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Abstract. The paper deals with some aspects of metasystem transi-
tions in the context of supercompilation. We consider the manifestations
of the law of branching growth of the penultimate level in the case of
higher-level supercompilation and argue that this law provides some use-
ful hints regarding the ways of constructing metasystems by combining
supercompilers. In particular we show the usefulness of multi-result su-
percompilation for proving the equivalence of expressions and in two-level
supercompilation.

1 Introduction

A supercompiler is a source-to-source program transformer SC based on super-
compilation techniques [27,28,30], which, given an input program p, generates
a residual program p’ = SC[p]. Supercompilation is often seen as a method of
program optimization but also may be used for program analysis. Since our area
of research is program analysis by supercompilation, we assume all the super-
compilers we deal with to strictly preserve the semantics of programs.

The general concept of metasystem transition was put forward by V.F. Tur-
chin in 1970-s [26, Chapter 3, Section “The Metasystem Transition”]:

We shall call the system made up of control subsystem X and the many
homogeneous subsystems A7, As, Az ...controlled by it a metasystem in
relation to systems A, As, Az ... Therefore we shall call the transition
from one stage to the next the metasystem transition.

In particular, by treating supercompilation as an elementary operation, we
can use supercompilers as building blocks for constructing more complex systems
[29,30], which may be considered as an instance of metasystem transition.

There is no generally accepted term for systems built from supercompilers
by metasystem transitions. Thus, for lack of something better, we use the term

“higher-level supercompilation”’.

* Supported by Russian Foundation for Basic Research project No. 09-01-00834-a.
L A possible alternative could be “meta-supercompilation” or “metacomputation”
(suggested by V.F. Turchin [30]).



Higher-level supercompilation is a new area of research whose potential is not
fully realized, some aspects being still poorly understood. The law of branching
growth of the penultimate level is one of such aspects. Of course, laws are called
“laws”, because they manifest itself regardless of whether we are aware of them
or not. However, if a law is well understood, its intentional use often enables us
to find more elegant and (conceptually) simple solutions, as compared to those
obtained by blind trial and error.

In the subsequent sections we consider how the law of branching growth
of the penultimate level manifests itself in higher-level supercompilation and
how it can be used when constructing metasystems composed of a number of
supercompilers.

2 Diversity of Higher-Level Supercompilation

In the following, higher-level supercompilation is assumed to mean the construc-
tion of systems that use SC, the operation of supercompilation, as a primitive.
Here are some examples of higher-level supercompilation:

— Self-application of a supercompiler [21], or, more generally, an application of
supercompilers to supercompilers [3] (also known as Futamura projections
[2]). In this case an instance of a supercompiler, essentially, controls the
execution of another instance of the same supercompiler.

— Proving the equivalence of expressions by supercompilation [18,16]. In this
case supercompilation is used as a means of normalizing programs for further
check for syntactic isomorphism.

— Two-level supercompilation [17], in which the “upper” supercompiler uses
improvement lemmas proved by the “lower” supercompiler.

— Distillation [4,6,5], which involves comparing recursive (supercompiled) rep-
resentations of configurations, instead of configurations (although the sepa-
ration of the ground level and the metalevel is not as clear as in the case of
two-level supercompilation).

This list, which is certainly incomplete, shows that constructing metasystems
by combining supercompilers may be done in a variety of ways. However, until
recently, the idea of self-application (in the form of Futamura projections) has
enjoyed the most popularity. The point is that this form is not the only possible
form of higher-level supercompilation?.

3 Branching Growth of the Penultimate Level in
Metasystem Transitions

What is the concrete mechanics of a metasystem transition? Some light on this
is shed in “The phenomenon of science” by V.F. Turchin [26, Chapter 3, Section
“The Metasystem Transition”]:

2 Note, that the emergence of various forms of higher-level supercompilation can also
be seen as the growth of the penultimate level leading to a metasystem transition.



