box operations. 
- predicates for determining classes of symbols. 
- comparison operations. 
- data conversions. 
- calls to the operating system. 
- standard input/output. 
- string operations. 
- table operations. 
- vector operations. 

In future, the library of function may be extended with 
other modules. 

2.ACCESS: DIRECT ACCESS TO GROUND EXPRESSIONS 

$func LENGTH e.Exp = s.ExpLen; 
$func? LEFT s.Left s.Len e.Exp = e.SubExp; 
$func? RIGHT s.Right s.Len e.Exp = e.SubExp; 
$func? MIDDLE s.Left s.Right e.Exp = e.SubExp; 
$func? L s.Left e.Exp = t.SubExp; 
$func? R s.Right e.Exp = t.SubExp; 

These functions provide direct access to the components of 
ground expressions. The arguments s.Left, s.Right, and s.Len 
must be non-negative integers. e.Exp may be any ground expres­
sion. 

If s.Left, s.Right, and s.Len are not non-negative inte­
gers, the functions return the error $error(Fname "Invalid 
argument"), where Fname is the function's name. 

LENGTH returns the length of the expression e.Exp measured 
in terms. In other words, a ground expression Ge of the form 
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Gtl Gt2 ... GtN is assumed to have the length N. 
For example: 

<LENGTH > 
<LENGTH A B C> 
<LENGTH (A B) C (D E)> 

=> 
=> 
=> 

0 
3 
3 

LEFT removes the first s.Left terms from e.Exp, and then 
returns the first s.Len terms of the remaining expression. 

RIGHT removes the last s.Right terms from e.Exp, and then 
returns the last s.Len terms of the remaining expression. 

MIDDLE removes the first s.Left and the last s.Right terms 
from e.Exp, and returns the remaining expression. 

L removes the first s.Left terms from e.Exp, and returns 
the first term of the remaining expression. 

R removes the last s.Right terms from e.Exp, and returns 
the last term of the remaining expression. 

If the length of e.Exp is not sufficient for the operation 
to be performed, all the above functions return $fail(O). 

For example: 

<MIDDLE 2 3 AB C D E F> => c 
<MIDDLE 2 3 AB CD> => $fail(O) 
<MIDDLE 0 0 AB C> => ABC 
<LEFT 2 3 AB C D E F> => C D E 
<LEFT 2 3 AB CD> => $fail(O) 
<LEFT 0 0 AB C> => 
<RIGHT 2 3 AB C D E F> => B C D 
<RIGHT 2 3 AB CD> => $fail(O) 
<RIGHT 0 0 AB C> => 
<L 2 AB c D E F> => c 
<L 2 A B> => $fail(O) 
<R 2 A B C D E F> => D 
<R 2 A B> => $fail(O) 

The operations MIDDLE, LEFT, and RIGHT may be depicted in 
the following way: 

s.Left s.Right 
+-------+-------+-------+ 

IXXXXXXXI <MIDDLE s.Left s.Right e.Exp> 
+-------+-------+-------+ 
s.Left s.Len 

+-------+-------+-------+ 
IXXXXXXXI <LEFT s.Left s.Len e.Exp> 

+-------+-------+-------+ 
s.Len s.Right 

+-------+-------+-------+ 
I I xxxxxxx I I <RIGHT s.Right s.Len e.Exp> 
+-------+-------+-------+ 
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3.APPLY: APPLICATION OF FUNCTIONS PASSED AS ARGUMENTS 

$func? APPLY s.Name e.Exp = e.Exp; 

APPLY returns the result of applying the function referred 
to by the reference s.Name to the expression e.Exp. 

4.ARITHM: ARITHMETIC OPERATIONS ON INTEGERS 

$func "+" s.Int1 s.Int2 = s.Int; 
$func "-" s.Int1 s.Int2 = s.Int; 
$func "*" s.Int1 s.Int2 = s.Int; 
$func DIV-REM s.Int1 s.Int2 = s.Quo s.Rem; 
$func DIV s.Int1 s.Int2 = s.Quo; 
$func REM s.Int1 s.Int2 = s.Rem; 
$func GCD s.Int1 s.Int2 = s.Gcd; 

These functions provide operations on signed integers of 
arbitrary size. Each of the arguments of the arithmetic func­
tions must be a single numeric symbol. 

If one of the arguments of an arithmetic function is not a 
numeric symbols, the function returns the error $error(Fname 
"Invalid argument"), where Fname is the function's name. 

If both arguments of an arithmetic function are numeric 
symbols, the function produces the result, depending on the 
function. 

"+" returns the sum of its arguments, "-" the difference of 
its arguments, "*" the product of its arguments, DIV and REM 
respectively the quotient AND the remainder of its arguments, 
DIV-REM both the quotient and the remainder of its arguments, 
GCD the greatest common divisor of its arguments. 

If the result produced by one of the operations "+", "-" 
or "*" exceeds the size limit imposed by the Refal Plus imple­
mentation, the value returned is the error $error(Fname "Size 
limit exceeded"), where Fname is the function's name. 

For example: 

<"+" 3 5> => 8 
<"+" 3 -5> => -2 
<"-" 3 -5> => 8 
<"*" -2 3> => -6 
<DIV 5 2> => 2 
<REM 5 2> => 1 
<DIV-REM 5 2> => 2 1 
<DIV 6 2> => 3 
<REM 6 2> => 0 
<DIV-REM 6 2> => 3 0 

The signs of the quotient and the remainder are determined 
according to the following rule. If the sign of the dividend is 
the same as that of the divisor, the quotient must be positive, 
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otherwise the quotient must be negative. The sign 
mainder must be the same as that of the dividend. 
must always hold the equation 

of the re­
Thus, there 

dividend = (quotient * divisor) + remainder 

For example: 

<DIV 5 3> => 1 
<REM 5 3> => 2 
<DIV 5 -3> => -1 
<REM 5 -3> => 2 
<DIV -5 3> => -1 
<REM -5 3> => -2 
<DIV -5 -3> => 1 
<REM -5 -3> => -2 

An attempt at dividing a number by zero results in return­
ing the error $error(Fname "Divide by zero"), where Fname is 
the function's name. For example: 

<DIV 5 0> => 
<REM 5 0> => 
<DIV-REM 5 0> => 

$error(DIV "Divide by zero") 
$error(REM "Divide by zero") 
$error(DIV-REM "Divide by zero") 

The function GCD, unless both its arguments are equal to 
zero, returns a positive integer, the greatest common divisor of 
its arguments. Otherwise, if both arguments are equal to zero, 
the result is the error $error(GCD "Zero arguments"). For 
example: 

<GCD 6 15> => 
<GCD -6 15> => 
<GCD 15 1> => 
<GCD 15 0> => 
<GCD 0 0> => 

5.BOX: BOX OPERATIONS 

$func BOX 
$func ? 
$func STORE 

e.Exp = s.Box; 
s.Box = e.Exp; 
s.Box e.Exp = 

3 
3 
1 
15 
$error(GCD "Zero arguments") 

BOX creates a new box, puts the expression e.Exp into the 
box, and returns a reference to the box. 

