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Tnis paper ic the first part of a compressed exposcition of a
new approach to the foundation of mathematics, which is referred
helow as The Cyhernetic Foundatton. A complete expocition will be
fcund ia a boock which is being prepared for publication.

1. Introduction

AL the present time, set thesory sarves as the basis for
mathematical constructions and procfs. The intuitive interpceta-
ticn of set theory ic, as it has always been since Ceorg Cantor,
who fnveated 1%, that zets have, somehouw, an cbjective existence
different form the way material objects exist. Moreover, sets may
be "actually infinite". This Platonist concepl goes against the
lettcr and the spirit of modern philosophy widely shared by
yeople of science.

We cannot rely on our intuition when dealing with “actually
infinite” sels; this leads te inconsistences ("paradoxes™). Can-
tor's concepl _of set, which includes the idea that "some infinite
scts are more infinite than others™, is counterintuitive. In
itself, the zituation when a theoretical concept defies our
intuitiocn is nok unacceptable. To take a famous erample from
calculus, theie are functions whizh in every pecint are continuous
but not differentiable. However, such a function is a concept
constructed logically from more primitive conceptual units, and
we can satisfy our intuition that the construction is flawless.
Vhen the most primitive and fundamental conceptual units are -
counterintuitive, so that you can neither derive them, nor find



ism based on the concept of actual infinity is not only incompre-
hensible, but simply wrong. It is conceivable that if this really
is the case, the mathematicians could have developed their sct-
thaoretical intuition in response to the real, and not the pro-
claim=d, objects of set theory.

Now lock at the set-theoretical foundation of mathematics
from the angle of consistensy. Working with set theory, one gets
an intuitive impression, maybe even a certainty, that it is non-
contracictory, consistent. But its consistency has never been
provad. This is very strange, if we come to think about it.
Axiomatic set theory in the Zermelo-Frzenkel form rests on ten
ariors, most of which are far from being elementary, or primi-
tive. Taken all together, they make up a still less primitive
whole. It is inconceivable that our intuition can perceive the
consistency of this whole without basing itself on some simple,
primitive, intuitively consistent concepts and truths. We come to
believe, therecfore, that such primitive and intuitiveli ungues-
tionab:e gfu‘hs mUat ex1st To separate them and to express in

tcrws of them the ZF axioms, would be to prove the consistency of
set thesry. From Coedel's thecorem we know, houwever, that it is
_}Tpossible to prove the consistency of set theory by means which
can be formalized in set theory. Hence the primitive concepts and
truths underlying set theory must be very unusual, strange,
bacause they must be non-expressible in set theory, while we
habltually entrertain the idea that in set theory we can exbtess
everyihing that can be subject to rigorous mathematical treat-
ment. A theory based on these concepts must be equally °’strange’
‘To us2 an expression popular among physicists and coined by Niels
8ohr, such a theory must be ‘crazy enough'.

The Cybernetic Foundation is such a ‘crazy' theory. Its
basi1c concepts, although puzzling at the beginning, upon some
thought become sclf-evident, and the legitimacy of their use in
proofs -- intuitively doubtless. At least, this is the author's
vien. Tnis theoty leads to a full acceptance of the formalism of
set thcory, but intecprets it in agreement with the principles of
constructiviem, us ing g only the idea of potent\al but not actual,



infinity. This becomes possible because of two new fdeas which
form the basis of our theory.

The first idea is to base the semantics of the matheratical
language on the cybernetical concept of knouledge. Ahccordirng to
this concept, to say that a cybernetic system (a human being, in
particular) has some knowledge Iis to say that it has some rodels
of reality. In Cybernetic Foundation we consider mathematics as

the art of consttuctlng lingulstlc models of reality. An analysis
of the concept of model shows that a mpdel is, essnntxal.jL
generator of predictions. We formalize a prediction as the state-
ment that a given process is finite. We declare a propozition
meaningful if, and only if, it can be interpreted asz a generator

of predictions.

The second major idey behind the Cybernetic Fourdation is
the lntroductio;‘GEWﬁgzmgdbject of knowledge in mathermatics,
which leads to a new kiné of pr;;esses. We call them retanechani-
cal. A metamechanical process is initfiated and main:;;:;é_gy a

mechanical device like a Turing machine in interaction with the
subject of knowledge, i.e. the user of the device. The clgss cf
metamechanical processes is wider than the class of processes

which _can _be generatcd by a Turing machine, or by any other

autonomous mechanical devlce

Our main tesult in this paper (Part II) is the proouf of the
consistency of the full set theory, as formalized by the Zermelo-
Praenkel axioms. The philosophy of science which underlies the
Cybernetic Foundation is laid out in (Turchin 1977]).

2. The Refal Machine

An important step touwards putting’mathematics on the empiri-
cist track was made by Alan M. Turing. In 1936, he introduced in
mathematics an abstract device, or rather a class of devices,
which became known as Turing machines. The idea was to nake
mathematical computation, in the widest sense, an object of
mathematical study. )

Our formalism is based on the concept of the Refal machine.



*Refal' is the acronym for REcursive Functions Algorithmic Lan-
guage, a computer programming language which was developed by the
author and co-workers in 1966-1978 and is implemented on several
computer systems, including the IBM/370. Refal as an algorithmic
language is conceived to be simple enough to allow mathematical
treatment but still successful as a practical programming lan-
guage for such fields as artificlial intelligence and word pro-
cessing. A guide for programming in Refal can be found in

[ Turchin, 1980].

The reason why we chose Refal, and not the usual in this
context Turing machine, is that our goal is a complete formaliza-
tion of mathematics, so that definitions of mathematical concepts
could actually be used as programs and run in the computer. Our
Refal formalism allows a clear and concise defirition of pro-
cesses and machines, and hierarchical construction of machines
which control machines; this would be very cumbersome if we used
Turing machines only. In the present paper we limit ourselves to
a rather informal deftinition of Refal, and use a semi-formal
notation uszual in mathematics. In the full text of the book, this
notation is given a formal interpretation, an all machines
defined here in words are formally defined in Refal.

We shall discuss three aspects of Refal, in the order of
increasing generality.

Rcf€al can be seen as a language of semantic descriptions.
The following line:

(1) <ACM> =+ ASSOCIATION FOR COMPUTING MACHINERY

i a sentence ¢of Refal. The angular brackets are concrettzation
brackels . Thay enclose a linguistic object which must be concre-
tized, that {s replac2d by linguistic objects which in some sense
are closer to the ultimate recality. The senternce (1) expresses
the ezpansion of the acronym ACM. 1t consists of the left side
and th=2 right side separated by the arrow »,. The Refal machine,
i.e. the cdevice that "understlands"” Refal, takes this sentence as
the inztruction to replace <ACM> by °"ASSOCIATION FOR COMPUTING



MACHINERY'. The letters A,C,M,A,S5,S,0, ... etc. will be referrecd
to as symbols. Angular brackets are speclal sligns of Refal, not
symbols.

Consider another sentence:

2) <THE FIRST SYMBOL OF s‘e2> + s,

It defines what the first symbol of an expression is, and can be
translated as: the first symbol of an expression which consists
of a symbol s, after which an expression e, immediately follows,
is 5,. Here 5, and e, are free variables. The fromer is a symbol
vartable (s-variable, for short), the latter an expression vart-
able (e-variable). This sentence is used in the following way.
Suppose we observe the expression

) <THE FIRST SYMBOL OF APPLE>

To see whether the sentence (2) is applicable, conpare its left
side with (3). If it is possible to jive such values to the free
variables that the left side of (2) becomes identical to (3),
then the sentence (2) is applicable to the concretization of (3).
In assigning values to variables we must remember that an s-
variable must take as its value exactly one symbol, while an e-
variable can take any expression. Clearly, (2) is applicable if
s, takes the value A, and €, the value PPLE. To apply a sentence
means to replace the expression (3) by the right side in which
the values of the free variables are substituted. The result is
A. We have performed one step of the Refal machine.

