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rnis paper i~ the first part of a compres~cd expocition of a 
nf.:'"~ approa'::h to the foundation of mathematics, which i& ref~rred 

hel•Y" as The Cy!>ernec ic F'aundat ton. 11. complete expo:::;ition will be 

fGIJnd i•l a b·,Ok which is being prepared for pub!:!.cation. 

1. Intro~uction 

At the ~r~sent time, set theory s~rve~ as thQ b~sis for 

m~lh~rnati~al constructions and pro~fs. The intuitive interpreta­
tion of s~t theo1y is, as it hnE ~l~ays bren since Georg Cantor, 
l-llio ihve:-~tel1 1!:., that sets have, so::tc~ow. an cbjc::tivc existence 
di f f~rf::nt fort!• the way mat-::r ial objects exist. Moreover, sets may 

be "actually infinite". This Platonist concept goes agdinsl the 

l~ttcr and the spirit of modern philosophy widely shared by 

~~o~l~ of ncien~e. 

We ~nnnot [ely on our intuition ~hen de~linq with "actually 

inf.ini:-.e" r.ets; this leads to incor,sistenco?s ("paradoxes"). Can­

t:>r's C.;Jacepl:_of set, l"hich tncludt!s the i~ea that "some infinite 

set~ ~r~ ~ere infinite than others", is counterintuitive. In 
itsElf, the ~itu~tion when a theorfttical conc~pt defi~s o~r 
ir.tui t I <jll is n<>t unacccptalJle. To take a falllous e>:ample from 

calc~lus, thc1e arc functions w~t::h in every paint are continuous 

but not diffcr£'nliilblt.!. However, such a function is a concept 

co~~tructe~ logically from rr.ore pri~itive conceptual units, and 

we can s~ti~fy our intuition that thP construction is flawless. 

l,!hrm th£' most pri111itivc and· fundamental conceptual units are • 

countcrintllit.lVC, SO that you. can neither derive thf'm, nor find 
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ism basej on the concept of actual infinity is not only incompre­

hensible, but simply ~rong. It is conceivable that if this really 

is the cas~. the m~thcmaticians could have developed their set­

theoretical intuition in response to the real, and not the pro­

claimed, objects of set theory. 

No:-1 lock at the set-theoretical foundation of mathematics 

from the angle of consistensy. Working with set theory, one gets 

ar. in~uitive impression, maybe even a certainty, that it is non­

contraeictory, consistent. But its consistency has never been 

proved. This is very strange, if we come to think about it. 

Axio~~tic set theory in the Zermelo-Fraenkel form rests on ten 

av.io~s. most of which are far from beinq elementary, or primi­

tive. 7aken all together, they make up a still less primitive 

whole. ·It is inconceivable that our intuition can perceive the 

consistency of this whole ~ithout basing itself on some simple, 

primitive, intuitively consistent concepts and truths .. We come to 

believe, therefore, that such primit~~e ~nd intuiti\lely unq!I_t:!;­

~ion=ib!~~!u~_s _!ll_ust e}(ist. To separate the:n and to express in 

tcr~s of them the ZF aY.iores, would be to p~ove the consistency of 

se~ theory. From Coedel's theorem we know, however, that it is 

)~possitle to prove the consistency of set theory by means which 

can be formali~ed in set theory. Hence the p~imitive concepts and 

truths underlying set theory must be very unusual, strange, 

b~cause they mu~t be non-eKpressible in set theory, while we 
--· --.--

habit~~lly entertain the idea that in set theory we can express 

everything th~t can be subject to rigorous mathematical treat­

l:'l€nt. A theory ba:;ed on these concepts must be equally 'strange'. 

To use an e~pre5~ion popular among physicists and coined by Niels 

Sohr. s~ch a theory must be 'crazy enough'. 

The Cyb~rnetic Foundation is such a 'crazy' theory. Its 

ba~1c concc~ts, although puzzling at the beginning, upon some 

thoc-;;l.t bcco;r,e sclf-evio.lent, and the legitimacy of their use in 

proof~ -- intuitively doubtless. At least, this is the author's 

vir:H. ";his lt1coty le<ul:; to a full acceptance of the formalism of 

~~t theory, but interprets it in agreement ~ith the principles of 

con:;tructiviEm, ~_E.!r\_<.L_only __ the idea of potential, but not actual, 
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-~nf~rlity. This becomes possible because of h1o new id~as which 
form the basis of our theory. 

The fir:;t id_~~ ifl to base the semantic~:; of the ,.,,.the.-'lUcal 

language on the cyb(!rnet ical concept of kno.,llecJge. hc:c:c.r:l i r.g to 

this concept, to say that a cybernetic system (a huwan being, in 

particular) has some knowledge is to say that it has so~~ nodels 
of reality. In Cybernetic Foundation we consider mathematics as 

the art of const~~~!:!l5J __ !_~ng~istic models of _re~l~;r. hn analysis 
of the concept of model shows that a mpdel is, ess~ntia~!z, a_ 

generator of predictions. We formalize a prediction as the stat~­

ment that a given process is finite. We declare a ~reposition 

meaningful if, and only if, it can be interpreted as a ge~~rator 

of predictions. 

The second major idea behind the Cybernetic Foundation is 

the introduction of the subject of knowledge in mathcr-.at;!'=_;;, 
which leads to a new kind of pr:ocesses. We call tt.err. r.:eta'Tiech~ni-

~· A metamcchanical process is initiated and main~ai~cd b7 a 
mechanical device like a Turing machine in interaction ~:;.tr. th~ 

subject of knowledge, i.e. the user of the device. The class cf 

metamechanlca! proce!;:'_':~ _l~ _(,l_i'!_':E __ tha!l__the cl ~~~--?-~_jl_r_o_~~~~­
__ which can~ generated_ ~J'-~ _ _!uring machllle_, o_r_~-~1'!-l. othH 
autonomous mechanical device. 

Our main result in this paper (Part II) is the proof of the 

consistency of the full set theory, as formalized by the Zermelo­

~raenkel axioms. The philosophy of science which underlies th~ 
Cyber:netic Foundation is laid out in [Turchin 1977]. 

2. 'the Refal Machine 

An important step to~Jards putting· mathematics on the E:m~i'ri­

ci&t track was made by Alan M. Turing. In 1936, he introduced in 

mathematics an abstract device, or rather a class of devi~~s. 

which becam~ known as Turing machines. Tt.e idea was to n'2ke 

mathematical computation, in the widest sense, an obj~ct of 

mathematical study. 

Our: formalism is based on the concept of the Re(al m~chinc. 
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'Rcfal' is the acronym for REcursive Functlon.s Algorithmic Lan­

guolge, a computer programming language which was developed by the 

author and co-workers in 1966-197g and is implemented on several 

co~puter systen5, including the IBM/370. Refal as an algorithmic 

language is conceived to be simple enough to allow rnath~~atical 

treat~cnt but still successful as a practical programming lan­

guage for sue~ fields as artificial intelligence and word pro­

cessing. A guide for programming in Refal can be found in 

[Turchin, 19813]. 

The reason why we chose Refal, and not the usual in this 

context Turing machine, is that our goal ls a complete formaliza­

tion of mathematics, so that definitions of mathematical concepts 

could actually be used as programs and run in the computer. our 

Refal formalism allows a clear and concise defir.ition of pro­

cesses and machines, and hierarchical construction of machines 

which control machines; this would be very cumbersome if we used 

Turing machines only. In the present paper we limit ourselves to 

a rather inform~l definition of Rcfal, and use a semi-formal 

nutation usual in mathematics. In the full text of the book, this 

notation is given a formal interpretation, an ail machines 

defined here in words are formally defined in Refal. 

~e shall discuss three aspects of Refal, in the order of 

increasing gcn~rality. 

R<:!al can be seen as a language of semantic descript{ons. 

The follo~ing line: 

(1} <ACH> • ASSOCIATION FOR COMPUTING ~\CHINERY 

is a sentence of Refal. The angular brackets are ~oncretlzatlon 

brackets~ Th~y ~ncloze a linguistic object which must be concre­

tize~. that ls replac~d by linguistic objects ~hich in some sense 

are cl~~~r to the ultiPate reality. The sentcr.ce (1) expresses 

the ex~3nsion of th~ a~ronyffi ACM. It consists of the left s~de 

and th~ right zidr ~e~arated by the arrow •. The Re~al machine, 

i.e. thP. ~evicc that "understands" Rcfal, takes th~s sentence as 

the in~~ruction to replace <ACt-t> by 'ASSOCIATION FCI~ COMPUTING 



MACHINERY'. The letters A,C,M,A,S,S,O, ... etc. will be referr~d 
to as symbols. Angular brackets are special signs of Refal, not 

symbols. 
Consider another sentence: 

(2) .. 
It defines what the first symbol of an expression is, and can be 
translated as: the first symbol of an ev.pression which consists 
of a symbol s 1 after which an expression e 2 immediately follows, 
is s 1 • Here s 1 and e2 are free variables. The frorner is a symbol 

variable (s-variable, for short), the latter an expression vari­
able (e-variable). This sentence is used in the following way. 