"?" returns the contents of the box referred to by s.Box. 
STORE puts the expression e.Box into the box referred to by 

s.Box. 

6.CLASS: PREDICATES FOR DETERMINING CLASSES OF SYMBOLS 
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$func? BOX? e.Exp = 
$func? CHANNEL? e.Exp = 
$func? CHAR? e.Exp = 
$func? DIGIT? e.Exp = ; 
$func? FUNC? e.Exp = 
$func? INT? e.Exp = 
$func? LETTER? e.Exp = 
$func? STRING? e.Exp = ; 
$func? TABLE? e.Exp = 
$func? VECTOR? e.Exp = 
$func? WORD? e.Exp = ; 

These functions provides a way to determine whether e.Exp 
is a symbol belonging to a certain class of symbol. 

If e.Exp is not a single symbol, the functions return 
$fail(O). 

If e.Exp is a symbol, the test 
symbol belongs to the corresponding 
value returned is an empty ground 
value returned is $fail(O). 

is performed whether 
class of symbols. If so, 
expression. Otherwise, 

the 
the 
the 

The correspondence between the predicate functions and the 
sets of symbols is as follows. 

BOX? 
CHANNEL? 
CHAR? 
DIGIT? 

- references to boxes. 
- references to channels. 
- character symbols. 
- character symbols corresponding to 

digits. 
- references to functions. 
- references to integers. 

decimal 

FUNC? 
INT? 
LETTER? - character symbols corresponding to small and 

STRING? 
TABLE? 
VECTOR? 
WORD? 

capital letters. 
- references to strings. 
- references to tables. 
- references to vectors. 
- word symbols. 

?.COMPARE: COMPARISON OPERATIONS 

$func? "=" (e.Expl) (e.Exp2) = 
$func? "/=" (e.Expl) (e.Exp2) = ; 

$func? ">=" (e.Expl) (e.Exp2) = 
$func? ">" (e.Expl) (e.Exp2) = ; 
$func? "<=" (e.Expl) (e.Exp2) = ; 
$func? "<" (e.Expl) (e.Exp2) = ; 

These functions compare two expressions e.Expl and e.Exp2 
to determine whether the corresponding relation between the 
arguments holds. The correspondence between the functions and 
the relations is as follows. "="corresponds to "equal to", "/=" 
to "not equal to", ">=" to "greater than or equal to", ">" to 
"greater than", "<=" to "less than or equal to", "<" to "less 
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than". 
If the condition is satisfied, the value returned by the 

functions is an empty ground expression, otherwise $fail(O). 

$func COMPARE (e.Expl) (e.Exp2) = s.Res; I* '<', '>', '=' *I 

e.Expl and e.Exp2, 
than e.Exp2, '>', 

e.Expl is equal 

COMPARE compares two expressions 
returns either '<', if e.Expl is less 
e.Expl is greater than e.Exp2, or '=', if 
e.Exp2. 

and 
if 
to 

Ground expressions are compared according to the following 
linear ordering relation <. 

For all two ground expressions Ge' and Ge", there holds 
either Ge'<Ge", Ge'=Ge", or Ge"<Ge'. 

Two expressions Ge' = Gtl' ... Gtm' and Ge" = 
Gtn" are compared lexicographically, which means that 
level terms are compared pairwise from left to right, 
pair is found of two unequal terms Gtk' and Gtk". 
Gtk' < Gtk", it is assumed that Ge' < Ge". 

Gtl" ... 
their top 
until a 

Then, if 

If Ge' turns out to be shorter than Ge", and all top level 
terms in Ge' are equal to the corresponding terms in Ge", it is 
assumed that Ge' < Ge". 

Formally speaking, for all ground expressions Ge, Ge', Ge" 
and for all ground terms Gt, Gt', Gt" the following holds: 

If Ge' < Ge", then Gt Ge' < Gt Ge". 
If Gt' < Gt", then Gt' Ge' < Gt" Ge". 
[] < Gt Ge. 

where [] denotes an empty ground expression. 
The ordering of the ground terms is defined as follows. 
Symbols are assumed to be less than the terms of the form 

(Ge). In other words, for all symbols Gs and ground expressions 
Ge, 

Gs < (Ge) 

Comparing the terms of the form (Ge) is reduced to compar­
ing their contents according to the rule: 

If Ge ' < Ge" , then ( Ge ' ) < ( Ge" ) . 

Each symbol belongs to one and only one of the following 
sets of symbols: 

character symbols 
word symbols 
numeric symbols 
reference symbols 

These sets will be referred to as symbol classes. We 
the set of symbol classes as equipped with a linear 
the ordering being given by the above list of symbol 
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Thus the set of character symbols precedes the set of word sym-
bols, etc. 

If two symbols Gs' 
Class' and Class", 
that Gs ' < Gs" . 

and 
and Gs" belong to two different 
Class' <Class", then it is 

classes 
assumed 

If two symbols belong to the same class, they are compared 
according the following rules. 

Character symbols are ordered according their ASCII codes. 
Word symbols are converted to corresponding sequences of 

character symbols, which are compared as described above. 
Numeric symbols are compared as corresponding numbers. 
The ordering on the set of reference symbols depends on 

the Refal Plus implementation. 

8.CONVERT: DATA CONVERSIONS 

$func TO-LOWER e.Char = e.Char; 
$func TO-UPPER e.Char = e.Char; 
$func CHARS-TO-BYTES e.Char = e.Int; 
$func BYTES-TO-CHARS e.Int = e.Char; 
$func TO-CHARS e.Exp = e.Char; 
$func TO-WORD e.Exp = s.Word; 
$func? TO-INT e.Exp = s.Int; 

TO-LOWER converts a sequence of character symbols to a 
character sequence in which all capital letters are replaced 
with the correspondent small letters. 

TO-UPPER converts a sequence of character symbols to a 
character sequence in which all small letters are replaced with 
the corresponding capital letters. 

CHARS-TO-BYTES converts a sequence of character symbols to 
a sequence of numbers, each number being the ASCII code of the 
corresponding character. 

If one of the above functions is given an argument that is 
not a sequence of character symbols, the value returned is 
$error(Fname "Invalid argument"), where Fname is the function's 
name. 

