TBE CYEERNET:IC FOUNDATION OF MATHEMATICS
I1. INTERPRETATION OF SET THEORY

Valentin F. Turchin
Department of Computer Science
The City College of New York

1. Basic D=2f-1itions

e szarvt with a recapitulation of the basic cdefinitions of
cur fo.mzlisr which were introduced (scometimes sewmi-formally) in
rart 1 of tihis paper. When we do not want to add anything to the
previens detfinitions, we send the reader (implicitclyi to Part 1I.

Car thesary is using a formal languaye called Refal ard a
"machin2 ¢ gaper”™ cailed the Refal machine. Elementary syntax

i f fefai are of two kinds: special signs and object symbols

3szcial s5igns of Refal includa
o stryu-ture bdrackets ‘(' and ")*;
s activatior brackets *<¢' and °*>';
e« free varizatics, which are represented by a subscripted °s' (a
symbol vartablz) or ‘e’ (an exprescsion variable), e.g. Sy Sy
Eg.
Ohiect symbols used in Refal are supposed to belong to a

finiie 21phabaet, which 3s not, howxever, fixed once and forever.
tie £hall vse as objecl symbols:
e zhaticters distinct from special signs,
« sugperscripted characters like F',
« strings of characters underlined to form one (composite) sym-
kol, e.q., thea.

Lle u3e capital italic letters A, B,... ctc. as metasym-
bclz to denste Refal objects and preocesses.

Fefal’s co-nsite z=yntaw units are as folloews.
« kn crprezsion is an object which can be identified as one of:

(2) “te ewmpiy string, which we may repiesent just by nothing, or

by the metazymbol [];
(b) a symbol (i.e. an object symbol, rot a special sign);
(c) a variable;
(d) E'E*, or (E'), ot <E'>, where E' and E' are expressionz.
» 2 term is cither a symbol, or a variable, or (£), or <€>, where
£ is an expression,
e A paltern expression is an expression which dons not include
activation brackets (but generally includes variables). A procass
expression is an expression which does not include variables (but
generally includes activation brackets). An objecl cxpression is
an expression which irzludes neither variables nor activation
brackets. An L-expression is a pattern exprescion whica:
(a) contains no more than one entry of every e-variable,
(b) contains no more than one e-variable on every level of braz-
ket structure, i.e. cannot be represented as

E

E E

181 %285 53 >

where subscripted £'s are expressions. Examples of L-expressions:
Ae,, BC(DE), e +(ey)(ez), s,e.5,;

Examples of pattern expressions which are not L-expressions:
e,+e,, (ex)ABCex, elsz((el—ca))

o A Refal sentence is an object of the form <L> » B, uhcre L is a
pattern ezpressien and R is an acrhitrary (general) expression of
Refal. The sign '-»' is just a symbol (not a special sign) whicn
is used for visual convenience. L is referred to as the left
stde, and R az the right side of the sentcnce. The right side can
include only such variables which appear also in the left side.

e« A list of expressions £

e Eqv - En is the expression

EIE,) ... (E)

n

« A Refal program is a list of sentences.

The Refal machine has two information storages: the program-
field and the view-field. The program-field contains a program,
which, is loaded into the machine before the run and does not
change during the run. The view-field contains a process expres-
sicn which changes in time as the machine works. The process
expression in the view-field may be, in particular, an object
expressicn, 1i.e, may not contain activation brackets. Then the
kefal machine stops -- or, one might say, reproduces the same
object expression indefinitely -~ until a new run is initiated.
Crargs, as we said above, comes only from activation brackets.
This is our way of representing the abstraction of invariability,
which lies at the root of the notion of an object. Our object
s¥pressions are linguistic representations of natural objects,
which arc supposed not to change with time. Concatenation and the
use of structure brackets (parentheses) allow us to render the
hierarchical structure of natural objects as they are built of
certain elerantary objects, which we represent by object symbols.
To represent a change in time, i.e., a process, we enclose an
object eupression in activation brackets, and then the Refal
machire will transform such expressions step by step, thus gene-
rating a linguistic process. If at some stage this process (i.e.,
the process expression in the view-field) becomes an object
expresszion, we say that the process is finite.

Pctivation brackets may be nested; then they will be activated
in a unigue order using the principle 'inside-out, from left to
rigqht’. HMore formally, we define the range of an activation brac-
ket as the subexpression limited by this bracket and the one
paited with it. UWe define the leading activation bracket in a
given evprecsion as the leftmost sign < of those signs € which
Lave no other signs < in their range. The Refal michine works by
steps, =ach step being an application of one of the sentences
frem the program-field to the term in the view-field which starts
with *he« leading activation sign; we call this term the active

terri g9f the pLocess.

We say that an object expression Eo can be syntactically
recognized as a pattern expression Ep if the variables in E£E_ can
be replaced, observing the rules listed belouw, by object expres-
sions called their values such that £, becomes identical to £.
The rules are as follows.

(a) An s-variable 5;, where I is any index, can take as its value
any symbol.

(b) An e-variable e, can take any expression as its value.

(c) All entries of the same variable in Ep, i.e. variables with
the same sign °'s' or ‘e’ and the same index, must be replaced
with the same value.

It can be shown that if Ep is an L-expression, then there is
no more than one set of values for the variables in E£_ such that

P
their substitution transforms Ep into E and there is an effi-

cient algorithm which establishes uheth:r ED can be syntactically
recognized as Ep, and in the case of a positive answer determines
the values of the variables (see [Turchin 19%88]}).

Now we can describe the operation of the Refal machine. Each
step starts uith locating the active term in the view-field. If
there is none, the Refal machine comes to a normal stop. Having
found the active term, the Refal machine compares it with the
consecutive sentences in the program-field starting with the
first one in search of an applicable sentence. A sentence is
applicable for an active term if the term can be (syntactically)
recognized as the left side of the sentence. On finding the first
applicable sentence the Refal machine copies its right side and
replaces the variables there by the values they have taken in the
process of recognition. The process expression thus form=d is
then substituted for the active term in the view-field. This ends
the current step, and the machine proceeds to execute the nexnt
step. If there is no applicable sentence in the program, the
Refal machine replaces the active term by the term <?>, which at
each next step is replaced by itself again, thus generating an
infinite process, which will be called undefined. This is a
special process with the question mark symbolizing (in this
context only) that if our linguistic process is intended as a

tepresentation of a non-lingquistic "real world” process then the
former carries no information about the latter. It is important
to note that an indefinite process is infinite.

B The Refal machine may not be completely autonomous of its
user. Some of the sentences in the view-field may have the form
<% » R , where F® is a symbol, and R is an object expression
which the user, and only the user, can change at any time. The
expression <" is the access_ funclion for the real-time process
represcented by the changing expression R. The most important
real-time process is accessed as <gns>. Its value T is the sum-
total of the current mathematical knowledge of the user.

An expression without free variables defines a process: the
se initiated by the Refal machine when this expression is put in
its viexw-field. An_expression which includes free variables (pa-
rameters) will be said to define a parametrized process. A para-
m2trized process which never calls real-time access functions is
a ~mackine. A process initiated by a machine is mechanical. A
rrocess vhich calls real-time access functions is metamechanical.
Thas when we are strict we use the concept ¢f a machine in
exactly the same way as it has been used since Turing: as an
cutonomous device. In this context, a parametrized process which
is not knouwn for certain not to call access functions, is not a
machine. However, we may occasionally call a parametrized process
3 nmachine when we do not care whether it deces or does not call
access functions.

All processes we use have a symbol immediately after the
cypening activation bracket; it serves as a tag, or name, to
2istinguish different families of processes. We refer loosely to
theze tags and the processes so tagged as functions. Indeed,
every parametrized process defines a partial function (which is
recursive if the process is mechanical) whese value is the result
of the process, i.e. the expression to be found in the view-iield
=nhen (and if) the process comes to an end. A process <FE>, where
F is a taq and £ is an expression, is denoted as F(f) in a semi-
formal functional notation, which we mostly use in the following.

He deal with two kinds of processes: searches and genera-

tors. The former have the structure <FE> at every stage; the
latter L<FE>, where L is a list of object expressions which are
said to be produced by the generator. Secarches and generators can
be run in parallel, which is simulated on the "sequential® Refal
machine as defined above. We use metacode to map the set of all
Refal expressions on a set of object exzpressions. Speaking about
Refal expressions we denote the metacode of £ as tE. Houever, in
the semi-formal notation we drop 't'.

A prediclion is the statement that a given search, say A, is
finite. We represent it as A! According to our fundamental prin-
ciple, a proposition is meaningful if it can be interpretsd as a
hierarchical generator of predictiorns. One such propcsition i3z
the statement that the search A is infinite; =ne denote it as A?.
To represent in this way all logical connectives ané quantifiers,
we found it necessary to introduce cognitive processes v(P) and
Y(P), the former seeking to prove P as true according to our
current knowledge T (which may change itself), and the latter
looking for contradiction of P with T.

Predictions are directly verifiable. This holds, howaver,
for those predictions only which state the finitenes of a deter-
ministic mechanical process. By introducing metamecchanical pro-
cesses we have undermined the simple and safe notion of a predic-
tion. If A is metamechanical, the statement A! haz no immcdiate
meaning, because A is not a deterministic process: it depends en
the user's will. This was the note on which Part 1 ended.

To finish up with prelininaries, a table follows which
translates the usuval logical notation into the ccrrespending
propositions of our theory. The translation of a logical proposi-
tion P will be denoted as [P]. Primitive predicates are trans-
lated according to their meaning. For composite prepositions, the
translation rules are:

{-P] = Y(LP)!
(P5sQ) = and((P],(QD)
(] = ot (v([PP. v (IR

(P-Q] = 1iv([P])!then(Q]

[(Ax)P(x)] = all(x:[P(x)])
((Ex)P(x)] = sch(x:v([P(x)]))!

2. Objective Interpretability

There are two reasons why predictions about metamechanical
processes cannot have the same direct meaning as predictions
abourt mschanical processes. First, a metamechanical process is
not deterministic. It is not defined-be&c‘rehxnmm
future, but orly for the past, up to the present moment. Its
further development depends on decisions to be taken by the user.
Secend, different users may have taken differeat decisions in the
past, so even the past of a metamechanical process is not quite
definite.

Then is there anything definite about metamechanical pro-
cesses? Or does the freedom of the user's will render every
statement 2bout such processes meaningless?

1t would do so, if we put no constraints on the user's
choices and decisions, allowing him everything. But the value of
r provided by the user is not completely arbitrary, even though
it is not uniquely defined. By the consistency rule discussed in
Part I, if we Eind that some P is not true we cannot say: "so
what, let uvs still add it to the knowledge™. By the completeness
rule, if we figured cut that some P is true, we cannot say: "to
hell witn it, we still do not want tc add P to the knowledge,
ever”. We have to add it. Becausc of these restrictions we can
§gp§ratgﬁsgme_ob)ecqﬁggrgacts about metamechanical processes,
Ehich do not dcpend on the user's will as long as he sticks to
the rvles, from thoce features which do depend on his will and
hence havq no objective interpretation.

The only objective property of the process v(P) in case it
{s finite {is that.it Is finite; an analogous statement can be
made about ¥(P). All the rest may vary £rom user to user, and
fron one moment in real time to another. Take any property of a
prccess that characterizes its definite stage, e.g. that the

number of terms in the process expression after 25 steps is even.
It is easy to write a formal proposition (it will be a predic-
tion) which expresses this property; let it be P. If the process
is mechanical, P has a definite (objective) value; it i{s either
true or false. If the process calls gns, then depending on the
current value of I the number in question may be different for
different users; even for the sa~me user, it may be even today,
odd tomorrow, then again even, and so on. The proposition P is
not objectively tnterprelable, it depends on the very process of
cognition, not solely on the processes which are being cognized.