Now let us look at Refal from another angle, namely as the
language of recursive functions. Let us change the string 'THE
FIRST SYMBOL OF' for the single symbol F:

(4) <F 5,e,> =+ s,

We can see the replacemnt of <F APPLE> by A as the evaluation of
a function call. Then (4) defines the function F whose value is



the first symbol of its argument. The angular brackets should be.
called evaluation brackets. They enclose the expressions which
mast be understood as function calls and evaluated. <F A> corres-
ponds to F(A) in the usual notation.

Besides angular brackets, which indicate evaluation, we use
in Pefal usual round brackets (parentheses): They serve a differ-
ent purpose: to give a structure to expressions. Any sequence of
symbols and parentheses in which the parentheses are properly
paired is a legitimate expression in Refal. Parentheses, like
concretization/evaluation brackets, are not symbols, but special
signs. Here are examples of Refal expressions (separated by
commas):

A, ABC, A+B(), (BBB+(**))(())+-

An enmpty expression (just nothing) is also a legitimate expres-
sion. The argument of a Refal function can always be considered
as one expression. If we want to define a function of several
arqgunents, we use parentheses to combine them into one expres-
sion, so that it could be uniquely broken down into the original
constituents, when necessary. For instance, the function which
concatenates its tuo arguments can be defined as

<conc (ex)(ey)> - eyey
Here conc is the name of the function. Syntactically, conc is one
syrmbol; composite symbols, like this one, are formed by under-
lining a group of letters and digits.

The Refal machine has two information storages: the program
field and the view-fleld. The former contains a list of scntences
(program), which is loaded into the machine before the run and
does not change during the run; the latter contains an expression
which chsnges in time as the machine works, thus giving rise to a
process.

Consider the following group of sentences:



(5.1) <chpm % ex> +» - <chpm e,>

(5.2) <chpm s e.> + s, <chpm e,>
(5.3) <chpm (ea)ex> - (ea)< chpm ex>
(5.4) <chpm> -

1t defines the function chpm, °'change plus to minus’'. If this
function is applied to an expression, its value will be the

result of the replacement of every sign '+' on the top level of
the bracket structure in the argument by the sign '-'. Add these
sentences to the program fiecld of the Refal machine. Put in the
view-field the expression <chpm C+(A+BX)>, and turn the machine on.

The Refal machine will evaluate this function call by steps,
each step being an application of one sentence. It will try to
apply sentences in the order they are listed, lhen a sentence is
found applicable, it is applied, and this is the end of the step;
on the next evaluation step, the Refal machine will try to apply
sentences starting with the first one again.

Making the first step, the Refal machine tries to apply the
sentence (5.1), but of course fails, because the argumant does
not start with '+'. Then it tries to apply (5.2) and this time
succeeds. The view-field becomes: C<chpm +(A+BX)> . Function
chpm calls itself recursively. The results of the further steps
are as follows:

C-<chpm (A+BX)> by (5.1)
C-(A+BX)<chpm> by (5.3)
C-(A+BX) by (5.4)

The last expression has no evaluation brackets. The Refal machine
stops. The content of the view-field is the result of the evalua-
tion.

The third, and the most general, view of the language Reial
and the Refal machine is as a framework for the linguistic repre-
sentation of the world. We see the world as the interplsy of
various processes, which involve various objcets. We can chanje

objects ourselves, thereby giving rise to processes. We aiso can



create and start machines, which maintain processes autonomously.
e use the Refal machine to define linguistic processes which
serve as linguistic models of natural phenomena. The concepts of
object, process, and machine will be cowsldered primary and given

_to us 1ntuitivc1y We can only defxne them informally for clari-
ficatxon and characterize their relatioaship.

A process is thought of as a time sequence of objects, while
an object is a time section, or a momentary picture, or a stage,
of a process. A machine is something that gives rise to a process

when given an object or a number of objects (the input). An
object can also be seen as a special case of process: such that
;II‘;Z; stages are the same.

This gives us one more name for the angular brackets in
Refal: activalion brackets. They distinguish a process from an
object. An expression enclosed in activation brackets, e.g.
<(ABC>, represents the current stage of a process, and will be
refecred to simply as a process. Later in time <ABC> may turn (be
turned by the Refal machine) into something else, say <ABCD>, as
the process develops. An expression which does not include activ-
ation brackets will be referred to as pesslve; it .represents an
object that does not change in time. Change comes only from
activation brackets.

Suppose we want to define the process of the growth of a
string of characters A , i.e. a process whose first stage is
empty, then A , then AA , then AAA , etc. How can we do that
using the Refal machine?

We know that the representaion of a process in the Refal
machine must be enclosed in activation brackets. One possibility
is to represent the consecutive stages of our process simply by
<O, <A> , <AA> , etc. But it is a better practice to put a tag
(2 name) on every process, so as to be able to have definitions
of different processes without unintended interference between
them. Any object expression may serve as a tag, and in the sim-
plest Gase it will be one symbol. Let us choose the same format
as in function representation, i.e. agree that the tag will
always be placed at .the left end of the process expression,



immediately after the opening activation bracket. Let symbol « be
the tag for our process. Then <au> will be the initial stage, <ar>
will be the next stage, etc. One sentence:

<o ex> - <o exA>

in the program field of the Refal machine will define the pro-
cess. To initiate it, we put <«> in the view-field and start the
machine. After the first step the view-field will be <xA> , then
<axAA> , then <oAAA> , and so on infinitely. Computation of
function gﬁgm is an example of a finite process.

Because dQdifferent programs can be loaded into the progranm
field, we can use the Refal machine as a metamachine throush
which to define various specific machines. Our concept of a
linguistic machine is related but not identical to the concept of
a_EgEErsive gngglggﬂon the set of object expressions. A recur-
sive function is considered undefined if the process of computa-
tion for a given argument is infinite; and if the process {is
finite then it is only its result that matters, not the process.
When we are speaking of a machine in this work, it is exactly thre
process we are interested in, and it may be either finite or
infinite.

A machine is defined by specifying: (1) a general Refal
expression F called the format of the machine, and (2) a Refal
program, which is its definition. Substituting some values for
the variables in F, we receive a process expression which {5 then
put into the view-field of the Refal machine which is loaded with
program P,

Let us consider less trivial examples than those above. 1In
the unary number system, where zero is represented by ¢, one by
g1, two by P11, etc., the adding machine with the format
<+(ex)ey> can be defined by the program

<4(¢x)°) - e,

<+(ex)ey1> - <+(ex)ey>l
With the input values 01 for e, and 211 for ey this machine will

18



generate a finite computation process which ends with 8111. We
could define an equivalent machine choosing a different format,

e.g., <+(ex)(ey)>, or <§ggex,e >, etc.

y
As an example of the use of nested activation brackets, we

defina an adding machine for binary numbers:

S > -»

The format is <add(e1)e2>.

<add(ex)ey>s‘
(add(ex)ey>1
(add(<add(ex)l>)ey>ﬂ

(Note that the variables we choose to

reptesent formats are not related in any way to the variables

used in programs;
the prcgram.
activation brarckets in
¢rom left to right and
which is picked up for

neither are variables in different sentences of
But we usually keep to the same variables as a
matter of convenience).