For example: 

<TO-LOWER 'AbCd+'> => 
<TO-LOWER 25> => 

'abed+' 

$error(TO-LOWER "Invalid argument") 
<TO-UPPER 'AbCd+'> => 'ABCD+' 
<TO-UPPER 25> => 

$error(TO-UPPER "Invalid argument") 

<CHARS-TO-BYTES 'ABC'> => 65 66 67 

BYTES-TO-CHARS takes as argument a sequence of 
each number ranging between 0 and 255, and converts 
sequence of character symbols, each character having 
code equal to the corresponding number. 
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For example: 

<BYTES-TO-CHARS 65 66 67> => 'ABC' 

TO-CHARS, TO-WORD, and TO-INT take an arbitrary ground 
expression as argument, and, first of all, convert it to a char­
acter sequence. The conversion is performed as follows. Charac­
ter symbols are replaced with the corresponding characters, the 
parentheses are replaced with the characters '(' and ') ', word 
symbols are replaced with the corresponding character sequences, 
numeric symbols are replaced with their character representa­
tions, references to strings are replaced with the contents of 
the strings, all other references are replaced with their char­
acter representations, which depend on the Refal Plus implemen­
tation. 

If the character sequence thus obtained exceeds the size 
limit imposed by the Refal Plus implementation, the value re­
turned by the functions is $error(Fname "Argument too large for 
conversion"), where Fname is the function's name. 

Then the functions TO-CHARS, TO-WORD, and TO-INT proceed in 
the following way. 

TO-CHARS just returns the character sequence thus obtained 
as its result. 

<TO-CHARS "John"> => 'John' 
<TO-CHARS 'John'> => 'John' 
<TO-CHARS 326> => '326' 
<TO-CHARS -326> => '-326' 
<TO-CHARS (-326) "John"> => '(-326)John' 

TO-WORD converts the character sequence thus obtained to 
the corresponding word. 

<TO-WORD "John"> => "John" 
<TO-WORD 'John'> => "John" 
<TO-WORD 326> => "326" 
<TO-WORD -326> => "-326" 
<TO-WORD ( -326) "John"> => "(-326)John" 

TO-INT considers the character sequence thus obtained as 
the character representation of an integer, and converts it to 
the corresponding numeric symbol. If the character string is not 
a correct representation of an integer, the value returned is 
$fail(O). 

For example: 

<TO-INT '326'> => 326 
<TO-INT '+326'> => 326 
<TO-INT "-3" '26'> => -326 
<TO-INT -32 006> => -326 
<TO-INT 'John'> => $fail(O) 
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9.DOS: CALLS TO THE OPERATING SYSTEM 

$func 
$func 
$func 
$func 

ARG s.Int = e.Arg; 
GETENV e.VarName = e.Value; 
TIME 
EXIT 

= e.String; 
s.ReturnCode = ; 

These functions provide some ways of calling the operating 
system. 

The arguments of the functions must satisfy the following 
restrictions. s.Int must be a non-negative integer, e.VarName a 
sequence of character and word symbols, s.ReturnCode an integer 
ranging from 0 to 255. If one or more of the above restrictions 
are violated, the result returned by the functions is 
$error(Fname "Invalid argument"), where Fname is the function's 
name. 

ARG returns the command line argument having the number 
s.Int. If there is no such argument, an empty ground expression 
is returned. 

GETENV returns the value associated in the MSDOS environ­
ment with the variable having the name e.VarName. 

TIME returns the current date and time represented by a 
ground expression of the form 

DD MMM YYYY HH:MM:SS.SS 

where DD is the month's day, MMM the abbreviated month name 
("Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", 
"Oct", "Nov", "Dec"), YYYY the year number, HH:MM:SS.SS the 
ours, minutes, seconds, and hundredth of a second. DD, YYYY, HH, 
MM, SS are represented by integers, MMM by a word. The separa-
tors are character symbols ' ':' i '.'. 

EXIT terminates the execution of the program, with the 
completion code being equal to s.ReturnCode. If the program 
terminates in the normal way, i.e. the evaluation of the call to 
the main function Main terminates, the completion code depends 
on the result returned by the function Main. If the result is a 
ground expression, the completion code is equal to 0. Otherwise, 
if the result has the form $error(Ge), the completion code is 
equal to 100. 

lO.STDIO: STANDARD INPUT/OUTPUT 

$channel STDIN STDOUT STDERR; 

STDIN, STDOUT, and STDERR are 
channels, which are automatically 
execution starts, and automatically 
execution has terminated. 

$func CHANNEL= s.Channel; 

122 

the standard 
opened before 
closed after 

input/output 
the program 
the program 



CHANNEL creates a new channel s.Channel. 

$func? OPEN-FILE s.Channel e.FileName s.Mode = 
$func CLOSE-CHANNEL s.Channel = 

it 
sym­

with: 

OPEN-FILE opens the channel s.Channel and associates 
with the file having the name e.FileName. s.Mode is a word 
bol specifying the mode in which the file is to be dealt 
"r" or "R" indicates that data are to be read from the file, "w" 
or "W" that data are to be written to the file, "a" or "A" that 
data are to be appended to the existing file. If the file cannot 
be opened, OPEN-FILE returns $fail(O). 

CLOSE-CHANNEL closes the channel s.Channel. 

$func? EOF? s.Channel = ; 

EOF? tests whether the current position in the file associ­
ated with the channel s.Channel is at the end of the file. 

$func? READ = t.Term; 
$func? READ-CHAR = s.Char; 
$func? READ-LINE = e.Char; 
$func WRITE e.Exp = 
$func WRITELN e.Exp = 
$func PRINT e.Exp = 
$func PRINTLN e.Exp = 

READ reads the current character representation of a ground 
term from the channel &STDIN. If there is no term to be read, 
the function returns $fail(O). 

READ-CHAR reads the current character from the channel 
&STDIN. If there is no character to be read, the function re­
turns $fail(O). 

READ-LINE reads the characters from the channel &STDIN up 
to the nearest newline character (inclusive), and returns the 
characters as the result (not including the newline character) . 
If there is no character to be read, the function returns 
$fail(O). 

WRITE writes the character representation of the expression 
e.Exp to the channel &STDOUT (if e.Exp does not contain dynamic 
symbols, the terms comprising the expression can later be read 
back by the function READ) . 

WRITELN works in the same way as WRITE does, except that it 
adds a newline character to the end of the expression's repre­
sentation. 

PRINT converts the expression e.Exp to a character 
in the way the function TO-CHARS does, and writes this 
to the channel &STDOUT. 

sequence 
sequence 

PRINTLN works in the same way as PRINT does, except that it 
adds a newline character to the end of the character sequence. 