Less obvious cases of objectively unintecrpretable propo-
sitions are v(P)?, and ¥(P)?, where P is an interpretable propo-
sition referring only to mecﬁanical procecsses. Comparce v(P)! and
¥v(P)?. The former is a prediction which does not tell us anything
about any specific stage of the cognitive process, but only the
fact that the process comes to a successful end, which charscte-
rizes P as true. The latter is a generator of propositions about
the stages of the cognitive process; it does not qualify as
objectively interpretable.

We define interpretability inductively. The base of induc-
tion involves only those processes that do not call cognitive
processes and are deterministic. If A is such a scarch then A!
and A? are interpretable. If G is such a generator, and ncne of
the propositions it produces refers to cognitive processes, then
G is interpretable.

As éiscussed above, if P is in the base (purely mechanical),
then the predictions v(P)! and F(P)! are objectively interpret-
able: the former says that P is true, the latter that it is
false, while the truth-falseness of P has a quite definite ohjec-
tive meaning. Generalizing this rcasoning, consider a process A,
which at some stage initiates a cognitive process ¥(P) or S(F).
I1f the resvlts of A depend only on the fact that the cognitive
process with P as the argument ultimately stops, then such a
process A can be interpreted in objective terms, specifically,
the results will be conditional on the truth (the case of v) =r
falsehood (the case of ¥) of the proposition P. Generalizing

further, we can understand by P any proposition whose interpret-
ability has already been proved. Thus we come to the concept
which will be referred to as strong interpretability, to distin-
guish it from a version which will be introduced later as weak
interpretabpility.

Definition of skrong interpretability

I.1 If A is a deterministic model-time process
with no access to real-time processes,
then A! and A? are interpretable (atomic) propositions.
1.2 1f A 1is such a process that whenever it initiates
a cognitive process of the form v(P) or ¥(P),
(1) P is an intecpretable proposition, and
(2) the results of A , i.e.
- in case when A is a search, the fact that it is finite,
(and if it is finite its final stage) and
- in case wvhen A is a generator, the set it generates,
4o not depend on any stage of the cognitive process
but merely on the fact that it is finite or infinite,
then the process A is interpretable.
1.3 1f A 1is an interpretable search,
then A' {5 an interpretable proposition.
I.4 I G 1is an interpretable generator
wwhich produces only interpretable propositions,
then 6 is an intcrpretable proposition.
1.5 A proposition is interpretable
only if it can be proved interpretable
by definitions (1.1) to (I.4).

The concept of interpretability ggg_Eg_gompaggd_gjgh the
concept of invaciance_in physics. When we write equations of
theozetical physfcs, we use some reference system, thus it be-
co~ez injrained in the meaning of the equations. Yet the most
izpartant physical quantities are those which are tnvariant with
regatr? to coordinate transformations. We ascribe to them more

objectivity, because they do not depend on our cheocice of the

system of reference. Thus we choose a reference system and use it
to create models of reality, but then look for those features of
these models which are independent of the reference system. This

is the only way to give a precise meaning tc the concept of

a subjective component, but to construct invariants uhich are
independent of at least some part of our arbitrary choices.

wkéﬁéﬂiiive functions are sort of reference systens of mathe-
matcal knowledge. Our analysis has shown that they are present in
the meaning of mathematical propositions, like reference syztems
are present in the meaning of the equations of physics. Converse-
ly, reference systems of physics can be called cocjnitive func-
tions, or devices.

We shall prove now the following theorem, uhereﬁge abbre-
viate "strong objective interpretability” to "interpretability":
Theorem 1. For every interpretable proposition we can construct
an interpretable process which will lead to lzbeling the prepesi-
tion as either true or false. We call this process objective

evaluction; it formalizes our intuitive notion that_gﬂptopositioq
is false if it produces at least one false prediction, and is
true otherwise.

Proof. We take as the starting point the law of_excluded nicdle
for the special case of a prediction: every mechanical search is
ejther finite or infinite, {.e. for all A,

(EM ;) or(A, v(A?))!

Our intuition accepts this principle without kesitation, so we
can simply take it as an aximnﬁ It also can be put in a relataion
to the basic rules defining cognitive process by the followirg
proof. It is impossible to refute (EM‘), because to do that we
must prove that both A and v(A?) are infinite. But by proving
that A is infinite, ve make v(A?)lEjning Since (EM‘) may never
lead to a contradiction, we add it to our knowledge by the Cem-
pleteness rule, and it becomes formally true.

10

We now prove Theorem 1 by induction, using the definition of
interpretability.
(a)kas=. Consider an atomic proposition A!, or A?, where A is a
mecharnical search. The process of objective evaluation is this:
Run the searches A and v(A?) in parallel and label the proposi-
tion T or F depending on which branch ends. Because of (EM,),
this process is always finite. It labels the atomic proposition T
if it is intuitively true, and "F' if it is intuitively false.
(b)Induction on generation. Consider a proposition-generator P
which calls no cognitive functions. We can assume that es a
process it is infinite. If P is finite, we modify it so that
instead of stopping it goes on infinitely without producing new
members. All the propositions produced by P are interpretable
and, by the inductive hypothesis, have a definite objective
evalvation. Intuitively, P is true if it produces only true
propositions. We can construct a process which tests this. Every
time that a proposition is produced by P we apply the process of
objective evaluation to it. By the induction hypothesis, it is
alxays €finite. If the result is F, we stop. If it is T, we go on
rannirg P. This defines a certain process; let us denote it as A.
It is not mechanical, but we can define a process A' by "cutting
out” all the calls of the evaluation process and leaving only
their final stages., symbols T and F. Process A' is mechanical.
Because of objectivity of the evaluation process, A' is the same
for 2all users. By (EM,) it is either finite, in which case we
lakel P as F, or infinite, and then P is labeled T.
(c)Induction on cognitive function calls. Consider an interpre-
tatle scarch A. In running this search, whenever v(P) or ¥(P) is
called, the proposition P is interpretable and, by the induction
hypothesis, has an objective evaluation. Mcdify A as folloews.
When v(P) is met, initiate the process of objective evaluation of
P. 1t is always finite. If the result is T, replace v(P) by any
object exzpreszion (according to point 1.2 in the definition of
interpretabhility, the further development of A will not depcand on
it). 1f the result is F, replace it by any infinite process. Let
the process modified in this way be A'. Reasoning as in case (b),

11

we can apply (EN) to A'. If A’ is finite, we lzbel A! as true,
otherwise as false.

Consider an interpretable proposition-gencerator G. Replace
v/¥-calls as above. The resulting generator can be treated as in
point (b). Thus wec again are able to construct a process, the
objective interprtetation of G, which is finite, procduces T or F,
and corresponds to our intuitive understanding of objective
truth-values of propositions. This completes the proof. 0

Let A and B be processes. A is immedialely semcntically
dependent on B, if one of the stages of A includes «+(8!),
v(B?), ¥(B!), or ¥(B?) as an active subexpression. For A to be
interpretable, all processes on which A semantically depends must
be interpretable, and their interpretability must have been es-
tablished prior to the consideration of the intzcpretability of

A. We cdefine the relation of scmantic dep-ndence as the transitive el
semantical dependence. If a process seman-
tically depends on itself we refer to thiz situation as a ceman-
tic recursion. For a parametrized process, semartic recursion,
like the usual recursion, may be finite or infinite. A process
which generates infinite semantic recursion is uninterpretsble.
For a better insight into the structure of propositions, we
shall use their semantic graphs. The following iz the definiticn
‘'of the elements of semantic graphs.

A proposition-generatoer which ztarts producirc;
something. A sewmantic graph is a directed 5renn with
nodes (dots) representing propoziticns and

C3

i arc
(lines) representing processes. Unless the dir

— =c
tion of an arc is indicated =xplicitly, it is from
left to right and from top fawn. If a line peters
out, it means that the graphk 2oes not show what will
happen later.

o A proposition-g=nerator which branch2s into three

™~ parallel processes.

12

Exanple:z of serantic graphs.

vhere A

is finmite

A proposition-prediction that a search is
and the beginning of that search.

finite;

A search branches into two parallel searches.

A branch of a generator produces a prediction.

A branch of a search ends.

The part to the
of the cross never materializes.

A process becomes infinite. right

A process calls v(P) and goes on.
by a dot,

P is represented
i.e. as a proposition-generator.

We do not dis-
which

A process calls v(A!) and goes on.
tinquish between a proposition-generator
generates one prediction, and that prediction.
A process calls ¥(P)! and goes on.

A v--call is known to be finite. Analogously for ¥.
for ¥.

A ~v-call is known to be infinite. Analogously

A process has more branches than shown in the graph.

An infinite loop in the process,

Fig.l is the graph for A! and B!,

and B infinite. Fig.2: the proposition

if ~v(B7)! then or(¥(A?),¥(A?))! with A finite and B infinite.

13

Fig.3 represents proposition isr! where process isr is defined
by:

isr -+ «v(isr?)
(*isr' stands for ‘'infinite semantic recursion’).

There are a number of simple transformations that can be
done over a semantic graph without changing it in a significant
manner. An infinite recursion loop can be replaced by a cross;
two consecutive stages of a process can be merged into one; an
infinite branch of a generator can be eliminated.

Consider the walks in the semantic graph of a propositicn P,
which start at ncde P. When such a walk passes over from a call
v(Q) or ¥(Q) to Q we have a meiasystem transition. The number of
metasystem transitions on a walk is its semantic length. A walk
is semantically finite if its semantic length is finite, and
semantically infinite otherwise. For a proposition ts £ strengly
interpretable it is necessary and sufficient that its semantic
graph contains no semantically infinite walks.

The requirement of strong interpretability can be wezakened.
If a generator produces at least one interpretable and false
proposition, it can be labeled as false even though scme of its
other branches are uninterpretable processes. In contrast, for a
generator to be true, all of its branches must be interpretable
and true. Also, a search can be labeled as finite if at lecast one
of its branches is_interpretsble and finite, even though other
branches may be uninterpretable. A search is interpretable and
infinite only if all its branches are interpretable and infinite.
We can make this extension of the concept of interpretability
because we eramine parallel branches of processes in parallel.
When examining an uninterpretable branch, the evaluation function
will work infinitely in a futile attempt to get te th2 botton of
semantic recursion; meznwhile, another branch may lead to a
definite result.

We shall call this extended interpretability weak. The pro-
cess of determining that a proposition is weakly interoretable is
unseparable from labeling it as true or false, i.e. its objective

14

interpretation. We define this process below as labeling the
nodes of the semantic graph of the proposition according to 19
labeling rules.

i
5

Labeling rules

LR1. A call v(P) with P labeled T is marked finite.

LR2. A call «(P) with P labeled P is marked {n-
finite.

LR3. A call ¥(P) with P labeled T is marked in-
finite.

LR4. A call ¥(P) with P labeled F is marked finite.

LRS. 1f every Ekranch starting from a proposition-
generator either leads to a proposition labeled T,
or is infinite, this proposition-generator is 1la-
beled T.

LR6. If at least one branch starting from a propo-
sition-generator leads to a proposition labeled F,
then this proposition-generator is labeled 2.