In general we must note that the integration of subsystems is by no
means the end of their evolutionary development. We must not imagine
that systems A;, Ao, As, ...are reproduced in large numbers after which
the control device X suddenly arises “above them”. On the contrary, the
rudiments of the control system form when the number of subsystems
A; is still quite small. As we saw above, this is the only way the trial and
error method can operate. But after control subsystem X has formed,
there is a massive replication of subsystems A; and during this process
both A; and X are refined. The appearance of the structure for control
of subsystems A; does not conclude rapid growth in the number of sub-
systems A;; rather, it precedes and causes this growth because it makes
multiplication of A; useful to the organism. The carrier of a definite
level of organization branches out only after the new, higher level begins
to form. This characteristic can be called the law of branching growth
of the penultimate level. In the phenomenological functional description,
therefore, the metasystem transition does not appear immediately after
the establishment of a new level; it appears somewhat later, after the
penultimate level has branched out.

This can be summed up by the “formula”:
Control + Branching Growth = Metasystem Transition (1)

In some cases of higher-level supercompilation, such as self-application [2,21]
and the simplest two-level supercompilation [16,17], there is a single (and fixed)
supercompiler under control. However, this straightforward approach is unable
to take advantage of the real potential of metasystem transition, because any
real control implies the possibility of choice, which does not exist without some
variety and/or multiplicity at the lower level.

A multiplicity of choice may exist in time (if there is a single unit at the lower
level, whose state may be controlled or modified) or in space (if there is a number
of controllable units). In general, there may be a combination of multiplicity in
time and in space. However, in computer science, the division into space and
time may be rather arbitrary. For example, we may run a program several times
with different options, in which case the variants will be separated “in time”.
But, given a supercomputer, we may run the program with different options on
multiple nodes, in which case the variants will be separated “in space”.

The emergence of multiplicity of choice brings about the need for improve-
ments and refinements in the control system, and often leads to a metasystem
transition, which was formulated by V.F. Turchin as the law of branching growth
of the penultimate level.

The next section considers some forms of branching growth in the context of
supercompilation.



4 Multi-Result Supercompilation and Program Analysis

At a high level of abstraction, supercompilation can be seen as a transformation
relation SC [8,11], such that, given two programs p and p’, p SC p’ means that
p’ is a residual program with respect to the source program p.

From this viewpoint, there may exist several residual programs for a given
input program, and we may construct a supercompiler producing a set of resid-
ual programs, rather than a single program. In such cases we will speak about
multi-result supercompilation, to distinguish it from traditional (single-result)
supercompilation.

Until recently, multi-result supercompilation was not paid sufficient atten-
tion. This situation was probably because supercompilation was primarily con-
sidered as a tool for program optimization. And, when seen as an optimizer, a
supercompiler is usually expected to produce a single program p’ = SC[p].

Indeed, the word “optimization” implies that we are interested in obtaining
the best result®. Hence, an optimizing supercompiler is expected to return a
single result, “the best” one, even if it could produce several residual programs.
The suboptimal results are not exposed explicitly — there is some logic under
the hood that chooses “the best” variant .

Optimizing supercompilers usually are implemented in the form of determin-
istic algorithms. If a deterministic supercompiler faces a choice, it only considers
a single variant, which it believes to result into “the best” residual program.

In the case of optimization, the concepts of “better” and “worse” are rela-
tively easy to formalize. A program p’ is usually assumed to be better than p
if it is faster and/or smaller. The execution speed and code size are measurable
and can be expressed numerically. So the criteria used by optimizing supercom-
piler in order to choose “the best” (or at least not the worst) variant, when
non-determinism appears during supercompilation, are formalizable.

But, if supercompilation is used for program analysis by transformation,
things get more complicated. In this case a residual program p’ is better than
p" if p’ is easier to analyze than p”. This criteria is less formalizable than the
notions of execution speed and code size. Besides, some choices that appeared
to be obvious or natural in the case of an optimizing supercompiler may not
be good if residual programs are meant for subsequent analysis, rather than
execution. Moreover, the influence of the choices made during supercompilation
on the “analyzability” of residual programs are rather difficult to foresee.

