
TBE CVf~EP.N!':T!C FOUllO;\TlON OF l-IATliEM!.i'ICS

II. INTERPP.ETATJON OF SET THEORY

Valent in F. Turct,in

Departaent of Computer Science

The City College of New Yor~

~~ 5ta:t with a recapitulation of the basic dcfinttions of

c-ur fc,~~.;;,.: i ::.1: !oo'hich "''!re introG•.lc<E=<.! (scornet iroes se:ni-formnlly) in

Part I of t~is p~per. ~,~n we do not want to add anything to the

prt:vio•~::; ~.:iin1tions, we send the reader (implicitcly) to Part I.

C~r tb~?ry is using a forma! l~nguaye called Re(ar aLd a

·~ac~~~~ c~ ~~per" C3llcd the Rcfal machine. Elementary syntax

l.ln.i.t. ... ~-! t(ef:ai are of tHO kinds: sp-ecial signs and object :symbols

(or ~·~-~::. ~yr•b!>l:;).

S~e~i~l signs of Refal includ~

• ~trv:ture ~rackets '(' and')':

• activ;;~tio~ brackets'(' and'>';

• free vari'ltlc:;, Hhich are repre~cnted by_ a .5Ubscripted 's' (a

_symbol varlabl~) or 'e' (an expres~ion variable). e.c;. s 1 , sJC,

E:5.

o~'~'"et f.yrnbols used in Refal a:::e supposce. to belong to a
fira!t.·~ -:lt;h'lb'!t, which is not, ho~ev~r. fiRed once and forever.

lo-le £!::~.1! c:;!! a~• ol'j;>cl s)'mbols:

• ::h;.t.;~ter:. cJi::;tinct f~ron special siqns,

• superf,cript~d characters like F 1 ,

• st:r:.n-;s 1):' ciF1rclct<:rs und(:rlined t" form one (colftpositc) sym­

bol, t-.'J .• tt."~·

r,;~ '!.51! c'l;;i'.c..l itulic letters A, B, .•. etc. as rnetasyrn­

b~:= t? d~n~~~ Rcf3l objects and rroccsscs.

~~f'•l's -=~· ··:·•:n:;i te :syntax units are ... s follo:·Js.

• l·.n <:Yprc::;&'.ln 1~ an obje.ct which can t>c identified as one of:

(c:.) ·.~.t· e;c.r,:.y :.t.rin<J, t.~Mch we r.l<l.}' repo;escnt just by nothing, or

1

by the roeta~yrnDol [];

(b) a symbol (i.e. an object symbol, r.ot a s~ecin\ sign):
(c) a variable;

(~) ~ 1 £ 1 , ~r (E 1), or <E 1 >, where E1 and E' are e~p!~~~ioa~.

• ~term is either a sy~bol, ~r a vaci~ble, or (E), or <E>, wher~

E is an expres~ion.
• A pattern expression is an expression which do~~ ~ot in~lude

activation brackets (bi.lt generally includes varic.bl•~s). A pro:::.:;~

expression is an cx;:;r':!55iOr• which does not include v;Ariables (but

generally includ~s activation brackets). An object Expression is

an e~pression ~hich i~=ludes neith~r variables nor activation

brackets. 1\n L-ei!pression is a p<tttern expr~st;ion t.-1hic:1:

(a) contains no more than one entry of every e-variable,
(bi contains no more than one e-variable on every lev~l of bra:­
ket structure, i.e. cannot be represented as

where subscripted E's are expressions. Examples •Jf L-cxpre~sions:

Examples of ,attern expr~ssions which are not L-cxpr~ssions:

• 1\ nefal sentence is a~ object of the form <L~ ~ n. where L is a

psttern e~~rc3~~~~ and R is an arbitrary (general) eKpres~ion of

Refal. The sign '4' is just a symbol (not a speci~l sign) whicn

is use~ for visu~l c~n~eniencc. L is referred to as the left

sld~. an~ R QS the right side of the sentence. The right sid~ can

include only such variables which appear also in the le!t side.

• 1\ list of e;:pressior.s E1 , ~ ••••• , ~n is the ex;;Jres:;ion

2

• A Refal program is a list of sentences.

The Rcfal machine has two information storages: the program­

f!elc and the vlc~-fleld. The program-field contains a program,

whic~ is loaded into the machine before the run and does not

change ~u~ing the run. The view-field contains a process expres­

sion which changes in time as the machine works. The process

expr~ssion in the view-field may be, in particular, an object

exp~essicn, i.e. may not contain activation brackets. Then the

Re£al machine stops --or, one might say, reproduces the same

obje~t expression indefinitely -- until a new run is initiated.

c~."r.ge, as we said above, comes only from activation brackets.

This is o~r way of cepr~senting the abstraction of invariability,

which lies at the root of the notion of an object. Our object

expre~sions are linguistic representations of natural objec~s.

~hich ar~ su~posed not to change with time. Concatenation and the

use of ~tructure brackets (parentheses) allow us to render the

hierarchical structure of natural objects as they are built of

certain ele~~ntary objects, which we represent by object symbols.

To rerrez~nt a change in time, i.e .• a process, we enclose an

object exprezsion in activation brackets, and then the Refal

cachi~e will transform ~uch expressions step by step, thus gene­

rating a ling~istic process. If at some stage this process (i.e.,

the process e:v.pr<::ssion in the vi£!w-field) becomes an object

expression, we say that the process is finite.

Activbtion brackets rnay be nested; then they will be activated

in a uniq~e ordrr using the principle 'inside-out, from left to

ri~ht' _ N~re formally, we define the range of an activation brac­

ket as th~ ~ube~pression limited by this bracket and the one

p~ircd ~ith it. ~c define the leading activation bracket in a

~~~~n C?PlC~sion as the leflmo~t sign < of those signs < which 

~av~ n~ otter sign:; < in their range. The Refal m~chine works by 

steps, ~~ch step being an application of one of the sentences 

fr<.r.: t!-.r, vro•Jr;;m- field to the term in the view-field which starts 

with ~h~ leadi~~ activation sign; we call this term the active 

lern of th~ Pl~Ct!~~-

3 



We say th3t an object expression E0 can be syntactically 

recognized as a pattern eKpression EP if the variables in EP can 
be replacea, observing the rules listea below, by object expres­

sions callea their values such that EP become:; taentical to £ 0 . 

The rules are as follows. 
(a) An s-variable s 1 , where 1 is any index, can take as its value 

any symbol. 
(b) An e-variablc e 1 can take any expression as its value. 

(e) All entries of the same variable in EP, i.e. variables with 

the same sign 's' or 'e' and the same index, must be replaced 

with the same value. 

It can be sho1rm that if EP is an L-eKpression, then there is 

no more than one set of values for the variables in EP such that 

their substitution transforms EP into E0 , and the~~ is an effi­
cient algorithm which establishes whether E0 can be syntactica!ly 

recognized as EP' and in the case of a positive answer determines 
the values of the variables (see (Turchin 1960)). 

Now we can describe the operation of the Refal machinP.. Each 

step starts with locating the active term in the view-field. If 

there is none, the Refal machine comes to a normal stop. Having 

found the active term, the Refal machine compares it with the 

consecutive sentences in the program-field starting with the 

first one in search of an applicable sentence. A sentence is 

applicable for an active term if the term can be (syntactically) 
recognized as the left side of the sentence. On finding tt.e first 

applicahle sentence the ~efal machine copie5 its right side and 

replaces the variables there by the values they have takr.n in the 
process of recognition. The proce5s expression thus formed is 

then substituted for the active term in the view-field. This ends 

the current step, and the machine proceeds to e~ecutc the next 

step. If there is no applicable sentence in the program, the 

Refal machine replaces the active term by the term (?), which at 

each neKt step is replaced by itself again, thus g~nerating an 

infinite process, which will be called undefined. This is a 
special process with the question mark symbolizing (in this 

contcKt only) that if our linguistic process is intended as a 

4 



~e~~~sentation of a non-linguistic "real world" process then the 

io~r..~r carrie:; no inforr.aation about the latte~. !f::. __ ts imP~rtE._nJ: 

to not.£__l:_hat an indefinj._t~ PJ'P_C_~-~~__i§__tnfi':lite_: 

The Refal machine may not be completely autonomous of its 

user. Some of the sentences in the view-field may have the form 

<Fe> ~ R , where F0 is a symbol. and R is an object expression 

E~ich the user. and only the user, can change at any tiae. The 

exr-rcssion <Fa> is the ~s_1J:!I'!.c_u_q~ for the real-time process 

represented by the changing expression R. The most important 

:eal-time process is accessed as <9n2>. Its valuer is the sum­

tot3! of the current mathematical knowledge of the user. 

An expression without free variables defines a process: the 

~~~ initiated by the Refal machine when this e~pression is put in 

its vie;.:-field. An_~~rcssi~rt__-~hich includes free variables (pa­

~a::-.etoi!~s} -~-i 11 _be said to define a pararnetri_ze~ __ p_roces~. A para­

~etrized process which never calls real-time access functions is

a ~~chine. A process initiated by a machine is mechanical. A

~roccss which calls real-time access functions is metamechanical.

"ih•.ls when we are strict we use the concept of a machine in

~x~ctly the same way as it has been used since Turing: as an

c~tonomous device. In this context. a paramet~ized process which

is ~ot known fot certain not to call access functions. is not a

~achine. However. we m~y occasionally call a parametrized process

~ n~chine when we do not care whether it dces or does not call

ac~ess fqnctions.