When there are more than one pair of

the view-field, the activation proceeds
from within out. The active subexpression
evaluation at each step is the leftmost of

those which have no activation brackets inside.

3. Searches and Generators

We shall deal with processes of two kinds:
genegrators.

searches, and
A igarch is a process each stage of which is either of the
form <€,, where £ is an expression, or passive. The latter case
takes place, obviously, at the end of a finite search. The termi-
stage of a search will be referted to as its result., An
infinite search produces no result. A search, as the name sug-
gests, iz a process which you would typically initiate in order
to find (construct) a certain object:

nal

the result of the search.
A list is an expression of the form
P SR

€ )(E,) (E,)

11



where n can be any number including zero (an empty list). A
generator is a process each stage of which is either L<E> or L,
Gﬂ€§3~iffs a list of object expressions. The subexpressions EI'
E, ... etc. which appear in the view-field at any stage of a
process-generator G are said to be generated by G. A trivial
example of a generator is simply a list of object expressions,
e.g. (A)(B)(C), which generates symbols A, B, and C, and stops
the Refal machine before it has a chance to make a single step.
Hé create generators in order to generate sets. A finite set can
be represented by an object: the list of its members. An infinite
_set can be defined only through an actual process. For example,
we can construct a generétor of all natural numbers represented
in the unary form, as above, by defining the num machine as
follous:

<pum °x> - (ex)<num exl>

The process <pum @8> is a generator of all natural numbers. The
process <num N> gencrates the set of all numbers starting £rom N.
The process <+(91)811> is neither a search, nor a generator.
Machines like + , which gradually build up the result in the
view-field, are very convenient when programming in Refal, but in
the part of our theory that interprets logic and axiomatic mathe-
matics it is easier to manipulate processes if we restrict our-
selves to searches and generators. This does not lead to ;ny loss
of éﬁptessive power of the language. Every machine wrich is
constructed to compute something can be slightly modified so that
it initiates a search for the desired result. To achieve that, it
is sufficient to replace in the program every right side R which

is neither <E> nor passive, by <out R>, where the function cut i3
defined by:

<out e’ - e,

Thus the definition of the addition of unary numbers will becone:

12



<+(e1)9> - e,
<+(e1)e21> - <gg_(+(e‘)e2)1>

Now the process of computing #14¢11 is a search:

<+(91)011>
<out<+(81)01>1>
<out<out<+(81)6>1>1>
<out<out 211>1>
<out 111>

g111

Parallel execution of processes plays an important role in
engineering and in our mental pictures of the world. It takes a
prozinent place in our theory. We can simulate parallel execution
of processes in our sequential Refal machine, but definitions in
Refal «ill be much more readable if we have the simulation "on
the hardwxare level" so to say, i.e. if we somewhat expand the
abilities of the Refal machine. Therefore, in addition to the
familiar form of a Refal sentence:

L + R

we allow the following two sentential forms:

t R
(s) L » s|

I R
and

! R
(g) L - gi

| R?

When a sentence of the form (s) is applied, the Refal ma-
chine creates tu.o auxilliary view-fields. 1t puts R' into one of

13



them, and R" into the other (after the substitution of valucs for
variables, as usual). Then it runs processes R' and R' in paral-
lel. The moment any of them comes to an end, the Refal machine
takes its result, substitutes it for the expression under corncre-
tization (recognized as L) in the original vieu-field, and re-
sumes the running of the process in it.

When a sentence of the form (g) is applied, the Refal ma-
chine, again, creates two auxiliary view-fields and runs them
simultaneously. The interaction between branches, however, is
organized differently in this case. Each time that any of the
branches produces a list of members, this list is extracted from
the branch and placed at the left edge of the projection of L in
the main process. The execution of the branch processes goes cn
as far as at least onc of the branches is active. The effect is
that every member produced by R' or R' will be producad by the
generator which used sentence (g).

In the Refal machine, symbols and structure brackets (paren-
theses) serve to create ﬂflffﬁ_ﬁfﬂlffiigﬂia which represent oc-
Jects of the external world. Variables and activation brackats
can be seen as functional details of the machine itself, which
help to perform operations on opbjects. Therefore, if we are (and
Wwe are) to define in Refal processes and machines dealing with
patts of the Refal machine, namely the contents of the mercry
field and the view-field, we need a representation of these parts
in the form of object expressions. Such a representation will be
called a metacode. The metacode we are going to use is defined in
the following table:

In_the Refal machine In_the metacode

*SI
®*El
*(
)
sy
s

v A DB
~

14



kere S stands for any object symbol distinct from the
asterisk * ; it is represented in the metacode by itself. The
asterisk '*' is singled out for representation of special signs
in the metacode. One can see that our metacode transformation has
a unfque inverse transformation. Speaking about linguistic ob-
jects and thér;ﬁmetacode representations we shall denote by tX
the metacode of X. The inverse transformation will be denoted by
+ , so that t+4X i{s X. The range of the signs ¢+ and ¢ is the Refal
term that foll-ws. Thus, 1(e1+e2) fs (*E1+*E2), while te e, is
*Bl+e2.

A program consisting of sentences 21,22, e _zn will become
(tZpzy) ... (12,

in the metacode. To give an example of metacode transformation,
the program for the '+' machine above will be transformed into

(*(+(*EX)0) > *EX) (*(+(*EX)¥EY1l) - *(+(M*EX)*EY)]1)

We need a metacode in order to construct machines control-
1ing machines. Suppose, for example, that we want to run two
machines, MI and M,, in parallel, by alternating the steps in ¥,
and MZ' A machine which can do it must be able to simulate one
step 0f the Refal machine running the processes initiated by MI
and MZ' We denote this function <step ex>; its definition, of
course, depends on the program stored in the program field. The
argumen’. e of this function cannot be M‘ or Mz. because these
ezpre=sions, bring active themselves, escape the control of step.
Let Ml te <F(ABC)>. If we form: <step <F(ABC)>> , then the pro-
cess <F(MBC)> will be run first until it becomes passive (if
ever), and then function step will be applied to the result. When
we want to control a process, the expression representing it must
be metacoded before substitution:

<step t<F(ABC)>> = <step *(F(ABC))>

15



Function step is defined in such a way that <(step tP>, where
P is a stage of a process (i.e. a Refal expression with possible
activation brackets but without variables), produces tP', uhere
P* is the next stage of the process P, fi.e. the expression to be
found in the view-field of the Refal machine after one step is
applied to P.

The usual mathematical notation is semi-formal, f.e. {t can
be converted to formal objects but the conversion process is not
defined in a formal language. For the sake of mathematical dis-
cussion, we shall use in the following a semi-formal functional
notation, in which the process initiated by a machine F uith
inputs X, ¥, etc., i.e. something which could look in Refal as
<F(X)(Y)...>, will be denoted as F(X,Y, ...). Metacode transfor-
mation is not reflected in the semi-formal notation, so that Loth
<F<G ...>> and <F #(C ...)) are denoted as F(G(...)). To trans-
late the semi-formal notation into the strict Recfal notation, one
must know what functional arguments are called as values (unmeta-
coded), and what &as processes (metacoded); this will be usually
clear from the context.

4. Hodels; Predictions, Propositions

We proceed now to examine the intuitive notion of a model.
-As stated in Introduction, a mathematical proposition has a
meaning to gpsmsxtent.it produces some @SEE}§~2f,FeQ1jt¥: Now we
want to formalize the notion of a model and find something like
minimal units of semantics, some elementary propositions, such

that combining thcem we could construct every meaningful proposi-
tion.