On the other hand, the results of transformation are much easier to estimate
post factum. So multi-result supercompilation seems to be a natural solution for
program analysis, since the results of choices made during supercompilation can
be evaluated by examining the final results.

It is interesting that some choices which look unnatural during supercompi-
lation may lead to interesting and useful final results (see Section 5.4).

3 In Latin “optimus” means “the best”.
4 Note that multiplicity is internally used by some optimizers [25]



5 The Synergy of Two-Level and Multi-Result
Supercompilation

In the context of supercompilation the formula from Section 3
Control + Branching Growth = Metasystem Transition
can be instantiated in the following way:

Two-Level Supercompilation + Multi-Result Supercompilation =
Metasystem Transition

In other words: combining two-level supercompilation (control) with multi-result
supercompilation (growth of the penultimate level) leads to a metasystem tran-
sition, thereby increasing the power of two-level supercompilation.

The evolution history of HOSC [9] — a supercompiler for a subset of Haskell —
seems to be a good illustration for the quotation in Section 3. The initial goal
of the project was to study the applicability of supercompilation to program
analysis by transformation, the previous studies in the field of optimizing su-
percompilation serving as the starting point. The stages the project HOSC has
passed through are considered in the following subsections.

5.1 Stage 0. Proving the Equivalence of Expressions: Rudiments of
Control

The development of HOSC started with the simple motto: transformed programs
are to be analyzed, rather than executed. So we made a few minor modifications,
which could be unacceptable in the context of program optimization, but are
quite natural in the case of program analysis:

1. A supercompiler is allowed to duplicate code.
2. A supercompiler is allowed to generate a non-modular flat program.

These modifications enabled the internals of the supercompiler to be consid-
erably simplified. In addition, it was found that these simplifications enhanced
the ability of the supercompiler to transform equivalent programs to the same
syntactic form. That is, the supercompiler HOSC proved to be more powerful at
“normalizing” programs, than optimizing compilers.

The mechanism of program normalization can be metaphorically explained
in this way: it is easier to transform two programs to the same bad form, than
to the same good form (where “goodness” is measured in terms of size and
execution speed).

The details of this approach are described in [16]. HOSC turned out to be
quite good at normalizing modular programs with heavy use of higher-order
functions (especially, various forms of combinators).

Let us consider a quite spectacular example. A Haskell program defining
fragments of Peano and Church arithmetics is shown in Fig. 1. A conjecture



data Peano = Z | S Peano;
type Church x = (x = x) = (x —x);

foldn = (t —+t) —t — Peano — t;
foldn = A\s zn —wcasen of { Z —-z; Snl —s (foldn s z nl1); };

add :: Peano — Peano — Peano;
add = A\x y — foldn S y x;

mult : Peano — Peano — Peano;
mult = Ax y — foldn (add y) Z x;

mult’ : Church x — Church x — Church x;
mult’ = Aomn f —-m (n f);

peano2church : Peano — Church x;
peano2church = A\p — foldn (Mm £f x —f (m £ x)) (AMf x —x) p;

church2peano :: Church Peano — Peano;
church2peano = A\n —n S Z;

Fig. 1. Fragments of Peano and Church arithmetics: definitions in Haskell
Vx y. mult x y = church2peano (mult’ (peano2church x) (peano2church y))

Fig. 2. A conjecture about the equivalence of expressions

letrec £ = Am n — case m of {

Z —Z;

Sp —letrec g =Xz —casezof {Sv -8 (gv); Z—fpn; }in g n;
}inf xy

Fig. 3. Proof by supercompilation: both parts of the conjecture are transformed to the
same residual expression (shown in the Figure)

in Fig. 2 states the operational equivalence of two expressions with universally
quantified variables. HOSC transforms both expressions to the same residual
expression depicted in Fig. 3 and thus deduces that the conjecture holds.

Certainly, launching two instances of the same supercompiler, followed by
comparing the results, can be regarded as a form of control, but as a very prim-
itive one.