All processes we usc have a symbol immediately after the

-:.;;~nir.CJ activation bracket; it serves as a tag, or name, to

~istinguish different families of processes. We refer loosely to

the~e tagJ and the processes so tagged as functions. Indeed,

~very par~mctrizcd process defines a partial function (which is

:~cu~sivc if the process is mechanical) whose value is the result

of the procc~~. i.e. the expression to be found in the view-field

:;.;;:~n (and if) the process comes to an end. A pr.,cess <FE>. where

F is a ta~ and£ is an e~pression, is denoted as F(F.) in a semi­

for~3l functional notation, which we mostly use in the following.

We deal ~.lh two kinds of processes: searches and genera-

tors. The former have the structure <F£> at every stag~; the

latter L<FE>, where L is a list of object e¥-pres:5ir,ns which are
said to be produced by the gP.nerator. Searches and gcn~rators cnn

be run in parallel, which is simulated on the "seque~tial" Re~al

machine as defined above. We use metacode to map the set ~f all

Refal expressions on a set of object expressions. Speaking about
Refal expressions we denote the rnetacode of E as tE. How~ver, in
the semi-formal notation we drop 't'.

A. predlcJj_o.n.. is the statement that a given search, say A, is

finite. We represent it as .-.! According to our fumlam!:ntal prin­

ciple, a ~r_oi'_Qsi_tio!l i_s meaningful if it can bc~_i.nterr~r:e.t!!.d.~ a

h~~rarchical generator of Predictions. One such propcsition ia

the statement that the search A is infinite; ;.1e denote it r.os .<.?.

To represent in this way all logical connectives ~nd quantifiers,

we found it necessary to introduce cognitive processes y(P) and

y(P), the former seeking to prove Pas true according to our

current knowledge r (which may change itself), and the latter

looking for contradiction of P with r.
Predictions are directly verifiable. This holds, how.!v~r.

for those predictions only which stat~ the finitenes of a det~r­

ministic mechanical process. By introducing metam~chanic~l pro­

cesses we have undermined the simple and safe notion o£ a predic­

tion. If A is metamechanical, the statement A! has no imrr.<::diat:e

meaning, because A is not a deterministic proc~ss: it d~pcnds en

the user's will. This was the note on which Part 1 ende~.

To finish up with preliminaries, a table follows "hict.

translates the usual logical notation into the ccrr~spon~ing
propositions of our theory. The translation of a logical proposi­

tion P will be denoted as [P]. Primitive predicates are tran3-

lated according to their meaning. For composite prcpositi~ns, the

translation rules are:

[~1')

(P.&Q]

[PvQ)

6

Y([P]}!

i!.mH r P J. l Q])

Q[(y ([p 1). y ([Q 1)) !

[P-Q)

[(..... x)P(x)]

(j£x)P(x)] =

2. Objective Interpretability

l!TC [PD! the.nr~n

all(lr:[P(x)))

sch(X:y([P(x)}))!

There are two reasons why predictions about metamechanical

proce£~es can~ot have the same direct meaning as predictions

about mechanical processes. First, a metamechanical process is

not deterministic. It is not defined~otehctr.~\3~,~~---~-a~v-~
future, but or.ly for the past, up to the present moment. Its

further development depends on decisions to be taken by the user.

~· different us~rs may have taken differe~t decisions in the

past, so even the past of a metamechanical process is not quite

oefinite.

Then is there anything definite about metamechanical pro­

ce~ses? Or does the freedom of the user's will render every

stat~ce~t about such processes meaningless?