Suppose we observe the expression 

(3) <THE FIRST SYMBOL OF APPLE> 

To see whether the sentence (2) is applicable, conpa~e its left 
side with (3). If it is possible to ~ive such values to the free 
variables that the left side of (2) becomes identical to (3), 
then the sentence (2) is applicable to the concretization of (3). 
In assigning values to variables we must remember that an s­
variable must take as its value ev.actly one symbol, while an e­
variable can take any expression. Clearly, (2) is a~plir.able if 

a 1 takes the value~. and e 2 the value PPLE. To apply a sentence 
means to replace the expression (3) by the right side in which 
the values of the free variables are substituted. The result is 
A. We have performed one step o( the Refal machine. 

Now let us look at Refal from another angle, namely as the 
language of recursive functions. Let u~ change the string 'THE 
FIRST SYMBOL OF' for the single symbol F: 

(4) 

We can see the replacemnt of <F APPLE> by A as the evalu~tion of 
a function call. Then (4) defines the fun~tion F whose value is 
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the first sy~bol of its argument. The angular brackets should be. 

called evaluation brackets. They enclose the expressions which 

must be understoo~ as function calls and evaluated. <F A> corres­
po~ds to F(A) in the usual notation. 

Besides angular brackets, which indicate evaluation, we use 
in P.efal usual round brackets (parentheses): They ser:ve a di-ffer­
ent ~urpose: to give a structure to expr:essions. Any sequence of 
symbols and parentheses in which the parentheses are properly 
paire~ is a legitimate expression in Refal. Parentheses, like 

concretization/evaluation brackets, are not symbols, but special 

signs. Here ar:e e~arnples of Refal expressions (separated by 
commas): 

A, ABC, A+B(), (flBB+(**))(())+-

An empty expression (just nothing) is also a legitimate expres­
sion. The argument of a Refal function can always be considered 

as or.e eKpression. If we want to define a function of several 
argu~ents, we use parentheses to combine th~m into one expres­

sion, so that it could be uniquely broken down into the original 

constituents, when necessary. For instance, the function which 

concatenates its b1o arguments can be defined as 

.. 
Here £QD£ is the name o[ the function. Syntactically, £Qn£ is one 
sy~bol; composite symbols, like this one, are formed by under­

lining a group of letters and digits. 

The Refal machine has two information storages: the program 

(i~ld and the view-field. The former contains a list of sentences 

(program), which is loaded into the machine before the run and 

does not change during the run; the latter contains an expression 

which ch;:~,roges in tirne as the machine works, thus giving rise to a 
proces::;. 

ConsicJer .the following group of sentences: 
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(5.1) <ch.P.!!! "' e,c-> .. - <£hm!! e.x> 
(5.2) <ch.Q!!! sae.x> .. sa <chpm e .x> 
(5.3) <ch.Q!!! ( ea )e .x' .. (ea)< chpm ex> 
(5.4) <chpm> ... 

It defines the function chnm, 'change plus to minus'. If this 

function is applied to an expression, its value will be the 
result of the replacement of every sign '+' on the top level of 
the bracket structure in the argument by the sign '-'. Add these 

sentences to the program field of the Refal u.achine. Put in the 

vlew-field the expression <chpm C+(/\~BX)>, and turn the machine on. 
The Refal machine will evaluate this function call by ste~s. 

each step being an application of one sentence. It will try to 
apply sentences tn the order they are llsted. When a sentence is 
found applicable, it is applied, and this is the end of the step; 

on the next evaluation step, the Refal machine will try to apply 
sentences starting with the first one again. 

Making the first step, the Refal machine tries to apply the 
sentence (5.1), but of course fails, because the argumant does 

not start with '+'. Then it tries to apply (5.2) and this time 
succeeds. The view-field becomes: C<£hp~ +(A+BX)> . Function 
chpm calls itself recursively. The results of the further steps 
are as follows: 

c-<chpm (A+BX)> 

C-(A+BX)<Sm!!!> 

C-(A+BX) 

by (5.1) 

by (5.3) 

by (5.4) 

The last expression has no evaluation brackets. The Rcfal machine 

stops. The content of the view-field is the result of the evalua­
tion. 

The third, and the most general, view of the language Ref~l 

and the Refal machine is as a framework for the lingui~tic repre­

sentation of the world. We see the. world as the interplay of 

various processes, which involve various objects. We can chanj~ 

objects ourselves, thereby giving rise to proccss~s. We also cun 
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create and start r.:oddncs, which maintain processes autonomously. 

~e use the Refal marhlne to define linguistic processes which 

serve as linguistic models of natural phenomena. The concepts of 

object. process, and machine wi 11 be considered primary and given - ----· --~- - ------- --~------~--------- -·-- ···-· -~ ---.. --
_t~-u_~-. .i_ll~~~lv_ely_. We can only define them informally for clari-

fication, and characterize their relationship. 

A _proce~s -~s thought of as _a tim~_ sequence of object_!!, while 

an obje~t is a time section, or a momentary picture, or a stage, 

of a process. A machine ~~ S()_~~_tt\_i_!l9 -~hat __ .5!_ives_!_ise _!_o a proces~ 

when given an object or a number of objects (the Input). An 

object can also be seen as a special case of process: such that 
-----
all its stages are the same. 

This gives us one more name for the angular brackets in 

Refal: octlvotion brackets. They distinguish a process from an 

object. An eMpr~ssion enclosed in activation brackets, e.g. 

<ABC>, reprtscnts the current stage of a process, and will be 

referred to simply as a process. Later in time <ABC> may turn (be 

turned by the P.cfal machine) into somethlng else, say <ABCD>, as 

the process d~velops. An expression which does not include activ­

ation brackets will be referred to as pcsslve; it .represents an 

obJecC that does not change in time. Change comes only from 

activation brackets. 

S•Jppos~ we want to define the process of the growth of a 

string of characters A • i.e. a p=ocess whose first stage ls 

empty, then A , then AA , then AAA , etc. How can we do that 

using the Refal machine? 

~e know that the rcpresentaion of a process in the Refal 

machin~ must be enclo5ed in activation brackets. One possibility 

is to represent the consecutive stages of our process simply by 

<> , <A> , <AA> , etc. But it is a better practice to put a tag 

(a n~me) on every proc~ss, so as to be able to have definitions 

of different processes without unintended interference between 

thP.~. Any oujcct expression may serve as a tag, and in the sim­

plest ~ase it will be one symbol. Let us choose the same format 

as in fun~tion ~cprescntation, i.e. aq:ee that the tag will 

al~ays be placed at -the left end of the process eMpression, 

9 



immediately after the opening activation brAcket. Let symbol u be 
the tag for our process. Then <a.> will be the initial stage, <etA> 
will be the ne~t stage, etc. One sentence: 

in the program field of the Refal machine will define the pro­
cess. To initiate it, we put <a> in the view-field and start the 
machine. After the first step the view-field will be <uA> , then 

<«AA> • then <etAAA> • and so on infinitely. Co~putation of 

function chpm is an example of a finite process. 

Because different programs can be loaded into the program 
field, we can use the Refal machine as a metamachlroe through 
which to 
linguistic 

define various specific machines. Our concept of a 
machine is related but not identical to the concEpt of. 

a recursive ~'!!!~~~o~_on the set of object expressions. A recur-
aive function is considered undefined if the process of c~mputa­
tlon for a given argument is infinite• and if the procP.ss is 

finite then it is ~n_l~ ~_ts resu~t:- _t!l~matter_~_ not the process. 
When we are speaking of a machine in this work, it is exactly the 

process we are interested in. and it may be either finite or 
infinite. 

A machine is defined by specifying: (1) a general Refal 
expression F called the format of the machine, and (2) a Refal 
program, which is its definition. Substituting some values for 
the variables in F, we receive a process expression which is then 
put into the view-field of the Refal machine which is loaded with 
program P. 

Let us consider less trivial examples than those above. In 
the unary number system. where zero is represented by 9, onP. by 

81, two by 911, etc., the adding machine with the formal 

<+(ex>ey> can be defined by the program 

With the 

<+(ex)Cil> .. ex 

<+(ex>eyl> ~ <+(ex>ey>l 
input values Cill for ex and Cilll for ey this machin~ will 



generate a finite computation process which ends with g111. We 

coul~ define an equivalent machine choosing a different format. 

e.g .• <+(e~)(ey)>, or <~dde~,ey>• etc. 
As an example of the use of nested activation brackets. we 

defin~ an a~ding machine for binary num~ers: 

<!_dd(e~li!)eys 1 > 

<add{£,~l)ey9> 

<add(eJrl)eyl> 
<.:dd(eJr)> .. 

<add( )ey> .. 

.. .. 
.. <add(e,,)ey>s 1 

<add(e~)ey>l 

<add(<add(ex)l>)ey>D 

The for~at is <add(e 1)e 2>. (Note that the variables He choose to 

represent formats are not related in any way to the variables 
used in programr.; neither are variables in different sentences of 

the p:ec']ra:r •. But we usually keep to the same variables as a 

~atter o! convenience). When there are more than one pair of 

activation brackets in the view-field, the activation proceeds 
!~o~ left to right and from within out. The active subexpression 

~~ich is picked up for evaluation at each step is ~he leftmost of 

those ~hich have no activation brackets inside. 