15

LR7. If at least one search starting from a pre-

diction node 1{s finite, then this prediction 1is
labeled T.

LRB. If every branch starting from a prediction
node 1{is infinite, then this prediction is labeled
P.

LR9. A branch is finite if it ends, and all v/y-
calls on it are marked finite.

LR19. A branch is infinite if one of these cases
takes place:

(a) there is an infinite v/¥-call =1:h that zll
v/v~calls before it are finite;

(b) there is an infinite recursion lcsp with all
the v/v-calls on the branch marked finite

For an example of labeling sce Fig.2. The predictionin
Fig.3 is left unlabeled: it is uninterpretabie.
Rules LR6 and LR7 do not require that all branches are

labeled: some branches may call uninterpretable processes. Thus a
proposition-generator or a prediction may be interpretablt evan
though the processes it involves are only particlly interp zt-

able. A proposition which generates at least one £false ptop >5i-

tion is false no matter how we interpret -- or fail o i~terprat

-- all other propositions generated by it. A search is fin(te if
we know that at least one branch has led to a stop, no wstizs
what happens to all the other branches. Nete an essential Aif-

ference between true and false propositions when we allow weak

interpretability: a false proposition-generatcr can produce unin-
terpretable propositions, while a true one cannot. We shall sce

16

later that weakly interpretable processes play an important role
in set theory.

As in the case of strong interpretability, our intuitive
notion of weak interpretability defined by labeling rules can be
translated into a formal process of objective evaluation. Because
of different requirements to interpretability in the cases of a
true and a false genertors, as well as in the cases of finite and
infinite parallel searches, we have to run two parallel processes
for weak inter.retability where for strong interpretability we
had cne. For a generator, one process is the running of the
parallel branches in an attempt to prove that the proposition
procduced on one of the branches is false; the other process is
the proving that proposition produced on every branch is true. If
the first prccess ends, the generator-proposition is interpret-
able ané false. If the second process ends, it is interpretable
and true. If neither of the two 2nds, the proposition is uninter-
prezable. The labeling of searches as finite or infinite is
treated analcgously. Thus Theorem 1 hq;ggifor weak interpret-
abiiity as well: a weakly interpretable proposition is either
true, or false.In the following, when speaking of interpretabi-
lity without the strong-weak attribute, we shall mean weak inter-
pretability, as the more general case.

The eqiivalence of P being true and v(P) being finite is
part cf the Cefinition of v(P). The falseness of P, as defined by
the labeling process is not the formally same as the finiteness-
of Y(F). However, their equivalence is established by the follouw-
ing tlieorem, the proof of which is straightforeward:

Theorem 2. An interpretable P is false 1iff Y(P)! .
If a preposition is not interpretable, the process of label-

ing does not ever end, so such propositions are neither true nor
false. When ve start labeling, we do not know in advance whether
the proposition will turn out interpretable or not. Until the
proce~s stop=, we never know whether we still did not reach the
end, or the process is really infinte. This situation is familiar
fror: the theory of algorithms (recursive functioms). There is no
mechanical process with a guaranteed end which could tell for any

17

mechanical process whether it {s finite or infinite. However, the
whole point of introducing cognitive functions v and ¥ is to
provide a process (metamechanical though) which solves the pro-
blem unsolvable for mechanical processes. Indeed, v(A?) stops if
and only if the mechanical process A is infinite. Of course, a
solution given by a metamechanical process is not a real so0lu-
tion, because at any moment in real time you can only run mecha-
nical approximations to v, not the full v itself. Cognitive
functions provide a formalism to exactly define problems; in
order to solve them, we still have to construct mechanical pro-
cesses, algorithms.

Reasoning by analogy with the theory of algorithms, one
would wish to construct a formal definition of objectively inter-
pretable proposition using cognitive functions to recognize in-
finiteness of processes when necessary. Indeed, we defined the
concept of interpretability in words. Let us translate it into
our formalism, i{i.e. define a process int(P) (no doubt, metamecha-
nical) which terminates if-and only if P is interpretable.

It may come as a surprise, but this is impossible. The
concept of objective interpretability cannot be objectively de-
fined -- in its ful;‘vglgﬂg; To understand why it i3 so, recall
the way we defined ogjective interpretability, and try to write
the corresponding Refal recognizer.

Let us take, for simplicity, strong interpretability. It is
easy to define a function, call it sem, which recognizes the fact
that a given process P semantically depends on a process Q. {.e.
one of the stages of P activates one of: v(Q!'), ... etc. So, P is:
semantically dependent on Q if and only if sem(P,Q)!. By our
verbal definition, P is strongly interpretatle, if Q is strongly
interpretable whenever sem(P,Q)!. We formalize this condition by
universally quantifying over all possible Q. Tne proposition
which expresses this, is:

all(Q e exp: 1f sem(F,Q)!then int(Q)!)

where exp is the gensrator of all Refal expressions. Now, the

18

process int(P) only has to check that this proposition is true.
We come tc the following definition:

) int(P) + +(all(Q € exp: if sem(P,Q)!then int(Q)!))

But it does not satisfy the requirement of being interpretable

for all P . Inside the vy-call we have int(Q) with Q which runs
over all expressons, P, in particular. For every P which semanti-
cally depends on itself, we immediately get uninterpretability.

An obstacle of this kind will prevent us from formalizing the
universal concept of interpretability in any thinkable way. This
is testified by the following theorem:

Theorem 3. There exists no parametrized process I(P) such that
I(P) is objectively interpretable for every P, and is finite {ff P
is objectively interpretable.

Proof. Suppose that there is such a process I(P). Define a pro-
cess A by:

A+ Jf I(A')! then ¥(A!)

Since I(A!) is interpretatle, it is either finite, or infinite.
Suppose it is finite. Then A! must be interpretable. But if I(A!)
is finite, A calls ¥(A!), so it is uninterpretable. Suppose I(P)
is infinite. Then A! must be uninterpretable. But in this case A
never c2lls anything but I(A!), which is interpretable. So, A
must be interpretable. The inescapability cf a contradiction
proves the theorem. D

But {f we cannot formalize the concept of interpretability,
fs nct our verbal definition meaningless, or contradictory?

The reason for the non-existence of I(P) is that we defined
interpretability inductively; in fact, we defined a hierarchy of
incerpretability concepts, with the propositions never referring
to cognitive functions as the ground level. This does not make
the =ord 'interpretability® unusable; one should simply keep in
mind that it refers to a hierarchy of definable concepts, not one
concept. (This, of course, reminds of [Tarski 1933), even though

19

e

g o - TTTTTTTT——
(dc_ All Hose tncets (porametnized proasies) are ntu
sny, ’ ae® 4

our approaches are very different philosophically.)

We can define O-interpretability 195” using the process of
checking that cognitive functions are never called. Then we
define l-interpretability 15;‘ by modifying (1) so that in the
left side we have the new concept, while the right side uses only
the concepts already defined:

1nt7(P) + v(all(Q ¢ exp: if sem(P,Q)!'then int’(Q)1))

In this way we can define an infinite series of concepts: jntz,y
pretable.
This is not the end, of course. If a process is n-interpret-

able, the semantic length of the branches of its semantic graph
never exceedsAqL We can define the concept of w-interpretability,
which allous tae branches on the semantic graph to be of arbitra-
ry finite length, then w+l-interpretability using w-interpretabi-
lity in the right side of (1), etc. This is, essentially, how the
ordinals of set theory emerge in our theory. The next theorem
explains why Lhe set of all sets is non-existent:

Theorem 4. There exists no objectively interpretable generator
which produces all objectively interpretable expressions, and only
them.

Proof. If there were such a generator G, we could immediately
construct 1(P), whose instence is denied by Theorem 3. One has
only to run G and stop if and when it produces P. 8]

Objectively interpretable propositions ccrnstitute our uni-

verse of diccourse. Every expression inside this universe is
meaningful. No one outside is. If there were an expression U
which defined this universe by generation or recognition, thea
the now achievable part of this universe, i.e. the set of cxpres-
sions knoun to be interpretable, could be simply obtained Ly
replacing T' in U by T,. Our current universe of discourse wonld
be a definite function of our current knowledge. But this is not
the case. We can erpand the available domain of discourse by
creating (discovering, if you wish) new spheres in the never-to-
be-fully-covered universe, even without expanding the current

knowledge T'. This is a real-time process which, like the know-
ledge process, cannot be expressed by a fixed object. To repre-
sent it in our formalism, we introduce one more access function:
lgs (for 'logos'). Its value, for which we shall use the metava-
riable A, is, at every moment in real time, an interpretable
generator which produces all the expression proven interpretable
by this moment.

So, we have two real-time processes in mathematics. The sum-
total of our knowledge, the °'gnosis’, is accessed by gﬁg. The
sum-total of the expressions known to be meaningful, our universe
of discourse, the 'logos’, is accessed by lgs. They are interre-
lated: T is always a subset of A; on the other hand, our ability
to prove interpretability depends on our current knowledge. But
neither of them is a simple derivative of 'the other. We have two
Qegrees of fresdom here, not one;

Adding 2 new access function lgs, wa have expanded the class
cof metamechanical processes; they nox can call lgs, not only gns.
To distinguish those processes which may call only gns, we shall
call them y-metamechanical.

Objective interpretation is based@ on our intuition of the
separatility of the object and the subject of knowledge. When we
deal with quantum-mechanical phenomena this intuition deceives
us. 7The object and the subject of knowledge are not completely
separable in the quantum-mechanical measurement. Our functions «~
and ¥ can be seen as measurement procedures, of a kind. We took
pains to separate the results of these 'measurements' , i.e.
truth values of propositions, from our state of knowledge. Our
theory allows ‘'interpretable’ propositions only; this leads to
the usual two-valued logic. It is possible that a more general
theory can be built, which would not lirit itself to those propo-
sitions we call interpretable, thus overstepping the boundaries
of traditional logic. This possibility occurred to the author
uncder the influence of the ideas of the wave logic developed.by
vuri Orlov (1978, 1982]. Orlov's ideas can probably be usad in
trying to expand the present theory aiming at description of
subatcinic phenomena.

21

3. Logical Paradoxes

Creeks in the following form (see {Beth 1968]): Bpimenides, the
Cretan, says: "1 am lying."” Now, if what he says is true, then ha
is lying, and what he says is false. If what he says is false,
then he is not lying, which means that what he says is true. Thus
what he says can neither be false, nor true. A more modern ver-
sion is: "The proposition expressed by this very sentence is
false.”

Let us formalize the liar paradox. We have here a proposi-
tion which states its own falseness and nothing more. Since this
proposition refers to itself, we must give soce name to it,
otherwise reference will be impossible. Let the name be P. The
relation between a name and its meaning is defired in Refal by a
sentence of the form:

P> » ...

where the dots in the right side stand for the m=aning. The
meaning of a proposition is a generator of predictions. The
proposition P produces only one prediction: that P is false, i.e.
¥(*(P))!. Hence <P> {s this generator:

1) <P> -+ (F(*(P)YY) , semi-formally- P+ 3(P)!

Looking at this definition, one can see that it is the most
straightforward and clear formalization of the pronposition P
says that P is false." It is, of course, uninterpretable, so it
has no objective meaning, and one should not be surprised

that there is no way to assign a definite truth-value to it.