5.2 Stage 1. Two-Level Supercompilation: Shaping of Control

Simply put, supercompilation is based on the following simple operations on
configurations (expressions with free variables):



data Bool = True | False;

data Peano = Z | S Peano;

even = \x — case x of { Z — True; S x1 — odd x1; };
odd = A\x — case x of { Z — False; S x1 — even x1; };
or = A\x y — case x of { True — True; False —y; };

Fig. 4. Numeric operations

letrec f = Aw —
case w of { Z —- True; S x —case x of { Z - True; Sz —f z; };}
in f m

Fig. 5. or (even m) (odd m): the result of two-level supercompilation

1. Driving: rewriting a configuration into an equivalent one, in order to simplify
it.

2. Case analysis: splitting a configuration into a finite number of subconfigura-
tions.

3. Folding: comparing two configurations for syntactic isomorphism, in order
to reduce the current configuration to a previously encountered one.

4. Generalization: replacing a configuration with a more general one, in order
to guarantee termination.

Generalization often leads to redundancy in residual programs, so that super-
compilers should try to avoid it.

The main idea of two-level supercompilation [17,12] consists in avoiding gen-
eralization as much as possible. When a two-level supercompiler encounters a
configuration A that has to be generalized according to the rules of ordinary su-
percompilation, it tries to replace A with an equivalent configuration B that does
not have to be generalized. The equivalence of A and B is proven by invoking
two instances of a lower-level supercompiler.

For example, let us consider the expression or (even m) (odd m) in the
context of the program shown in Fig. 4. The single-level HOSC is unable to
transform this expression into a program that is certain not to return False.
During supercompilation the following expressions are checked for syntactic iso-
morphism:

1. case (even m) of { True — True; False — odd m; }
2. case (even n) of { True — True; False — odd (S (S n)); }

Since these expressions are not syntactically isomorphic, the single-level HOSC
has to perform a generalization. However, the two-level HOSC is able to prove
(by calling the single-level HOSC twice) that the following configuration (3)

3. case (even n) of { True — True; False — odd n; }



is equivalent to the configuration (2). Now the configuration (3) is syntactically
isomorphic to the configuration (1). Hence, we can fold (3) to (1), thereby avoid-
ing generalization. The corresponding residual program is shown in Fig. 5. This
program is certain not to return False (just because False does not appear in
the program).

5.3 Stage 2. Multi-Result Supercompilation: Branching Growth of
the Penultimate Level

The two-level supercompiler described in [17] calls an instance of itself 5. More-
over, there exists a “recipe” of turning some classical single-level supercompilers
into two-level ones. This procedure can be schematically represented by the fol-
lowing formula (which may seem a bit obscure for now, but it will be explained
in Section 6 in detail):

L2(S¢) = Scimeal(Sc)

where Sc,,0q 18 a modification of a classical supercompiler Sc. Thus a modified
instance of a classical supercompiler uses an unmodified instance of the same
supercompiler.

In the paper [12] this formula is generalized as follows:

L2'(Sc, Sc") = Se),,qa(Sc")

The point is that a two-level supercompiler can be produced from two different
supercompilers®. And L2(Sc) = L2'(Sc, Sc) is just a special case, where S¢/ =
Sc”.

The fruitfulness of this generalization is illustrated in [12] by the following
example. Let us express two BNF-grammars by means of combinators:

doubleAl
doubleA?2

€ | A doubleAl A
€ | A A doubleA2

Although these grammars are equivalent, the corresponding parsers are different,
the complexity of the first parser being O(n?), while the complexity of the second
one being O(n). The paper [12] shows that there is no two-level supercompiler
L2(S¢;) produced from supercompilers Se; from [10] that can transform the first
grammar into the second one. The problem is that each time when the upper
supercompiler makes a conjecture (about the equivalence of expressions), the
lower supercompiler is unable to prove this conjecture.

However, we can combine supercompilers described in [10] by means of the
formula L2'(S¢;, Sc¢;), in which case it is possible to find two supercompilers Se;
and Sc;, such that L2/(Sc;, Sc;) transforms the first parser into the second one’.