3. Searches and Generators 

We shall deal with processes of two kinds: searches, and 

generalt:ors. 

A ~~ is a process each stage of which is either of the 
form <E~. where E is an expression. or passive. The latter case 
takes place, obviously, at the end of a finite search. The termi­

nal ~:~qe of a search will be rcfcrted to as its result. An 
infinite sea~ch p~oduccs no result. A search, as the name sug­

gests, is a process which you would typically initiate in order 

to flr.d (construct) a certain object: the result of the search. 

,., ..!.!!.!.. is an expression of the form 
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where n can be any number including zero (an empty list). A 
~enera~or is a process each stage of which is either L<E> or L, 
where L ls a list of oblect eMpressions. The subeMpressioros £ 1 , 

£ 2 ... etc. which appear in the view-field at any stage of a 
process-generator G are said to be generated by G. A trivial 
el!ample of a generator is simply a list of object eY.~ressions, 
e.g. (A)(B)(C), which generates symbols A. 8, and c. and stops 
the Refal machine before it has a chance to make a single step. 

We create generators in order to generate sets. A finite set can 
be represented by an object: the list of its members. An infinite 
set can be defined only through an actual process. For example, 
we can construct a generator of all natural numbers represented 
in tile unary form, as above, by defining the nY!il rroachine as 
follows: 

The process <nBID B> is a generator of all natural nu~bers. The 

process <ITHm N> generates the set of all numbers starting from N. 
The process <+(Gl)gll> is neither a search, nor a generator. 

Machines like + • which gradually build up the result in the 
view-field, are very convenient when programming in Refal, but in 
the part of our theory that interprets logic a~d axiom~tic mathe­
matics it is easier to manipulate processes if we restrict our­
selves to searches 'lnd_llcnl!_ra~~r:;~ This does not lead to any loss 
of expressive power of the language. Every machine which is 
constructed to compute something can be slightly modified so that 
it initiates a search for the desired .result. To achieve that, it 
1s sufficient to replar.:e in the program every right side R r..1hich 
ls neither <E> nor passive, by <~ R>, ~here the function cut is 
defined by: 

<out e,c> .. ex 

Thus the definition of the addition of unary numbers will become: 
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<-+(e1 )0> + 

<-+(e l)e21> 
el 

~ <out<+(e 1 )e 2 >1> 

Now the process of computing 01+011 is a search: 

<+(Ill )llll> 

<out<+("l )"1>1> 

<~i<out<+(lll)ll>l>l> 

<out<out 011>1> 

<out IHll> 

Dill 

Parallel e><ecution of processes plays an important role in 

enginee:ing and in our mental pictutes of the world. It takes a 
pro~incnt place in our theory. We can simulate parallel execution 

of processes in our sequential Refal machine, but definitions in 

Refal will be much more readable if we have the simulation "on 

the hard~o;are level" so to say, i.e. if we somewhat expand the 

abilities of the Refal ~achine. Therefore, in addition to the 

familiar form of a Refal sentence: 

L • R 

we allow the following two sentential forms: 

R• 

(s) L .. sl 
I R• 

and 

R' 
(g) L .. 91 

I R• 

When a &entcncc of the form (s) is applied, the nefal rna­

cain~ creates t •. o auxilliary view-fields. lt puts R1 int~ one of 
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them, and R1 into the other (after the sub5tilulion of values for 

variables, as usual). Then it runs processes n' and R' in p~ral­

lel. The moment any of them comes to an end, the R~f~l rn~chine 

takes its result, substitutes it for the e~pres5ion under concre­

tization (recognized as L) in the original view-field, and re­

sumes the running of the process in it. 
When a sentence of the form (g) is applied, the Refal ma­

chine, again, creates two auxiliary view-fields a~d run5 them 
simultaneously. The interaction bet~o-1een branches, however, is 

organized differently in this case. Each time that any of the 

branches produces a list of members, this list is extracted from 

the branch and placed at the left edge of the projection of L in 

the main process. The execution of the branch processes goes en 

as far as at least one of the branches is active. The effect is 
that every member produced by R' or R1 will be produced by the 

generator which used sentence (g). 
In the Refal machine, symbols and structure brackets (pare~­

theses) serve to create obJ!_~-~ .. exp.!:.~!~· which represent Ql:­

jects of the external world. Variables and activation brac~~~s 

can be seen as functional details of the machine tt:;elf, t-:~ic!"l 

help to perform operations on oojects. Therefore, if we are (a~d 

we ~) to define in nefal processes and machi~~s dealing with 

parts of the Refal machine, namely the contents of th~ merory 

fleld and the view-field, we need a represent~tion of these part5 

in the form of object expressions. Such a representation will be 

called a metacode. The metacode we are going to use is defined in 
the following table: 

In the Rera1 ma.;hine In the metacode 

s, *Sl 

e, •EI 

< *( 
) ) 

* •v 
s s 
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~ere s stands for any object symbol distinct from the 

asterisk • ; it is represented ir1 the rnetacode by itself. The 

a~terisk '*' is singled out for representation of special signs 

in the metacode. One can see that our metacode transformation has 

a unique inverse transformation. Speaking about linguistic ob­

jects and their metacode re~resentations we shall denote by- tX 
the metacode of X. The inverse transformation will be denoted by 

' , so that t'X is X. The range of the signs t and ' is the Refal 

term that foll~ws. Thus, t(e 1+e2 ) ls (*El+*£2), while tel+e2 is 

*El+e2 . 

A program consisting of sentences z 1 ,z2 , •.. ,Zn will become 

in the metacode. To give an example of metacode transformation, 

the program for the '+' machine above will be transformed into 

( 4 (+(*EX)9) ~ *EX) (*(+(*EX)*EYl) ~ *(+(*EX)*EY)l) 

We need a metacode in order to construct machines control­

ling mac~ines. Suppose, for example, that we want to run two 

machines, M1 and M2 , in parallel, by alternating the steps in M1 
and M2 . ~ ~achine which can do it must be able to simulate one 

step o! the R~fal machine running the processes initiated by Ml 

al"!d M2 . r..le Clcnote this function <step e.x>; its definition, of 

course, ~epend~ on the progr~m stored in the program field. The 

argument e.x of this function cannot be M1 or M2 , because these 

e7.pre~sions, b~lng active themselves, escape the control of step. 

Let M1 ~e <F(ABC)>. If we form: <step <F(ABC)>> • then the pro­

ce~s <F(~BC)> will be run first until it becomes passive (if 

ever), and then function step will be applied to the result. When 

we wa~t to control a process, the expression representing it must 

be ~~tacodcd before sub~titution: 

<step t<F(ABC)» <step *(F(ABC))> 
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Function step is defined in such a way that <step tP>, "'here 
P Is a stage of a prQcess (i.e. a Rcfal expression with possible 
activation brackets but without variables), produces tP', wher~ 

p• is the next stage of the process P, i.e. the expression to be 
found in the view-field of the Refal machine aft~r one step is 

applied to P. 

The usual mathematical notation is semi-formal, i.e. it can 
be converted to formal objects but the conversion process is not 
defined in a formal language. For the sake of mathematical dis­
cussion, we shall use in the following a serei-formal functional 
JLOtatJ,on, in which the process initiated by a machine F uith 
Inputs X, Y, etc., i.e. something which could look in Refal as 
<F(X)(Y) ••. >, will be denoted as F(X,Y, ... ). Metacode transfor­

mation is not reflected in the semi-formal notation, so that both 
<F<C ... >>and <F *(C ••• )) are denoted as F(C( ..• ))~ To trans­
late the semi-formal notation into the strict Rcfal notation, one 
must know what functional arguments are called as values (unmeta­
coded), and what as processes (mctacoded); this will be usually 
clear from the contev.L. 

4. Models, Predictions, Propositions 

we proceed now to examine the intuitive notion of a model. 

-As stated in Introduction, a mathematical proposition t.as 3 

meaning to t_!l~_!xtent ~t..J~E~-~~o!'~ .. lll~.!!:_l~- ()_f __ re~l_ity: Now we 
want to formalize the notion of a model and find som~thing like 
minimal units of semantics, some elementary propositions, such 
that combining them we could construct every mP.aningful proposi­
tion. 

Informally, ~e say that the process B models the proc~ss A 
if there is some similarity between the stages of B and A. It is 
not necessary that every stage of A or B be reloted to some staye 
of the other process; generally, we select some stagts in B which 
should be somehow put into cor•espondence with some stages se­
lected from A. Let the selected stages of A be A 1 , A2 , etc.; the 
corresponding stages of B will be 8 1 , s2 , etc. The statement tha~ 
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8 models A is then composed of tbe statements that s 1 is 

"similar" to Ai for 1=1,2, etc. We call these statements predic.-: 

tlon$. This corresponds to our intuitive notion of a prediction. 