$func? READ! s.Channel = t.Term; 
$func? READ-CHAR! s.Channel = s.Char; 
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$func? READ-LINE! s.Channel = e.Char; 
$func WRITE! s.Channel e.Exp = ; 
$func WRITELN! s.Channel e.Exp = 
$func PRINT! s.Channel e.Exp = ; 
$func PRINTLN! s.Channel e.Exp = 

These functions work in the same way as the corresponding 
functions without the exclamation marks do, except that the 
operations are performed on the channel s.Channel. 

ll.STRING: STRING OPERATIONS 

$func STRING e.Source = s.String; 
$func STRING-INIT s.String s.Len s.Fill = ; 
$func STRING-FILL s.String s.Fill = ; 
$func STRING-LENGTH s.String = s.Len; 
$func STRING-REF s.String s.Index = s.Char; 
$func STRING-SET s.String s.Index s.Char = ; 
$func STRING-REPLACE s.String e.Source = ; 
$func SUBSTRING s.String s.Index s.Len = s.NewString; 
$func SUBSTRING-FILL s.String s.Index s.Len s.Fill = 

These functions provide a way to create, modify, and access 
strings. The arguments of the functions must satisfy the follow­
ing restrictions. s.String must be a reference to a string, 
s.Index and s.Len non-negative integers, s.Fill a character 
symbol, e.Source a sequence of references to strings, word sym­
bols, and character symbols. 

If one or more of the above restrictions are violated, the 
result returned by the functions is $error(Fname "Invalid 
argument"), where Fname is the function's name. 

At any moment, a string contains a finite sequence (which 
may be empty) of character symbols, which is said to be the 
contents of the string. A string containing a sequence of N+l 
character symbols GcO, Gel, ... , GcN is said to have the 
length N+l. The contents of the string will be written as 

GcO Gel ... GcN 

Thus the string components GcO, Gc2, ... , GcN are num­
bered starting from zero. 

STRING creates a new string and returns a reference to the 
new string. The contents of the new string is formed from 
e.Source in the following way. 

Suppose the parameter e.Source has the form Gsl Gs2 
GsM, where each symbol Gsj is either a character symbol, a word 
symbol, or a reference to a string. Then each symbol Gsj is 
transformed as follows. 

If Gsj is a character symbol Gc, Gsj is left unchanged. 
If Gsj is a word symbol, Gsj is replaced with the character 

sequence that is the contents of the word. 
If Gsj is a reference to a string, Gsj is replaced with the 
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contents of the string (without changing the state of the 
string) . 

The value of the parameter e.Source thus transformed be­
comes the contents of the new string. 

STRING-INIT replaces the contents of the string referred to 
by s.String with a new contents of length s.Len where all the 
characters are s.Fill. 

STRING-FILL replaces each character in the string referred 
to by s.String with s.Fill. The length of the string remains 
unchanged. 

STRING-LENGTH returns the length of the string referred to 
by s.String. 

STRING-REF returns the character contained in the position 
s.Index in the string referred to by s.String. 

STRING-SET replaces the character contained in the position 
s.Index in the string referred to by s.String with s.Char. The 
length of the string remains unchanged. 

STRING-REPLACE replaces the contents of the string referred 
to by s.String with the new contents formed from s.Source in the 
same way as it is done by the function STRING. 

SUBSTRING creates a new string, and returns a reference to 
the new string, the contents of which is formed in the following 
way. Let the contents of the string referred to by s.String be 
GcO Gel ... GeN. Then the contents of the new string is obtained 
by removing the first s.Index characters from this sequence, and 
selecting the first s.Len characters of the remaining sequence. 

The contents of the source string remains unchanged. 
SUBSTRING-FILL replaces s.Len consecutive characters in the 

string referred to by s.String with s.Char, starting from the 
character in the position s.Index. The length of the string 
remains unchanged. 

If the length of the string is not sufficient for one of 
the above operations to be performed, the string remains un­
changed, and the value returned by the functions is $error(Fname 
"Index out of range"), where Fname is the function's name. 

If one of the above operations has to create a string 
tents whose length exceeds the size limit imposed by the 
Plus implementation, the string remains unchanged, and the 
returned by the functions is $error(Fname "Size 
exceeded"), where Fname is the function's name. 

12.TABLE: TABLE OPERATIONS 

$func TABLE = s.Tab; 
$func BIND s.Tab (e. Key) (e. Val) = ; 
$func UNBIND s.Tab e.Key = 
$func? LOOKUP s.Tab e.Key = e.Val; 
$func? IN-TABLE? s.Tab e.Key = 
$func DOMAIN s.Tab = e.Domain ; 
$func TABLE-COPY s.Tab = s.TabCopy; 
$func REPLACE-TABLE s.TargetTable s.SourceTable = ; 

125 

con­
Refal 
value 
limit 



TABLE creates a new empty table, and returns a reference to 
this table. 

BIND binds the key e.Key to the value e.Val in the table 
referred to by s.Tab. 

UNBIND removes the key e.Key as well as the value associat­
ed with the key in the table referred to by s.Tab. If the table 
does not contain the key e.Key, the state of the table remains 
unchanged. 

LOOKUP returns the value associated with the key e.Key in 
the table referred s.Tab. If the table does not contain the key 
e.Key, the function returns $fail(O). 

IN-TABLE? tests whether the table referred to by s.Tab 
contains the key e.Key. 

DOMAIN returns the list of the keys registered in the table 
referred to by s.Tab. Let the set of the keys registered in the 
table be {Gel, Ge2, ... , Gen}, then e.Domain has the form 

(Gel) (Ge2) (Gen) 

where the order of the keys depends on the Refal Plus implemen­
tation. 

TABLE-COPY creates a new table, copies into 
the contents of the table referred to by s.Tab, 
reference to the new table. 

REPLACE-TABLE replaces the contents of the 
to by s.TargetTable with a copy of the contents 
referred to by s.SourceTable. 

13.VECTOR: VECTOR OPERATIONS 

$func VECTOR e.Source = s.Vector; 
$func VECTOR-TO-EXP s.Vector = e.Exp; 
$func VECTOR-INIT s.Vector s.Len e.Fill = ; 
$func VECTOR-FILL s.Vector e.Fill = ; 
$func VECTOR-LENGTH s.Vector = s.Len; 
$func VECTOR-REF s.Vector s.Index = e.Exp; 
$func VECTOR-SET s.Vector s.Index e.Exp = ; 
$func VECTOR-REPLACE s.Vector e.Source = ; 

the new table 
and returns a 

table referred 
of the table 

$func SUBVECTOR s.Vector s.Index s.Len = s.NewVector; 
$func SUBVECTOR-FILL s.Vector s.Index s.Len e.Fill = 

These functions provide a way to create, modify, and access 
vectors. The arguments of the functions must satisfy the follow­
ing restrictions. s.Vector must be a reference to a vector, 
s.Index and s.Len non-negative integers, e.Fill an arbitrary 
ground expression, e.Source a sequence of references to vectors 
and terms of the form (Ge) . 