It w~uld do so, if we put no constrainls on the user's

choic~s and decision5, allowing him everything. But the value of

r plovid~d by the user is not completely arbitrary, even though

it is not uniquE-ly defined. By the cot:~s)_!ti11.1.~.Y-..J:.M..le discussed in

Part I, if we fi.nll that some P is not true '~e cannot say: "so

~1hnt, let ·~s still add it to the knowledge". By the comple_ten_f!_!.!_

rul_e. if we figured out that some P is true, woe cannot say: "to

hell with it, we still do not want to add P to the knowledge,

ev'.!r". t-!e have to ar]d it. Because of these restrictions ~an

s~.r~•r;:.t-=.::oo_!llc ob}ecUv_f!__ ~_act.s about mctamechanical pr_()cesses_,

~~~ch do not depend on the user's will as long as he sticks to 

the r~lcs. fro~ thoce features ~hich do depend on his will and 

h~nce h~~e no objcctiv~ interpretation. 

Th~ only ohjectivc property of the process y(P) in case it 

is finitP. is that it Is finite; an analogous statement can ~e 

r:o~d'! :1b-:•ut v(P). All th{' rest may vary from user to user. and 

f ~ c..r:. <.n,.. r..omcnt in rt.:.al tim~ to another. Take any pre>perty of a 

pr~cess that characterizes its definite stage, e.g. that the 

7 



number of terms in the process expression after 25 steps is even. 
It is easy to write a formal proposition (it will be ~ pre~ir.­

tion) which expresses this property: let it be P. If the process 

is mechanical, P has a definite (objective) value: it is either 

true or false. If the process calls g~. then depen~ing on th~ 

current value of r the number in question rnay be different for 

different users; even for the s~me user, it may be even today, 

odd tomorrow, then again even, ~nd so on. The proposition P is 
not objectively lnterpreloble, it depends on the very process of 

cognition, not solely on the processes which are being cognized. 
Less obvious cases of objectively uninterpretable rropo­

aitions are y(P)?, and y(P)?, where P is an interpretable propo­

sition referring only to mechanical processes. Compare y(P)! and 

y(P)?. The former is a prediction which does not tell us anything 

about any specific stage of the cognitive process, but only the 

fact that the process comes to a successful end, which characte­

rizes P as true. The latter is a generator of propositions aboGt 

the stages of the cognitive process; it does not qualify as 
objectively interpretable. 

We define interpretability inductively. The base of in1uc­

tion involves only those processes that do not call cognitive 

processes and are deterministic. If A is such a s~arch then A' 

and A? are interpretable. If G is such a generator •. and n~n~ o( 

the propositions it produces refers to cognitive processes, th~n 
G is interpretable. 

As ~iscusscd above, if Pis in the base (purely mer.han1c~l), 

then the predictions y(P)! and ~(P)! are objectively interpr~t­

ablc: the former says that P is true, the latter that it is 

false, while the truth-falseness of P has a quite definite objec­
tive me~ning. Generalizing this reasoning, consid~r a proce~s A. 

which at some stage initiates a cognitive proce~s y(P) or y(F). 

If the results of A depend only on the fact that the cognitive 

process with P as the argument ultim~tely stops, then such a 

process A can be interpreted in objective terms, specifically, 

the results will be conditional on the truth (the cas~ of y) or 

falsehood (the case of Y) of the proposition P. Ceneralizin~ 

e 



further, ~e can underst~nd by P any propositi~n whose interpret­

ability ha; already bee~ pr~ved. Thus we cone to the concept 

which will be refcrre~ to as strong interpretability, to distin­

guish it from a version which will be introduced later as wenk 

interpretability. 

Definition of atronq in~ez-pretabUi. ty 

I.l If A is a deterministic model-time process 

with no accc~s to real-time processes, 

then A! and A? are interpretable (atomic) propositions. 

1.2 If A is 3UCh a process that whenever it initiates 

a cognitive process of the form y(P) or i(P), 

(1) P is an interpretable proposition. and 

(2) the results of A , i.e. 

- in cas~ ~hen A is a search, the fact that it is finite, 

(and if it is finite its final stage) and 

- in case ~hen A is a generator, the set it generates, 

do not d~pend on any stage of the cog~itive process 

b~~ merely on the fact that it is finite or infinite, 

th~n the process A is interpretable. 

1.3 If A is an interpretable search, 

then A! is an interpretable propositi~n. 

I. 4 Ii r: 
"' i5 3n interpretable generator 

~hich produces only interpretable p:op~sitions, 

then G is an intc~p~etable p~oposition. 

1.5 A propo~ition is interp:etable 

only if it can be proved interp£etable 

by definitions (1.1) to (I.4). 

1'h•! conc~;pl of interpretability cal'!_ be c:omra!~d ~j~h the 

cone·~;-·':. of invc:.ci.l_r,_~s_!n .~hysics. When ''e ~rite equations of 

the~~etical ~hy3ics, we use some refere~ce system. thus it be­

co~~~ in]Chin~d in tbc meaning of the equations. Yet the most 

i;;·v·•·t-•:.t ph:;r~ir.:o1l CJU'lntities <.1re those ;.;hich are lnvarian~ with 

regrlt~ :o coo[dinate transformations. We ascribe to them more 



objectivity, because they co not depend on our choice of the 
system of reference. Th~s we choose a reference system and u3~ it 
to create models of reality, but then look for those feature~ of 

these models which are ind~pencent of the ref~rc~~e system. This 

is the only way to give a precise meahing tc the conc~pt of 

objectivity: ~ot to ign~r-~__t:~.~-_faf_~~!,hat _o_':lr J.:not-;ledg_= __ ~l~'al§ ho.s 

a s~b;,i!;tl.iYt:: .. c.om.p.onen.t,, but t()_ con_s.truct i nv,ar ii}n~s l-1~-~.ch -~': 

ind~p~ncl_ent of at least s.ome part of our arbitrary choice_~· 
Cognitive functions are sort of reference system3 of mmthe­

matcal knowledge. Our analysis has shol-m that they are present ir. 

the meaning of mathematical propositions, like reference sy~terns 
are present in the meaning ~f the equations of physics. Converse­

ly, reference systems of physics can be called co~nitive func­

tions, or devices. 

We shall prove now the following theore:n, where ~1e ~t;~~ 

viate "st~~-'!<J..~b_jcc~!Yc 1nterpretabili ty~~interP.~~!}_! ty::_; 
Theorem 1. For every interpretable proposition "'~ can const~uct 

an inte~pretable process which will lead to l&b~ling th~ prcpcEi­

tion as either true or false. We call this process objective 

evaluation• it formalizes our intuitive notion th-3t _a __ J>ropo::.itio::t 
1! false if it produces at least one false prediction, an~ is 
true otherwise. 

~- We take as the starting point the law of ~xcluded r.,ie:He 

for the special case of a prediction: every ~ch~'l~caj search is 
either finite or infinite, i.e. for all A, 

.Q.I.(A, Y(A?))! 

Our intuition accepts this principle without hesitation, so we 

can sirnr.-ly take it as ara axiom_I.)It also can be put in a relat:1on 

to the basic rules defining cognitive process by the followi~g 

proof. It is impossible to refute (EM1), because to do that Ke 

must prove that both A and ..,(A?) are infinite. But by proving 

that A is infinite, c.ae make v(A?) L~inite1 Since (EM1) may ntver 
lead to a contradiction, we add it to our knowledge by the Ccm­
pletencss rule, and it becomes formally true. 



~e no~ prove Theorem 1 by induction, using the definition of 

interpretability. 

(a)Bas~. Consider an atomic proposition A!, or A?, where A is a 

mechanical search. The process of objective evaluation is this: 

Run the searches A and y(A?) in parallel and label the proposi­

tion T or F depending on which branch ends. Because of (EM 1), 

this process is always finite. It labels the atomic proposition T 

if it is intuitively true, and 'F' if it is intuitively false. 

(b)Induction on generation. Consider a proposition-generator P 

~hich c~lls no cognitive functions. We can assume that as a 

process it is infinite. If P is finite, we modify it so that 

insttad of stopping it goes on infinitely without producing new 

members. All the propositions produced by Pare interpretable 

and, by the inductive hypothesis, have a definite objective 

eval~ation. Intuitively, P is true if it produces only true 

prop?~itions. ~e can construct a process which tests this. Every 

time that a proposition is produced by P we apply the process of 

objective eva]Qation to it. By the induction hypothesis, it is 

al~ayz ~init~. If the result is F. we stop. If it is T, we go on 

r~fini~~ P. This define~ a certain process; let us dehote it as A. 

It is no~ mechanical, but we can define a process A' by "cutting 

out" all th~ calls of the evaluation process and leaving only 

th~ir final sta~es. symbols T and F. Process A' is mechanical. 

Becaus~ ~f o~jectivity of the evaluation process, A' is the same 

for all us~r~. &y (EH1 ) it is either finite, in which case we 

lahcl P as F, or infinite, and then P is labeled T. 

(c)lnduction on co~nitive functi~n calls. Consicl€r an interpre­

table s~a.rch A. In running this search, wh€nevcr v(P) or :Y(P) is 

called, the proposition Pis interpretable and, by the induction 

hypothesis, hns an objective evaluation. M~dify A as foll~w~. 

Who::n .,(i') is rroet, initiate the process of objective evaluation of 

P. It is alw~ys finite. If the result is T. replace y(P) by any 

obj~ct czpression (according to point 1.2 in the definition of 

interpretability, the further development of A will not depend on 

it). If the result is F, replace it by any infinite process. Lc~ 

the process modifie~ in this way be A'. Reasoning ~sin case (b), 

11 



we can apply (El'. 1 ) to A'. If A' is finite, we label A! as true, 
otherwise as false. 

Consider an interpretable rroposition-ge~erator G. Replace 
v/y-calls as above. Th~ resulting generator c~~ be treated as in 

point (b). Thus ~e again are able to construct a process, the 

objective interprtetation of G, which is finite. ~r~cluces To~ F, 
and corresponds to our intuitive understanding of objective 

truth-values of propositions. This completes the ~ro~f. O 

Let A and B be processes. A is tmmediat~l7 s~mcr.ttcally 

dependent on B, if one of the stages of A includes v(B!), 

v(B?), y(D!), or y(B?) as an active subeY.pression. For A to be 

interpretable, all processes on which A sem3ntically depends rnust 

be interpretable, and their interpretability ffi•J:st ha~e been es­
tablished prior to the consideration of the interpret~bility of 

A. We oefine the relation of semantic dep~n~enr.e as the t:ansitive cl 

semantical dependence. If a process seman-

tically depends on itself we refer to this situation as a =ema~­

llc recursion. For a parametrized process, se~3~tic recursion, 

like the usual recursion, may be finite or infinite. A proc~~s 

which generates infinite semantic recursion is uninterpretable. 

For a better insight into the structure of propcsition5, we 

shall use their semantic graphs. The following is th~ d~finitio~ 

·of the elements of sema~tic graphs. 

-
A proposition-generator which st~rt3 produci~] 

something. "·semantic gc'lph is a oire~ted ']r<!::>h t~ith 

nodes (dots) representing pr~p~siticn~ and ar's 
(lines) representing pro-::es:::;es. Ur.le:;;s the dir~c 
tion of an arc is ir1dicate::l .;,,.;;.licitly, it is fr~m 
left to right ·and from top c.:.v.:"'l. If a line peters 

out, it means that the graph ~c~s not show wh~t will 
happen later. 

A proposition-g~nerator ~hich br&nch~s into threE 

parallel proces~es. 

12 



• - A proposition-prediction that a search is finite; 

and the beginning of that search. 

,, 

-o-

--G-
~/ 

-0·-

A search branches into two parallel searches. 

A branch of a generator produces a prediction. 

A branch of a search ends. 

A process becomes infinite. The part to the right 

of the cross never materializes. 

A process calls v(P) and goes on. P is represented 

by a dot, i.e. as a proposition-generator. 