The semantic graph of the proposition P is presented in
Fig.4. We see an infinite semantic recursion here; it is impos-
sible to label this graph starting form the bottoa. If we still
want to make some labeling, we notice that if one of the nodes

22

representing P is labeled T, then the nodes preceding and follouw-
ing it must be labeled F, which I8 inconsistent. Still, {t is
possible to label the whole infinite graph. There are two ways
to do it, though; they are shoun in the Figure. If we use one
way, the root of the graph is labeled T, if we use the other, it
is labeled F.

Suppose we change ¥ to v in the definition of P:

(2) <P> = (v(®™(P))1) , or: P -+ ~(P)!

According to our definition of interpretability, P is still
uninterpretable. But (2), unlike (1), does not lead to contradic-
tion. Yet it is quite justified that we declare P uninterpret-
able, because we still cannot assign to P a unique truth-value.
Its semantic graph is presented in Fig.5. If any of the nodes is
labeled T, then all of them must be labeled T; if any is labeled
F, all must be labeled F. Thus, it is possible to labél the graph
consistently, but, again, there are two ways to do it, and the
root can be labeled both T and F. This may be called the paradox
of the saint. The saint says that what he is saying is true, and
that is all he says. He gives no evidence in support of this
statement. We have only his word for that. If what he is saying
is true, then what he is saying is true. If what he is saying is
false, then what he is saying is false. There is no contradiction
in either case, and there are no reasons to consider this propo-
sition either true or false. It is uninterpretable.

There is one more paradoxical definition which is pertinent
to the concept of interpretability. The propositions P and v(P)!
are logically equivalent, meaning that if one is true, the other
is true too, and if one is false, the other is false. Replace
(¥(?2))! in (2) by *(P):

3) <P> « (¥(P))

This generator is, of course interpretable, because it has no
tefercnce to cognitive processes. What is its meaning and truth-

23

value? The proposition <P> produces eractly one propozition,
which is itself. This proposition is not a prediction, but a
generator of predictions. To find what is the ultimate set of
predictions produced by <P> we must run <P> again. But this
returns us to the starting point, so P never produces a single
prediction. This proposition is empty. According to our defini-
tion of labeling, it must be labeled T.

Although P and v(P)! are logically equivalent, they are not
aemantical}y equivalent. It is not the same to state P and to

state that P is true. The former is, generally, a generator of
predictons; in our case it turns out that it produces nothing.
The latter is a prediction. It cannot be empty, it certainly
tells us something. In this case, it tells us that P produces no
false predictions.

The translation of the definition (3) into our natural-
language is "P says what it says”. Our intuition readily accepts
the judgement we passed above: this propositica is true, but
empty.

Consider one more paradox, formulated first by Grezlling (we
use [Beth 1968] as the source). Let us call an adjzctive culo-
logitcal, if and only if it can be validly applied to itself;
heterological if it cannot. The adjectives "English" and “poly-
syllable“'are, according to these definitions, autoiogical; the
adjectives "French”and "red" are heterological. Now, consicer the
adjective "heterological". What type is it? If it is auatologicidl,
then, by definition, it is applicable to its3=21f, i.e. hetarologi-
cal. If it is heterological, it cannct be applicabi~ to fisalf;
then it is not heterological, and, therefore, autolegical.

This paradox takes us to the world of natural languages, so
we have to represent this world im our theory. Like Refal ob-
jects, the objects of natural langjuages are strings of charac-
ters, with which some processes are associated; thece processes
determine the semantics of the language. iUnlike the case of
Refal, semantical processes ¢I natural languages are part of the
functioning of the human brain, not a mechanical davice. Ia terms
of the construction of the Rerfal machine, these preoczsses are

24

external; yet nothing prevents us from using in our theory pre-
dictions and generators of predictions referring to these processes.

Convenient representation of external objects and processes
by Refal objects is a matter of agreement. Let us represent
processes and objects by composite Refal symbols formed by under-
1lining corresponding adjectives and nouns. Since the objects of
natural languages may be both non-linguistic and linguistic, we
should be able to easily distinguish between these categories.
Quotes are used for this purpose in natural languages; they mark
linguistic objects. Let, therefore, apple be the representation
of the apple, while ‘apple’ be that of the word ’apple’.

The simplest and a reasonably complete test to determine
whether somebody understands the language is putting to this
person questions which require answers °'yes' or 'no’ , and seeing
whether the answers are correct. This is the basis for the widely
used formalization of the semantics of natural languages in
predicate calculus. In particular, the semantics of adjectives of
the English and other European languages is represented in this
approach by one-place predicates (properties).

In our theory we deal with semi-predicates, not predicates.
This is, as we discussed in Part I, a more general case; the
decision process either comes to a halt, which is interpreted as
the positive answer, or fails to halt, which means that the
property is not there. For instance, the adjective 'red' can be
represented in Refal by the external process <red e.. According
to the usual meaning of this notion, the process is this: 1 look
at the object represented linguistically by e, and if and when 1
come to the conclusion that e, qualifies as red, I stop the
process; if I cannot come to this conclusion, the decision pro-
cess goes on infinitely. (Instead, 1 could define being red as
reflecting the light of certain wavelength. The semantic process
then will include the necessary measurements with a spectrumeter.
That will be a different meaning.)

The adjective 'English’', in contrast to the adjectives like
‘red®, is applied to linguistic, not external, objects. We can
édciine it by listing all the linguistic objects that come from

25

the €nglish language:

<English 'red’> -+ T
<English 'brouwn’> -+ T
<English ‘apple'> -+ T
... etc.

One of the sentences will be

<English °‘English'> - T

Analogous definitions can be given to the adjectives ‘French’
etc.

Now it is a straighforward matter to define the adjectives
*autological’ and ‘heterological’, which we abbreviate to A and
B, respectively:

’ L [] []
<A .np > » <sp sp >
L] P~ . %1
<H sy > s o M(sy Sp)1

Note an important difference between the two concepts. Being
autological can be defined without recourse to cognitive func-
.tions, while being heterological cannot. As a result, the first
definition is obviously interpretable (in the assumption that all
other adjectives are interpretable, of course), while the second
requires an analysis of interpretability. From the definition of
A, <A 'red’'> immediately becomes <red ‘red’'>, which cannot halt
because the adjective ‘'red® is applicable only to external ob-
jects, not to linguistic objects. Applying A to the adjective
'English®', we have the search <English °*English®>, which, accord-
ing to the above definition, halts in one step. 'English’' is an
autological adjective. 'French’ is not; 'Francais' is autological.
Let us see now whether the adjective 'autological’ is auto-
logical. Starting <A °'A'>, we enter an infinite loop. Thus 'suto-
logical® is not autological. No contradictions or paradoxes are
met here. If, however, we try to determine whether 'heterologi-

26

cal’ is heterological ~- and this is what the Grelling paradox is
about -- the result will be different. Running <B °H'> produces a
cognitive function call with the metacode of <H 'H'> as the
argunent; thas the process becomes uninterpretable. In this case
again, the paradox is caused by a meaningless definition, which
is ' not allowed in our theory.

The two truth-values enter the syntax of mathematical logic
symmnetrically. Negation can be viewed as a sort of symmetry
transformatior; this view is quite useful in a Boolean algebra.
Thinking solely in terms of the conventional mathematical logic,
it is hard to understand why of two parallel definitions, which
differ only by an added negation, one can be safely used, while
the other blous up the whole theory. Our semantic approach gives
the explanation. There is no symmetry between affirmation and
negation. Negation always involves one more metasystem transi-
tion: the one from simply stating or using a process, to explor-
ing it for contradictions. This asymmetry is embedded in the
syntax of our theory, which allows us to ban the definition of
*heterological’ without banning (unnecessarily) the definition of
*autological"’.

4. Pormal systems and theories

The formal systems we are going to consider will be con-
structed in the framework of a metasystem common to all of them.
This metasystem is the Refal machine, together with a number of
functions (machines) defined in its program field. All logical
machines defined above are in that number, plus a few more which
will be defined later.

A formal system is defined if:

(1) a FEefal representation for a number of parametrized processes
is cdefined; and
(2) a’'progosition is given which is believed to be true, and is
referrrs3d to as the knowledge of the formal system.

Scre of the parametrized processes of the formal system may
be drfired by a group of sentences in the program field, i.e. as

27

Refal functions. Others may be left undefined, or defined parti-
ally. Even if not defined, a process can be an object of study
and knowledge. We may not be able to reproduce all the stages of
a process, but still know that it is finite or infinite, or that
{f it is finite then a certain proposition must be true, etc.

The knouledge of a formal system Fl contaips in a condensed
form all the propositions that can be proven true in Ft' We
shall denote the knowledge of a specific formal system Fi by
L and the corresponding cognitive functions by v¢ and ¥;. Thus
a proposition P is provably true in F; {f and oaly {f v,;(P) |is
finite. P is provably false if and only if ?l(P) is finite.

Our concept of a formal system differs in two ways from the
usual concept. First, we do not distinguisn between axicms and
inference rules: they are united in the concept of a generator.
The knowledge TI'; of our formal system is analogous to the axioms
of a usuval formal system, but because of the nature c¢f our propo-
sitions, no additional rules of inference are necessary. When a
proposition P is among those hierarchically produced by rg, it
corresponds to the derivability of P from r, ina usual
formal system. When P added to Ty procduces a contradiction, it
corresponds to the derivability of ~P, the negation of P.

Second, our concept of a formal system is, starting from the
basic definitions, semantical, in contrast to the usual purely
-syntactical concept. Therefore, in addition to the usual concepts
of consistency and completeness applied to formal systems, we
also apply the concept of correctness: a formal system is correct
if it hierarchically produces only true predictions.

A formal system is, essentially, a machine which encapsu- .
lates only a certain amount of knowledge. You cannot expect more
output from a generator, than you have put into it through its
definition. Goedel's result that no formal system can produce all
the true statements about.a machine which is sophisticated enough

system, while it comes as a_sucprise with the usual concept.

We shall distinguish between a formal system and a theory.
While a formal system can be fully represented by an object (the

28

metacode of the machine), a theory is a real-time process resul-
ting from human effort to gain new knowledge. Formal systems we
create are stages of theories. Some theories may be completed by
creating a formal system which gives answers to all possible
questions meaningful in the theory. But this is rather an excep-
tion. The most important theories are infinite rezl-time pro--
cesses.

Among the objects and processes of a theory we distinguish
Primary objects and processes: those which we treat as a given
reality and wish to explore. Other objects and processes are
created as exploration tools. The primary objects of a theory may
be defined either by listing them when their number is finite, or
by defining a machine which generates all of them. Primary pro-
cesses may be defined either directly and completely by Refal
sentences, in which case we call the theory cybernetic, or indi-
rectly by propositions believed to be true and called axioms, in
which case the theory is exiomalic. Hybrides of these two kinds
of theories are also possible.

We can illustrate the difference between cybernetic and
axiomatic theories by taking arithmetic as example.

In cybernetic arithmetic (known also as recursive arithme-

tic) the numbers are strings:
g, 1, o011, €111, ... etc. ,

or their equivalents. Operations on numbers are machines: the
adding machine, the multiplying machine, and possibly others. All
these machines are defined. The adding machine, for instance, is
defined by the sentences:

(e,)(P)> -+ e,
Hleylley, 1)> =+ <(a(ey)(ey)>)

When we a2dd numbers we run this machine or one of its more
sophisticated equivalents, like a pocket calculator.
In axiomatic arithmetic there is one number constant # and

29

an undeftned function <s e, which produces the °‘next’ number
after e,. Repeated application of the function s produces all
possible numbers. The functions of addition and multiplication
are also undefined, but they comply with a number of axioms. The

axioms relating functions § and + are:

X% Q2 = x
x + 3(y) = s(x+y)

They resemble the sentences defining addition in cybernetic
arithmetic, but conceptually they are different: they are a part
of the knowledge, not the machinery, of the theory. The function
of equality which is used in the axioms is not defined either;
all we know about it is {ts well-known properties stated as
axioms.