Indeed, when ~e predict that at a certain time a certain planet 

will have certain coordinates, we specify: (1) a certain stage A 1 
of the natural process of the movement of celestial bodies, (2) 

the final stage B 1 of the linguistic process B of astronomical 

calculations, and (3) a relation of "similarity" between 8 1 and 

A1 which is tested by the process of coordinate measurement. 

To formalize the notion of prediction we assume, in the 

spirit of our philosophy, that all the three components indicated 

above can be represented by certain ex~ctly defined processes. 

Then their co~bination is also a process: the one that verifies 

that A 1 and B 1 oo exist, and that the process of testing their 

"similarity" comes to a successful end. Therefore, we define a 

P.r~diction, 9':1'\er~lly~ _a~ ___ a _:statemell~. that a _certain process 
(search) is finite. 

In mathematics, the process A, which is the object of study, 

is lin~~istic, as well as the process 8; therefore the process of 

tezting predictions can be defined by a linguistic machine. 

Consequently, the semantics of mathemntics can be completely 

formalized ~ithin the linguistic sub-universe. 

Note that ~e made the weakest possible assumption about the 

testing process. We do not assume that it always stops and ans­

wers 'yes' or 'no' to the question of whether the arguments are 

in a given relation; it docs not implement a total recursive 

predicat~. Our testing process implements whnt may be called a 
se~l-prcd~ratc: it can say 'yes', but instead of saying 'no', it 

sirnply goes on and on without ever stopping. Using only testing 

~achincs we can c~press everything that can be e~pressed through 

total recursive p_tc<:J.I_cates. Indeed, suppose we want to imitate a 

machine <a(cx>cy> ~hlch always stops and produces T or F as the 

answer. We can construct a testing machine: 

<Pt(cx)cy> 
<lo"oJ;lt T> 

.. 
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<loopf F> .. <loopf F> 

Mhich stops if and only if a produces T. Analogously we defin~ a 
testing machine pf which stops if and only if a produces F. 
Running the two testing machines in parallel will allow us to do 

anything that can be done by running a. The convers~ statement, 
that whatever can be expressed through semi-predicates can also 
be expressed through total recursive predicates, would not be 

true, of course. The semi-predicate is a smaller semantic unit 

than the recursive predicate: "one half• of it. 

If a process is represented in Refal by P, the prediction 
that it is finite will be represented by tP!, i.e. the metacode 
of P followed by '!'.We need a metacode transformation here in 

order to be able to deal with p~~!;lic;tiS!{ts as objects. 
or 

A model of a process may yield a finite of infinite number 

of predictions. Thus, we formalize the notion of a ~odel as a 

generator o( pred~"t"t ton~. To deal with models as with obiects, w<!! he.·.·~ 

again, as in the ~se of prediction~. to use metacode. So we 

define in Refal a generator G of predictions and take tG as the 

linguistic representation of the corresponding model. 
A couple of examples. The statement that a process <~> is 

finite is the prediction *(~~AA)!. If the a-machine is defin~d as 
in Sec.2, then this is a false prediction, because this process 

is infinite. The process <+(91)911> is finite. The correspQndi~g 

prediction, *(+(91)911)! , is true. 

Our treatment of mathematical statements is close to the one 

accepted by intuitionists. We read in [Heyting 1966): 

" a mathematical theorem expresses a purely empirical fact, 

namely the success of a certain construction. '2+2=3+1' must be 
read as an abbreviation for the statement: "I have effected th~ 
mental constructions indicated by '2+2' and by '3+1' and I have 
found that they lead to the same result." 

r.Je move still further in the direction of empiricism and repl'lce 

mental construction by a linguistic one. To express Heyting's 
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arith~etic statement, we use the function of addition as defined 

above, and define a tester of equality c , such that <=(e 1 )(e2 )> 

stops if and only if e 1 and e 2 are identical nu~bers: 

<= (" )(") > .. 
<=(eJrl)(e>'l)> 
<=ex> <=ex> 

Now our ~rithmetic proposition is: 

t<=(<+(Ull)~ll>)(<+(9111)(01)>)>! 

Consider the proposition: 

(Ax)(x+U = x) 

where quantification is O'l.'er all whole nur.:bers. This is a genera­

tor which produces predictions 

etc. It 

An 

wi 11 be 

lhlil = " 
1+9 = 1 

2+9 = 2 

ls not difficult to define such a generator 

existentially quantified formula like 

(Ex)(5+x = B) 

ir.t~rprcted in our theory as the finiteness 

search for the value of x satisfying the equation. 

in Refal. 

of the 

Let us now consider the statement that a given process is 

infinite. lrlhat is its meaning? Can it be understood as a gene­

rator of prr.dictlons? 

Yes, to state that a proc~ss A is infinite is to state 
that: 

19 



• the initial stage A is not passive (includes at lP.ast one pair 

of activation brackets); 
the ne~t stage after the initial stage is not passive; 

• the next stage after the neY.t stage a!ter the initial stage is 

not passive, and so on, infinitely. 

Every one of these statements can be formalized as a predic­

tion by defining a process which checks '-lhether a given expres­

sion is not passive, and stating that this process when applied 

to a given stage of A is finite. Thus the _!pfir.ity of a certain 

proc~_!__ is an infi~i"~~g_e~~rator of predictions. 
Because of the importance and frequent use of the infinity 

model we introduce a special notation for it. The proposition 

that a process A is infinite will be repre~ent~d by the object 

e~ression tA?, and in the following we shall treat such proposi­
tions, together with predictions, as certain elementary unit~. 

«toms. Thus, propositions tA! and tA? will be called atoml~. One 

should bear in mind, however, that "'hile tA! is a prediction, fA? 

is a generator of predictions, which can also be written as 

*(in! ttA) with a properly defined generator inf. 

We came close to a general definition of pro~osition. (.le 

have only to make one last generalization. It is not nece~sary 

that a generator produce only predictions read~ for use. It ~ay 
also produce generators, which in thetr turn produce pre~ictions; 

and generators, which produce 9enerators l·lhich predictions, etc. 
We shall say that P hierarchically produce: Q, if there is a 

finite chain P1 .P2 , ... Pn, such that P1 produces P1*1 , P1=P, 

Pn=Q. We come to the following inductive definition: 

(a) a prediction is a proposition; 

(b) the mctacodc of a generator which generates only propositions 

is a proposition. 

Thus a proposition may produce a whole hierarchy of prop~si­

tions, but they mu5t be such that ult imate_!y the).' _p_ro~-~-e pr~-~~ 
tlons. A formal object has a meaning as a proposition only to the 

extent we kno~ how to make it produce predictions. If there i~ no 
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way to o~tain predictions from an object. it has no meaning as a 

proposition. Atomic propositions constitute the ground level of 

the hierarchy of propositions. We recognize them syntactically by 

th~ fact that they end with a symbol '!' or '?'.)fa prop~~~~~~ 

~ocs not end with one of these it should be treated as the 
---------- -------------- -------------------
metacode of a machine which can st.!_~ 1 __ ~!!- !"~!!.. t_~ pr~~~~~- low_~ 

level propositions. 

5. Logical Co;:.,ective:s and QtJantlfiers 

t:ow we are going to interpret the means logic has for the 

construction of composite propositions: connectives and quanti­

fiers. 

Let us start with conjunction. To uphold two or more propo­

sitions ~eans, obviously, to uphold all the predictions produced 

by any of them. So we define the function and with the format 

<~nd L>, where L is a list of propositions: 

<and (e&)ea> 

<and > .. 

If P&, Pa• ... ,P0 are propositions, then the process 

will gen~rate all of them and only them. Its metacode 

ls our formalization of the conjunction. In semi-fo1mal notation 

we write: an!!(P 1 , .•• Pn>· 

To forrnaliz~ disjunction, consider first the case when both 

operands are pccdictions: s 1! and s 2 !. The disjunction of these 

r;.ro:>'isitions is the statcrncnt tb.~t;..-~L!~ast one of the two 

searches S J and ~--·!.:;..__!_~.!"~~~- This is the same as to say that the 

process in which S 1 and S 1 are run in parallel is finite. So we 
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construct the following machine: 

l<ac:t e,> 
<QL(e 1 )(e 1 )> • sl 

l<ru e.> 
where function act "activates" a metacoded expression, i.e. slrtlu­

lates the corresponding process. 
Now the disjunction S 1 ! QL S 1 ! is formalized as the fi­

niteness of the process <or(S 1 )(S 1 )>, that is the prediction 

*(~(tS 1 )(tS 1 ))!. In semi-formal notation, QL(S 1 ,s2)!. 

Let the operands of a disjunction be the general proposi­
tions P1 and P1 , i.e. prediction generators, not just predic­

tions. How do we then interpret the disjunction? 

"Je face here a new situation. Until now "'e were able to 
interpret every mathematical proposition in ter~s of prediction 
generators. But the disjunction P1 or P2 cannot be immediately 

interpreted in this way. We_c'!_n sta~!:! nei_~her of t!J~_P_t'~~-!_c_~ior:!_~ 

generated by P 1 or P 2 , because eve:y or.e of thun l•lay be false. 