A process calls v(A!) and goes on. We do not dis­

tinguish between a proposition-generator which 

g~neratcs one prediction, and that prediction. 

A process calls y(P)! and goes on. 

A v-call is known to be finite. Analogously for v. 

A v-call is known to be infinite. Analogously for v. 

A process has more branches than shown in the graph. 

~n infinite loop in the process. 

Exi".:o.plc~. of sH.dntic '1l"aphs. Fig.l is the graph for A! anq D!, 

~oo:loc((• .f.. is fira1t•! and El infinite. Fig.2: the proposition 

iJ . .,.(D')~ l_h•~rl Q!:.(v(A!l,:Y(A?))! with A finite and 8 infinite. 

13 



Fig.3 represents proposition isr! where process ~sr is defined 

by: 
isr + -y(isr?) 

('isr' stands for 'infinite semantic recursion'). 
There are a number of simple transformations that can be 

done over a semantic graph ~ith~ut changing it in a significant 
manner. An infinite recursion loop can be replaced by a cross; 

t~o consecutive stages of a proc~ss can be m~rged into one: an 

infinite branch of a generator ca~ be elininat~d. 

Consider the walks in the semantic graph of a propos~tion P, 
which start at node P. When such a walk passes over from a call 

v(Q) or y(Q) to Q we have a metasystem transition. The number of 

metasystem transitions on a walk is its semantic length. ;.. W'l.U: 

is semunttcally finite if its semantic length is finite, and 
scmantlcczlly infinite othen·Jise. For a propositior. t-:. :::·: !rtr-:-r.gl}' 

interpretable it is necessary and sufficient that its se:nar.tic 

graph contains no semantically infinite walks. 

The requirement of strong interpretability can be wcake~ed. 

If a generator produces at least one interpretable an~ false 

proposition, it can be labeled as f<tJ:;~ even thou']h scme of its 

other branches are uninterpr~table processes. In contrast, for a 

generator to be true, all of its branr.hes must be int~rpr~table 

and true. Also, a~.!_~~!' .. can be .labeled as finite if &t least o:1<2 

~f its branch~_s i~ ___ i_l}_~~rpre~-~!?.!1!. ~n~ ... f.i_flite, even tho•J;.Jh oU..:r 
branches may be uninterpreta~le. A search is ir.tcrpr~table and 
infinite only if all its brar.ches are interpretable and infinite. 

We can make this e:~-:tension of the concept of inter;:.retabil ity 

because we examine parallel branches of ~rocess~s in parallel. 

When examining an uninterpretablc branch, the ev~luation function 

will work infinitely in a futile attempt to get to th~ botton of 

semantic recursion; meenwhile, a~other branch may lead to a 

definite result. 

We shall call this eKtendcd interpretability we•k. The pro­
cess of determining that a proposition is w~akly inler~retable Is 
unseparable from labeling it as true or fals~. i.e. its objective 



interpretation. We define this process below as labeling the 
nodes of the semantic graph of the proposition according to 18 
lab•llng rules. 

~T 

F/ .F ."" 

Labeling rules 

LRl. A call y(P) with P labeled T ls marked finite. 

LR2. A call y(P) with P labeled P is marked in­
finite. 

LRJ. A call y(P) with P labeled T is marked in­
finite. 

LA4. A call y(P) with P labeled F is marked flnlte. 

LR5. !f every branch starting from a proposition­
generator either leads to a proposition labeled T, 
or is infinite, this proposition-generator is la­
beled T. 

LR6. If at least one branch st&rting from a propo­
sition-generator leads to d proposition labeled F, 
then this proposition-g~nerator is labeled ?. 

lS 



Q Q> 

-~ 

LR7. If at least one search starting from a pre­

diction node is finite. then this prediction is 

labeled T. 

LRB. If every branch starting from a prediction 

node is infinite. then this prediction is labele~ 

P. 

LR9. A branch is finite if it ends. and all Y/Y­

calls on lt are marked finite. 

LRll. A branch is infinite if one of these cas~s 

takes place: 

(a) there is an infinite v/~-call s•:h that all 

T/v-calls before it are finite; 

(b) there is an infin-ite r~curs!cn l~p "lith all 

the Y/v-calls on the branch marked finite 

For an example of labeling s~e Fig.2. The predir.tio~in 

Fig.3 is left unlabeled: it is uninterpretable. 

Rules LR6 and LR7 do not require that all branches are 

labeled. some branches may call unint~rpretabl~ proc~sse~. Thus ~ 

proposition-generator or a prediction may be interpretablt ev~n 

though the proce~scs it involves are only partially anterp ~t­

able. A proposition which g~nerDtes at least one fal3c p1~ lsi­

tion is false no matter how we interpret -- or faii ~q ~~~c~rrat 

all other propositions generated by it. A search is f~nlt~ if 

we know that at least one branch has led to a sto~. n~ ~~tt:= 

what happe~s to all the other branch~s. ~ot• ~n es~~nti~l dif­

ference between tru~ and false propositions when we a:lo~ w~ak 

interpretability: a fals~ proposition-generator can pr~cu~~ unir.­

terpretable propositions. while a true one car.not. ~e s~~ll ~e~ 

16 



later that weakly interpretable processes play an important role 
in set theory. 

As in the case of strong interpretability, our intuitive 
notion of weak interpretability defined by labeling rules can be 
translated into a formal process of objective evaluation. Because 
of different requirements to interpretability in the cases of a 
true and a false genertors, as well as in the cases of finite and 
infinite pa~allel searches, we have to run two parallel processes 
for ~eak inter~retability where for strong interpretability we 
had cne. For a ;enerator, one process is the running of the 

parallel bra~ches in an attempt to prove that the proposition 
pro~uced on one of the branches is false, the other process is 
the proving that proposition produced on every branch is true. If 
the first vrocess ends, the generator-proposition ls interpret­
able and false. If the second process ends, it is interpretable 
and true. If neither of the two ~nds. the proposition is uninter­
pre~able. The labeling of searches as finite or infinite is 

treated anal<,gously. Thus 1!J.eorem l ~()!.d_~ __ fo!...._!'_e.!l.~ jn~~~pret.::.. 
abi1!tY as ~ell: a weakly interpretable proposition is either 

true. or false.In the following, when speaking of interpretabi­
lity without the strong-weak attribute, we shall mean weak inter­
pretability, as the more general case. 

The eq~ivalencc of P being true and y(P) being finite is 
part of the definition of v(P). The falsene~s of P, as defined by 
the labeling process is not the formally same as the finiteness­
of ~(P). How~ver. their equivalence is established by the follow­
ing theorem, the proof of which is straightforeward: 

Theorc~ 2. An interpretable P is false iff y(P)! • 
If a prcp~s!tion is not intelpretable, the process of label­

ing does not ~ver end, so such propositions are neither true nor 

falz~. Wh~n '"'c start labeling, we do not know in advance whether 
the proposition will turn out interpretable or not. Until the 
proce~s stop~. we never know whether we still did not reach the 
end, or the ['rocess is really infinte. This situation is familiar 
fro~ the theory of algorithms (recursive functions). There is no 
mechanical ~rocess with a guaranteed end which could tell for any 

17 



mechanical process whether it is finite or infinite. However, the 
whole point of introducing cognitive functions y and v is to 
provide a process (metamechanical though) which solves the pro­
blem unsolvable for mechanical processes. Indeed, v(A?) stops if 
and only if the mechanical process A is infinite. Of course, a 

solution given by a metamechanical process is not a real solu­
tion, because at any moment in real time you can only run mecha­
nical approximations to v, not the full v itself. Cognitive 
functions provide a formalism to exactly define problems; in 
order to solve them, we still have to construct mechanical pro­
cesses, algorithms. 

Reasoning by analogy with the theory of algorithms, one 

MOuld wish to construct a f.ormal definition of objectively inter­
pretable proposition using cognitive functions to recognize in­
finiteness of processes when necessary. Indeed, w~ cefi~ed the 
concept of interpretability in words. Let us translate it into 
our formalism, i.e. define a process int(P) (no d-:>uht, metarucchi'l­

nlcal) which terminates if-and only if P is interpretable. 
It may come as a surprise, but this is impossible. The 

~o_!lcept of ob~e_:~i~_e_~_!:!t~~J)r_t;!_ta_':'ility (;i!nno_~ J:>e o!J}.~ctiv~l)' d~­

fined -- in its full volume. To understand why it is so, recall 
------- ·-~-.. ~·»·--·- ---- . ..,.._._.__ 
the way we defined objective interpretability, and try to ~rite 
the corresponding Refal recognizer. 

Let us take, for simplicity, strong interpretability. It is 
easy to define a function, call it sem, •1hich rectJgnizo:!s the f3.ct 
that a given process P semantically d~pends on a process Q, i.e. 
one of the stages of P activates one of: v(Q!), ... etc. So, Pis 
semantically depP.ndent on Q if and only if ~(P,Q)!. By our 
verbal definition, P is strongly interpr~table, if Q is strongly 
interpretable whenever sem(P,Q)!. We formalize this conditi~n bv 
universally quantifying over all possible Q. Tne proposition 
which expresses this, is: 

where ~~ is the generator of all Refal expressions. Now, the 

18 



process lnt(P) only has to check that this proposition ls true. 

We come to the following definition: 

(1) int(P) ~ y(all(Q E exp: 11 sern(P.Q)!then int(Q)!)) 

But it does not satisfy the requirement of being interpretable 

for all P • Inside the y-call we have int(Q) with Q •lhich runs 

over all expressons, P. in particular. For every P which semanti­

cally depends on itself. we immediately get uninterpretability. 

An obstacle of this kind will prevent us from formalizing the 

universal concept of interpretability in any thinkable way. This 

is testified by the following theorem: 

Theorem 3. There exists no parametrized process I(P) such that 

I(P) is objectively interpretable for every P. and is finite iff P 
is objectively interpretable. 

Proof. Suppose that there is such a process I(P). Define a pro­

cess A by: 

A • if I(A!)! then y(A!) 

Since I(A!) is interpretable. it is either finite. or infinite. 

Suppose it is finite. Then A! must be interpretable. But if I(A!) 

is finite, A calls y(A!). so it is uninterpretable. Suppose I(P) 

is infinite. Then A! must be uninterpretable. But in this case A 
never c~lls anything but I(A!), which is interpretable. so. A 

must be lnterpret~ble. The inescapability of a contradiction 

proves the theorem. 0 
But if we cannot formalize the concept of interpretabilit~~ 

ls net our verbal ~efinition meaningless, or contradictory? 

The reason for the non-existence of I(P) ls that we defined 

interpret~bility inductively; in fact. ~e defined a hierarchy of 

in~erpr~tability concepts, with the propositions never re£~rring 

to co~nltive functions as the ground level. This does not make 

the w?rd 'interpretability• unusable: one should simply keep in 

~ind that it refers to a hierarchy of definable concepts. not one 

conc~~t. (This, of course, reminds of [Tarski 1933). even though 

19 



a::~--A« -fk :. •• ,ts (l""'•"d><;ul 
our approaches are very different philosophically.) 

We can define g-interpretability int0 using the process of 
checking that cognitive functions are never called. Then ~e 
define !-interpretability int1 by modifying (1) so that in the 

left aide we have the new concept, while the right side uses only 

the concepts already defined: 

In this way we can define an infinite series of concepts: int2 , ~ 
pretable. 

This is not the end, of course. ~rocess is n-interpret­
fble, the semantic len_~_2f the_~_a_!l~!l_~_? of_ its .. ~emantic gr~ 
never exceeds n. We can define the concept of w-interpretability. 
which allows the branches on the semantic graph to be of arbitra­

ry finite length, then w+l-interpretability using w-interpretabi­