5 So, it can be regarded as a special case of self-application.

5 In the context of Futamura projections, the idea of combining different versions of
a partial evaluator was considered by R. Gluck [3].

" As was shown by Sgrensen [24], a classical single-level supercompiler for a lazy
functional language can not improve the runtime complexity of a program.



data List a = Nil | Cons a (List a);

app = Axs ys —
case xs of { Nil — ys; Cons z zs — Cons z (app zs ys); };
rev = Axs —
case xs of { Nil — Nil; Cons y ys — app (rev ys) (Cons y Nil); };

Fig. 6. Naive list reversal

letrec f = A\x y —case x of { Nil — y; Cons vw —f w (Cons v y); }
in f xs Nil

Fig. 7. rev xs: a result of multi-result two-level supercompilation

In a sense, L2 and L2 can be regarded as devices for breeding and multiplying
supercompilers, L2’ being more “productive”. Indeed, for 8 different single-level
supercompilers described in [10], the formula L2 may produce only 8 different
two-level supercompilers, while L2 may produce 64 different supercompilers.

Now suppose that Sc¢” in L2’ is a multi-result supercompiler. Again, we get
one single-result two-level supercompiler. Applying L2’ to 8 different single-level
supercompilers from [10], we get 8 different single-result two-level supercompil-
ers.

And finally, combining these two-level supercompilers we can get one multi-
result two-level supercompiler.

As was shown in [12,14] the construction of a two-level supercompiler by
combining two single-result supercompilers is unable to reveal many opportu-
nities for two-level supercompilation. However, using multi-result supercompiler
as the lower supercompiler produces new results.

So using a multi-result supercompiler as the lower supercompiler in a two-
level supercompiler increases the potential of two-level supercompilation and
may be regarded as branching growth of the penultimate level according to V.F.
Turchin.

5.4 Stage 3. Multi-Generalization: Refinement of Control

Supercompilation can be described as a non-deterministic algorithm [11], which
has a set of choices at almost every step. But a deterministic implementation of
supercompilation has to choose a single variant at each step.

The previous section shows how to build a multi-result supercompiler by
combining several single-result supercompilers (treated as black-boxes). Multi-
result supercompilers thus produced will be said to be of the first kind.

Is it possible to derive a multi-result supercompiler from a single-result
one? Yes, by turning a deterministic supercompiler into a non-deterministic one
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and then turning it into a multi-result one. The subtle point is that a non-
deterministic supercompiler, in principle, may produce an infinite number of
residual programs or even not terminate, while a multi-result supercompiler, for
practical reasons, should always terminate and produce a finite set of residual
programs. Hence, we need some reasonable finite non-determinism.

Multi-generalization, presented in [14], is a technique that enables a single-
result supercompiler to be turned into a multi-result supercompiler that always
terminates and produces a finite number of residual programs.

The main idea of multi-generalization is that when a supercompiler has to
generalize a configuration, it should consider all possible generalizations of the
configuration, rather than a most specific generalization only. If the set of possi-
ble generalizations is always finite (which is true of the HOSC supercompilation
relation), the set of possible residual programs is also finite. A multi-result su-
percompiler thus produced will be said to be of the second kind.

If S¢’ is a multi-result single-level supercompiler of the second kind and Sc”
a multi-result single-level supercompiler of the first kind, L2'(S¢/, S¢”’) turns out
to be a powerful multi-result two-level supercompiler, which is capable of finding
non-trivial generalizations by means of multi-generalization, thereby coming to
non-trivial results.