If one or more of the above restrictions are violated, the 
result returned by the functions is $error(Fname "Invalid 
argument"), where Fname is the function's name. 

At any moment, a vector contains a finite sequence (which 
may be empty) of ground expressions, which is said to be the 
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contents of the vector. A vector containing a sequence of N+l 
ground expressions GeO, Gel, ... , GeN is said to have the 
length N+l. The contents of the vector will be written as 

(GeO) (Gel) (GeN) 

Thus the vector components GeO, Ge2, ... , GeN are num­
bered starting from zero. 

VECTOR creates a new vector and returns a reference to the 
new vector. The contents of the new vector is formed from 
e.Source in the following way. 

Suppose the parameter e.Source has the form Gtl Gt2 ... 
GtM, where each ground term Gtj either is a reference to a vec­
tor, or has the form (Ge). Then each term Gtj is transformed as 
follows. 

If Gtj has the form (Ge), Gtj is left unchanged. 
If Gtj is a reference to a vector, Gtj is replaced with the 

contents of the vector (without changing the state of the vec­
tor) . 

The value of the parameter e.Source thus transformed be­
comes the contents of the new vector. 

VECTOR-TO-EXP returns the ground expression representing 
the contents of the vector referred to by s.Vector. 

VECTOR-INIT replaces the contents of the vector referred to 
by s.Vector with a new contents of length s.Len where all the 
components are e.Fill. 

VECTOR-FILL replaces each component in the vector referred 
to by s.Vector with e.Fill. The length of the vector remains 
unchanged. 

VECTOR-LENGTH returns the length of the vector referred to 
by s.Vector. 

VECTOR-REF returns the ground expression contained in the 
position s.Index in the vector referred to by s.Vector. 

VECTOR-SET replaces the ground expression contained in the 
position s.Index in the vector referred to by s.Vector with 
e.Exp. The length of the vector remains unchanged. 

VECTOR-REPLACE replaces the contents of the vector referred 
to by s.Vector with the new contents formed from e.Source in the 
same way as it is done by the function VECTOR. 

SUBVECTOR creates a new vector, and returns a reference to 
the new vector, the contents of which is formed in the following 
way. Let the contents of the vector referred to by s.Vector be 
(GeO) (Gel) (GeN) . Then the contents of the new vector is 
obtained by removing the first s.Index terms from this sequence, 
and selecting the first s.Len terms of the remaining sequence. 

The contents of the source vector remains unchanged. 
SUBVECTOR-FILL replaces s.Len consecutive components in the 

vector referred to by s.Vector with e.Exp, starting from the 
component in the position s.Index. The length of the vector 
remains unchanged. 

If the length of the vector is not 
the above operations to be performed, 
changed, and the value returned by the 
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"Index out of range"), where Fname is the function's name. 
If one of the above operations has to create a vector 

tents whose length exceeds the size limit imposed by the 
Plus implementation, the vector remains unchanged, and the 
returned by the functions is $error(Fname "Size 
exceeded"), where Fname is the function's name. 
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"*" 
"+" 
"-" 
"/=" 
"<" 
"<=" 
"=" 
">" 
">=" 
? 
APPLY 
ARG 
BIND 

INDEX OF LIBRARY FUNCTIONS 

s.Intl s.Int2 = s.Int; 
s.Intl s.Int2 = s.Int; 
s.Intl s.Int2 = s.Int; 
(e.Expl) (e.Exp2) = ; 
(e.Expl) (e.Exp2) = 
(e.Expl) (e.Exp2) = ; 
(e.Expl) (e.Exp2) = 
(e.Expl) (e.Exp2) = ; 
(e.Expl) (e.Exp2) = ; 
s.Box = e.Exp; 
s.Name e.Exp = e.Exp; 
s.Int = e.Arg; 
s.Tab (e.Key) (e.Va1) = 

BOX e.Exp = s.Box; 
BOX? e.Exp = ; 
BYTES-TO-CHARS e.Char = e.Int; 
CHANNEL = s.Channel; 
CHANNEL? e.Exp = ; 
CHAR? e.Exp = ; 
CHARS-TO-BYTES e.Int = e.Char; 
CLOSE-CHANNEL s.Channel = ; 
COMPARE (e.Expl) (e.Exp2) = s.Res; 
DIGIT? 
DIV 
DIV-REM 
DOMAIN 
EOF? 
EXIT 
FUNC? 
GCD 
GETENV 
IN-TABLE? 
INT? 
L 
LEFT 
LENGTH 
LETTER? 
LOOKUP 
MIDDLE 
OPEN-FILE 
PRINT 
PRINT! 
PRINTLN 
PRINTLN! 
R 

e.Exp = ; 
s.Intl s.Int2 = s.Quo; 
s.Intl s.Int2 = s.Quo s.Rem; 
s.Tab = e.KeyList ; 
s.Channel = ; 
s.ReturnCode = ; 
e.Exp = ; 
s.Intl s.Int2 = s.Gcd; 
e.VarName = e.Value; 
s.Tab e.Key = ; 
e.Exp = 
s.Left e.Exp = t.SubTerm; 
s.Left s.Len e.Exp = e.SubExp; 
e.Exp = s.ExpLen; 
e.Exp = 
s.Tab e.Key = e.Val; 
s.Left s.Right e.Exp = e.SubExp; 
s.Channel e.FileName s.Mode = ; 
e.Expr = ; 
s.Channel e.Expr = ; 
e.Expr = ; 
s.Channel e.Expr = ; 
s.Right e.Exp = t.SubTerm; 

READ = t. Term; 
READ! s.Channel = t.Term; 
READ-CHAR = s.Char; 
READ-CHAR! s.Channel = s.Char; 
READ-LINE = e.Char; 
READ-LINE! s.Channel = e.Char; 
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$func 
$func 
$func? 
$func 
$func 
$func 
$func 
$func 
$func 
$func 
$func 
$func? 
$func 
$func 
$func 
$func 
$func 
$func 
$func? 
$func 
$func 
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$func 
$func 
$func 
$func 
$func 
$func 
$func 
$func 
$func 
$func 
$func 
$func 
$func? 
$func? 
$func 
$func 
$func 
$func 

REM s.Intl s.Int2 = s.Rem; 
REPLACE-TABLE s.TargetTab s.SourceTab = ; 
RIGHT s.Right s.Len e.Exp = e.SubExp; 
STORE 
STRING 
STRING-FILL 
STRING-INIT 

s.Box e.Exp = ; 
e.Source = s.String; 
s.String s.Fill = ; 
s.String s.Len s.Fill = ; 