lity in the right side of (1), etc. This is. essentially, how the 

ordinals of set theory emerge in our theory. The next theo~em 
exptains why lhe set of all sets is non-existent: 

Theorem t. There exists no objectively interpretable generator 
which produces all objectively interpretable expressions, and only 
them. 

Proof. If there were such a generator G, we could i~mediately 
construct I(P). whose e~istence is denied by Theorem J. One has 
only to run G and sto~ if and when it produces P. 0 

Objectively interpretable propositions ccr.stitute our uni­

verse of diccourse. Every expression inside this universe is 

meaningful. No one outside is. If there were an expression U 

which defined this universe by generation or recogniti¢n, the~ 

the now achievable part of this universe, i.e. the set of expres­
sions known to be interpretable, could be simply obtain~d ty 

replacing r in U by r 1. Our current universe of discourse ~ould 
be a definite function of our current knowledge. But this is not 
the case. We can expand the available aomain of discourse by 
creating (discovering, if you wish) new spheres in the never-to­
be-fully-covered universe, even without expanding the current 



knowledge r. This is a real-time process which, like the know­
ledge process, cannot be expressed by a fixed object. To repre­
sent it in our formalism, we introduce one more access function: 

~(for 'logos'). Its value, for which we shall use the metava­
riable ~. is, at every moment in real time, an interpretable 

generator which produces all the expression proven interpretable 
by this moment. 

So, we have two real-time ~!.~cesses in mathematJ~.!.· The sum­
total of our kno~ledge, the 'gnosis', is accessed by gns. The 

sum-total of the expressions known to be meaningful, our universe 

of discourse, the 'logos', is accessed by lg§. They are interre­

lated: r is always a subsc~ .. ~f-1\; on the other hand, our ability 
to prove interpretability depends on our current knowledge. But 

neither of them is a simple~~~ivative of ·the other. We have two 

de9~~~---~-~~«?_m _ he~_e ,_. n~~- on_t;,.; 
Addin9 a new access function lqs, ~e have expanded the class 

of metarnechanical processes; they no~ can call Is§, not only qns. 
To discinguish those processes which rnay call only gns, we shall 
call th~m y-metamechanical. 

Objective interpretation is based on our intuition of the 
separability of the object and the subject of knowledge. When we 

deal with quantum-mechanical phenomena this intuition deceives 
us. The object and the subject of knowledge are not completely 

separable in the quantum-mechanical ceasurement. Our functions Y 

and Y can be seen as measurement procedures, of a kind. We took 

pains to separate the results of these 'measurements' , i.e. 
truth values of propositions, from our state of knowledge. Our 
theory allows 'interpretable' prop~sitions only; this leads to 
the usual two-valued logic. It is possible that a more general 
theory can be built, which would not limit itself to those propo­
si t.ic.ns "1e c11ll interpretable, thus overstepping the boundaries 
of traditional logic. This possibility occurred to the author 

un~er the 1nfluenr.e of the ideas of the wave logic developed?y 
Vuri Orlov (1978, 1982]. Orlov's ideas can probably be used in 

trying to expand the present theory ai~ing at description of 
sub3.to;:~ic ph.=nomcna. 

21 



3. Logical Paradoxes 

The famous paradox of the_l~~i- ~as kno~n to th-. ancient 

Creeks in the following form (see (Beth 1968}): Epimenides, the 
Cretan, says: "I am lying." No~. if ~hat he say3 is true, then he 

is lying, and what he says is false. If what h~ sa~s is false, 
then he is not lying, which means that ~hat he s~ys is true. Thus 

what· he says can neither be false, nor true. A ~ore modern ver­

sion is: "The proposition expressed by this very sentence is 

false." 

Let us formalize the liar paradox. We have here a proposi­

tion which states its own falseness and nothin~ ~ore. Since this 

proposition refers to itself, ~e must give so~e name to it, 

otherwise reference will be impossible. Let the name be P. The 
relation between a name and its meaning is defined in Refal by a 

sentence of the form: 

<P> • 

where the dots in the right side stand for the ceanin~. The 

meaning of a proposition is a generator of preG~ctio~s. The 

proposition P produces only one prediction: that Pis false, i.e. 
i(*(P))!. Bence <P> is this generator: 

(1) <P> • (y(*(P))!) , semi-formally: P • Y(?)! 

Looking at this definition, one can see that it is the most 

Gtraightforward and clear formalization of the pro~osition "P 

says that P is false." It is, of course, uninterpretable, so it 

has no objective meaning, and one should not be surprised 

that there is no way to assign a definite tr~tt-'lalue to it. 

The semantic graph of the proposition P is ~resented in 

Fig.4. We see an infinite semantic recursion her~; it is ifupos­
sibl~ to label this graph starting form the b~~toa. If we still 

want to ma~e some labeling, we notice that if one of the nodes 

22 



representing P is labeled T, then the nodes preceding and follow­
ing it must be labeled F. which ls inconsistent. Still, it is 
possible to label the whole infinite graph. There are two ways 

to do it, though; they are shown in the Figure. If we use one 
way, the root of the graph is labeled T, if we use the other, it 

is labeled F. 

Suppose we change v to y in the definition of P: 

(2) <P~ .. (y(*(P)}!), ors p .. T(P)! 

According to our definition of interpretability, P is still 

uninterp~etable. But (2), unlike (1), does not lead to contradic­
tion. Yet it is quite justified that we declare P uninterpret­

able, because we still cannot assign to P a unique truth-value. 

Its semantic graph is presented in Fig.5. If any of the nodes is 
labeled T, then all of them must be labeled T; if any is labeled 
F, all must be labeled F. Thus, it is possible to label the graph 

consistently, but, again, there are two ways to do it, and the 
root can be labeled both T and F. This may be called the paradox 

of the saint. The saint says that ~nat he is saying is true, and 
that is all he says. He gives no evidence in support of this 
statement. We have only his word for that. If what he is saying 

is tru~. then what he is saying is true. If what he is saying is 

false, then what he is saying is false. There is no contradiction 

in either case, and there are no reasons to consider this propo­

sition either true or false. It is uninterpretable. 
There is one more paradoMical definition which is pertinent 

to the concept of interpretability. The propositions P and v(P)! 

are lo'}ically equivalent, meaning that if one is true, the other 
is tru~ too, and if one is false, the other is false. Replace 
• ( y • ( P)) ! in ( 2 ) by • ( P) : 

( 3) <P> .. (*(P)) 

This g~ncrator is. of course interpretable, because it has no 

refer•:nce to cognitlve processes. What is its meaning and truth-

23 



value? The proposition <P> produces exactly one proposition. 

which is itself. This proposition ls not a prediction. but a 
generator of predictions. To find what is the ultimate set of 

predictions produced by <P> we must run <P> again. But this 
returns us to the starting point, soP never produces a sin1le 
prediction. This proposition is empty. According to our defini­
tion of labeling, it must be labeled T. 

Although P and y(P)! are logically equivalent. they are not 

semant_ical!¥. equivalent. It is not the same to state P and to 

state that P is true. The former is, generally, a generator of 

predictons; in our case it turns out that it produces n~thing. 
The latter is a prediction. It cannot be empty, it certainly 

tells us something. In this case, it tells us that P produces no 

false predictions. 
The translation of the definition (3) into our natural­

language is "P says what it says". Our intuition readily accepts 
the judgement we passed above: this proposition is true. but 
empty. 

Consider one more paradox, form!Jlated fir:.t by Grellir.g (we 

use [Beth 1968] as the source). Let us call an adj~ctiv~ auto­

logtcal, if and only if it can be validly applied to its~lf; 

heterologtcal if it cannot. The adjectives "English" a~d ''p?ly­

syllable"· are, according to these definitions, autoiogical; the 

adjectives "French"o:md "red" are hetcr<-logical. New, consicer the 
adjective "heterological". What typ~ is it? If it is a~tologicjl, 
then, by definition, it is applicable to its~lf, i.e. het~rologi­
cal. If it is heterological, it cannct b~ appli~abl~ to itself; 
then it is not heterological, and, therefore, autological. 

Thi~ paradox takes us to th~ world of natural l~nguag~s. so 

we have to represent this world in our theory. Lite Refal ob­
jects, the objects of natural lan1u~ges are string~ ~f ctJ~ac­

ters, with which some processes ar~ associated; the:c proc~sses 

determine the semantics oi the langu~ge. U~li~e the cas~ of 

Refal. semantical processes o~ natural languages are p~rt of the 
functioning of the human brain, not a mechanical devic~. In ter~s 
of the construction of the Rcfal machine, these process~s are 

24 



external: yet nothing prevents us from using in our theory pre­
dictions and generators of predictions referring to these processes. 

Convenient representation of eKternal objects and processes 
by Refal objects is a matter of agreement. Let us represent 
processes and objects by composite Refal symbols formed by under­

lining corresponding adjectives and nouns. Since the o~jects of 
natural languages may be both non-linguistic and linguistic, we 
should be able to easily distinguish between these categories. 
9uotes ar@ used for this purpose in natural languages: they mark 
linguistic objects. Let, therefore,~ be the representation 
of the apple, while·~· be that of the word •apple'. 

The simplest and a reasonably complete test to determine 
whether somebody understands the language is puttin9 to this 
person questions which require answers •yes• or 'no• , and seeing 
whether the answers are correct. This is the basis for the widely 
used formalization of the semantics of natural languages in 
predicate calculus. In particular, the semantics of adjectives of 

the English and other European languages is represented in this 
approa~b by one-place predicates (properties). 

In our theory we deal with semi-predicates, not predicates. 
This is, as we discussed in Part I, a more general case; the 
decision process either comes to a halt, which is interpreted as 
the positive answer, or fails to halt, which means that the 
propert1 is not there. For instance, the adjective 'red' can be 

represented in Refal by the external process <red ex>. Accordin9 

to the usual meaning of this notion, the process is this• I look 

at the object represented linguistically by ex and if and when I 
come to the conclusion that ex qualifies as red, 1 stop the 
process; if I cannot come to this conclusion, the decision pro­
cess ~oes on infinitely. (Instead, 1 could define b~ing red as 
reflecting the light of certain wavelength. The semantic process 
then will include the necessary measurements with a spectrometer. 

That will be a different meaning.) 
The adjcc~ive 'English', in contrast to the adjectives lik~ 

'red', is applied to linguistic, not external, objects. We can 

~cfine it by li~ting all the linguistic objects that come from 

25 



the English language: 

<,&nglish 'ill'> .. T 

<t;nglish 'brown'> .. T 

<Inglish ·~·> .. T 

. . . etc . 

One of the sentences will be 

<English 'English'> .. T 

Analogous definitions can be given to the adjectives 'French' 

etc. 
Now it is a straiqhforward matter to define the adjectives 

'autological' and 'heterological'. which we abbreviate to band 

B. respectively: 

.. <sp'sp'> .. <; •(sp'sp')!> 