This does not mean, however, that P 1 QL P2 ls meaningles~. It 

is simply that this statement includes a new factor, na~ely t~e 

concept of truth, which was .'!c:>t _present ~-n ~he mean_in~_of these 

stateme~f:_;;__w~_E_O_I'!~~~ere_c!__before__: tJote that even putting the 
meaning of the disjunction in words we cannot avoid a referenc~ 

to the concept of truth: we say: "at least one of P 1 and r2 is 
true". 

But what is the meaning of the statement that a given propo­
sition is true? No matter how we answer this GU~~tion in the 
plane of philosophy, the statement that P is t r •Je m~ans, in the 

empirical plane, that some processing was applied to P and gave a 

positive answer, or, in terms of our theory, a search for justi­

fication of Pas true has turned finite. We shall denote th~s 

search as (y P>. Accordingly, the statement that P is true is the 
prediction t<y P>!, or just y(P)! in semi-for~al mathe~atical 
notation. 

The concept of the y-process underscores the empirical cha­
racter of our approach. We refuse to accept any concept of t[t:th 
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(the classical correspon1ence concept, in the first place) if it 

cannot be e}:pre!iscd in terms of predictions about some actual 

p~ocesses. We declare~ such concepts meaningless. Hence if ~e are 

to use the concept of truth (and ~e saw that ~c coule not avoid 

it in interpreting logical connectives). we must introduce expli­

citely a truth-testing process. which is implicite in the meaning 

of logical formulas. The nature of this process will be our ma1or 

concern in th~ rest of this paper. In this section we shall 

simply use the notation y(P) for a further look into logical 

connectives. 

H~~cver. it should be clear already that the introduction of 

the truth-testing process brings in an element of subjectivity 

into the theory. A prediction A!, ~here A is a deterministic 

mech~nical process, can be verified in an undisputable way by 

simply running the process A and seeing that it has stopped. The 

state~ent A! is defined obJectively. An infinite generator of 

predictions, in particular A?, cannot be objectively verified. 

Any truth-tcstr.r for such a proposition has to rely on our know­

led')e ar.~ intuition, ~hich may vary from or.e subject of knowledge 

(us~r of thc~ry) to another. 

Our formalization of the disjunction P1 QL P 2 is 

2L(Y(P1 ).y(P2 JJ!. This is a prediction. but one about a user­

de~end~nt process. The inroduction of this process is not our 

whim, but a shear necessity. A reference to this process has been 

there b~fore: it is in the meaning of logical propositions. 

Our &~mantic definition of proposition leads to a natural 

interpr~tation of logical implication. A proposition P 1 logical· 

ly Implies a proposition P 1 if P 1 is among the propositions 

ger.tr~ted by P 1 • This definition is the most exact formalization 

J:)£ t::f! intuitive conc(·pt of logical implication. according to 

which if P1 13 irn~licd by P 1 • it is already somehow contained by 

P 1 ; inclu<!':!d in it. l-Ie can define in Refal the machine i!!J..Q with 

th'! forr..:;.t <i~P..(P.P) .. cq>, which tests whether eq is one of the 

propositions pro~uced by ep. The proposition that P logically 

impliP.s Q is then, in semi-formal notation, imQ(P~Q)!. 

The relattrJn bcb1een £> and Q e)(pressed by imp(P .. Q)! is very 
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different from the material lmpllcat lon of mathematical logic. 
The latter, unlike the former, can connect two arbitrary proposi­

tions which in no way are related by their lilcaning. It est~b-­

l!_f:ihes t~e-~o':lnecti~~-~y _!or~-~, so to say, ~"!_~i_!!a_ H, ~s an 
empirical fact, a new law of nature. Using '•' to symbolize 

implication, we can declare that 

(x is an apple) ~ (x is on the table) 

even though the definition of th~ concept of apple doP.s not in­

clude that it is necessarily put on the table. Compare this w! th 

the following implication: 

(x is an apple) ~ (x is a fruit) 

This proposition, like the preceding one, can be put foreward as 
a material implication, but it is also true as a logical implicc.­
tion, because being a fruit is a part of being an apple. In 
Kant's terminology, logical implication forms an una!ytlc judge­
ment, while material implication forms a ~ynlhetlc judge~ent. 

In our theory we formalize both. logical and m~teriaJ. 

implication and one can see how different these concepts are. In 

contrast, the conventional !"at_herna_':_i_cal logi~ __ h.C1~ __ ()_r•lY _2_(l~ __ jf.ll)l_i-:· 

ca~i-~n_: __ lll_aterial. The closest thing to logical implication that 

mathematical logic has is the concept of deducibility: Q is 

deducible from P if the (material) implication P~Q is a tautolo­

gy. The difference between the two kinds of implications becomes 
here a met3_:-~cept referring to lhe way '"1e deal with proposi­
tions, not a property of the propositions the~s~lves, as we 

conceive it intuitively. This reflects, of course, the purely 

~ntactic (forma!.L~<l_!:_ll_r_e_o~th~~ti£!!.1. ((~U lQ.9!£, and 

constitutP.s, !_n __ o_~~r vie_w, it~m~i~ d_efici~r!c;(. Formal logic has 
nothing to do with the me~ning of the constructs it introduces. 

For instance, when the connective ~nd is defined, it is ncw~~re 
to be seen that P and Q logically Implies P, so we have to state 

it as a malerial implication. In our theory, the definition of 
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the and con~~ctive formalizes our intuitive understanding of it, 

its meaning. ~ccordingly, we do not have to postulate that 

P and Q logically implies P, we can prove it. 

We sh~ll use the notation 

for ~he mater~~~-- implication involving a pair P and Q, where P is 

the cn!ecedent, and Q the consequent. How can we formalize this 

concept? 

Consider first the case where the antec~dent of an implica­

tion is a ptediction: 'if the process A is finite then proposi­

tion P'. There is an obvious way to interp•et this proposition as 

a generator of predictions: we run the search A, and when/if it 

stops, produce proposition P. we define the !1 machine as fol­

lo~s: 

<~(e0 )!then ep> 

<se~ong(e 1 )(e 1 )> 

<~econd(<act ea>)(ep)> 

(e.> 

This machine activates the process ea• and when and if it 

Pn~s. generates ep • The auxiliary function second is needed to 

dl~car~ the £irst element of a list and output the second ele­

ment. The parenthe~es in the final result are necessary because a 

pro~osition-g~nerator, according to our convention, produces a 

rtst o~ propo~itions (which in this case consists of one member). 

I! the process ea is infinite, the 1! machine will go on infi­

nitely. producing nothing. 

So, if tA! is a prediction an~ Q an arbitrary proposition, 

then the materiul imDlication of the latter by the former is: 

t<i!(tA)!~b~ Q> , 

Now let the antecedent be a prediction gene~ator, for in­

stance an inlanity model. What do we mean when we say "if the 
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process A is infinite then proposition p••1 

1\s in the case of disjunction. there is a hidden referoznce 
here to a process which establishes the infiniteness of A. What 

we ~ctually mean is "if ~e can kno~ that A is infinite then P~. 

There!ore. for an arbitrary proposition P. the material 

implication P • Q is interpreted as: 

ll T(P)! _then Q 

The property of implication that a fals~ antecedent forms a 

true proposition with any consequent shocks everyone who studies 
mathematical logic for the first time as contradicting our ir.tui­
tion and common sense. Then one gets used to it and accepts the 

usual justification. namely that taking such a propo~ition as 
true we can derive a false proposition (by t~c Modus ronens rule) 

only if we have already derived at least one [al~e pr~positi~n. 

the antecedent; but then out" theory is already false. so we d·:) 

not care. flere we clearly see the contradiction be:tw~en the 
purely syntactical, asem~ntlc nature of the conventiondl math~­
IJiatical logic and our unexpressed expectation that a forrr.nl logic 
will pick up and codify the es~ence of different forms of 
thought. which is their meaning. In our theory. an ir..l'licatior. 

with a false premise is not true in the same sen~e as a pre1ic­

tion. or a generator producing true predicticns can ba trQe. 

Neither is it false. It is empty: a generator which produc~s 

nothing. This, we believe, is in perfect agreement with ou: 
intuitive expectation. 

To formalize universal quantifici'!tion, we define tunction 
all with the format all(V £ G: P). (from now on, we shall use 
only semi-formal notation). where V is a variable, G is a sat 
generator. and P is a propositional form rlepending on V (or any 

expression which may include V). The~!! machine activates the 

9enerator G step by step. substitutes the objects produced by G 

for every V in P. and produces the resulting expression. For 

instance. if <N e> is the generator of all natural numbers, and 

P(x) is a propositional form representing in our theory some 
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predicate P(x) of formal logic, then 

all(x £ N: P(x)) 

is our representation of (Ax)P(x), ~here x runs ovar all natural 

numbers. 