Informally, we say that the process B models the process A
if there is some similarity between the stages of B and A. It is
not necessary that every stage of A or B be reloted to some stage
of the other process; generally, we select some stages in B which
should be somehow put into cor:espondence with some stages se-
lected from A, Let the selected stages of A be AI' Az- etc.; the
corresponding stages of 8 will be BJ_ 82, etc. The statement that
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B models A is then composed of the statements that By is
"similar" to A, for 1=1,2, etc. We call these statements predic-
tions. This corresponds to our fintuitive notion of a prediction.
Indeed, when we predict that at a certain time a certain planet
will have certain coordinates, we specify: (1) a certain stage AI
of the natural process of the movement of celestial bodies, (2)
the final stage B, of the linguistic process B of astronomical
calculations, and (3) a relation ¢f “similarity" between B, and
A which is tested by the process of coordinate measurement.

To formalize the notion of prediction we assume, in the
spirit of our philosophy, that all the three components indicated
above can be represented by certain exactly defined processes.
Then their combination is also a process: the one that verifies
that AI and B, do exist, and that the process of testing their
prediction, generally, as a statement that a certain processw
Eseatch) Eéi?i&\tgj”~lhmmn-r o T

In mathématics, the process A, which is the object of study,
is linquistic, as well as the process B; thcrefore the process of
testing predictions can be defined by a linguistic machine.
Consequently, the semantics of mathematics can be completely
formalized within the linguistic sub-universe.

Note that we made the weakest possible assumption about the
testing process. We do not assume that it always stops and ans-
wers 'yes' or 'no' to the question of whether the arguments are
in a given relation; it does not implement a total recursive
predicate. Our testing process implements what may be called a
semi-predicate: it can say 'yes’', but instead of saying 'no’', it
simply gces on and on without ever stopping. Using only testing
machines we can express everything that can be expressed through
total recursive predicates. Indecd, suppose we want to imitate a
machine <o(ex)cy> which always stops and produces T or F as the
answer. We can construct a testing machine:

(ptFex)°y> + <loopf (c(ex)ey>?
<loopf T> -

1?7



Cloopf F> -+ <loopf F>

which stops {f and only {f o produces T. Analogously we define a
testing machine e, which stops if and only if o produces F.
Running the two testing machines in parallel will allow us to do
anything that can be done by running o. The converse statement,
that whatever can be expressed through semi-predicates can also
be expressed through total recursive predicates, would not be
true, of course. The semi-predicate is a smaller semantic unit
than the recursive predicate: "“one half” of it.
1f a process is represented in Refal by P, the prediction
that it is finite will be represented by tP!, fi.e. the metacode
of P followed by '!'. We need a metacode transformation here in
order to be able to deal with predictions as objects.
A model of a process may yield a finite 3% infinite number
of predictions. Thus, we formalize the notion of a model as a
generator of predictions. To deal with models as with objects, we hawve
again, as in the case of predictions, to use metacode. So we
define in Refal a generator G of predictions and take G as the
linguistic representation of the corresponding model.
A couple of examples. The statement that a process <aAAA> is
finite is the prediction *(a«rAA)!. If the a-machine is defined as
in Sec.2, then this is a false prediction, because this process
is infinite. The process <+(21)P11> is finite. The correspunding
prediction, *(+(€1)0611)!
Our treatment of mathematical statements is close to the one
accepted by intuitionists. We read in [Heyting 1966]:

, is true.

"... a mathematical theorem expresses a purely empirical fact,

namely the success of a certain construction. °'2+2=341' must be
read as an abbreviation for the statement: "1 have effected the
mental constructions indicated by '2+42' and by '3+1' and I have
found that they lead to the same result.”

Ve move still further in the direction of empiricism and replace
mental construction by a linguistic one. To express Heyting's
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arithaietic statement, we use the function of addition as defined
above, and define a tester of equality = , such that <=(e1)(e2)>
stops if and only if e, and e, are identical numbers:
<=(8)(9)> -
<=(exl)(ey1)> - <=(ex)(ey)>
<=ex> - <=ex)
Now our arithmetic proposition is:
$<=(<+(B11)PL1>)(<+(B111)(B1)>)>!
Consider the proposition:

(Ax)(x+@ = x)

where quantification is over all whole nurmbers. This i{s a genera-
tor which produces predictions

9+9 =
140 = 1
248 = 2

etc. It Is not difficult to define such a generator in Refal.
An existentially quantified formula like

(Ex)(5+x = B)

will be interpreted In our theory as the finiteness of the
search for the value of x satisfying the equation.

Let us now consider the statement that a given process is
infinite. Uhat is {ts meaning? Can it be understood as a gene-
rator of predictions?

Yes, to state that a process A is infinite is to state
that:
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e the initial stage A is not passive (includes at least one pair
of activation brackets);

e the next stage after the initial stage is not passive;

e the next stage after the next stage after the initial stage is
not passive, and so on, infinitely.

Every one of these statements can be formalized as a predic-
tion by defining a process which checks vhether a given expres-
sion is not passive, and stating that this process when applied
to a given stage of A is finite. Thus the }nfinltyﬂg{wg certain
process is an infinite generator of predictions.

Becéuse of the importance énd frequent use of the infinity
model we introduce a special notation for {it. The proposition
that a process A is infinite will be represented by the object
exptession tA7?, and in the following we shall treat such proposi-
tions, together with predictions, as certain elementary units,
atoms. Thus, propositions tA! and 1A? will be called atomic. One
should bear in mind, however, that while tA! is a prediction, tA?
fs a generator of predictions, which can also be written as
#(inf ttA) with a properly defined generator inf.

We came close to a general definition of proposition. Ue
have only to make one last generalization. It is not necessary
that a generator produce only predictions ready for use. It may
also produce generators, which in their turn produce predictions;
and generators, which produce generators which predictions, etc,
We shall say that P hierarchlically produces Q, if there is a
finite chain PI'PZ' - Pn' such that P, produces Pt;l' P‘=P,
Pn=Q. We come to the following inductive definition:

(a) a prediction is a proposition;

(b) the metacode of a generator which generates only propositions
is a proposition.

Thus a proposition may produce a whcle hicrarchy of proposi-
tions, but they must be such that ""imagﬁllvﬁpgl,RESQESE_ELEﬂfﬁl
tions. A formal object has a meaning as a proposition only to the
extent we know how to make it produce predictions. If there is no
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way to obtain predictions from an object, it has no meaning as a
proposition. Atomic propositions constitute the ground level of

the hierarchy of propositions. We recognize them syntactically by
the fact that they end with a symbol *!*' or '?°'. }E a proposition

does not end with one of these it should be treated as the
metacode of a machine which can still be run to produce lower-

}evel propositions.

$. Logical Coi:aectives and Quantifiers

Mow we are going to interpret the means logic has for the
construction of composite propositions: connectives and quanti-
fiers.

Let us start with conjunction. To uphold two or more propo-
sitions means, obviously, to uphold all the predictions produced
by any of them. So we define the function and with the format
<and L>, whecre L is a 1list of propositions:

<and (e‘)e,> ~ (e,) <and e,>
<and > =

1£f P, P, ... ,Pn are propositions, then the process
<and (P,)(P,)...(P)>
will generate all of them and only them. Its metacode

*(and (1P )(1P,) ... (tP.))

is our formalization of the conjunction. In semi-formal notation
we urite: ggg(Pl, Ce Pn).

To formalize disjunction, consider first the case when both
operands are predictions: SI! and §,!. The disjunction of these
propnsitions is the statement that at least one of the tuwo
searches §, and S, is finite. This is the same as to say that the
process in which S  and s, ;}e run in parallel is finite. So we
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construct the following machine:

|<act e >
<or(e,)(e,)> <+ si|
I<act e,>
where function act "activates™ a metacoded expression, fi.e. simu-
lates the corresponding process.