Note an important difference between the two concepts. Being 

autological can be defined without recourse to cognitive func­
tions, while being heterological cannot. As a re~ult, the first 

definition is obviously interpretable (in the assumption that all 
other adjectives are i~terpretable, of course), while the s~cond 
requires an analysis of interpretability. From the d~finition of 

~. <~ 'red'> immediately becomes <red 'red'>, which cannot halt 
because the adjective 'red' is applicable only to eMternal ob­
jects, not to linguistic objects. Applying ~ to the adjective 
'English', we have the search <English 'English'>, which, accord­
ing to the above definition, halts in one step. 'English' is an 

autological adjective. 'French' is not; 'Francais' is a~tological. 

Let us see now whether the adjective 'autological' is auto­
logical. Starting <~ ·~·>, we enter an infinite loop. Thus 'auto­
logical' is not autological. No contradictions or paradoxes are 
rnct here. If, however, we try to determine whether 'heterologi-

26 



cal' is heterological -- and this is what the Grelling paradox is 
about -- the result will be different. Running <H 'H'> produces a 
cognitive function call with the metacode of <ft 'H'> as the 
argu~ent; thus the process becomes uninterpretable. In this case 
again, the paradox is caused by a meaningless definition, which 
ts·not allowed in our theory. 

The two truth-values enter the syntax of mathematical logic 
sy~~etrically. Negation can be viewed as a sort of symmetry 
transforrnatio~; this view is quite useful in a Boolean algebra. 
Thinking solely in terms of the conventional mathematical logic, 

it is hard to understand why of two parallel definitions, which 
differ only by an added negation, one can be safely used, while 
the other blo~:s up the whole theory. Our semantic approach gives 
the ex'planation. There is no symmetry between affirmation and 
negation. Negation always involves one more metasystem transi­
tion: the one from si~ply stating or using a process, to explor­
ing it for contradictions. This asymmetry is embedded in the 
synta~ of our theory, which allows us to ban the definition of 
'heterological' without banning (unnecessarily) the definition of 
•autological'. 

t. Formal systems and theories 

The formal systems we are going to consider will be con­
structed in the framework of a metasystem common to all of them. 
This metasystem is the Refal machine, together with a number of 
functions (machines) defined in its program field. All logical 
m~chines defined above are in that number, plus a few more which 

will be define~ later. 
A formal $ystem is defined if: 

(1) a P.~fal representation for a number of parametrized processes 

is ~efin~d; and 
(2) a·p~o~osition is given which is believed to be true, and is 
ref~rr~1 to a~ thP. knowledge of the formal system. 

s~r.:e of the parametrized processes of the formal system may 
be d~fined by a group of sentences in the program field, i.e. as 

27 



Refal functions. Others may be left undefined, or defined parti­
ally. Even if not defined, a process can be an object of study 
and knowledge. We may not be able to reproduce all the stages of 

a process, but still know that it is finite or infinite, or that 
If It is finite then a certain proposition must be true, etc. 

The knowledge of a formal system F 1 contains in a condensed 

form all the propositions that can be proven true in F 1. We 
shall denote the knowledge of a specific formal system F 1 by 
r 1• and the corresponding cognitive functions by Yt and v1. Thus 
a proposition Pis provably true in F1 if and o~ly if Y1(P) is 
finite. Pis provably false if and only if v1(P) is finite. 

Our concept of a formal system differs in two ways from the 

usual concept. First, we do not distinguish bet~een axioms and 

Inference rules: they are united in the concept of a generator. 

The kno~ledge r 1 of our formal system is analogous to the axioms 
of a usual formal system, but because of the nature cf our propo­
sitions, no additional rules of inference are necessary. When a 
proposition P is among those hierarchically produced by r 1, it 
corresponds to the derivability of P from r 1 in a usual 
formal system. When P added to r 1 produces a contradiction, it 
corresponds to the derivability of ~P. the negation of P. 

Second, our concept of a formal system is, starting from the 
basic definitions, semantlcal, in contrast to the usual purely 

·syntactical concept. Therefore, in addition to the usual concepts 
of consistency and completeness applied to forC\'11 systems, l-le 

also apply the concept of correctness: a formal system is correct 

if It hierarchically produces only true predictions. 
A formal system is, essentially, a machine which encapr-;u­

lates only a certain amount of knowledge. You cannot expect more 
output from a generator, than you have put into it through its 
definition. Coedel's result that no formal system can produce all 
the true statements about.a machine which is sophisticated enough 

is intui~~l_x __ ~CI~~~- as natural with our concept of a formal 
system, while it comes as a su£prise w!t~_the usual conceP-~ 

loJe shall distinguish between a formal systcrr. and a theory·. 

While a formal system can be fully re~resented by an object (the 

28 



metacode of the machine). a theory is a real-time process resul­

ting from human effort to gain new knowledge. Formal syst~ms ~!. 

cr~ate are stages of theories. Some theories may be completed by 

creating a formal system which gives answers to all possible 

questions meaningful in the theory. But this is rather an excep­

tion. The most important theories are infinite re~l-time pro-· 

cesses. 

A~ong the objects and processes of a theory we distinguish 

primary objects and processes: those which we treat as a given 

reality and wish to explore. Other objects and processes are 

created as exploration tools. The primary objects of a theory may 

be defined either by listing them when their number is finite. or 

by defining a machine which generates all of them. Primary pro­

cesses rnay be defined either directly and completely by Refal 

sentences. in which case we call the theory cybernertc. or indi­

rectly by propositions believed to be true and called axioms. in 

which cas~ the theory is axiomatic. Hybrides of these two kinds 

of theories are also possible. 

We can illustrate the difference bet~een cybernetic and 

axiomatic theories by taking arithmetic as example. 

In cybernetic arithmetic (known also as recursive arithme­

tic) the numb~rs are strings: 

"· 81. 1111. Gllll •... etc .• 

or th~ir equivalents. Operations on numbers are machines: the 

adding m::tchine. the multiplying machine. and possibly others. All 

these machines are defined. The adding machine. for instance. is 

defined by the sentences: 

<+(ex){")> .. 

<Hex)(ey l)> 

~hen we add numbers we run this machine or one of its more 

sophi~ticated equivalents. like a pocket calculator. 

In a~io~~tic arithmetic there is one number constant G and 

29 



an undefined function <~ex> which produces the 'neKt' number 

after ex. Repeated application of the function 2 produces all 
possible numbers. The functions of addition and multiplication 

are also undefined, but they comply with a number of axioms. The 

axioms relating functions 2 and + are: 

Jl' ~ g • X 

X + ,I.(Y) = §(X + Y) 

They resemble the sentences defining addition in cybernetic 

art thmetic, but conceptually they are different: !._l)_e~ .!~ p!l_r_!._ 

of the knowledge, not the machinery, ,~!-~h~ ~~~o.ry: Th~ function 
of equality which is used in ·the axioms is not defined either; 

all we know about it is its well-known properties stated as 

axioms. 
The strength of classical logic as compared to intuitionist 

logic comes from the more permissive treatement of the cognitive 

functions. Intultionistic logic considers the user's knowledge r 

to be a definite expression r 1 , at least for the time of dis­

course (what we called a static interpretation of human know­

ledge). In this interpretation, the law of excluded middle in its 
general form: 

2L(Y(P),Y(P))! for every proposition P 

is, certainly, not true. Indeed, y in (EM2 ) is understood by 

intuitionism as Y 1. But by Goedel's theorem, for every formal 

system there is a proposition G which is neither provuble, nor 

refutable in this formal system. Thus, both y(G)?, and y(G)? take 

place, which contradicts to (EM2 ) with P = G. 
Classical logic bases its proofs on the concept of a growing 

f (dynamic interpretation); it allows the indeK l in Tj to go 

into infinity. We shall show, first, that with this interpreta­
tion Coedel's theorem does not falsify (EM2 ). 

Coedel's theorem establishes two facts. Firstly, for every 

formal system r 1 there exists such a proposition G1 that 

39 



(a) 

Secondly, Gl is true, so that we can add it to the knowledge and 

get a new correct formal system r,,. 1 , in which, of course, G1 is 

provable: 

(b) 

If we simply "take the limit" of (a) and (b) for t~•. we get 

two contradictory propositions. This is a situation familiar from 

the calculus. when the correct answer depends on the order in 

which two interrelated variables are treated in the jump to the 

limit. In intllit~_()_f1~~_l_oglc we first fix the index i of the 

for~al system and let (EM2 ) to be produced with all possible P. 
Then it will gen~rate at least one proposition, namely G 1 , such 

that (E~2 ) is false. In classical logic we use y and ~ to denote 

'the limit of Yl and vi as t~~- The law of eKcluded middle is a 

proposition-generator which produces (SM2 ) for every proposition 

P. Thu~ P comes first, and then we interpret (EM2 ) by seeing Y 

and v as the corresponding limits. Then for every Coedel proposi­

tion Gi, there is a stage of the real-time cognitive process at 

which it is proven, thus (EM) is not contradicted. 

Theo~rem So. With the oynamic interpretation of cognitive 

functions. the law of excluded middle (E~12 ) is true for every 

interpretable P. 

Proof. By Theorem 1, every interpretable proposition Pis either 

true or false in objective evaluation. If it is true. v(P) is 

finite; if it is false, v(P) is finite by Theorem 2. Thus. (EM2) 

is always !initc. 0 
~h~n we create a formal system we take a proposition r 1 as 

its kr.owledge and define the access func~ion <gns> as 

31 



Now the function v(P) calle~ by proposition-gen~rators, ~hich was 

undefined before. becomes a completely defined recursive function 
which we der.ot~ as v 1(P); an~ y(P) becomes Y1(P). Note that the 
replacement of v/v by v1tv 1 takes place only for the ~urpose of 
veneration. The ultimate pro~uct of proposition-generators, the 

predictions. can still include v/v-calls; th~re is no need to 

replace them. (The replacement woul~ signify a change in int~r­

pretation from the dynamic to a static one). 
We shoul~ now explore the relation between the 'precise' 

function v(P) and its 'approximation' v1(P). What we want, of 

course, is that the formal system be correct. i.e. v1(P) be 
finite only when v(P) is finite (P objectively true). This re­
lationship is established in the following theor~m. which is 
crucial fGr the whole theory we arc developing. 

Th~rem 6 (Correctness theorem). If r 1 is true then v1(P) for any 
interpretable P is finite only if P is true, i.e. a formal syst~~ 

with the knowledge r 1 is correct. 
Proof. Let v1(P) be finite and suppose that P is false. The 

process v1(P) is the running of the generator r 1 until it pro­
duces P. Consider the branch s 1 of r 1 which has produced P \to be 
referred to as the derivatlo~ branch for P), and compar~ it with 
the corresponding branch Bin the semantic graph of ri. They ar~ 

different only in that every call v(~) in B is replaced by v 1 (~) 

in ~ 1 (P), and every y(Q) is replaced by v 1 {~). The branch B1 has 