Let us consider the configuration rev xs for the program in Fig. 6. During
supercompilation the following configuration:

case case vb of {Cons p q — app (rev q) (Cons p Nil); Nil — Nil;} of {
Cons r s — Cons r (app s (Cons v4 Nil));
Nil — Cons v4 Nil;

}

is compared with a bit complicated configuration:

case
case (case v2 of {Cons p q — app (rev q) (Cons p Nil); Nil — Nil;}) of {
Cons t u —+Cons t (app u (Cons v1 Nil));
Nil — Cons v1 Nil;
} of {
Cons r s —+Cons r (app s (Cons v4 Nil));
Nil — Cons v4 Nil;

After this comparison a classic single-level deterministic supercompiler would
perform the following generalization of the first configuration:

let g = case vb5 of {Cons p q —+ app (rev q) (Cons p Nil); Nil — Nil;}
in
case g of {
Cons r s —Cons r (app s (Cons v4 Nil));
Nil — Cons v4 Nil;
}

which would not produce non-trivial results. However, by using multi-generali-
zation, it is possible to find the following generalization:
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let g = Cons v4 Nil in

case case vb of {Cons p q — app (rev q) (Cons p Nil); Nil — Nil;} of {
Cons r v21 — Cons r (app s g);
Nil — g;

}

This allows the upper supercompiler to make a conjecture that is provable by
the lower supercompiler, which gives the residual program shown in Fig. 7.

A yet another interesting point is that, in the case of two-level supercompi-
lation, given an input program, we can introduce a “measure of non-triviality”
on the set of corresponding residual programs. Namely, the “non-triviality” can
be defined as the number of lemmas used during supercompilation. Note that in
the case of single-level supercompilation there seems to be no simple measure of
“non-triviality”.

So, we see that multi-result supercompilation provides numerous opportuni-
ties for refining control.

6 MRSC: a Multi-Result Supercompilation Framework

For the first time, the described examples were obtained and tested when work-
ing with an experimental version of the supercompiler HOSC® for the language
Haskell. Later we created an experimental version of the supercompiler SPSC?
dealing with a first-order functional language, and were able to reproduce sim-
ilar examples in the first-order setting. These results led us to the idea of the
framework MRSC.

Before going into the details of MRSC, let us classify the ways of implement-
ing a supercompiler. Basically, there are two main approaches. The first one is
based on constructing a graph of configurations and, after the graph is com-
pleted, transforming it into a residual program [28,23,15,9]. (Let us call it “the
graph-based approach”.) Obviously, this graph of configurations is an interme-
diate data structure that has to be constructed and deconstructed, which slows
down the supercompiler. For this reason, in order to be fast, some optimizing
supercompilers [1,20,7], avoid the construction of graphs of configurations. (Let
us call it “the direct approach”.)

We have found that multi-result supercompilers are easier to implement us-
ing the graph-based approach rather than the direct approach. Also, when a
supercompiler is used as a prover, a graph of configurations can be used to ex-
tract a proof readable by humans. Moreover, some additional transformations,
which cannot be easily performed in a direct-style supercompiler, can be applied
to a completed graph. For example, some parts of the graph can be re-arranged
in order to simplify it. (However, for the lack of space, we will not discuss such
transformations here.)

8 http://code.google.com/p/hosc/, [9].
9 http://code.google.com/p/spsc/, [15].
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data DriveStep e = DriveStep e
type Driver e = e — DriveStep e
type Whistle e = [e] — e — Maybe e
type Rebuilder e = e —e — e

type MRebuilder e = e — e — [e]

data SC e = SC {drive : Driver e, whistle : Whistle e,
rebuild :: Rebuilder e}

data MSC e = MSC {mdrive : Driver e, mwhistle : Whistle e,
mrebuild : MRebuilder e}

data SCGraph e = SCGraph e

runSC 2SC e —e — e
runMSC ::MSC e — e — [e]

Fig. 8. MRSC: base abstractions

MRSC1 is a multi-result supercompilation framework that is agnostic to the
object language it deals with. The base abstractions MRSC is based upon are
sketched (in pseudo-Haskell) in Fig. 8. At the heart of MRSC is a mini-framework
for manipulating graphs of configurations, the core concept being SCGraph e,
representing a supercompilation graph, parameterized by e, the type of expres-
sions used as configurations. The logic of a supercompiler SC e is represented
in MRSC as a set of functions for driving, identifying dangerous configurations
(that might cause nontermination), and rebuilding of configurations.

drive evaluates an expression with free variables, whistle checks an expres-
sion in the history for being dangerous (i.e. a possible cause of non-termination
of the transformation), and rebuild el e2 rebuilds a current expression!! e2
with respect to a dangerous expression e1'2. If we encode a classical positive
supercompiler [24,23] in terms of MRSC, then the whistle will be implemented
as the homeomorphic embedding relation, and the rebuilder of configurations as
a most specific generalization.