Now the disjunction S,! or S.! is formalized as the fi-
niteness of the process <or(S,()(S,)>, that is the prediction
*(or(tS,)(1S,))!. In semi-formal notation, QL(SI,Sz)!.

Let the operands of a disjunction be the general proposi-
tions Pl and P, i.e. prediction generators, not just predic-
tions. How do we then interpret the disjunction?

We face here a new situation. Until now we were able to
interpret every mathematical proposition in terms of prediction
generators. But the disjunction PI or Pz cannot be immediately
interpreted in this way. We can state neither of the predictions
generated by P} or Pz, because every one of them may be false.
This does not mean, hcowever, that PI ot Pz i{s meaningless. It
is simply that this statement includes a new factor, namely ths
concept of truth, which was not present in the meaning of thcse
statements we concidered before. Note that even putting the
meaning of the disjunction in words we canrot avoid a reference

to the concept of truth; we say: "at least one of PI and Pz is
true"”.

But what is the meaning of the statement that a given propo-
sition is true? No matter how we answer this guestion in the
plane of philosophy, the statement that P is true m=ans, in the
empirical plane, that some processing was applied te P and gave a
positive answer, or, in terms of our theory, a search for justi-
fication of P as true has turned finite. We shall denote this
search as <y P>, Accordingly, the statement that P is true is the
prediction t<y P>!, or just v(P)! in semi-formal mathematical
notation.

The concept of the y-process underscores the empirical cha-
racter of our approach. We refuse to accept any concept of truth
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(the classical correspondence concept, in the first place) if it
cannot be expressed in terms of predictions about some actual
processes. We declared such concepts meaningless. Hence if we are
to use the concept of truth (and we saw that we coulé not avoia
it in interpreting logical connectives), we must introduce expli-
citely a truth-testing process, which is implicite in the meaning
of logical formulas. The nature of this process will be our major
concern in ths rest of this paper. In this section we shall
simply use the notation v(P) for a further look into logical
connectives.

Bouwever, it should be clear already that the introduction of
the truth-testing process brings in an element of subjectivity
into the theory. A prediction At, where A is a decterministic
mechanical process, can be verified in an undisputable way by
simply running the process A and seeing that it has stopped. The
statement A! is defined objectively. An infinite generator of
predictions, in particular A?, cannot be objectively verified.
Any truth-tester for such a proposition has to rely on our knou-
ledge and intuition, which may vary from one subject of knowledge
(usar of theory) to another.

Our formalization of the disjunction P‘ or P, is
or(v(P,),v(Py))!. This is a prediction, but one about a user-
dependent process. The inroduction of this process is not our
whim, but a shear necessity. A reference to this process has been
there before: it is in the meaning of logical propositions.

Our semantic definition of proposition leads to a natural
interpretation of leogical impllcation. A proposition Pl logical-
ly implies a proposition P, if P, 1s among the propositions
gerersted by P.. This definition is the most exact formalization
of tie intuitive concept of logical implication, according to
which if P, 15 implied by P, 1t is already somehow contained by
P,i incluced in it. We can define in Refal the machine imp with
the format <Lmn(ep)~cq>, which tests whether eq is one of the
propositions preduced by ep. The proposition that P logically
implies Q@ is then, in semi-formal notation, imp(P-Q)!'.

The relation betueen P and Q expressed by imp(F-Q)! is very
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different from the matertal impllicalion of mathematjical logic.
The latter, unlike the former, can connect two arbitrary proposi-
tions which in no way are related by their meaning. It estab-
lishes the connection by force, so to say, announcing it as an
e;Biricai fact, a new law of nature. Using '+’ to symbolize
implication, we can declare that

(x £s an apple) » (x is on the table)

even though the definition of the concept of apple does not in-
clude that it {s necessarily put on the table. Ccmpare this with
the following implication:

(x is an apple) » (x is a fruit)

This proposition, like the preceding one, can be put forewsrd as
a material implication, but it is also true as a logical implica-
tion, because being a fruit is a part of being an apple. In
Kant's terminology, logical implication forms an analytic judge-
ment, while material implication forms a synthetic 3judgement.

In our theory we formalize both 1logical and material
implication and one can see how different these concepts are. 1n
contrast, the conventional mathematical logic has only one impli-’
cagggﬂi_ggtgriql: The closest thing to 1logical implication that
mathematical logic has is the concept of deducibility: @ is
deducible from P if the (material) implication P-Q is a tauvtolo-
gy. The difference between the two kinds of implications becomes
here a meta-concept referring to Lhe way we deal with proposi-
tions, not a property of the propositions themselves, as we
conceive it intuitively. This cteflects, of course, the purely
syntactic (formal) nature of mathematical (iormal) logic, and
constitutes, in our view, its main deflclency Formal logic has
nothing to do with the ;:;;}ng of the constructs it introduces.
For instance, when the connective and is defined, it is ncwhere
to be seen that P and Q logically implies P, so we have to state
it as a material implication. In our theory, the definition of
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the and connective formalfizes our intuitive understanding of {t,
its meaning. Accordingly, we do not have to postulate that
P and Q logically implies P, we can prove it.

We shall use the notation

if P then Q

for the material implication involving a pair P and Q, where P is
the cntlecedent, and Q the consequent. How can we formalize this
concept?

Consider first the case where the antecedent of an implica-
tion is a prediction: °'if the process A is finite then proposi-
tion P°'. There is an obvious way to interpret this proposition as
a generator of predictions: we run the search A, and when/if it
stops, prcduce proposition P. We define the if machine as fol-
lows :

<if(e,)!then ep) - <second(<act eu>)(ep)>
<§econg(el)(e')> - (e,)

This machine activates the process e, and when and £f it
ends, generates ep . The auxiliary function second is needed to
discard the first element of a list and output the second ele-
ment. The parentheses in the final result are necessary because a
proposition-generator, according to our convention, produces a
ltst of propositions (uwhich in this case consists of one member).
If the process €, is infinite, the if machine will go on infi-

nitely, procducing nothing.

So, if tA! {s a prediction and Q@ an arbitrary proposition,
then the material implication of the latter by the former is:

t<if(tA)!'then Q@ , or semi-formally: f{fA!'thenQ

Now let the antecedent be a prediction generator, for in-
stance an infinity model. What do we mean when we say "if the
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process A is infinite then proposition P"?

As in the case of disjunction, there is a hidden reference
here to a process which establishes the f{nfirniteness of A. What
we actually mean it "if we can know that A {s infinite then P".
Therefore, for an arbitrary proposition P, the material
fmplication P » Q is interpreted as:

1f ~(P)! then Q

The property of implication that a false antecedent forms a
true proposition with any consequent shocks everyone who studies
mathematical logic for the first time as contradicting our intui-
tion and common sense. Then one gets used to it and accepts the
usual justification, namely that taking such a proposition as
true uwe can derive a false proposition (by thc Modus Fonens rule)
only if we have already derived at least one false proposition,
the antecedent; but then our theory is already false. so we do
not care. Here we clearly see the contradiction Lkefuren the
purely syntactical, asemantic nature of the conventicnal mathe-
matical logic and our unexpressed expectation that a forwral loaic
will pick up and codify the essence of different forms of
thought, which is their meaning. In our theory, an implication
with a false premise is not true in the same senze as a predic-
tion, or a generator producing true predicticns can be trne.
Neither is it faise. It is empty: a generator which produces
nothing. This, we believe, is in perfect agreement with ou:
intuitive expectation.