no more than a finite nurnber of v1/vi calls. ~et them be' 

We can take every ~r and find a derivation branch in r 1 which 

produces Qr. And we can take every Q; and find t~:o derivation 
branches in (ri ~nd Qs> which produce a contradictory pair ci 
atomic propositions, A! and A?. Since each of these branchej is 
finite, we can again construct derivation branches for the v1tY 1 
calls they involve (if any). Since the process of producing P 
from r 1 is finite, we shall ultimately come to a finite deriva-

32 



lion lree for P (see Fig. 6). 
Consider th~ v 1/Y 1 calls (*). The corresponding v/v calls in 

the semantic graph of r 1 cannot all be finite because it would 
mean that ri procluces a false proposition P and is,therefore, 
false. Hence either there is a false Qr for which v 1(Qr) is 

finite, or there is a true Q; for which Y1 (Q;> is finite, (or 
both). In the f1 rst case we again face a st"tuatlon where a true 

r 1 produces a false proposition, this time it is Qr. In the 
second c~se a ~rue proposition (ri and Q~) produces a pair A!, A? 
of atomic prop~sitions from which one is false: the same situa­
tion again. In both cases the new derivation tree is a subgraph 
of the original tree. Since it is finite, this situation cannot 
re~eat unlimitedly. Sooner or later we must come to a true propo­
sttio~ ~hich generates a false proposition. This contradiction 
proves the theorem. 

Corollary. If r 1 is true, the formal system which takes r 1 as its 
knowl~dge is consistent. 

There are two possible situations wit~ regard to what can be 
treated in the theory as an object. (1) The objects of the theory 
may be predefined at the outset of that theory. If their number 
is finite, they ~an be simply listed. If their number is poten­
tially infinite, a machine can be defined which generates all of 
t~ern. This situation is traditionally known as a first-order 

theorx. The obj~cts of such a theory are co~pletely separated 
fro~ th~ propositions about the objects. (2) The set of the 

objects of the theory may not be predefin~~. and the propositions 
of the theory may, in their turn, become new objects. This situa­
tion is referred as a ~igher order theorx. Set theory is a theory 
of infinite order. Indeed. the concept of a set is essentially 
identical to the concept of a proposition: when we define a set 
we define a predicate of being an element of this set, and vice 
versa. In set thP.ory.we define sets. which then become legitimate 

ne~ objects. This conversion of a proposition into an object ca~ 

be repeated indefinitely. 
In Part I ~e interpreted the langua~e of classical first­

order lo~ic. To prove the correctness, ar.1 therefore. consis-

33 



tency of classical logic. we have to prove that its axio~s and 
Inference rules are true propositions. We also should consider 
how Coedel"s theorem is formulated and proved ln our theory. 
Limitations of space do not allow us to do it ln this paper. We 
Mould like. however. to give the reader an idea of how our seman­
tic approach differs from the usual syntactic ("formal") approach 
by discussing one of the most Jundamental logical principles of 

our theory. 
It is the !~~~.l[!_~_!ltton ertnclp_l_~. which states that .the 

proposition 

(Ver) all(x e ser: 1! x! then x!) 

la true and must be included into the knowledge ri of every 
theory T1 • Here ser is the generator of all searches which can be 
expressed ln T1 . Using a metavariable. (Ver) can be formulated as 
stating that 

(Ver•) !! A! !!J!m A! 

ls true for any search A from T1 • 

If we try to translate this principle into the language of 
formal logic, we come to the trivial axiom 

finite(A) • finite(A) 

which is of little, if any. use. In our system, ho'-1ev~r, the 
verification principle is far from being trivial. Let us see what 
ls the full scope of propositions it hierarchically prod~c~s. ~e 

add to our knowledge r 1 the proposition (Ver) which pr~duces the 
propositions (Ver') 

with all possible searches A! expressible in the theory. l-!hen r 1 

starts working, every proposition (Ver') starts working, an~ if 

the search A in it is defined a~d finite, it prod~ces the pr~jic­
tion A!. If the search is undefined or infinit~. it produce~ 
nothing. Thus all those and only tho~~ predictions A! will te 

34 



produced by rl, for which A is defined and finite. The verifi-ca­

tion ~rinciple formalizes the fact that the finiteness of a 

sea~ch wt.ich is defined mechanically can be directly verified, at 

least in principle. (Ver) produces all those propositions which 

can be proved true through verification. 

5. Set theory. Extensionality and Regularity 

We proceed now to the interpretation of set theory. We iden­

tify the concept of a set with the concept of a generator. Since 

we allow the use of real-time cognitive processes v and v, we 

limit set generators to Interpretable processes, otherwise we 

shall not be able to interpret the membership of an object in a 

s~t. 

As we know, there is no generator, mechanical or v-metame­

chanical, which could produce all interpretable gEnerators. There 

is no set of all sets. The qenerator ~ of all legitimate objects 

Ef set_ t:~~5>t:Y .. .Lit~- uni_y~f5-~~f _di5_£!>~r~-~·- !_~ ~n. ~I)~~Jlel}~e.nt: 
re3l-time process; we shall use for the access function of ~ the 

same symbol ~ as in our general theory. 

Wher: an object and a set are given, we must be able to 

establish ~hether the object is an element of the set. It is easy 

to define a function, let it be ca.lled elm, such that the search 

elm(E ~ G) stops if and only if the expression E is among the 

expressions generated by G. 

However, this st~iqhtforward concept of being an element is 

not th~ one adopted in set theory. It is applicable only when the 

expression £ represents one of the primary obJects, or ur-ele­

ments of the th~ory, by which we mean those objects (if any) 

which are n~t £~ts, so that their 'physical' iclcntity as expres­

sions is the necessary and sufficient condition of being identi­

cal as object~ ~f theory. But most imp0:tant objects of set 

th~ory are, of course, sets. Set theory uses t~ exten~Jonallty 

principle_ to define the ident!_!:.Y __ o.!_ __ se~~- According to this 

principle, two sets are decl~red identical, or equal, if and only 

35 



if every element of one set is also an elern~nt of the other. 

Consequently, the identity, or equality of sets is not the sarne 

as the identity of the Refal expressions whir.h represent th~m. 

Indeed, !! __ i_~ easy to define in Refal two different processes 

~~c~ will _9._ener_a_t_~ the ~arne objects. 
To comply with the extensionality principle, we must distin­

guish between ur-clernents and sets, ar.d use the concept of set 
equality when deciding whether a given set is among the objects 
produced by a given generator. 

The 5et of all ur-elernents may be different in diff~rent 

versions of set theory (it may be, in particular, empty). The 

~Y. re_quirement on this set is that t-Ie should be able to distin­

~uis~ ~~~:=:ern~~~ from a set. We define an ur-element as any 
Refal expression which includes no asterisks * . This immediately 

makes ur-elements distinguishable from set representations be­

cause the latter have the form *(g). 

In case of infinite sets, their equality, ~nlik~ the physi­
cal identity of the expressions which repr~sent thern, canno~ be 
directly established. A reference to some proof, i.e. to a know­

ledge, once again becomes an implicit part of semantics. 

Equality of sets is defined through a double inclusion: 

(1) (S=f) : ([S sub f) & [f sub S]) 

The relation of inclusion (beiny a subset) is defined by 

(2) (S ~P- f) = all(x e S: el(x e f)!) 

It is a universally quantified proposition, and so is S=T. Now, 

let el(X E S) be the process of establishinq that X is an ~le:r.eilt 

of S in accordance with the ev.tensionality principle. To e:t&b­

lish that X is an clem~nt of S, we have to compare X with el~­

ments of S, and determine whether there is one 7 E S which is 

equal to X. So, when running li(X E S), we call in ruallel 

y(X~Y) for all elements Y of S. Thus el(X ~ S) is ser.antically 

dependent or. all the propositions X=Y with a Y from~- Usin~ 

36 



symbol >> to denote semantic dependence, we can represent this by 

the formula: 

(3) el(K e S) >> X=Y • Y E S 

(The usual notation X E Y stands for el(X e Y)!). 

Prom (1) and (2) we derive: 

(4a) X=Y + ~(Z E Y) , Z E K 

(4b) X=Y • el(Z E X) Z E Y 

Combining (3) with (4a) and (4b) we have two semantic dependen­

cies: 

(Sa) 

(Sb) 

el(K E. S) 

el(K E S) 
>> el(Z E Y) • Y E s. Z E X 
>> el(Z E X) , Y E s, z E Y 

A process which is semantically dependent on itself (infi­

nit~ semantic recursion) is uninterpretable. From (Sa) we see 

that we are immediately in trouble if S is a~ong the ele~ents of 

its~lf: S E S. Indeed, putting X=Y=Z=S, we find that el(S E S) is 

uninterpretable. From {5b), our process becQmes uninterpretable 

if X=Z an~ S=X, therefore X=Z=S. Since Y is an element of Sand 

Z=S is an elcm~nt of Y, such a situation will arise if S E Y and 

Y E S. 

We call a~_P.l-sequence a sequence of sets Y1 , Y1 , ••• etc., 

such th~t for every 1>1, Yl+l E Yi. A set is regular if it is 

interpretable, and an ~-sequence of sets which starts with Scan 

only be finite. 

Th~orem 7 (Regularity Theorem). The process ~l(x E S), where xis 

an ur-element or a rEgular set and S is a regular set, is inter­

pretabl~. 

Proof. According to the definition of the function el, the only 

source of po~3ible non-interpretability is the semantic recursion 

in function ~l itself. Consider a pair (X,S) which is the argu­

ment of an ~l call. Denote by Z' any element of the set Z. 

37 



According to (5), the semantic recursion in function el can be 
schematically presented by two formulas: 

(6a) (X,S) >> (~'.S') 

(6b) (X,S) >> (S'',X) 

If X and S are regular sets or ur-elements, then any possible 
sequence of the calls of function ~can only be finite. There­
fore all of them have a definite objective interpretation which 
can be established starting from the bottom. 
Theorem 8. If a set is regular, all its elements are regular. 
Conversely, if all elements of an interpretable generator S are 
regular, S is also regular. 

Proof. Indeed, should an element T of a regular setS be not 
regular, an infinite el-sequence starting with T !rlOUld exist. 
Then we have only to add S to it to prove that S is not reg•Jlar 
either. The second part is proved by noticing that should ~e have 

an infinite g!-sequence for S, we could deleteS and get an 
infinite el-sequence for one of its elements. 

So, for a set to be regular, it is sufficient and r.eces~ary 
that all its elements are regular. Therefore, all regular sets 
can be constructed inductively starting with sets which include 
only ur-elements. 

It should be stressed that regularity becom~s n~cessary 

only because function el is defined according to the ~xtension­

ality principle. The concept of a set which has itsel~ as one of 

its elements is not contradictory in itself. For instance, this 
generator: 

(7) <self.> (*(self)} 

is interpretable as a process. It generates e~actly one ele~cnt 

which happens to be the m~tacode of this very process. If ~e 
based the concept of being an eiernent of a set on the literal 
identity of expressions, as in function elm, it would be true 
that 

3El 



But we would not be able to use function el with such sets. The 

necessity of regularity arises from exte~sionalit~. 

How ~e limit the objects of our theory to ur-elements and 

regular sets only, which guarantees the interpretability of the 

£! processes. It follows immediately f~cm the definition of 

regulirity that there is no (regular) set generator that could 

produce all regular sets. We access t~e generator of all legiti­