The strength of classical logic as compared to intuitionist
logic comes from the more permissive treatement of the cognitive
functions. Intuitionistic logic considers the user’'s knowledge T
to be a definite expression rl' at least for the time of dis-
course (what we called a static interpretation of human know-
ledge). In this interpretation, the law of excluded middle in its
general form:

(EM,) or(+(P),5¥(P))! for every proposition P

is, certainly, not true. Indeed, v in (EMZ) is understood by
intuitionism as v;. But by Goedel's theorem, for every formal
system there is a proposition G which is neither provable, nor
refutable in this formal system. Thus, both ¥(G)?, and ¥(G)? take
place, which contradicts to (EMZ) with P = G.

Classical logic bases its proofs on the concept of a grcwing
T (dynamic interpretation); it allows the index t in T; to go
into infinity. We shall show, first, that with this interpreta-
tion Goedel’'s theorem does not falsify (EMZ)'

Goedel's theorem establishes two facts. Firstly, for every
formal system Iy there exists such a proposition G; that

30

(a) QL(V‘(Gi)»'—ft(Gi))?

Secondly, Gy is true, so that we can add it to the knowledge and

get a new correct formal system Tealr in which, of course, Gi is
provablea:

®) or (¥, 1(61).¥i, (6!

If we simply "take the limit” of (a) and (b) for {+e«, we get
two contradictory propositions. This is a situation familiar from
the calculus, when the correct answer depends on the order in
which tuwo interrelated variables are treated in the jump to the
limit. In intuitionist logic we first fix the index i of the
formal system and let (BMZ) to be produced with all possible P.
Then it will generate at least one proposition, namely Gi- such
that (Ei,) is false. In classical logic we use v and ¥ to denote
‘the limit of v; and ¥; as i+=. The law of excluded middle is a
proposition-generator which produces (EHZ) for every proposition
P. Thue P comes first, and then we interpret (an) by seeing v
and ¥ as the corresponding limits. Then for every Goedel proposi-
tion Gi' there is a stage of the real-time cognitive process at
which it is proven, thus (EM) is not contradicted.

Theorem S. With the dynamic interpretation of cognitive
functions, the law of excluded middle (Euz) is true for every
interpretable P.
Proof. By Theorem 1, every interpretable proposition P is either
true or Ffalse in objective evaluation. If it is true, v(P) is
finite; if it is false, Y(P) is finite by Theorem 2. Thus, (BHz)
is always finite. L
When we create a formal system we take a proposition ri as
its knowledge and define the access function <gns> as

<gns> = Ty

31

Now the function +v(P) called by proposition-gensrators, which was
undefined before, becomes a completely defined recursive function
which we denote as v, (P); and y(P) becomes ¥,(P). Note that the
replacement of v/¥ by yt/:i takes place only for the purpose of
generation. The ultimate product of proposition-generators, the
predictions, can still include v/v¥-calls; there is no need to
replace ther. (The replacement would signify a change in inter-
pretation from the dynamic to a static one).

We should now explore the relation between the 'precise’
function v(P) and its ‘approximation’ v‘(P). What we want, of
course, is that the formal system be correct, i.e. v (P) be
finite only when v(P) is finite (P objectively true). This re-
lationship is established in the following theorem, which is
crucial fcr the whole theory we are developing.

Theorem € (Correctness theorem). If T; is true then v (P) for any
interpretable P is finite only if P is true, i.e. a formal systen
with the knouwledge l'i is correct.

Proof. Let 'i(P) be finite and suppose that P iz falsa2. The
process *i(P) is the running of the generator Ty until it pro-
duces P. Consider the branch B! of r; which has produced P {to be
referred to as the derivation branch for P), and compare it with
the corresponding branch B in the semantic graph of T,. They are
different only in that every call v(®) in B is replaced by vi (&)
in Q‘(P). and every v(Q) is replaced by ?i(e». The branch 8; has
no more than a finite number of vl/?i calls. Let them be:

) Yi(Ql)""'YI(QH)';i(Q:)""';I(Ql'n)

We can take every @, and £find a derivation branchk in r; which
produces Q_. And we can take every Q; and find two derivation
branches in (r; apd Q) which produce a contradictory pair cf
atomic propositions, A! and A?. Since each of these branches is
finite, ve can again construct derivation branches for the i/
calls they involve (if any). Since the process of producing P
from LY is finite, we shall ultimately come to & finite deriva-

32

tion tree for P (see Fig. 6).

Consider the vt/;, calls (*). The corresponding v/y calls in
the semantic graph of T, cannot all be finite because it would
mean that L produces a false proposition P and is,therefore,
false. Hence either there is a false Qr for which Yi(Qr) is
finite, or there is a true Qs for which ?i(Q;) is finite, (or
both). In the first case we again face a situation where a true
T; produces a false proposition, this time it is Q,. In the
second case a “rue proposition (r; and Q:) produces a pair A!, A?
of atomic propositions from which one is false: the same situa-
tion again. In both cases the new derivation tree is a subgraph
of the original tree. Since it is finite, this situation cannot
repeat unlimitedly. Sooner or later we must come to a true propo-
siticn which generates a false proposition. This contradiction
proves the theorem.

Corollary. 1f ry is true, the formal system which takes Ty as its
knowledge is consistent.

There are two possible situations with regard to what can be
treated in the theotry as an object. (1) The objects of the theory
ray be predefined at the outset of that theory. If their number
is finite, they can be simply listed. If their number is poten-
tially infinite, a machine can be defined which generates all of
them. This situation is traditionally known as a first-order
theoty. The objects of such a theory are completely separated
frem the propositfons about the objects. (2) The set of the
objects of the theory may not be predefined, and the propositions
of the theory may, in their turn, become new objects. This situa-
tion is referred as a higher order theory. Sel theory is a theory

of infinite order. Indeed, the concept of a set is essentially

identical to the concept of a proposition: when we define a set
we define a predicate of being an element of this set, and vice
versa. In set theory we define sets, which then become legitimate
nes objects. This conversion of a proposition into an object can
be repecated indefinitely.

In Part I we interpreted the language of classical first-
ozder logic. To prove the correctness, ard therefore, consis-

33

tency of classical logic, we have to prove that jits axioms and
inference rules are true propositions. We also should consider
how Goedel's theorem is formulated and proved in our theory.
Limitations of space do not allow us to do it in this paper. We
would like, however, to give the reader an idea of how our seman-
tic approach differs from the usual syntactic ("formal®) approach
by discussing one of the most fundamental logical principles of
our theory.

It is the verification principle, which states that the
proposition

(Ver) all(x € ser: f{f x! then x!)

{s true and must be included into the knowledge ri of every

theory T;. Here ser is the generator of all searches which can be
expressed in T;. Using a metavariable, (Ver) can be formulated as
stating that

(Ver') if A! then A!

is true for any search A from T,.
If we try to translate this principle into the language of
formal logic, we come to the trivial axiom

finite(A) - finite(A)

which is of little, if any, use. In our system, houever, the
verification principle is far from being trivial. Let us see what
is the full scope of propositions it hierarchically produces. We
add to our knowledge r‘ the proposition (Ver) which produces the
propositions (Ver')

with all possible searches A! expressible in the theory. Khen L
starts working, every proposition (Ver') starts working, and if
the search A in it is defined aad finite, it produces the predic-
tion A!'. If the search is undefined or infinite, it producss
nothing. Thus all those and only those predictions A! will be

34

produced by T¢{, for which A is defined and finite. The verifica-
tion porinciple formalizes the fact that the finiteness of a
search which is defined mechanically can be diractly verified, at
least in principle. (Ver) produces all those propositions which
can be proved true through verification.

S. Set theory. Extensionality and Regularity

We proceed now to the interpretation of set theory. We iden-
tify the concept of a set with the concept of a generator. Since
we allow the use of real-time cognitive processes v and ¥, we
limit set generators to interpretcble processes, otherwise we

shall not be able to interpret the membership of an object in a
set.

As we know, there is no generator, mechanical or v-metame-
chanical, which could produce all interpretable generators. There
is no set of all sets. The generator A of all legitimate objects

of set theory, its universe of discourse, is an independent
real-time process; we shall use for the access function of A the
same symbol 1lqs as in our general theory.

Wher: an object and a set are given, we must be able to
establish whether the cbject is an element of the set. It is easy
to define a function, leﬁ it be called elm, such that the search
2ln(E € G) stops if and only if the expression E {is among the
expressicns generated by G.

However, this staightforward concept of being an element is
not the cne adopted in set theory. It is applicable only when the
e¥pression £ represents one of the primary objlects, or ur-ele-
ments of the theory, by which we mean those objects (if any)
which are nat sets, so that their 'physical' identity as expres-
sions is the necessary and sufficient condition of being identi-
cal as objects of theory. But most important objects of set
theory are, of course, sets. Set theory uses the extensionality
principle to define the identitx_yf sets. According to this
principle, two sets are declared identical, or equal, if and only

{f every element of one set is also an element of the other.
Consequently, the identity, or equality of sets is not the sane
as the identity of the Refal expressions which represent thaa.
Indeed, it is easy to define in Refal two different processes
which will generate the same objects.

To comply with the extensionality principle, we must distin-
guish between ur-elements and sets, and use the concept of set
equality when deciding whether a given set is among the objects
produced by a given generator.

The cet of all ur-elements may be different in different
versions of set theory (it may be, in particularc, empty). The
only requirement on this set is that we should be able to distin-

guish gg“gglglgmsﬂg'ftom a set. We define an ur-element as any
Refal expression which incl&E;s no asterisks * . This inmediately
makes ur-elements distinguishable from set representations be-
cause the latter have the form *(E).

In case of infinite sets, their equality, unlike the physi-
cal identity of the expressions which repres=nt them, canrnot be
directly established. A reference to some proof, i.e. to a know-
ledge, once again becomes an implicit part of semantics.

Equality of sets is defined through a double inclusion:
Q) (5=r) = (IS sub T'] & [T sub S§])
The relation of inclusion (being a subset) is defined by
(2) (S sub T) = all(x € S: el(x € T)H!)

It is a universally quantified proposition, and so0 is S=T. Now,
let el(X € S) be the process of establishing that X is an element
of S in accordance with the extensionality principle. To eztab-
lish that X is an clement of S, we have to compare X with ele-
ments of S, and determine whether there is one 7 € § which is
equal to X. So, when running el(X € S), we call in parallel
v(X=Y) for all elements Y of S. Thus el(X ¢ S) is serantically
dependent or all the propositions X=Y with a ¥ from $. Using

36

symbol >> to denote semantic dependence, we can represent this by
the formula:

) el(X e §) > X=Y , Y eS

(The usual notation X € Y stands for el(X € Y)!).
Prom (1) and (2) we derive:

(4a) XY + el(Ze¥Y), ZeX
(4b) X=Y + el(ZeX), 2 €Y

Combining (3) with (4a) and (4b) we have two semantic dependen-
cies:

(Sa) el(X eS) > el(ZeY) .YeS,2¢€X
(5b) el(X € S) > el(ZeX) ,YeS,Z2¢€Y

A process which is semantically dependent on itself (infi-
nite semantic recursion) is uninterpretable. From (5a) we see
that we are immediately in trouble if § is among the elements of
itself: S € S. Indeed, putting X=Y=2=S, uwe find that el(S € S) is
uninterpretable. From (5b), our process becemes uninterpretable
if X=2 and@ =X, therefore X=2=S. Since Y is an element of S and
Z=f£ is an element of ¥, such a situation will arise if S € ¥ and
Y e S.