However, in MRSC a supercompiler SC e does not perform transformations:
it just represents the logic of a supercompiler. All dirty work of constructing
supercompilation graphs and transforming them into residual programs is done
by runSC, “applying” a supercompiler to an expression.

10 http://github.com/ilya-klyuchnikov/mrsc, [14].

11 Historically, the are two approaches to rebuilding: rebuilding of the current expres-
sion and rebuilding of the dangerous expression. In the latter case we need to prune
a subtree with a root labeled by a dangerous expression. Here we consider the re-
building of the current expression only (for the sake of brevity and simplicity).

12 Tn order to ensure the correctness of transformations, we require el to be an im-
provement of e2 [22].
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The logic of a multi-result supercompiler MSC e differs from that of a single-
result supercompiler in a single detail: it may rebuild a current expression in
several different ways. As in the case of SC e, MSC e does not perform transfor-
mations: all transformations are done by runMSC. The peculiarity of runMSC is
that when multiple rebuildings are encountered, runMSC applies all of them “in
parallel” by multiplying the current graph of configuration and applying each
rebuilding to the corresponding copy'?.

The main feature of MRSC is that, by design, runMSC always produces a

finite set of residual expressions [14].

6.1 Constructing Two-Level Supercompilers

A supercompiler written in functional style usually is represented as a composi-
tion of functions [1,20,13]. The subtle problem with such representation is that
it is almost impossible to extract the ingredients of this composition in order to
modify and rearrange them in a new way. This is why a supercompiler in MRSC
is represented as a decomposable structure: we can disassemble a supercompiler,
modify some of its ingredients, and re-assemble the modified parts back.

Now let us consider some ways of constructing new supercompilers from
existing ones by means of MRSC. A few recipes described in previous sections
are, more formally, presented in Fig. 9.

First, we have to define what is a substitution Subst e for expressions of
type e and to implement the operation //, applying a substitution to an ex-
pression, and the function test, discovering whether there is a correspondence
via substitution between two expressions. Then we can use three constructors of
two-level supercompilers provided by MRSC: 12, 12° and 127 °.

12 replaces the rebuilder rb of the given supercompiler sc with a new re-
builder rb’: when there is a request to rebuild an expression e2 with respect
to a dangerous expression el, the new rebuilder rb’ tries to find a substitution
between the supercompiled (by the unmodified supercompiler sc) expressions,
and if there is any, it applies this substitution to the dangerous expression and
returns the result. Otherwise, it delegates the rebuilding to the original rb. 12°
is defined in a similar way, but tries to find a substitution by means of the second
supercompiler sc.

The constructor 12°° checks all combinations of the residual expressions
produced by a lower multi-result supercompiler msc. In the next section we will
see how to construct a multi-result supercompiler from a single-result one.

6.2 Working with Multi-Result Supercompilers

Although the framework MRSC allows multi-result supercompilers to be imple-
mented “by bare hands”, it also provides a few ready-to-use constructors for
turning ordinary supercompilers into multi-result ones.

13 No real copying is performed here: the pieces of the “old” graph are just shared by
new graphs.
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type Subst e = e — e
(//) =e —Subst e — e
test e — e — Maybe (Subst e)

12 =8C e —+8C e
12 sc@(SC d w rb) = SC d w rb’ where
rb’ el e2 =
maybe (rb el e2) (el //) (test (runSC sc el) (runSC sc e2))

12’ =8C e —+-8C e —+8C e
12> (SC d w rb) sc = SC d w rb’ where
rb’ el e2 =
maybe (rb el e2) (el //) (test (runSC sc el) (runSC sc e2))

12°° :SC e —+MSC e = SC e
12’ (SC d w rb) msc = SC d w rb’ where
rb’ el e2 = maybe (rb el e2) (el //) res where
res = msum [test x y | x <- esl, y <~ es2]
(es1, es2) = (runMSC msc el, runMSC msc el)

Fig. 9. MRSC: recipes for constructing single-result two-level supercompilers

The constructor multi, shown in Fig. 10, is the simplest one. It just replaces
the ordinary rebuilding of a current expression with respect to a dangerous
expression by a multi-generalization of the current expression. A surprising fact
is that multi builds a supercompiler that always produces a finite set of residual
programs, regardless of how runMSC is implemented.