To express existential quantification we define the search­

inq machine sch with the format sch(V £ C: S), ~here V and G have 
the 3ame mean;ng as above, and S is a search which may depend on 

.the vari~ble V. The sch machine runs the generator G, substitutes 

the ~roduced objects for V ln S and runs all the resulting 

searches S in p~rallel. The moment any of these searches comes to 

an end, the sch machine also stops and outputs as its result the 

object which ha~ made S finite. 

If a pre~icate P(x) of formal logic can be represented asP! 
in our theory, the quantified proposition (Ex)P(x) will be repre­
scnt~d as sch(x € G: P(x))!. If P(x) corresponds to a general 

proposition (9enerator) P, then we must use function v to convert 

it into a search: sch(x £ G: y(P(x)))!. 

Negation in our theory, as in intuitionism, is. the most 

sophisticated of the connectives. We introduce a speci~l device 

to establish the falsity of P. The negation of Pis formalized as 

as i(P)! To d~fine the i-process, we must concretize our concept 

of the y-proccss. 

The y- and y-processes are related through the concept of 

hum~n knowledge 

W~ dcfin~ a kno~lP.dge as a propo5ition which is believed to 

b~ tru~. This d~finition reflects our subjective attitude to~ards 

~nowlcdge and the way we us~ it. We use propositions believe~ to 

be trc~ in oc~cr to make predictions, and we believe in these 
prc~ictions, i.e. pl~n our actions under the assumption that 

actu~! procc5s~s ~f the world will conform to the pre~ictions. 

Th~ que~tion whether what we c~ll our knowledge is actually true 

is left to an obzP.rver (if any) who watches us from outside. Tbe 

conc4?~ of ttuth ~~ inseparable from ~n observer, like some 
funda~~ntal concepts of modern physics. The truth of a proposi-
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tion is somebody's readiness to plan his actions in accordance 
with the predictions implied by it. In the absence of this 'some­
body', the concept of truth becomes meaningless. 

If a proposition is a generator producing predictions infi­

nitely, we cannot veriiy them all. Our readiness to rely on it as 

true is based, in the last analysis, on a belief, and not on an 

empirically established truth. We do n~t discuss at this ti~e the 

philosophical question of how this belief is arrived at; the only 

thing we can say about our knowledge is that "we believe because 

we believe". Then the only thing we can do in our theory is 

simply introduce a symbol to denote the sum total of mathematical 
propositions believed to be true by the subject of knowledge. We 
shall use the capital Creek letter r (for 'gnosis', knowledge) as 

such a symbol. Now we can define the v-process as follows: 

The v-machine tries to deduce its argument from the knowle~g~ r. 

If <vP>, where P is a proposition, is finite, then P is true 

because it is implied by our current knowledge. If it is infi­
nite, then we can say nothing. 

Using the concept of human knowledge r, we can define 
negation as contradiction to r. 

Atomic propositions A! and A? with the same search A will be 

called opposite. A pair of opposite atomic propositions is a 
contradiction. A proposition is contradictory, or lnconslslen!, 

if it produces a contradiction. Otherwise it is consistent. 

We can construct a machine which tests that a given proposi­

tion is contradictory. Let its format be <con ep>. It runs ep and 
keeps track of all the atomic propositions produced. ~henevcr a 
new atomic proposition is produced, £Qn examines it against the 
all those produced previously. If a contradiction is discovered, 
£2n stops, otherwise it goes on infinitel1. 

If P is a proposition, w~ interpret its negation as the 
statement that the conjunction of P and the h~man knowledge r is 

contradictory: &Qn(an~(r,P))! . Defining function vas 
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:YCP) .. con(~nd(r ,P)) 

~e represent the negation of Pas the prediction :Y(P)!. 

So, we have two "cognitive" functions: y(P) establishes the 

truth of proposition P, :Y(P) establishes its falseness. 

By introducing a notation for human knowledge we_do not 

solve all our problems, however. The symbol r is a metasymbo~; it 
stands for some eHpression which we do not write out explic1tely. 
eut here is a problem: the human knowledge -- be it that of one 

person, or of ti,P. hurn11n race as a whole -- does not stay the 

same; it i~ al!velopiruL__growin9. Essentially, it is a process, 

not just an ohjcct e:t<pressior.. Then how shall_~~-~_!lter..P!~t the 

concep~f_ti~~h w_!_~_t:l_!~_E_el::!: __ to this e"~r. c~~n~~~_k_!lo~!':~~~? 
T~o ans~ers to this question are possible, both consistent 

if kept firmly to. As we shall see later, 1:!te first answer lf!~ds 

~--the .!.!:'.~ui tionist l~gi!=, while the second to _the __ ~!~~~ic_~~..: 

lntuitionis~ic. Since the meaning of propositions depends on 
r, we consider the meaning definite only if a definite r is 

indicated. We can think of r as the sum total of human knowledge 

at th~ present time. Therefore, (yP> will be finite and P accep­

ted as true, only if we actually performed the proof process 

based on a definite r. Although r changes as the human knowledge 

is growing, at any particular moment in timer should be treated 

as a definite fized expression. 

Classical_lo'J~- L-Jhen we speak, e.g., of existential quantifica­
tion, wn do not say "such an x that we can prove P(x)", we say 
"such ~n x th.lt P( x} is actually true", even though we may not be 

able to find thi~ x on the basis of our present knowledge. Thus 

we rcfr~r not to our present knowledge, but to an imagineCl ~-!'"'.- .. 

plete knowledge, which implies all the propositions that we may 

find true now or at any future time. From Coedcl's thecrem we 

kr.o~1 thilt no __ ~efinit(! expression r can represent ~his completji! 

kro<:>~><l ~·Jgc. tole car. see r <:>nly as an unreachable 1 imi t of the 

c;.:::-and ing human knoHlCd<:Je, or as the expandi n9 human knowl·edg<! 
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itself (a process), because Its every stage includes the kno~­
ledge which existed at all the past stages (a cumulative pro­

cess). 
It is pretty clear that a consistent theory can be based on 

the intuitionist viewpoint. Our main effort will be to show how 
classical logic and set theory based on it work, and to prove 

their consistency. 

6. The Concept of Truth 

Intuitionism is based on a philosophy differ~nt from that of 
classical mathematics. In our theory, the difference manifests 
itself in the definition of the truth-seeking processes. But it 
may seem that even within one philosophy of mathematics we have 
two different concepts of truth: (1) A proposition is true iff it 

hierarchically generates only true predictions, and (2) A propo­

sition P is true iff the process v(P) comes to a halt. In fact, 
however, we have a single definition of truth, of which (1) is 

the intuitive, informal version, while (2) is its formalization 
in our theory. 

To better understand this situation, let us ~ra~ a parall~l 

with physics. Consider a particle. The notion of its po:ition tn 

the space is intuitively quite clear and unambiguous. Should 
there be no such concept as coordinates, one ~ould never think 
that the notion of the particle's position is ~lawed or insuf­
ficient. Yet to turn this intuitive notion into an exact phys1cal 

concept, we use coordinates, and the process of measur~ment which 
yields them. 

In our theory we treat the intuitive notion of the truth­

value as the physicist treats the notion of position. We define 

I!_!OC~sse_~_~hici)_!J_ete_rmine the t~~~h-v<lliJc ... of ev.:!ry proposition, 
measure it, in a sense. Like the process of measure~ent in 
physics, the process of truth-seeking is started by a decision 
of the su~ject of knowledge and may vary conside~ably, yet it is 
not completely arbitrary but must conform to certain require­
ments, or follow certain rules. We set two rules, whic~ are, 
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esser.t:ally, the definition of the process of mathematical cogni­

ticn representerl by the rnetasymbol r. The consistency rule says 

that we accept a stage rl of r as knowledge only if we cannot 

produce any contraaictions from it. The completeness rule demands 

that whenever ~r:e discover a proposition P such that add(r 1 ,P) 

produces, to the best of our knowledge, no contradictions. yet P 
is ~ot produced by rl, we add P to the kno~ledge, i.e. take 

rl+l = ~QQ(ri ,P) as the next stage of 1'. 

The original intuitive definition (1) is equivalent to (2). 

-ey the consistency rule, whenever y(P) is finite, P produces only 

true predictions. By the completeness rule, whenever P produces 

only true preaictions. y(P) is finite. 

But is it not possible that some P is, in actual fact, true, 

but y(P) is infinite? No, it is not. Because the meaning of the 

phrase "Pis, in actual fact, true" is that it is possible to 

prove in a convincing way that P is true, if not with out current 

kno~tlP.clge r 1 , then at a later stage. Otherwise the phrase makes 

no sense (eacept, maybe, a metaphysical one, which is not our 

conc<:'rn here) . 

M2lhe~atics, as every other branch of science, makes pro­

gress by the method of trial and error, which is known to mathe­

maticians as rcductlo ad absurdum. Whenever we state the current 

r 1 as o~r knowledge, ~e cannot, theoretically speaking, be com­

pletely sure that at the ne~t stage we shall not find rl incon­

si&t~~t, ocr acceptance of certain powerfnl propositions as true 

is a mere consensus. Yet in o~ theory we assume that every stage 

rl of the cognition process is true. Does it not invalidate the 

theory? 