To formalize universal gquantification, we define tunction
all with the format all(V € G: P), (from now on, we shall use
only semi-formal notation), where V is a variable, G is a sct
generator, and P is a propositional form Cepending on ¥V (or any
expression which may include V). The all machine activates the
generator G step by step, substitutes the objects produced by G
for every V in P, and produces the resulting expression. For
instance, if <N #> 1s the generator of all natural numbers, and
P(x) is a propositional form representing in our thecory some
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rredicate P(x) of formal logic, then
all(x € N: P(x))

is our representation of (Ax)P(x), where x runs ovar all natural
numbers.

To express existential quantification we define the search-
ing machine sch with the format sch(V € G: §), where V and G have
the same meaning as above, and S is a search which may depend on
-the varieble V. The sch machine runs the generator G, substitutes
the produced objects for V in § and runs all the resulting
searches § in parallel. The moment any of these searches comes to
an end, the sch machine also stops and outputs as its result the
object which has made S finite.

1f a precdicate P(x) of formal logic can be represented as P!
in our theory, the quantified proposition (Ex)P(x) will be repre-
sented as sch(x € G: P(x))!. If P(x) corresponds to a general
proposition (generator) P, then we must use function v to convert
it into a search: sch(x € G: ~(P(x)))!

Negation in our theory, as in intuitionism, is. the most
sophjsticated of the connectives. We introduce a special device
to establish the falsity of P. The negation of P is formalized as
as Y(P)! To define the Y-process, we must concretize our concept
of the v-process.

The v- and y-processes are related through the concept of
human knowledge

We define a knowledge as a proposition which is believed to
b2 true. This definition reflects our subjective attitude towards
knowilcdge and the way we use it., We use propositions believed to
be true in ozder to make predictions, and we believe in these
predictions, 1.e. plan our actions under the assumption that
acktual processes of the world will conform to the predictions.
The question whether what we call our knowledge is actually true
is left to an observer (if any) who watches us from outside. The
concent of truth is inseparable from an observer, like some
fundamental concepts of modern physics. The truth of a proposi-
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tion i3 somebody’'s readiness to plan his actions in accordarnce
with the predictions implied by it. In the absence of this ‘some-
body', the concept of truth becomes meaningless.

If a proposition is a generator producing predictions infi-
nitely, we cannot verify them all. Our readiness to rely on it as
true is based, in the last analysis, on a belief, and not on an
empirically established truth. We do not discuss at this time the
philosophical question of how this belief is arrived at; the only
thing we can say about our knowledge is that "ue believe because
we believe”. Then the only thing we can do in our theory is
simply introduce a symbol to denote the sum total of mathematical
propositions believed to be truve by the subject of knowledge. We
shall use the capital Greek letter T (for ‘gnosis®’, knowledge) as
such a symbol. Now we can define the v-process as follows:

<Vep> > (i____mp(!‘)-bep>
The v-machine tries to deduce its argument from the knowledge T.
1f <vP>, vhere P {s a proposition, is finite, then P is true
because it is implied by our current knowledge. If it is infi-
nite, then we can say nothing.

Using the concept of human knowledge I, we can define
negation as contradiction to r.

Atomic propositions A! and A? with the same search A will Le
called opposite, A pair of opposite atomic propositions is a
contradiction. A proposition is contradictory, or inconsisten?,
if it produces a contradiction. Otherwise it is consistent.

We can construct a machine which tests that a given proposi-
tion is contradictory. Let its format be <con ep). It runs ep and
keeps track of all the atomic prepositions produced. Whenever a
new atomic proposition is produced, con examines it against the
all those produced previously. If a contradiction is discovered,
con stops, otherwise it goes on infinitely.

If P is a proposition, w> interpret its negation as the
statement that the conjunction of P and the human knowledge I is
contradictory: con(apd(T,P))! . Defining function ¥ as
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¥(P) » con(and(r,P))

we represent the negation of P as the prediction J(P)!.

So, we have two "cognitive” functions: v(P) establishes the
truth of proposition P, Y(P) establishes its falseness.

By introducing a notation for human knowledge we do nét
solve all our problems, however. The symbol T is a metasymbol; it
stands for some expression which we do not write out explicitely.
But here is a problem: the human knowledge -- be it that of one
person, or of the human race as a whole -- does not stay the
same; it is developing, growing. Essentially, it is a process,

not Jjust an objcct expression. Then how shall we interpret the

concept of truth with respect to this ever changing knowledge?
Two answers to this question are possible, both consistent

if kept firmly to. As we shall see later, the first answer leads

o the intuitionist logic, while the second to the classical.

Intuitionist logic. Since the meaning of propositions depends on
r, we consider the meaning definite only if a definite T is

indicated. We can think of I as the sum total of human knowledge
at the present time. Therefore, <vP> will be finite and P accep-

ted as true, only if we actually performed the proof process
based on a definite r. Although F changes as the human knowledge
is growing, at any particular moment in time I should be treated
as a definite fized expression.

Classical“lggig: tlhen we spcak, e.g., of existential quantifica-
tion, we do not say "such an x that we can prove P(x)", we say
"such an x that P(x) is actually true"™, even though we may not be
able to find this x on the basis of our present knowledge. Thus
we refer not to ocur present knowledge, but to an imagined com-
plete knowledge, which implies all the propositiors that we may
find true now or at any future time. From Goedcl's thecrem we

krow that no definitc expression T can represent this complete
knoviledge., We can sce T only as an unreachable limit of the
czpanding human knowledge, or as the expanding human knowledga
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jtself (a process), because its every stage includes the know-
ledge which existed at all the past stages (a cumulative pro-
cess).

It is pretty clear that a consistent theorty can be based on
the intuitionist viewpoint. Our main effort will be to show how
classical logic and set theory based on it work, and to prove
their consistency.

6. The Concept of Truth

Intuitionism is based on a philosophy cdifferent from that of
classical mathematics. In our theory, the difference manifests
itself in the definition of the truth-seeking processes. But it
may seem that even within one philosophy of mathematics we have
two different concepts of truth: (1) A proposition is true iff it
hierarchically generates only true predictions, and (2) A propo-
sition P is true iff the process v(P) comes to a halt. In fact,
however, we have a single definition of truth, of which (1) is
the intuitive, informal version, while (2) is its formalization
in our theory.

To better understand this situation, let us draw a parallel
with physics. Consider a particle. The notion of its position fn
the space is intuitively quite clear and unambigunus. Should
there be no such concept as coordinales, one would never think
that the notion of the particle’s position is flawed or insuf-
ficient. Yet to turn this intuitive notion into an cxact physical
concept, we use coordinates, and the process of measurement which
yields them.

In our theory we treat the intuitive notion of the truth-
value as the physicist treats the notion of position. We define
processes which determine the truth-valuc of every propositicn,
measure it, in a sense. Like the process of measurement in
physics, the process of truth-seeking is started by a decision
of the subject of knowledge and may vary considerably, yet it is
not completely arbitrary but must conform to certain require-
ments, or follow certain rules. We set two rules, which are,
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essentially, the definition of the process of mathematical cogni-
ticen represented by the metasymbol T. The consistency rule says
that we accept a stage T, of T as knowledge only if we cannot
produce any contradictions from it. The completeness rule demands
that whenever we discover a proposition P such that ggg(tt,P)
produces, to thc best of our knowledge, no contradictions, yet P
is not produced by Ty, we add P to the knowledge, i.e. take

Fy{,; = add(T; ,P) as the next stage of T,

The original intuitive definition (1) is equivalent to (2).
"By the consistency rule, whenever v(P) is finite, P produces only
true predictions. By the completeness rule, whenever P produces
only true predictions. v(P) is finite.