We call an_el-sequence a sequence of sets ¥ , Y .. etc.,

| S
such that for every 1>1, Y"I € Yi. A set is regular {f it is
interprctable, and an el-sequence of sets which starts with S can
only be finite.

Theorein 7 (Regularity Theorem). The process el(x € §), where x is

an ur-element or a regular set and § is a reqular set, is inter-
pretable.

Proof. According to the definition of the functicn el, the only
scurce of possible non-interpretability is the semantic recursion
in function el itself. Consider a pair (X,S) which is the argu-
ment of an el call. Denote by Z2' any element of the set Z.

37

According to (5), the semantic recursion in function el can be
schematically presented by two formulas:

(6a) (X,5) >» (Xx',8")
(6b) (X,5) >> (s'",X)

If X and S are regular sets or ur-elements, then any possible
sequence of the calls of function el can only be finite. There-
fore all of them have a definite objective interpretation which
can be established starting from the bottom.

Theorem 8. If a set is regular, all its elements are regular.
Conversely, if all elements of an interpretable generator § are
regular, S is also regular.

Proof. Indeed, should an element T of a regular set § be not
regular, an infinite el-sequence starting with T uvould exist.
Then we have only to add $ to it to prove that S is not regular
either. The second part is proved by noticing that should uwe have
an infinite egl-sequence for 5, we could delete 5 and get an
infinite el-sequence for one of its elements.

So, for a set to be regular, it is sufficient and recessary
that all its elements are regular. Therefore, all regular sets
can be constructed inductively starting with sets which include
only ur-elements.

It should be stressed that regularity becom2s necessary
only because function el is defined according to the extension-
ality principle. The concept of a set which has itself as one of
its elements is not contradictory in itself. For instance, this
generator:

(7) <self> = (*(self))

is interpretable as a process. It generates eractly one elemont
which happens to be the matacode of this very process. If we
based the concept of being an eiement of a set on the literal

identity of expressions, as in function elm, it would be true
that

kil

self elm self

But %e would not be able to use function gl with such sets. The
necessity of regularity arises from exteasionality.

How we limit the objects of our thecry to ur-elements and
regular sets only, which gqguarantees the interpretability of the
€l processes. It follows immediately £rcm the definition of
regularily that there is no (regular) set generator that could

produce all regular sets. We access the generator of all legiti-
mate objects of set theory, i.e. ur-elexents and sets, through
the function lgs. At every moment in real time the process <lgs>
yields a specific interpretable generazor f;, which produces all
those sets that are already known to be legitimate, f.e. inter-
pretable and regular.

A set is regular if at some stag=2 of the development of
theory it becomes producible by lgs. This is the completeness
rule with respect to A. Since the expression lgs is not among
those produced by lgs, it does not regresent a regular set. This
ray seem paradoxical, because at every moment in real time the
expression Ai yielded by lgs is a regular set generator. It even
may seam finconsistent. Indeed, is not A, which is represented by
l1gs, the union of all Ayq ? A union of regular sets is regular,
hence A is regular.

This argument, however, is not valid, because it manipulates
-=- in “he spirit of the Platonist-fer=alist marriage -- with
fictitious entities and operations. According to the intuitive
set theory, sets exist as some "ideal™ entities; operations on
then are, correspondingly, also icdeai. This is not a sound ground
for a mathematician. So, formalism deciares these entities and
cperations "abstract” (as if one can exersize abstraction on non-
existent entities), so that now only th=2ir properties, which are
evpressed as axioms, matter. In this ZIranework, the above argu-
went i<ads, indeed, to a contradiction. Teo avoid it, the concept
tezzonding to our A is either banned altcgether, or is de-
cizred a-class, not set. Even if this eliminates the contradic-

co

~

tion, it explains nothing.

Our theory deals with real (linguistic) objects and proces-
ses. Symbol 1lgs does not stand for any ideal entity. It stands
for itself. Its meaning is in how it is manipulated by the user.
Sets are linguistic processes. To define a set means to actualize
such a process. To define the union of the infinite series Ny
Az, ... etc., we must have a generator of this series. But we
know that there is no such generator.

This explains why the non-regularity of A is consistent. Let
us now see why it is true. The role of the symbol 195 is to serve
a sort of hook on which to hang all the generators proven to be
regular. Consider a certain moment in real time. Let A; be hang-
ing on the hook. This means we have proven that ewvery object
produced by At is a regular set (or an ur-element). Ve 66 not yet
know whether L is regular (otherwise it would have hanged on the
hook already, and then fy would produce n;. which is impossible).
Suddenly we realize that we can apply Theorem 8. ke do it, and
prove that h; is regular. The very moment we have proven it, we
hang At on the hook, by the definition of the access function £33
(it should be the last phase of the proocf). After we did it, N
is proven to be regular, but it is something else that is hanging
now on the hook, namely Ay = 0; U (M) . Thus at no time have
we proven that the current A is regular. The universal set g=ne-
rator A is a consistent notion in our theory because we conzider
the process of doing mathematics in its dynamics, as it should
be. Being A is always one step before being regular.

6. Basic set constructors.Paradoxes

The language of set theory is, in _its essence, a programming
language. Like other programming languages, such as FORTRAN cr
REFAL, the set-theoretical language gives us the means to cr=a:te
linquistic processes (set generators in the case of set thecry)

which we use to model natural phenonena. pnlike computer prozram-
ming languages, the language of set theory includes the means to
commanicate with the real-time processes A and T.

40

The role of basic operations of computer languages is played
in set theory by set constructors. These are machines defined in
the Refal metasystem and used to create new set generators. A set
constructor must be such that when its arguments satisfy certain
stated reguirerments, the generating process is interpretable and
the set produced -- regular. In the following we define and
discuss the basic set constructors necessary to arrive at the
present-ticme set theory.

The general procedure for using an expression E as a set-
theoretical object is as follous.

1. See if £ is generated by lgs. If it is, use it.
2. If £ is not produced by lgs
prove that £ represents an interpretable generator
and that whenever it produces a set S,
every element T of S either was in lgs from the beginning,
or has already been produced by E
at an earlier stage in model time.
3. If you succeed, add a generator which produces £
to the defining list of lgs. You can use it now.

ke need, first of all, the means to create arbitrary finite
sets out of objects which are already in existence. Since a
finite set can be represented simply by the list of its elements,
we can define a trivial function £s (for ‘finite set') which

takes & 1list as its argumrnt and produces its members one-by-one:

<fs(e,de,> ~+» (e,)<fs e,>
(gg) -

Examples, A sect gencrator for a set of two elements A and B is
<f5(~)(B)>, hence what is (A,B) in the usual set-theoretical
notation will be *(fs(A)(B)) in the strict notation of our theo-
try. and £s5(A,B) in the semi-formal notation. The empty set is
*(£35). The set (A,(A,B)}} iz *(£5(A)(*V(£3(A)(B)))) in our theo-

ry- Each step of set formation brings one metacode transformation

more.

It i3 easy to define functicn uni which implements set-

11

theoretical union. You simply run two or more set generators in
parallel.

Set theory requires the existence of at least one infinite
set, namely, the set which contains the empty set ¢ as its ele-
ment, and together with any element x contains also the element
formed as the union x U (x} . Thus the elements of this set are:

) g, <P, <F,<P>>, <g ., <g>, <F,<F>>>, ... etc.
To construct a generator producing (1), we define:

inf(X) = (X) inf(uni(X,£s(X)))

In every step, function inf(X) produces X and calls itself with
X U {X} as the next argument.

It is easy to see that with any interpretable argument e,
the process <inf e is interpretable, and if e is a regular
set, then it produces only regular sets. Hence inf(£s()) is the
desired infinite set. This is a constructor without parameters
which gives us exactly one set.

Our next constructor will produce sets with elements selec-

ted for a certain property. Its format is:
set(x € §: H(x)!)

which is read: the set of all those elem2nkts x of the set § {or
which the process (search) H depending on x as a parameter is
finite. The search #(x) will mostly be the proving of a certain
property P of x, or its negation, i.e. v(P) or ¥(P). The g=at
machine works as follows. G is run step by step. Each time thatit
produces an object x, this object is substituted into the search
H and the search is run in parallel with the continued runninj »f
G. Those branches for which H(x) stops produce the corresponding
object x.

The construct

42

(2) T = sget(x € S: H(x)!)

is a regular set if and only if the following three conditions
are satisfied: (a) the generator S is interpretable, (b) the
search H(x) is interpretable for every element x produced by S,
and (c) all elements x of S for which H(x) is finite represent
ur-elements or regular sets.

I€ S is regular, then the necessary and sufficient condition
for (2) to represent a legitimate set is that the process H(x) is
interpretable for every possible element of S.

Can we use lgs in the role of S in the set constructor?
Consider

T = set(x e lgs: H(x)!)

Although 1gs is not reqular, it is interpretable, because it
producas only interpretable generators. So, condition (a) is
satisfied. Consider condition (b). Take the case when the search
H(x) is ¥(P(x)) or ¥(P(x)). As mentioned before, this is the most
typical use of the set constructor. In particular, thé set used
by Russell to come to his famous paradox, namely

R = set(x € 1gs: ¥(P(x))!)

with P{x) = x € x, is of that type. For R to be interpretable,
the property P(x) must be interpretable for every x € lgs, and
since P(x) is within a y-call, this interpretability must be
proven before and independently of the interpretability of R.
That is, R is semantically dependednt on x and P(x), for every

x € 1q93.

At first glance it may seem that we could prove the legiti-
macy of R by the following reasoning. lgs produces only regular
sets; therefore P(x) and ¥(P(x)) are interpretable for every x.
Then R is interpretable and regular. This reasoning, however, is
faulty. The error is that a metamechanical process is thought of

es if it were mechanical. When we say "1lgs produces only regular

43

sets”, the implication is that 195 is somehow given to us as an

external, completely definite reality. But it is not. It is part
of our (the user's) activity. The correct reading is: "we should
manipulate our machinery in such a fashion that lgs always prc~

duces only regular sets". The correct reading of “is R regular?”
is: "can we include R in A without violating the rules?”

To answer the last question, we tentatively add R to lgs and
see whether this will violate the rules. It will. then we 244 R
to lgs, R becomes semantically dependent on itself. It is unin-
terpretable. The set constructor cannot be used with the univer-
sal generator 1gs. We can collectivize objects by an arbitrary
property only if they belong to a definite regular set.

Without coming into detail at the present time, we contend
that all paradores of set theory are resolved in our thecry in
the same way we resolved Russell's paradox: by showing that they
use uninterpretable propositions. The failure to interpret set
theory in a constructive way has been the result of thinking and

arguing about metamechanical processes as if they wete mechna-
nical.

When set theory is defined aziomatically, the axiors are
chosen in order to avoid paradoxes. This i3 hardly a satisfactory
way to found a theory. We start our theory from a certain ccncep-

tion of_gnifﬁsggmgeaning of mathematical propositions is. We do

not have to do anything to avoid paradoxes. As far as we use only
meaningful prcpositions the paradoxes simply do not appear.