The constructor multi’ combines a multi-result supercompiler with a single-
result one to produce a new multi-result supercompiler. The main trick here is
that the new rebuilder rb’ does not throw away the old rebuildings, but merges
them with the single rebuilding (if any) returned by the lower supercompiler sc.
This trick is further strengthened in the constructor multi’’, where the set of
old rebuildings is merged with the set of new rebuildings.

6.3 The Current State and Directions of Future Work

MRSC is a work in progress and is under active development now. So far we have
finalized and tuned the core part of the framework operating, in a generic way,
with graphs of configurations. Also we have reimplemented SPSC, a classical
supercompiler for a simple first-order functional language SLL [24,23,15], by
means of MRSC, and then automatically transformed SPSC into its multi-result
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type MGeneralizer e = e — [el

multi :: SC e — MGeneralizer e — MSC e
multi (SC d w _) g = MSC d w rb where
b _e2 =ge2

multi’ =MSC e —+SC e — MSC e
multi’ (MSC d w rb) sc = (MSC d w rb’) where
rb’ el e2 = ex ++ (rb el e2) where
ex = map (el //) $ maybeToList (test (runSC sc el) (runSC sc e2))

multi’’ :MSC e — MSC e — MSC e
multi’’ (MSC d w rb) msc = (MSC d w rb’) where
rb’ el e2 = extra ++ (rb el e2) where
extra = map (el //) $ catMaybes $ [test x y | x <~ esl, y <- es2]
(es1, es2) = (runMSC msc el, runMSC msc el)

Fig.10. MRSC: recipes for constructing multi-result supercompilers

and two-level versions (producing the same results as the corresponding hand-
crafted versions).

We have carried out only “proof-of-concept” experiments with MRSC so far.
Our plans are the following:

— To continue experiments with MRSC in the context of program analysis.

— To compare how various whistles affect the size and properties of the sets
of residual programs generated by multi-result supercompilation. Until now,
we have tried only whistles based on the homeomorphic embedding relation.
However, in the context of optimizing supercompilation, there have appeared
new approaches to constructing whistles, such as based on tag-bags [19,1].

— To compare how in the context of multi-result supercompilation rebuilding
of the dangerous expression differs from rebuilding of the current expression.

— To reimplement HOSC, a higher-order supercompiler, in terms of MRSC.

7 Conclusion

When supercompilation is used for the purposes of program optimization, the
usual practice is to consider only deterministic algorithms (involving some heuris-
tics), which, given an input program, produce a single residual program.
However, if we reformulate supercompilation in more abstract terms, in form
of a transformation relation [8,11], we naturally come to the idea of multi-result
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supercompilation. Namely, given an input program p, a multi-result supercom-
piler may produce several output programs p’, such that p SC p’, where SC is
a supercompilation relation.

Note that we differentiate the terms non-deterministic supercompilation and
multi-result supercompilation. A non-deterministic supercompiler, in principle,
may produce an infinite number of residual programs, or even not terminate,
while a multi-result supercompiler, for practical reasons, should always terminate
and produce a finite set of residual programs.

We have demonstrated that, when used for program analysis, multi-result
supercompilation produces more nontrivial and stable results, as compared to
single-result supercompilation.

The fact that multi-result supercompilation naturally arises in the context
of two-level supercompilation, can be regarded as a manifestation of the general
law of branching growth of the penultimate level in a metasystem transition [26].
It would be interesting to consider other manifestations of this law in the field
of computer science.
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