As every scientific concept, the concept of the cognitive 

proce~s is Idealized. A parallel with physics will help again. 

Particle ccoruinatcs, as they are used in theory (we are speaking 

o£ cl~~sical, not quantum, mechanics), result from idealized 

incorruptible mcdsurements, which can never be reali~ed in actual 

fact. Th~ discrcp~~cy between actual and idealized measurements, 

i.e. the error5 of measurments, are taken care of, but at a 

different levc~, not in the theory itself. The rational members 
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x 1 of a Cauchy series representing a real nu~ber x can be ~cen as 

the result of an idealized measurement; they can be compared with 

the stages r 1 of the idealized cognitive process T. An error ~~de 

by a human being, or a computer, in a proof, has no more (an~ no 
less!) effect on our theory than an erroneous measuremP.nt has on 

the theorems of classical rnechanics. 
The method of getting mathematical knowledge e~emplifies the 

general method of science. We put foreward a hypotetical general 

stateraer,t. a generator of predictions P, add it tentatively to 

our knowledge, and test against the verifiable facts, predic­

tions. If there are no contradictions, P stays in the knowledge, 

although, in principle, as a hypothesis only. Recognizing this 

process as the essence and t~e meaning of the concept of truth in 

mathematics, we formalize it and put it in th2 foundation o! 

mathematics, like the physicist who formalizes the proc£~s of 

measurement as the concept of real numb~r. Our empiricist ap­

proach stands in contrast to the t_ra~~-tional, if not always 

articulated, idea of mathematics as having a s_~[);ii!Ct a_~-~---~--~ett~oj_ 

whic'!__!_~_!.a~_~c:;~.!.!L~~..!.~~~nt fr()m thos~_of nat~}l__!~cie!!.£.~- ':'hi:; 
latter idea has lead people to define the con~ept of a_~~~h~~~~~­

cal truth as s~m!!t~_ing soaring_i.~. high sphec'!s of or,~~!.!l_d __ ~~ 

another (Plato, of course, was the first who expressed this icea 

in~-~-~~(>Urt:~!: foEmJ, and ~hink__abr..ut truth-testinc;~ as s•:methin'] 
secondary, derivative. We reverse this relati~n~hip, follc~i~g ,-·-·- ···- ---·-·· .. ------
the lead of physics, which achieved spectaculdt 5UCcess~s by 

pu!:_!:_!_n_2. __ ~!;;e_r~~-J:>l~ _!act.~_ ~!'d processes in fro:1t of metaphysical 
imagea which uncriticised intuition takes for real entities. 

To id~ntify the concept of truth with th~ cognitive pr~~e~s 

expressed by r, v and v, we have made two idealizin~ assumptions 

about this process: Its consistency and complet~ness. Since th~ 

cognitive process is a creative process freely initiated by the 

subject of knowledge-- i.e. ~y the party referred to as ·~e· and 

"us~ in mathematical texts, these assumptions should also be 

described as the rules we have chosen to adhere to in or~er to 

discover mathematical truths. By the consistency rule, when ~-:~ 

see that P i~ false we cannot add it to the kno~ledqe; the 
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infallibility of the idealized user is an expression of this 

self-correcting nature of the cognitive process. By the complete­

ness rule, if we are convinced that P is true we cannot leave it 

alone a~d not to add to the knowledge. 

7. Real Time and Model Time 

Mathematics is the art of constructing the most fundamental 

~odels of real:ty. We formalize mathematics using the concept of 

the Refal machine. To create models of reality by means of the 

Refal machine we: (1) put into its program field some defini­

tions. (2) put into its view-field some 'processes' (which are, 

in f~ct, certain eY.pressions representing initial stages of 

processes) and start the machine. The processes going on in the 

vie~-fi~ld of the Refal machine are modelling real world processes. 

~e can distinguish two time scales here; two "times" as it 

were. We write definitions and put them into the memory of the 

Refal m~chine as living human beings, in real llme. When we run 

the Re£31 rr.achine, the se~uence of its steps represents another 

time: the time of the mechanical process we initialized. Although 

th~ p~occEs to be modeled occurs, presumably, in real time again. 

th~ Refal machine runs in a different time, which we shall refer 

t~ as m?dPl ttme. We can compress or expand model time unlimi­

t~dly -- in imugination if not in reality. W~ can run the Refal 

r.~chine at a speed of one step, or one tho~sand steps, or one 

million steps per second. No m~tter what the actual speed is, ~e 

still cun imagine a speed that is twice as high. Moreover. ~e can 

exa~ine the stages of a mechanical process in the inverse order, 

that is ;..:e can reverse model time. Medel t~m~!. .. \l.~lH:e real time.,. 

~_co:" p1etely subject to our will. t-lodel time is a feature of the 

rnachin~s ~e run uzing hardware or imagination. 

Knowledge is the existence in a cybernetic system of a model 

of s?~~ part of reality. Knowledge is both objective and subjec­

tivl': !iecause it n·:.t.lts from the interactio:'\ of thE" subject and 

the obje~t of know!rdge. We know lhat knowledge is never com­

plete.aut if the information flow between the subject and the 
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object is only in one direction -- from the object to the sub­

ject, we can imagine a complete knowledge (i.e. a complete per­

fect ~odel) of the object; this idea is not contradictory. If 

there is a flow of information from the subject to the object 

too, the notion of a complete model may become contradictory. Let 

s, be a system-object, and S 1 a system-subject. Suppos~ S 1 in­

cludes a complete model of S 1 • Then it can run this model, com­

pressing model time with respect to real time, an~ predict the 

behaviour of S 1 for all times in advance. This prediction can be 

aent to S 1 , which can change its behaviour so as to falsify the 

prediction. This contradicts the assumption o! a complete model. 

In particular, the f!~~Jon. of ___ !=()~l>!.!!_!:~s«:l~.-:-~fl()~):!~ge (the case 

when S 1 = S 1 ) is c~n_!:radictory. 

It follows from this reasoning that when we are d~aling with 

the processes of self-knowledge we must clearly distinguish be­

tween real-time processes and model-time processes. If ~e allow 

the difference to be blurred we may come to absurdities. For 

example, when we say "imagine a real-ti~:~e process A" ;.:;e already 

are in a danger zone, because our imagination creates a ~odel­

time process which is not the same as the original real-ti~~ 

process. It will cause no trouble if process A is detach~~ from 

ourselves (we is the subject of knowledge), so that it canr.ot be 

influenced by what we are doing; otherwise, we can only say 

"imagine a model of a real-time process A , which, of course:, !s 

only partial". 

One can picture a real-time process as consisting of a 

definit~ past and inaefinite future, with ~ border between th~m 

known as "this.mom~nt", or "now". A real-time proces5, gen~rally, 

is not deterministic. Any statement concerning its future is in 

the mode of possibility, not necessity. When we zay that the 

process v(P) Is finite, we mean that it can be f~nitc. Even wh~n 

the ::.ubject of mathematical kno1dcdge is the Nhol~ of hur.ar.~ty, 

there is no guarantee that for every true (i.e. prod~cinJ o~ly 

true predic~ions) proposition P the procc5S of provir.~ P will be 

actually completed. If humanity extermin~tes i~self, or is de­

stroyed by a cosmic catastrophe, a lot of theorc~s will be left 
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ur:proved. 

Our theory is a formalization of the self-knowledge of 

rnathe~atics. Therefore the distinction between real-time proces­

ses and ~odel-li~e processes is for us an absolute necessity. so. 

how should the difference between real time and model time enter 

our theory? 

1he ~rocesses that take place in the view-field of the Refal 

machine as the result of the application of sentences are model­

ii~e processes. Should the program field be fixed once and for 

ever. there would be only model-time processes ln existence. and 

no chan~e in real time. But in fact it is not fixed at all. The 

progra~ .!.~e_l~ of _the Refal machine which represents .JIIathematics 

_!~--~!·a_ng_ing in real time as we create rn.:>te and more mathemat_ics. 

whic~ ~~ans that we define new processes and expand our knowledge 

of th~ processes already defined. 

It ~ould be exceedingly inconvenient if we had to consider 

ev~ry part of the memory (program field) of the Refal machine as 

pote;-;.t:i.al!y vc:.riable in real time. t-Ie could hardly come to any 

ce!inite conclusions in such circumstances. But we can define a 

certain n~~ber of real-time processes anj give them a place in 

our for~al system. Air temperature in the City of New York could 

be such a proce'is. Or the mathematical knet~ledge of mankind. 