We saw that the set constructor with the universal generator
lags cannot be used to collectivize objects by an arbitrary pre-
perty. However, if we specify the collectivizing property in a
certain way, namely by putting:

P(x) = x sub §
where § is a definite regular set, then we still can form a
universal set. This set, i.e. the set of all subsets of S. known

as the powerset of §, plays a most important role in Cantor's set
theory. It deserves a special constructor:

43

pouw(S) - sek(x € lgs: v(x sub SH")

If S is a regular set, pow(S) is also a regular set. To
prove it, add pow(S) to A. The process pow(S) is weakly inter-
pretable. Its semantic graph is presented in Fig.7. It includes a
semantically infinite path, but it does not prevent us from
labeling all the propositions involved. X,, x,, and other ele-
ments of pow(S) may or may not be elements of S, but § itself
certainly is not an element of S, being regular. Thus

pow(S) sub §

is interpretable and false; pow(S) is not produced by pow(S),
while all other x°'s produced by it are regular because they have
been in lgs before the introduction of pow(S). This proves the
reguiarity of pow(S) for any regular S.

By allowing pow into our theory, we add a new type of set
generators. The meaning of the concept of objective interpretabi-
lity remains the same, but the user has now two 'degrees of free-
dom': gns and lgs.

7. Functions

In set theory, a function is a certain subset of the Carte-
sian product of certain sets. As everything in set theory, this
definition is a static representation cof an intnitive. concept
‘that is inherently dynamic, procedural. Intuitively, a function
f(x,y) is a device which for every given x initiates a process
(search) which ultimately halts, yielding the corresponding y.

Our theory returns to the concept of function its intuitive
procedural content. An objectively definable function is a para-

metrized search which for every set of parameters (arguments) is
objectively interpretable, and such that if it is finite on more
than onec parallel branch, then the final passive stage (the value
of the function) is the same on all branches. It can be easily

45

shown that this definition is equivalent to the usual set-theore-
tical definition when expressed in terms of our theory.

We identify function with the procedure of its "conmputa-
tion"; the quotes are here because we extend the corcept of
computation by allowing reference to real-time processes gns and
las. Such a procedure may not be executable in a computer; it is
a definition, not an algorithm. According to the current termino~
logy, a function is computable if it can be defined by a purely
mechanical process, an algorithm. We should better call such
functions mechanical. Non-computable functions should be proprly
called non-mechanical.

To compute a function f(x) defined through a metamechanical
process we have to replace the calls of T and A by the best of
our ‘gnosis' and ‘logos’ for today: Ty and ny. The resulting
machanical function [(x) will be referred to as an implementa-
tlon of the function f(x). Where the exact function calls v(P) or
¥(Q), its implementation calls vy (P) and ¥;(Q). the following
theorem, the proof of which is left to the reader, is for func-

tions what Correctness theorem is for propesitions:
Theorem 9. Let f(x) be an objectively definable function, and
f((x) its implementation. For a given x, 1f the search f(x) is
infinita, then fi(x) is also infinite; {€ f(x) is finite, then
fi(x) may be either finite or infinite, but if it is finite then
it value f{(x) is equal to the value of f(x).

Function fi may be defined on just a part of the domain cf
f. If f is non-mechanical, it will always be a part, not the
whole domain. However, for those x for which fi(x) is definead,
its value will be exactly the same as that of f(x). No implemen-
tation of an objectively defined but non-mechanical function is
complete; at any moment in time there will be an argument x for
which the search f;(x) is infinite. But for any x from the domain
of f there exists such an implementation fi of [that ,(x) is
finite and produces the correct value.

One can see that our definition of a function is, basically,
constructive: a function is a computational procedure which masy
employ metamechanical processes. This extension of the concegt of

46

ccemputation is fully justified. Metamechanical processes are
distinguished from mechanical not in that they appeal to some
“transcending” powers or use non-existent omniscient creatures
(Yoracles"), but in that they include the activities of the
subject of knowledge, the user of the mechanical device. Turing,
who introduced machines on paper into mathematics, identified
computation with the activity of an cutcnomous machine. But
computational processes which we see around are autonomons only
during some finite stretches of time: say, while a computer
program is working. But it is the user of the computer who has
written the program, and who will soon throw it away and write a
better one. It is the user who proves theorems and bases new
algorithms on them. Mathematics is beirg done by human beings,
acknowledgement of the existence of metamechanical processes.
Computation is a metamechanical process. Mechanical, algorithmic
computation is only a special case.

Calling non-mechanical functions “non-computable" is con-
fusing; it is something of a contradiction in terms. Non-compu-
tability implies that the function cannot be computed. Then is it
a function? We know, however, that every objectively defined
function can l'a computed, even though at the present time we may
not know how.

There is a fundamental difference between the use of paral-
}e} processes_in p{gpositigps and in functions. The interpreta-

tion of a parallel search in a proposition depends only on the
finiteness or infiniteness of the branches, but not on their
final stages. We could agree that the final stages of all
searches the finitenss of which is asserted in propositions are
always identical to the symbol T; or we could simply ignore
them. Therefore, a parallel search is interpretable if every
branch is interpretable. A functional parallel search is inter-
pretable only if all finite branches produce one and the same
result.

A functional search which runs an interpretable gemerator

is, generally, uninterpretable, because it may cut the process at

47

some moment, and both this moment, and the result of the search
may depend on "the competition” of the branches, which is imple-
mentation dependent. In particular, the concept "the first member
produced by the set generator” is uninterpretable if the gene-
rator involves metamechanical processes. So is, of course, “the
second member”, etc. While the belonging to the set defined by a
metamechanical generator is objectively interpretable, the order
in uhich’EBS"h;mQE;g a;; P(QGFQQdAif,PQE; This explains why sets
of set theory must be'hnordegéa if we want to consider not only
recursively-enumerable sets.

In logic, a functional dependence is a predicate F(x,y)
which has the property:

™) (Ax)({Ey)(Az)[F(x,z) = y=z]

It states that for every x there is exactly one y such that
F(x,y) holds.

Given an interpretable functicnal dependence F(x,y), we can
build the corresponding computational process using the Refal
function fun defined as follows:

o) fun(x: F(x,y)) » sch(y € 1gs: v(F(x.¥)))

With a given x, function fun tries every element y of igs, i.e.
every legitimate object of the theory known up to date, looxing
for such a y that F(x,y) is true. The expression y is then given
out as the value of the function (see function sch ir Part I).

The search defining f(x: F(x,y)) is objectively interpret-
able because 1gs procuces only interpretable ezpressions. and
F(x,y) is supposed to be interpretable for every interpretakle x
and y. We have no problems of the kind we had with the set
function, because (**) defines a search, not a new cbject (it is
no constructor). Since F(x,y) has the property (*), there will be
no more than one branch that is finite. Therefore, £fun is an
objectively defined function.

We shall need a Refal generator which computes a function

48

and outputs its value as its single element. This generator is:

qfs(fun(x: F(x,y))), where gfs ("generator form search) is defined
trivially:

{gfs e> + (e))

5. The 2P axioms

Using the set constructors we defined above and adding a few
more we can explain the meaning of the axioms of ZF and show why
they are true. A more formal proof of consistency of the ZP
system will be published later.

There are no ur-elements in the ZF system. All objects are
sets.

1. Extensfionality axiom. Sets having the same elements are
egual:

(EXT) (Ax)(x e a=xe€b] ~a=2»>

This is one part of our definition of equality between sets.
Using the reversed implication one can easily prove that the
equality so d=fined is, as required, reflexive, symmetric, and
transitive.
11. Axion of the empty set. There is a set which has no elements:
(EMP) (Ea)(Ax)}[~(x € a)]

This set is f£s().
1i}. Separation axiom, For every set a and every property P(x) of

sets there exists a set whose elements are those and only those
elements of a which have the property P:

49

(SEP) (Eb)(Ax){x € b = x ¢ a & P(x)]
This set is: b = get(x € a: v(P(x)))

IV. Pairing axiom. Given any sets a and b, there exists a set ¢
whose elements are exactly a and b:

(PAIR) (Ec)(Ax)[x € ¢ = (x=a v x=b)]

This set is: c = fs(a,b)
V. Sum-set axiom. For every set & there exists a set b, whose
elements are exactly those objects occurring in at least one
element of a:
(suM) (Eb)(Ax)(x e b = (Ey)ly € a & x € y]]

We introduce a ncew constructor to satisfy this axiom:
sum{(S). It runs S, takes every element of § as & set g=nerator,
and runs them all in parallel. sum(S) is obviously reqular if S

is regular.

VIi. Powerset axiom, For every set a there exists a set b the
elements of which are exactly the subsets of a:

(POW) (Eb)(Ax)[x ¢ b 2 x in a]
The set b is pou(a).

VIl. Axiom of infinity. There exists a set which includes the
empty set and with every set x includes x U {x}:

(INF) (Ea)[d € a & (xeca-»>(xU (x}) e a)l)

The set ¢ is5 inf(fs()) .

58

Vill. Axiom of replacenent, The image of a set under an operation
(functional dependence) is again a set. More precisely, if a is a
set and F(x,y) is a formula such that for every x from a there is
exactly one y such that F(x.,y)., then there exists a set the
elenents of which are exactly those y's for which an x € a exists
such that P(x,y):

(REP) (Ax)(Ey)(Az)([F(x,z) = y=z] =
(Eb)(Ay)(y € b = (Ex)[x € a & F(x,¥)]]

To expect that a set required by (REP) exists, we must first
prove that the antecedent of the implication is true, i.e. for
every x there is a corresponding y. Suppose we did. Then we also
have proved that all the y's are regular, which is to have proved
that all of them are generated by the current A; "hooked" on 1gs.
In the definition of the function fun(x: F(x,y)) we can replace
las by n;; denote the resulting function as fun;(x: F(x,y)); it
is eguivalent to fun(x: F(x,y)). Now we can construct the set
required by (REP) as follows. Run set a, and for every element x
gererate the corrosponding y using gfs(fun;(x: F(x,y))). It is,
of course, regular.

IX. Axiom of regularity (or foundation). Every non-empty set is
disjoint from at least one of its elements:

(RZ2C) a ¥+ (Eb)[{D € a & (Ax)[x € a » «(x € b)]]

1f every element of @ has another element of a as its ele-
ment, then there is an infinite (cyclic or acyclic) sequence of
sets surh that each next set is an element of the preceding one,
which s*arts with a. Since a is regular this is impossible.

X. hxiom of choice. If a is a set the elements of which are

non-exrty sets, then there exists a function f with domain e such
that for every member b of ¢ it is true that f(b) € b.

51

Such a function is referred to as a choice function; let
us denote it as cho. We could try to construct cho as a machine
which runs b as a generator and stops the moment it produces the
first element. This element becomes cho(b). Since no element of
a is an empty set, this function is defined on the whole set a,

Punction cho, houecver, cannot be legitimately used in set
theory. As we saw above, a function which employs tunning a
generator is, generally, uninterpretable. The intecrpretability of
cho(b) can be guaranteed only when b is countable; for this case,
however, the axiom of choice has little siynificance because it
can be proved as a theorem: one only nceds to map the set b on
natural numbers and pick up the element which corresponds to
number 1. If b is uncountable it calls lgs, which changes in real
time. Let the element of b picked up by the function cho at a
certain moment be b, We cannot guarantee that later in real time
cho will pick up b; again. The belonging to b is objectively
interpretable, but the order in which the elements of b are
generated is not.