STRING-LENGTH s.String = s.Len; 
STRING-REF s.String s.Index = s.Char; 
STRING-REPLACE s.String e.Source = ; 
STRING-SET s.String s.Index s.Char = ; 
STRING? e.Exp = ; 
SUBSTRING s.String s.Index s.Len = s.NewString; 
SUBSTRING-FILL s.String s.Index s.Len s.Fill =; 
SUBVECTOR s.Vector s.Ind s.Len = s.Vector; 
SUBVECTOR-FILL s.Vector s.Index s.Len e.Fill =; 
TABLE = s.Tab; 
TABLE-COPY s.Tab = s.TabCopy 
TABLE? 
TIME 
TO-CHARS 
TO-INT 
TO-LOWER 
TO-UPPER 
TO-WORD 
UNBIND 
VECTOR 
VECTOR-FILL 
VECTOR-INIT 

e.Exp = ; 
= e.String; 
e.Exp = e.Char; 
e.Char = s.Int; 
e.Char = e.Char; 
e.Char = e.Char; 
e.Char = s.Word; 
s.Tab e.Key = ; 

e.Source = s.Vector; 
s.Vector e.Fill = ; 
s.Vector s.Len e.Fill = ; 

VECTOR-LENGTH s.Vector = s.Len; 
VECTOR-REF s.Vector s.Index = e.Exp; 
VECTOR-REPLACE s.Vector e.Source = ; 
VECTOR-SET s.Vector s.Index e.Exp = ; 
VECTOR-TO-EXP s.Vector = e.Exp; 
VECTOR? e.Exp = ; 
WORD? e.Exp = ; 
WRITE e.Expr = ; 
WRITE! s.Channel e.Expr = ; 
WRITELN e.Expr = ; 
WRITELN! s.Channel e.Expr = ; 
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ADDITIONAL FEATURES OF REFAL PLUS 
------------------------------------------------------------------

HEXADECIMAL NUMERIC AND CHARACTER CONSTANTS 

Non-negative integers can be written as follows 

OxZZZ ... zz 

where ZZZ ... ZZ stands for a non-empty sequence of hexadecimal 
digits. 

For example, OxFF and Oxff are both equivalent to 255. 
The representations of characters appearing in character 

string literals and word literals may be written as follows 

\xZZ 

where ZZ stands for two hexadecimal digits, specifying the ASCII 
code of the character. A word literal containing such character 
representations must be enclosed in double quotes. 

For example, "\x2A" and "\x2a" are both equivalent to "*" 

NEW LIBRARY FUNCTIONS 

*** BIT: BITWISE OPERATIONS 

The functions providing bitwise operations are defined in 
the module BIT. 

These functions deal with sequences of binary digits repre­
sented by signed integers. 

Each integer represents a sequence of binary digits, which 
is infinite to the left, and can be obtained by writing the 
integer as a two's complement binary number of infinite size. If 
the integer is non-negative, the sequence thus obtained contains 
a finite number of ones. Otherwise, if the integer is negative, 
the sequence contains a finite number of zeros. For example: 

+3 
+2 
+1 
+0 
-1 
-2 
-3 

The 
right to 

... 000011 

... 000010 

... 000001 

... 000000 

... 111111 

... 111110 

... 111101 

positions in the binary sequence are numbered from 
left, starting from zero. 

$func BIT-OR s.Int1 s.Int2 = s.Int; 
$func BIT-AND s.Int1 s.Int2 = s.Int; 
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$func BIT-XOR s.Int1 s.Int2 = s.Int; 

BIT-OR returns the bitwise logical "or" of the arguments. 
BIT-AND returns the bitwise logical "and" of the arguments. 
BIT-XOR returns the bitwise logical "exclusive or" of the 

arguments. 

$func BIT-NOT s.Int = s.Int; 

BIT-NOT returns the bitwise logical "not" of the argument. 

$func 
$func 

BIT-LEFT 
BIT-RIGHT 

s.Int s.Shift = s.Int; 
s.Int s.Shift = s.Int; 

BIT-LEFT returns the result of logically shifting s.Int by 
the number of positions specified by s.Shift. If s.Shift is 
non-negative, s.Int is shifted left, the new bits being zero­
filled. Otherwise, if s.Shift is negative, s.Int is shifted 
right. 

BIT-RIGHT returns the result of logically shifting s.Int by 
the number of positions specified by s.Shift. If s.Shift is 
non-negative, s.Int is shifted right. Otherwise, if s.Shift is 
negative, s.Int is shifted left, the new bits being zero-filled. 

$func? BIT-TEST s.Int s.Pos = ; 

BIT-TEST returns a failure, if the position s.Pos in s.Int 
is equal to zero, otherwise, it returns an empty ground expres­
sion. 

$func 
$func 

BIT-SET 
BIT-CLEAR 

s.Int s.Pos = s.Int; 
s.Int s.Pos = s.Int; 

BIT-SET sets the position s.Pos in s.Int to 1, and returns 
the integer thus obtained. 

BIT-CLEAR sets the position s.Pos in s.Int to 0, and re­
turns the integer thus obtained. 

$func BIT-LENGTH s.Int = s.Len; 

BIT-LENGTH returns the "length" of s.Int. Namely, if s.Int 
is non-negative, the function returns the position of the right­
most 0 such that there is no 1 to the left of this 0. Otherwise, 
if s.Int is negative, the function returns the position of the 
rightmost 1 such that there is no 0 to the left of this 1. 

For example: 

<BIT-LENGTH 3> ==> 2 
<BIT-LENGTH 2> ==> 2 
<BIT-LENGTH 1> ==> 1 
<BIT-LENGTH 0> ==> 0 
<BIT-LENGTH -1> ==> 0 
<BIT-LENGTH -2> ==> 1 
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<BIT-LENGTH -3> ==> 2 

*** DOS: CALLS TO THE OPERATING SYSTEM 

The module DOS is extended with the following functions. 

$func 
$func 
$func 
$func 

DELAY s.MSeconds = ; 
SLEEP s.Seconds = ; 
RANDOM s.Max = s.Rand; 
RANDOMIZE = ; 

I* 0 <= s.Rand < s.Max */ 

DELAY suspends the current program from execution for the 
number of milliseconds specified by s.MSeconds. The interval is 
accurate only to the nearest hundredth of a second, or the accu­
racy or the MSDOS clock, whichever is less accurate. 

SLEEP suspends the current program from execution for the 
number of seconds specified by s.Seconds. The interval is accu­
rate only to the nearest hundredth of a second, or the accuracy 
or the MSDOS clock, whichever is less accurate. 

RANDOM returns a pseudorandom integer in the range 0 to 
s.Max minus 1. 

RANDOMIZE initializes the random number generator with a 
random value. 

SCREEN INPUT/OUTPUT 

*** SCREEN POSITIONS 

Each screen position is specified by two non-negative inte­
gers s.Pos s.Col, where s.Pos is the row, and s.Col the column 
of the position. The rows and columns are numbered starting from 
0, the top left corner of the screen being at row 0, column 0. 