But is it not possible that some P is, in actual fact, true,
but v(P) is infinite? No, it is not. Because the meaning of the
phrase "2 {5, in actual fact, true"™ is that it is possible to
prove in a convincing way that P is true, if not with out current
knouledge ;. then at a later stage. Otherwise the phrase makes
no sensec (except, maybe, a mectaphysical one, which is not our
concern here).

Mathematics, as every other branch of science, makes pro-
gress by the method of trial and error, which is known to mathe-
maticians as reductio ad absurdum. Whenever we state the current
Ty as our knowledge, we cannot, theoretically speaking, be com-
pletcly sure that at the nezt stage we shall not find ry incon-
sistent;, our acceptance of certain powerfal propositions as true
is a mere consecnsus. Yet in ou!’theory we assume that every stage
rt of the coynition process is true. Does it not invalidate the
theory?

As every scicntific concept, the concept of the cognitive
process is tdcallzed. 2 parallel with physics will help again.
Particle cecordinates, as they are used in theory (we are speaking
of claszsical, not quantum, mechanics), result from idealized
incorruptiblc mcasurements, which can never be realized in actual
fact. The discrepancy between actual and idealized measurements,
f.e. thc errors of measurments, are taken care of, but at a
different levces, not in the theory itself. The rational members
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xy of a Cauchy series representing a real number x can be secen as
the result of an idcalized measurement; they can be compared with
the stages Ty of the idealized cognitive process T. An error nade
by a human being, or a computer, in a proof, has no more (ané no
less!) effect on our theory than an erroneous measurement has on
the theorems of classical mechanics.

The method of getting mathematical knowledge exemplifies the
general method of science. ltle put foreward a hypotetical general
statemert, a generator of predictions P, add it tentatively to
our knowledge, and test against the verifiable facts, predic-
tions. If there are no contradictions, P stays in the knowledge,
although, in principle, as a hypothesis only. Recognizing this
process as the essence and the meaning of the concept of truth in
mathematics, we formalize it and put it in tha foundation of
mathematics, like the physicist who formalizes the process of
measurement as the concept of real numb2r. Our empiricist ap-
proach stands in contrast to the traditional, if not always
articulated, idea of mathematics as having a subject and a method
which is radically different from those of natural sciences. This
latter idea has lead people to define the concept of a matheomati-
cal truth as something soaring in high spheres of omne kind or
anothet (Plato, of course, was the first who cvpresaed this icea

in its pureut_form), and think about t:uth tnatxng as ometnlngh
seqondary. derivative. We reverse this relationship, follewing
the lead of physics, which achieved spectacula: successzs by
putting observable facts and processes in front of metaphysical
images which uncriticised intuition takess for real entities.

To identify the concept of truth with the cognitive procecs
expressed by I, v and ¥, we have made twn idealizing assumptions

about this process: its consistency and completeness. Since the
cognitive process is a creative process freely initiated by the
subject of knowledge -- i.e. by the party referred to as "we" and
"us” in mathematical texts, these assumptions should also be
described as the rules we have chosen to adhere to in order to
discover mathematical truths. By the consistency rule., when we
see that P iz false we cannot add it to the krouledge; the
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infallibility of the idealized user is an expression of this
self-correcting nature of the cognitive process. By the complete-
ness rule, if we are convinced that P is true we cannot leave {t
alone and nol to add to the knowledge.

7. Real Time and Model Time

Mathematics is the art of constructing the most fundamental
riodels of real!ty. We formalize mathematics using the concept of
the Refal machine. To create models of reality by means of the
Refal machine we: (1) put into its program field some defini-
tions, (2) put into its view-field some ‘processes’ (which are,
in fact, certain expressions representing initial stages of
processes) and start the machine. The processes goeing on in the
view-field of the Refal machine are modelling real world processes.

e can distinguish two time scales here; two "times"” as it
were. Ve write definitions and put them into the memory of the
Refal m=zachine as living human beings, in real time. When we run
the Refal rmachine, the sequence of its steps represents another
time: the time of the mechanical process we initialized. Although
the process to be modeled occurs, prestmably, in real time again,
thez Refal machine runs in a different time, which we shall refer
to as model time. We can compress or expand model time unlimi-
tedly ~- in imagination if not in reality. We can run the Refal
rmachine at a speed of one step, or one thousand steps, or one
million steps per second. No matter what the actual speed is, we
still can imagine a speed that is twice as high. Moreover, we can
examine the stages of a mechanical process in the inverse order,
that is «e can reverse model time. Mcdel time, unlike real time,
is corpletely subject to our will. Model time is a feature of the
EQZBincs vie run ﬁsing hardware or imagination.

¥Knouledge is the existence in a cybernetic system of a model
of 5n:-¢ part of reality. Knowledge is both objective and subjec-
tive Hecause it re:nults from the interaction of the subject and
the objest of knouledge. UWe know that knewledge is never com-
plete.But {f the {nformation flow between the subject and the

33



object is only in one direction -- from the object to the sub-
ject, we can imagine a complete knowledge (i.e. a complete per-
fect model) of the object; this idea is not contradictory. If
there is a flow of information from the subject to the object
too, the notion of a complete model may become contradictory. Let
Sl be a system-object, and S, a system-subject. Suppose S, in-
cludes a complete model of Sl. Then it can run this model, com-
pressing model time with respect to real time, and predict the
behaviour of S, for all times in advance. This prediction can be
sent to S‘, which can change its behaviour so az to falsify the
prediction. This contradicts the assumption of a complete model.
In particular, the notion of complete self-knowledge (the case
when S‘ = S') £§ cgp}EEdictoty.

It follows from this reasoning that when we are de=aling with
the processes of self-knowledge we must clearly distinguish be-
tween real-time processes and model-time processes. If ue allow
the difference to be blurred we may come to absurdities. For
example, when we say "imagine a real-time process A" xe already
are in a danger zone, because our imagination creates a wodel-~
time process which is not the same as the original real-tine
process. It will cause no trouble if process A is detached from
ourselves (we is the subject of knowledge), so that it canrnot be
influenced by what we are doing; otherwise, we can oniyv say
"imagine a model of a real-time process A , which, of course, is
only partial®™.

One can picture a real-time process as consisting of a
definite past and {ndefinite futuvre, with a border between them
known at "this momecnt”, or "now™. A real-time prccess, generally,
is not deterministic. Any statement concerning its Euture is in
the mode of possibility, not necessity. When we zay that the
process v(P) ts finite, we mean that it can bde finite. Even whzn
the subject of mathematical knowledge is the whole of huranity,
there is no guarantee that for every true (i.e. producing orly
true predic;ions) proposition P the process of proving P will be
actually completed. If humanity exterminates itself, or is de-
stroyed by a cosmic catastrophe, a lot of theorcms will be left
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ur:proved.

Our theory 1{s a formalization of the self-knowledge of
mathenatics. Therefore the distinction between real-time proces-
ses and nodel-time processes is for us an absolute necessity. So,
how should the difference between real time and model time enter
our theory?

The processes that take place in the view-field of the Refal
machine as the result of the application of sentences are model-
f{ire processes. Should the program field be fixed once and for
ever, there would be only model-time processes in existence, and
no change in real time. But in fact it is not fixed at all. The
progran field of the Refal machine which represents mathematics
is_changing in real time as we create mdre and more mathematics,
which means that we define new processes and expand our knowledge
of the processes already defined.