The following theorem we put foreward tentatively, because
not everything about the interaction of A- and r-processes is_yet
Clear to us.

Theorem 10. There exists no objectively dzfinable choice func-
tion.
Proof. Let us denote by Ago Dy, ... the sequence of universes of
discourse as they occur in real time as a result of using curcent
values of A and T. Suppose that an objectively definzble function
cho does exist. Let cho,, cho,, ... etc. ba its implsnentatiens
under A;. Ny,... etc. By Theorem 9, if the search cho;(b) is
finite, then ggg)(h) for. all j>i are also finite and have the
same value as cho, (b), i.e. the true value of cho(d4). This must
be true for any sequence of L provided that Ny sud Nisl- “e are
going to prove Theorem 18 by constructing such a sequence fyy Ay,
Let a in the axiom of choice be the set of all non-empty
subsets of some set S. Take a sit b € a. Take scome set A, and tuwo
of its non-empty subsets A; and A}, such that A; n A} = &,
bna,#¢g, bnay #¢ . (If b is uncountable, this is always

52

possible). We can now consider two A-sequences: one starts with
Al,nz <--3 the other with Ai,hz Consider implementation
cho,(b) with the lirst sequence. Function cho(b) can depend on b
oYy Fiorough the fioaction el(x € b). Hence <hgy(b) @vpinds on b
only through cll(x € b). Since those and only those elements are
available to gll which are in A;, el (x € b) = el(x € b n A;).
Therefore, ghgl(b) = cho(b n A;). Since b n 6; is a subset of S
and is not empty, function cho must be defined on it; let its
value be c¢,. Reasoning in the same way for the second a-sequence,
i.e. A}, Ay, ... etc., we find that the implementation for the
Eicrst smtage A} is: choj(d) = cho(b n A}) = c}. Since A; and Aj
are disjoint, €; # ¢j. Let choy(b) for the second stage of both
A-sequences be c¢,; it iz distinct from at least one of c; and ¢j}.
Therefore, at least one of the two aA-seguences is such that

choz(b) # cho,(b), which is impossible if cho is objectively
defined.

As proven by Goedel [1948]), if set theory without the axionm
of choice is consistent, then so is set theory with the axiom of
choice. This suggests that there mest ke a way to interpret set
theory so that the axiom of choice comes true. Indeed, we can do
it by weakening the requirement of objectivity. The interpre-
tation we have been discussing may be called the many-user inter-
pretation. Objectively defined functions in this interpretation
must not depend on the Ar-sequence that leads the user's way to
truth, tecause for different users they may be different. But if
there is only one subject of knowledge who uses the machinery of
rathematics (or he does not care about other users), then there
is> only one aAr-scquence. This is the one-user interpretation.
Then Thecrem 19 does not apply, and it is easy to construct a
choice function. For cvery uncountable set b we take the first
implemnontation b; of b which is not empty. Since b; is a mechani-
cal genecrator, we can uniquely pick up one of its elements and
cdeclace it cho(b).

Tcchnically, this fdea can be realized as follows. Modify
the expression repres.nting a set so that it becomes a pait: the

53

generator (as before) and one of its elements, if the set is not
empty. When proving the regularity of a new candidate for A, plck
up an element which is available with the current s make up the
proper pair. The choice function will simply take the second
member of the pairc.

The many-usct interpretation, in which the axiom of choice
does not hold, scems more naturnrl. But because of GCoedel's result
ment.foned above, the interpretation of the axiom of choice is
unimporlant for the problem of consistency of set theory.

9. Uncountable Sets

The pouw constructor stands alone from the other constructors
we have defined. It calls the function lgs which provides access
to the real-time process A representing our developing universe
of discourse. If S is an infinite set, then there exists no
generator which produces all the objects which can be produced by
pow(S). This was first proven by Cantor, who interprcted it in
the Platonist spirit as the evidence that pow(S) has "more”
elements than S§.

The notion of a hierarchy of static actual infinities is
counterintuitive. Cantor's set thecory introduced into mathematics
a host of unimaginable entities, which later became being passed
for the only "real" objects of mathematics. Yet in no reasonable
sense do thesc entities exist, for we find them neither in reali-
ty nor in our intuition. The philosophical unsoundness of Caa-
ta;TS theory has been recognized by many outstanding philosophers
of mathematics starting with Henri Poincare who considered it as
a perverse pathological condition that would one day be cured.

We interpret the mathematical formalisii of set theory in
terms of intuitively clear and unambiguous concepts. 'hen Cantce
proves that pow(S) has "more™ elements than S, he only proves
that whatever machine is offered to us as a generator or enurmera-
ter of the elements of pon(S), we always can construct a new
element, not yet accounted for. These "us' and 'we' are absolute-

ly essential for the meaning of the proof, even if they are

54

avoided by using a different grammatical form. It is impossible
to understand Cantor's proof without 'we always can'. [t shows
that the construct pow(S) cannot be interpreted in terms of
nodel-time processes only, but involves inextricably the idea of
teal time in which we live and in which 'we always can' create
one more element.

The identification of sets with generators in constructive
approaches to the founcation of mathematics usually stumbles over
the interpretation of non-denumerable sets. In our theory, be-
cause of the introduction of metamechanical processes and the
concept of objective interpretability, the constructive founda-
tion is compatible with the existence of genuinely non-denume-
rable scts. We should discuss how this becomes possible.

Take a set 5. If it is mechanical, the order in which the
members are produced is objectively defined. A set S whose gene-
rator is a metamechanical process can be seen as the limit of the
real-time sequence §$,,5,.8,, ... etc., where S; is the set gene-
rated by the mechanical generator corresponding to our knowledge
at the i-th moment in time. Since the knowledge of the subject
can only grow, each next set in this series includes all previous
sets as subsets., We also can see S as the union of all the sets

S,.5;, ... etc. Can we enumerate the members of such a set?
There {s a way to do {t, which has been used since Cantor, and is
knoan as diagonalization. Arranging the members of all the sets
in the infinite rectangular table

S, =¢,, a,, a,, a,, -..2
8§, = <b,, b,, by, b, ...>
S, = (c‘. €,. €y, C.» .2
s, = <4,, 4,, 4,, 4,, ...2

the diagonalization process generates all of them in the order:

a,a,, b,a,, b, c,, a,, ... etc.

55

When an element appears repeatedly, we ignore it, thus counting
only the fitst entry. This allows to enumerate the union set S.

If there i8 a mechanical generator which generates the
sequence 5,, S,, ... of mechanical generators, and the equality
of the elements of the sets {s tested by a finite mechanical
procedure, then the diagonalization is also a mechanical proce-
dure. A recursively-enumerable set of recursively-enumcrable sets
of objects is recursively-enumerable. If the elcments of the sets
are infinite sets themselves, we need a recourse to human knot-
ledge to decide on their equality. This makes the diagonzlization
procedure not recursively-enumerable, but still leaves it objec-
tively definable. We can now consider a more gencral case where
the sets S‘ are denumerable, and so is the set of the sets S;-
Then the diagonalization procedure will be objectivaly definable,
and the union set S denumerable.

Consider, however, the case where the sets St are generated
in real time by lgs. Although we can go on jumping from St to
5‘+1 infinitely, we can do it only in real time, and are unable
to construct -- once and forever -- an objcctively defined gene-
rator which produces all of them. Therefore, we cannot use diago-
nalization. Although the limit of n, for iso (loosely understocd)
is the same for all subjects of knowledge, the specific stages in
which it is achicved may be different. The ocrder in «hich the
interpretability of different expressions is proved may vary frem
subject to suvbject, it is not objectively defined. Thereiore, the
resulting enumeration is not objectively defined either. More-
over, even with a given sequence of S;'s, the enumeration; which
must be a process in real time, will give different results
deprnding on the frequency with which this process reads current
values of S. For example, Lf it makes readings twice as frequont-
ly as was assumed in the rectangular table above, then the table
will be different, namely:

§, =<¢a,, a,, a,, a,, ...>
§,=¢a,, a,, a a

3°* (%4
S, =<b,, b,,.b,, b

L 2® P a? ")

56

Now the ordering given by diagonalization is different from what
it was above; e.g., a, precedes b,, while they were in the oppo-
site orider before.

So, this is how non-denumerability is interpreted in our
theory. Non-denumerable sets are generated by metamechanical
processes, in the interaction between the user and the machine.
The property of belonging to such a set is objectively definable.
Since the only way a proposition of set theory can include a set
is through the mediation of the predicate of membership €, propo-
sions may refer to non-denumerable sets and still be objectively
defined. But the order in which the elements of a non-denumcrable
set are produced is not objectively defined; it depends on the
user. There exists no objectively definable function which would
map all elements of such a set on the set of whole numbers.

This interpretation is radically different from the one
given by Cartor, according to which a non-denumerable set has
"more' elements than a denumerable set. In our theory every set,
and every element of every set, is represented by an expression.
The set of all expressions (including uninterpretable) is, of
cours=, denumerable (and even recursively-enumerable). Thus all
infinite sets in out theory are intuitively perceived as having

"no more” elements than the denumerable set of all expressions.

The theorem that a subset of a denumerable set is denumerable
remains, of course, true, but this does not lead to a contradic-
tion, brzause the gencrator of all expressions is not a regular
set. The fact that our universe of discourse stays alwaye within
the =ct of all expressions does not help us to enumerate it. By
Theorem 3, it is impossible to separate interpretable expressions
frem uninterpretable, even i€ we are allowed to use metame-
cusnical procestes, not only mechanical. The "universe of uni-
verees” is undefinable. Meaningful objects and propositions can
only be constructed inductively, from bottom up, in the interac-
ticn bLe¢tuween the user and the machine. Period.

57

Acknowledgements

I appreciate discussions of the Cybernetfc Foundations which
I had with several colleagues: Karel Hrbacek and Michael Anshel
of the City College, Angus Macintyre of Yale, Avgustin Tuzhilin
of the College of Staten Island, and Martin Davis of the Courant
Institute in New York.

REFERENCES

Beth [1968] The Foundation of Mathemotics
Goedel, Kurt [1942] The consistency of the axiom of choice and
the generalized continuum-hypothesis with the axioms of s=2t
theory, Annels of Math. Studies, tlo 3, Princeton, N.J.
Orlov, Yuri F. {(1978] Wave calculus based upon wave logic,
Intern. J. of Theor. Physics, Vol 17, pp.5€3-598.
Orlov, Yuri F. [1982] The wave logic of consciousness: a
hypothesis, Intern. J. of Theor., Physics, vol 21, pp.37-52.
Tarski, A. [1933) The Concept of Truth in the Langucges of
Deductive Scliences.
Turchin, V.F. [1982] Thke Language Refal, Courant Computer Science
Report § 20, New York University.

58

)
PET Vel adopuiuti il
of ()
_. P

Loy
Fea-1, Sewanhic T‘-“PL\

for Atxp! F;9.3. Semawlic q'\.a,rk

fon !,

Rﬁ:Q‘- Somankic 5)1%(71\ -ﬁm.
Hy(80! e & (7 (a1), T (37!

7 ©
7 /7 P
TF R u;ﬂﬁ T,F . {LL‘Q;:*
ne Ly e
;{E‘ﬁ o /i”
BT TF
F;all TLl "‘W”‘LO* Tgas— TLL arado
bé #M' &M ef 1'/’.\4_ Jajw':
- F-‘;ou) Y4 / —