*** WINDOWS 

A window is an area on the screen, possibly surrounded by a 
border. Each window has an attached number ranging from 1 to 
255. The screen is considered to be a special, fictitious window 
having the number 0. 

When you create the window, you give the coordinates for 
the upper left corner, and the number of rows and columns the 
window should occupy. At any moment, one of the windows is con­
sidered to be the current one (which may be fictitious window 
number 0, if there is no "true" window on the screen). 

When a window is created, it becomes the current window, 
and all output will automatically be sent to it. However, you 
may make any other window the current one, thereby redirecting 
the input and output. 
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Unless otherwise stated, all input/output functions de­
scribed later operate relative to the current window, the screen 
positions being specified with respect to the upper left corner 
of the current window. Each window has an attached cursor posi­
tion, which the program remembers as you shift between windows. 

When you remove a window, the contents of the screen behind 
the window is automatically reestablished. 

You can use the same number more than once for creating 
windows, but only the last window created with a given number 
can be accessed by the functions dealing with windows. 

*** ERRORS 

The screen coordinates, as well as the window and field 
sizes, must be integers. The color attribute values must be 
integers ranging from 0 to 255. Window numbers must be integers 
ranging from 0 to 255. 

If a function is given arguments violating the above condi­
tions, the function returns $error(Fname "Invalid argument"). 

If a function is given screen coordinates lying outside the 
screen, the function return $error(Fname "Invalid cursor 
values"). 

If a function is required to perform an operation on a 
window that does not exist, the function returns $error(Fname 
"Unknown window") 

If a function is required to perform an operation on the 
current window, and there exists no window (except window number 
0), the function returns $error(Fname "No window"). 

If a function is required to perform an operation on the 
frame of a window, and the window has no frame, the function 
returns $error(Fname "No frame"). 

If a function is required to created a window such that 
some parts of the window lie outside the screen, the function 
returns $error(Fname "Invalid argument"). 

*** CONIC: CONSOLE INPUT/OUTPUT 

$func? KEY-PRESSED? = ; 
$func READ-KEY = s.Char; 

KEY-PRESSED? returns an empty ground expression if a key on 
the keyboard has been pressed, otherwise, it returns a failure. 

READ-KEY returns a single character from the keyboard, if a 
key has been pressed. Otherwise it waits for a key to be 
pressed. A number of keys, including the function and cursor 
keys, will return two characters, where the first is ASCII 0. 

$func 
$func 
$func 

GET-SCR-CHAR-ATTR s.Row s.Col = s.Ch s.Attr; 
PUT-SCR-CHAR s.Row s.Col s.Ch = 
PUT-SCR-ATTR s.Row s.Col s.Attr = ; 
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GET-SCR-CHAR-ATTR returns the character s.Ch along with its 
attribute s.Attr at position s.Row s.Col. 

PUT-SCR-CHAR writes the character s.Ch on the screen at 
position s.Row s.Col. The attribute at the position remains 
unchanged. 

PUT-SCR-ATTR sets the attribute of the character at posi­
tion s.Row s.Col to the value s.Attr. The character at the posi­
tion remains unchanged. 

$func 
$func 
$func 

GET-FIELD-STR s.Row s.Col s.Length = s.Chars; 
PUT-FIELD-STR s.Row s.Col s.Length s.Chars = ; 
PUT-FIELD-ATTR s.Row s.Col s.Length s.Attr = ; 

These functions deal with fields. A field is specified by 
its starting position s.Pos s.Col, and its length s.Length, and 
must fit inside the current window. 

GET-FIELD-STR returns the text occupying the field repre­
sented by a word symbol. 

PUT-FIELD-STR writes the text s.Chars represented by a word 
symbol into the field. If s.Chars contains more characters than 
s.Length indicates, only the first s.Length characters are writ­
ten. If s.Chars is shorter than s.Length, the rest of the field 
will be filled with blank spaces. The attributes of all the 
positions in the field remain unchanged. 

PUT-FIELD-ATTR gives the attribute s.Attr to all the posi­
tions in the field. 

$func GET-CURSOR = s.Row s.Col; 
$func SET-CURSOR s.Row s.Col = ; 

GET-CURSOR returns the current cursor position in the cur­
rent window. 

SET-CURSOR moves the cursor to the indicated position s.Row 
s.Col relative to (0,0) in the current window. 

$func 
$func 

GET-CURSOR-FORM = s.StartLine s.EndLine; 
SET-CURSOR-FORM s.StartLine s.EndLine = ; 

The height and vertical position of the cursor 
single-character display area (cell) is determined by 
scan line number and the end scan line number, which 
non-negative integers s.StartLine and s.Endline. 

$func 
$func 

GET-CURSOR-FORM returns the current cursor form. 
SET-CURSOR-FORM sets the current cursor form. 

GET-ATTRIBUTE = s.Attr; 
SET-ATTRIBUTE s.Attr = ; 

within a 
the start 
are small 

Each window has its own write attribute, which is given to 
the characters written to this window. When you create a window, 
the write attribute automatically receives the value of the 
window attribute. 

GET-ATTRIBUTE returns the current write attribute of the 
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current window. 
SET-ATTRIBUTE sets the write attribute of the current win­

dow to the new value s.Attr. 

$func GET-TEXT-MODE = s.Rows s.Cols; 

GET-TEXT-MODE returns the current screen size. 

$func CLEAR-SCREEN = ; 

CLEAR-SCREEN clears the screen within the limits of 
current window. All the positions in the window are filled 
blank spaces with the attributes set to the write attribute 
the window. 

$func CWRITE e.Exp = 
$func CWRITELN e.Exp = ; 
$func CPRINT e.Exp = 
$func CPRINTLN e.Exp = 

the 
with 

of 

CWRITE writes the character representation of the ground 
expression e.Exp to the current window. 

CWRITELN works in the same way as CWRITE does, except that, 
after e.Exp has been written, it causes a carriage return/line­
feed sequence to be sent to the current window. 

CPRINT converts the ground expression e.Exp to a character 
sequence in the same way as the function TO-CHARS does, and 
writes the sequence to the current window. 

CPRINTLN works in the same way as CPRINT does, except that, 
after e.Exp has been written, it causes a carriage­
return/linefeed sequence to be sent to the current window. 

Writing a carriage-return character causes the cursor to 
move to the start of the current line. Writing a linefeed char­
acter causes the cursor to move to the next line without chang­
ing its horizontal position. Thus, to move the cursor to the 
start of the next line, we have to write two characters: a car­
riage-return and a linefeed. 