It would be exceedingly inconvenient if we had to consider
every part of the memory (program field) of the Refal machine as
potentially variable in real time. We could hardly come to any
cdefinite conclusions in such circumstances. But we can define a
certain nunber of real-time processes and give them a place in
our formnal system. Air temperature in the City of New York could
be such a process. Or the mathematical knowledge of mankind.

We shall represent real-time processes as follows. Like
mocdel-tive processes, a real-time procass is distinguished from
an object by a pair of activation brackets which delimit its
rezresentation. The contents of the brackets may be anything
which identifies the process, e.g. a syrcbol. However, the activa-
tinon of theze brackets does not bring about all stages of the
as in the case of a model-time process (we do not know

in advance), but produces (in one step) only the current
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stagz of the process. Thus ceal time rexmains real time and no
attemnt (not even a conccaled one) is male to substitute a model-
tirzs grocess for a rcal-time process. Tha notation <R> of a

f321-tire process is a device which allows the Refal machine to
have access to the process; which means to its current stage. We
2

scribe this situation as the presence in the program field
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of a sentence:
<R> ~» E

where £ 1is an object expression which represents the current
stage of the process <R> and changes in real time. For instance,
we can use <tempNYC> in a Refal! program and declare that this
term will be replaced, as the Refal machine works, by the current
temperature in New York expressed in agreed units with an agreed
precision. The results may be different if we run such a program
today and tomorrow.

Our formalization demonstrates the profound difference be-
tuween real time and model time, which was first realized by Henri
Bergson, who described real time as "duration" and contrasted it
with the time as known in mechanics, which he saw as a projection
of duration on space. Norbert Wiener, in his Cybernetics, also
Juxtaposes Newtonian and Bergsonian time. In our terms, Newntonian
time is the model time: a feature of deterministic mathematical
models of reality. Bergsonian duration is represented in our
theory by real-time access functions: this is something very
different from autonomous machinery representing model time.

» The Refal machine is a formalized version of a part of the
cognitive apparatus of the human being. We can compare this
apparatus with a complex computer system. In computer systems ue
distinguish suhsystems which work off-line and those which wocrk
on-line, in real time. Running off-line subsystems s analegous
to those processes in human brain which we describe as imagina-
tion. Usually we sec mathematics as dealing with our imagination.
This is generally true, but with a notable exception: when deve-
loping metamathematics, i.e. mathematical self-knowladqge, we
cannot, as disussed above, limit ourselves to modzl-time pro-
cesses only, because human knowledge is a real-time process which
has no complete model. Thus the model of human cognition which we
are constructing must recognize the fact that our brains de not
exist in our imagination only, but are real cybernetic systens

which exist in real time and have subsystems which work on-line
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in real time.

Access functions to real-time processes imitate, or model,
links between our cognitive apparatus and the real world; they
are sort of 'sense organs' of the Refal machine. The real world,
it must be noted, includes not only things external to us but
also the current state of our cognition. We can create models of
>;§terna;7p£6cesses. and then models of our models of external
processes, and models of models of models, etc., but the whole
hierarchy will invariably exist in the real world and will be
open to change in real time.

The kncwledge T which shows up in the semantics of mathema-
tical propositions is a real-time process. To connect the Refal
machine with this process we use the access function <gns>
(‘gnosis'). The symbol gns is a regular Refal symbol. The
activation of gns gives (in one step) a proposition which sums up
all the krowlecdge we (the subject of mathematical knowledge) have
at the present time.

We shall use subscripted symbols r , T,,
specific stages of the human knowledge process. Since the result

Ty, etc. to denote

of the activation of <gns> may be different at different times,
the process <gns> 1is undefined in Refal, or, equivalently,
defined by a sentence

<gns> -» T

the right side of which is provided by the user. The cognitive
functions v and ¥ represent the processes of testing truth and
falsehood. As we mentioned before, our formalism allows two
interpretations of the cognitive functions. One interpretation

treats T as a definite expression and leads to intuitionist
logic. This interpretation is static with respect to the real-

time process of human knowledge. It does not exclude the possibi-
lity cf T changing in real time, but during one tun of the
function v (or §) the stage of I is taken to be fixed, un-
changing. The following sentences define the cognitive functions
in static intevpretation:



v(P) » imp(grs -+ P)
¥(P) + con(ard(gns,FP))

These functions are not autonomous machinez; they depend on
real time. But once the concretization of <gns> is done, the
further operation of v/¥ in static interpretation is autonomous,
mechanical. Essentially, we deal here not with one concept of
truth, but with as many concepts as many stages of T, or T are
there.

The other interpretation corresponds to our intuition of
objective truth and leads to the usual, classic logic. In terms
of our theory it is dynamic, because it takes the real-tine pro-
ses v and ¥. The process v(P) is running in parallel the
searches lmg(r‘ + P) with each new stage r, as it appears in real
time, and ¥(P) is defined analogously:

|imp(gns -+ P)

v(P) -+ s]|
v(P)
jcon(and(gns,FP))
S(P) - s|
15(P)

In dynamic interpretation, v(P) and ¥(P) are genuine real-
time processes in which the operation of the Refal machine is
intertwined with the process of human knowledge. They depend on
the time interval at that it takes for the Refal machine to mzake
one step, but those features of the cognitive functions which are
essential for our theory do not depend on at, as we shall discuss
in more detail in Part 2. Let ry be the state of human knoxledge
at the moment when the Refal machine is making its i-th step.
Then the function ~(f) will run in parallel the cearches
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inp(r,+P), imp(r,=P), etc., each next process one step behind the
preceding. If a stage I'; such that imp(T;+F) is finite ever
appears in human knowledge, and only in this case, the search
v(P) will be finite. The search ¥(P) will be finite if and only
if P contradicts some stage Tt.

We ncw have two kinds of processes:
(1) Those which never call real-time access functions. We shall
call such processes mechanical. They are generated by an auto-
nomous machirr and are completely defined and deterministic.
(2) Those which at one stage or another call a real-time access
function. A machine that generates such processes is not autono-
mous, it is open to the user, the subject of knowledge. We
assumne from now on that the Refal machine can have no direct
contact with physical processes in the world bypassing our (the
changed by our decision. Processes cgenerated by such interaction
betwa2en the subject of knowledge and the machine will be called
metamecharical. In terms of computer science, the machine here
works in the interactive mode, and th2 subject of knowledge is

the user of this machine. The 20th century's physics has dis-
covered that we cannot eliminate the svbject of knowledge from
our’gigygie of the physical world. st theory reflects an analo-
i;g;; situstion in mathematics. Mathematical knowledge is the
constructfon of machines to model reality, but these machines do
not always work autonomously: some are used in the interactive
mode.

Combination of logical connectives may lead to predictions
about processes which whizth call cognitive functions, i.e. pre-
dictions about metamechanical processes. For instance, the law of
the ezcludea middle is or(~v(f),¥(P))!'. But how are we to judge
whethar such a statement is true or false? A prediction about a
me<hanical process is well defined becavse the rrocess itself is
weil c2efincd and deterministic. Bul metamechanical processes are

not cdelonisinistic, so predictions about them have no meaning! At

least, not cefore we somehow define their meaning.

In the second part of this paper we shall give an interpre-
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tati to statements about mectamechanical processes of mathe-
matics which closely matches our intuitive understanding of ob-
jective truth. But to admit this interpretation, a metamechanical
process must meet certain requirements; we call such processes
and propositions about them objectively interpretable. Those
proposition which are not objectively interpretable have no mean-
ing. It is by using these meaningless propositions thgpwggqglg

come to the well-known logical and set-theoretical paradoxes.
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