We shall represent real-time processes as follows. Like 

ffiOd~l-~i~c proce~ses, a real-time process is distinguiRhed from 

an object by a pair of activation br&ckets which delimit its 

re~rese~tation. The contents of the brackets may be anything 

w~ich i~cntifies the process, e.g. a sy~bol. However. the activa­

ti?n of thc~e brackets docs not bring a~Dut all stages of the 

proc~s~. as in the c~sc of a model-time rrocess (we do not know 

th~rn a~l in advance), but produces (in one step) only the current 

st~g~ of the proce~s. Thus real time re~ains real time and no 

att.r::::-.;;':. (n?t ever. a concealed one) is ::;a;:e to substitute a model­

ti~~ ;r~c~s~ for a real-time process. The notation <R> of a 

;e~l-tl~~ proccs~ is a device which allows the Refal machine to 

bave ~cc~ss to the process; which means to its current stage. ~e 

c~n ~~3ccib~ this situation as the prese~~e in the program field 
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of a sentence: 

<R> + E 

where E is an object expression which represents the cur~ent 

stage of the process <R> and changes in real time. For i~stancn, 

we can use <te~tlYC> in a Refa~ program and declare that this 

term will be replaced, as the Refal machine ~o1orks, by the current 
temperature in New York expressed in agreed units with an agreed 

precision. The results may be different if we run such a program 

today and tomorrow. 
our formalization demonstrates the profound difference be­

tween real time and model time, which was first realized by Henri 

Bergson, who described real time as "duration" and contrasted it 

with the time as known in mechanics, which he saw as a projection 

of duration on space. Norbert Wiener, in his Cybernetics, also 

juxtaposes Newtonian and Bergsonian time. In our terms, r-;e:.Jtonian 

time is the model time: a feature of deterministic mathe~atical 

models of reality. Bergsonian duration is represented in our 

~J1eo_r:¥ by real-time access functions: this is something ve_ry 
different from autonomous machinery representing model til!le. 

The Refal machine is a formalized version of a part of the 

cognitive apparatus of the human being. We can compare this 

apparatus with a complex computer system. In coffiputer syzte~s we 

distinguish subsystems tlhich work of(-llne and those ~o1hich work 

on-line, in real time. Running off-lin~ subsystems !s analog~us 

to those processes in human brain which we describe as imagina­

tion. Usually we sec math~matics as dealing with our irnagin<:~tion. 

This is generally true, but with a notable exception: when deve­
loping metamathematics, i.e. mathematical self-knowl<!d')e, ~"? 

cannot, as disussed above, limit ourselves to mod~l-time ~ro­

cesses only, because human knowledge is a real-time process Nhich 

has no complete model. Thus the model of human cognition ~.o;hich we 

are constructin9 must recognize the fact that our brains do ~ot 

exist in our imagination only, but are real cybernetic syste~s 

which exist in real time and have subsysteihS which wori< on-line, 
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in rea 1 time. 

Access functions to real-time processes imitate, or model, 

links between our cognitive apparatus and the real world; they 

are sort of 'sense organs' of the ~efal machine. The ~~al world, 

_!~mu~t be _ __!l_?_t!!(l, inc_liJdes not only __ t~lng_s ext_ernal _to u:; ))_11t 

-~lso th~-c~rrcnt state of our cogni~_io~·- We can create models of 

external ~rocesses, and then models of our models of external 

p!ocesses, and models of models of models, etc., but the whole 

hierarchy will invariably exist in the real world and will be 

open to change in real time. 

The knowledge r which shows up in the semantics of mathema­

tical propositions is a real-time process. To connect the Refal 

rnact.ine with this process we use the access function <gns> 

('gnosis'). The symbol 9n§ is a regular Refal symbol. The 

activation of gns gives (in one step) a proposition which sums up 

all the knowlc~ge we (the subject of mathematical knowledge) have 

at the present t irnc. 

We shall use subscripted symbols r,, r,, r 1 , etc. to denote 

specific stages of the human knowledge process. Since the result 

of the activation of <gns> may be different at different times, 

the process <gn§> is undefined in Refal, or, equivalently, 

defined by a sent~nce 

the riglat sid~ of which is provided by the user. The cognitive 

fu~ctions ~ and v represent the processes of testing truth and 

falsehood. As l'lo:! mentioned before. our fe>rmalism allows two 

inter~retution~ of the cognitive ~-u~ct!o.~~ One interpretation 

treat~ r us a dc[in_~t:e exprcssio!]_Ci.!l_d le_ads to intuilionist. 

logic. This interpretation is static 1~ith respect to the real­

tim~ ~roctss of human knowledge. It docs not exclcde the possibi­

lity cf r changing in real time, but during one run of the 

function Y (or ~) the stage of r is taken to be fixed, un­

chan~ing. the following sentences define the cognitive functions 

in ~tatic i~lc,prctation: 
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~(P) 4 im~(~ ~ P) 
~(P) ~ £QD(a~d(~,P)) 

These functions are not autonomous mact.in~:s; they depend on 

real time. But once the concretization of <gn~> is ~one, the 
further operation of ~/v in static interpretation is autonomous, 
mechanical. Essentially, we deal here not with one concept of 

truth, but with as many concepts as many stages of r 1 or r are 

there. 
The other interpretation corresponds to our intuition of 

obJective truth and leads to the usual, classic logic. In terms 
of our theory it is dynamic, because it _take!i the real-tioe p:o­
cess r as a whcle and involves all stages r t of r in thc __ proces­
ses y and :Y. The process ~(P) is running in parallel the 

searches imp(r 1 • P) with each new stage rl as it avpears in real 
time, and :Y(P) is defined analogously: 

l!.m2(gns .. P) 

v(P) • sl 
I~(P) 

lcon(and(qns,P)) 
:Y(P) .. sl 

IY<P> 

In dynamic interpretation, ~(P) and y(P) are genuine r~~l­

time processes in which the operation of the Rcfal machine is 
intertwined with the process of human knoHledge. They depend on 
the time interval At that it takes for the Rcfal machine to c~k~ 

one step, but those features of the cognitive functions which are 
essential for our theory do not depend on At, as we shall discuss 
in more detail in Part 2. Let r 1 be the state of hu;r.a;, knor.-:l!!dge 

at the !41oment when the Refal machine is making its i-th ste·p. 

Then the function ~(P) will run in parallel the ~earch~s 
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inp(r 1 ... P). imQ(I· 2 .. P), etc .• each next precess one step behind the 

preceding. If a stage r 1 such that i~ocr 1 •P) is finite ever 

ap~ears in human knowledge. and only in this case. the search 

v(P) wi!l be finite. The search y(P) will be finite if and only 

if P co~tradicts some stage r 1 • 

We new have two kinds of processes: 

(1) Those ~>lhio.;h never call real-time access functions. We shall 

call such processes mechanic«l. They are generated by an auto­

nol:lous m<!.chir:-~ and are completely defined and deterministic. 

(2) Those ~<lhich at one stage or another call a real-time access 

function. A machine that generates such processes is not autono­

mous, it is open to the user. the subject of knowledge. We 

assu~e fro~ now on that the Refal machine can have no direct 

cor.tact with physical proce~ses in the world bypassing our (the 

user's) consciousness; ~~~!:~_er is cha:1ged in the memory _f_i~_!d !_;> 

~_h<..r~9_e1 by our decision. Processes generated by such interaction 

betwe~n the subject of knowledge and the machine will be called 

metanechar:ical. In terms of computer science, the machine here 

~or:ks in th~ interactive mode. and the subject of kn~wledge is 

the user of this machine. The 2Dth century's physics has dis­

covered that we cannot eliminate the subject of knowle~ge from 

our: !l!_!:t_~_c_e of the physical world. 0-:.;r th~or:y reflects an anal~=­

~?~? situ:~':.ion in mathe[!latics. t:athe::~atical knoNledge is the 

construct!on of machines to reodel reality. but these machines do 

not always work autonomously: &ome are used in the interactive 

mode. 

Combination of logical connectives may lead to predictions 

about proc~sJcs which ~1 call cognitive functions. i.e. pre­

dictions about rnctamechanical processes. For instance. the law of 

tt.e r~l'.dudr:o ::~id~le is Q!_(-v(P),:Y(P))!. Sut how are we to judge 

whether ~u~h a statement is true or false? A prediction about a 

~~~h~nic~l ~coc~s~ is well defined becacse the ~roc~ss itself is 

wei l <:!<.: f i r.• <J and clctcrmi ni st i c. Bul _E~ta~~_c_t"la_n i_ c;a !___pro_!;:~-~~'=~--~!~ 

not d•:t·:::;.:i~listic, so rr:cdictions at-out them have no meaning! At 
.....___~.~---··----""--....--- ~~~- ~--- "" -~-------· ..... ·-·----
lea~t. n~t G~forc we somehow define their meaning. 

ln th~ second part of this paper ~e shall give an intcrpre-
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tnti to statements about rocta~echanical proces~es of ~ath~­
roatics which closely matches our intuitive understanding of ob­
iective truth. But to admit this interpretation, a rnetam~chanical 
process must meet certain requirementsi we call such processes 
and propositions about them obJectively Interpretable. Those 
proposition which are not objectively interpretable have no mean­

ing. It is by using these ~~~':'ingle~~~~positi_ons __ _!:!'at_~c:_op.!! 

~!-!~ .. ~he ·wE!ll=kno~>l~-log_!~~!- and_s_..e_t_:::t~-e~-~ical parac1~.!:!~!i:.. 
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