* * * WINDOW: WINDOW HANDLING 

$const NO-FRAME = -1; 

$func MAKE-WINDOW 
s.WindowNo s.WindowAtt s.FrameAtt s.FrameStr 
s.Row s.Col s.Height s.Width = ; 

$func MAKE-WINDOW! 
s.WindowNo s.WindowAtt s.FrameAtt s.FrameStr 
s.Row s.Col s.Height s.Width 
s.ClearWindow s.FrameStrPos s.FrameTypeStr = ; 

MAKE-WINDOW and MAKE-WINDOW! create a new window on the 
screen, which becomes the current one. There must be specified 
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the following arguments. 
s.WindowNo is the number of the window. Each window is 

identified by a number, which you use when selecting the active 
window. 

s.WindowAtt is the window write attribute. 
s.FrameAtt is the attribute of the frame and title of the 

window. If this argument is equal to -1, the window will have 
neither a frame nor a title, in which case the arguments 
s.FrameStr, s.FramePos and s.FrameTypeStr are ignored. 

s.FrameStr is the title of the window represented by a word 
symbol. The title will appear in the top border line. If the 
title is empty, no text will appear in the top border. If the 
title is longer than the border, it will be truncated. 

s.Row and s.Col are the row and column positions of the top 
left corner of the window, relative to the whole screen. 

s.Height is the height of the window, in ter.ms of rows 
(including the frame, if any). 

s.Width is the width of the window, in ter.ms of columns 
(including the frame, if any). 

s.ClearWindow specifies whether the program will clear the 
text area of the window after creating it. If the argument is 
equal to 0, the text area of the newly created window is 
cleared. If the argument is equal 1, the text area is filled 
with blank spaces. 

s.FrameStrPos specifies where the window title will be 
located (within the top border of the frame). If the argument is 
equal to 255, the title will be centered. If the argument is an 
integer ranging from 0 to 254, the title will be placed at the 
specified position (column), relative to the left border of the 
window. 

s.FrameTypeStr specifies how to draw the window frame. This 
argument must be a word symbol containing exactly six charac­
ters, which will be used for drawing the following elements of 
the frame: 

1st char Upper left corner 
2nd char Upper right corner 
3rd char Lower left corner 
4th char Lower right corner 
5th char Horizontal line 
6th char Vertical line 

MAKE-WINDOW enables only the first eight of the above argu­
ments to be specified, the remaining arguments being given the 
following default values: 

s.ClearWindow 
s.FrameStrPos 
s.FrameTypeStr 

1 (the window is cleared) 
255 (the title is centered) 
"\xDA\xBF\xCO\xD9\xC4\xB3" 

(a single-line border) 

$func CURRENT-WINDOW-NO = s.WindowNo; 
$func CURRENT-WINDOW = 
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s.WindowNo s.WindowAtt s.FrameAtt s.FrameStr 
s.Row s.Col s.Height s.Width; 

$func CURRENT-WINDOW! = 
s.WindowNo s.WindowAtt s.FrameAtt s.FrameStr 
s.Row s.Col s.Height s.Width 
s.ClearWindow s.FrameStrPos s.BorderChars ; 

These functions enable the program to get the parameters of 
the current window. If there is no "true" window on the screen, 
the parameters of fictitious window number 0 (corresponding to 
the whole screen) are returned. 

$func? EXIST-WINDOW? s.WindowNo = ; 
$func SHIFT-WINDOW s.WindowNo = 
$func REMOVE-WINDOW = ; 
$func REMOVE-WINDOW! s.WindowNo s.Refresh = ; 

EXIST-WINDOW returns a failure if there is no window number 
s.WindowNo. Otherwise, it returns an empty ground expression. 

SHIFT-WINDOW changes the current window to the one referred 
to by s.WindowNo. (The contents of the previously active window 
and the cursor position in it are stored.) The new current win­
dow is then refreshed, in case it has been overwritten since its 
last activation. (Fictitious window number 0 can't be shifted.) 

REMOVE-WINDOW removes the current window from the screen, 
and refreshes any windows behind this window. (Fictitious window 
number 0 can't be removed.) 

REMOVE-WINDOW removes the window specified by s.WindowNo, 
which doesn't have to be the current one. (Fictitious window 
number 0 can't be removed.) The value of s.Refresh determines 
whether windows behind the removed one will be refreshed. If 
s.Refresh is equal to 0, the windows won't be refreshed. If 
s.Refresh is equal to 1, the windows will be refreshed. 

$func RESIZE-WINDOW! s.Row s.Col s.Height s.Width = ; 

RESIZE-WINDOW! changes position and size of the 
window. Its arguments specify the new position (starting 
column) and dimensions (number of rows and columns) 
window. 

SET-WINDOW-ATTR s.Attr = ; 
SET-FRAME-ATTR s.Attr = ; 

current 
row and 

for the 

$func 
$func 
$func SET-WINDOW-FRAME s.FrameAtt s.FrameStr s.FrameStrPos 

s.BorderChars = ; 

SET-WINDOW-ATTR sets the write attribute of the current 
window to s.Attr, and sets all the attribute values in the text 
area of the window to s.Attr. 

SET-FRAME-ATTR changes the attribute for the frame of the 
current window. 

SET-WINDOW-FRAME changes attribute and characters for the 
frame of the current window. The window must have a frame, i.e. 
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the previous value of the frame attribute must be different from 
-1. 

$func SCROLL s.NoOfRows s.NoOfCols = ; 

SCROLL scrolls the contents of the current window up (or 
down) and left (or right). s.NoOfRows indicates the number of 
lines to be scrolled up or down. A positive number scrolls up; a 
negative number scrolls down. s.NoOfCols indicates the number of 
columns to be scrolled left or right. A positive number scrolls 
left; a negative number scrolls right. 

$func 
$func 

GET-WINDOW-STR = s.ScreenString; 
PUT-WINDOW-STR s.ScreenString = ; 

GET-WINDOW-STR returns the contents of the text area of the 
current window represented by a word symbol s.ScreenString. The 
contents of the symbol is formed in the following way. 
s.ScreenString contains the same number of lines as there are 
lines in the current window. The length of each line is deter­
mined by the last non-blank character in that line. Each line in 
s.ScreenString is terminated by a newline character. 

PUT-WINDOW-STR puts the text contained by the word symbol 
s.ScreenString to the current window according to the following 
criteria: 

* If there are more lines in the text than lines in the 
window, PUT-WINDOW-STR writes lines until the window 
space is exhausted. 

* If there are fewer lines in the string than in the 
window, PUT-WINDOW-STR fills out the remaining lines 
in the window with blank spaces. 

* If there are more characters on a text line than are 
available on a window line, PUT-WINDOW-STR truncates 
the text line to fit. 

* If there are fewer characters in a line than columns 
in the window, PUT-WINDOW-STR fills out the line with 
blank spaces. 
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