~~~e o~jects of set theory, i.e. ur-ele:ents and sets, through 

the function ~- ~t every moment in real time the process <~>

yields a specific interpretable genera~or ~,.which produces all

those sets that are already known to be legitimate, i.e. inter­

pretable and regular.

A set is regular if at some sta~~ of the development of

theo:y it becomes producible by lgs. ~~is is the completeness

rule ~ith respect to ~- Since the exp:~ssion ~ is not among

those ~roduced by ~. it does not rep~esent a regular set. This

cay seem paradoxical, because at every ~oment in real time the

expression~~ yielded by 1s2 is a re~ula: set generator. It even

may se~m inconsistent. Indeed, is not ~. which is represented by

lgs, the union of all h 1 ? A union of :egular sets is regular,

henc~ ~ is regular.

1his argument, however, is not va!id. because it manipulates

-- in ~he spirit of the Platonist-fcr:altst marriage -- with

fictitio~s entitles and operations. Ac~vrding to the intuitive

set thO??ry, sets eHist as some ••ideal" entities; operations on

th~~ are, correspondingly, also id~al. This is not a sound ground

for a ~athematici~n. So, form~lis~ declares these entities and

~~erations •abstract" (as if one cac ex~rsize abstraction on non­

exi5t~nt entities). so that now only t~eir properties, which are

e~~r~s~ed as axiom5, matter. In thi~ !:a~e~ork. the above argu­

~cnt l~ads, indeed, to a contradictio~. To avoid it. the concept

cort~E~~nding to our ~ is either ba~~e~ altogether, or is de­

clar'!<! a -class, not set. Even if this eli:::ninates the contradic-

39

tion. it explains nothing.
Our theory deals Kith real (linguistic) obj~cts and proces­

ses. Symbol lqs docs not stand for any ideal entity. It stands

for itself. Its meaning is in how it is manipulated by the user.

Sets are linguistic processes. To define a set means to actualize

such a process. To define the union of the infinite series h 1 ,

~2 •... etc., we must have a generator of this series. But we
know that there is no such generator.

This explains why the non-regularity of ~ is consistent. Let
us now see 5-lhy it is true. The role of the symbol lg:; is to serve
a sort of hook on which to hang all the generators proven to be
regular. Consider a certain moment in·real time. Let~~ be hang­
ing on the hook. This means we have proven that e•1ery object
producea by "t is a regular set (or an ur-element) ~ ltJe do not yet
know whether "t is regular (otherwise it w~uld have hanged on the

hook already, and than "t would produce 1\i, which is iffipossible).
Suddenly we realize that we can apply Theorem 8. We do it, and

prove that 1\i is regular. The very moment we have proven it, ~~

hang ~~ on the hook, by the definition of the access function ~
(it should be the last phase of the proof). After we did it, 1\i

is proven to be regulae, but it is somethin~ els~ thdt is ~an~ing

now on the hook, namely 1\i+J = 1\i U {1\ 1} • Thus at no time hav~
we proven that the current 1\ is regular. The universal :set s~n~­
rator 1\ is a consistent notion in our theory because we consid~r
the process of doing mathematics in its dynamics, as it should

be. Being 1\ is always one st~p _ _!le_~?~~~~ng re9ular.

6. Basic set constructors.Paradoxes

The languag~ of ~!,!:_):_!!P._C!:~:J•_is ,_ i~.!J;~--~~nce. a P!'_ov!..~.':!fi_

~angu~_g!_,_ Like other proqrarr.ming languages, such as FO~TRAN c-r
REFAL, the set-theoretical langu-'lge gives 11s the mean:; to cr~ate
linguistic prr-ce~scs (set generators in the case of set thecry)

which we use to model natural phenonena. !Jnlike com;J~_t.e~. P~.?_]_ti1_111:

~~ng languages, the lan~uaqe of set the~ry _!!'~1ud~~-th_e means to

~~~~-~icate with the real~t.~lli": :Pro.c~-~~e~- 1\ and r. 

40 



The role of basic operations of computer languages is played 

in set theory by set constructors. These are machines defined in 

the R~fal metasystem and used to create new set generators. A set 

constructor must be such that when its arguments satisfy certain 

staterl requirements, the generating process is interpretable and 

the set produced -- regular. In the following we define and 

discuss the basic set constructors necessary to arrive at the 

present-ti~e set theory. 

The general procedure for using an expression E as a set­

theoretical object is as follows. 

1. See if E is generated by ~- If it is. use it. 

2. If £ is not produced by ~ 

prove that ~ represents an interpretable generator 

and that whenever it produces a set S, 

eveq• el~ment T of S either was in ls.l! from the beginning. 

or has already been produced by £ 

at an earlier stage in model time. 

3. If you succeed. add a generator which produces £ 

to the defining list of lgs. You can use it now. 

We need. first of all. the means to create arbitrary finite 

sets out of objects which are already in existence. Since a 

finite set ~an be represented simply by the list of its elements. 

~e can ~eflne a trivial function fs (for 'finite set') which 

takes a list as its argumrnt and produces its members one-by-one: 

<fs(e,)e 1 > ~ (e,)<fs e 1 > 
<,!,2> ~ 

Examples. A s~t generator for a set of two elernenls A and B is 

<g(l~)(B)>. hence 1-;hat is {A,B) in the usual set-theoretical 

notation will be •(!~(A)(B)) in the strict notation of our theo­

ry. and fs(A,B) in the semi-formal notation. The empty set is 

*(!3)_ Th~ s~t (A,(A,B}} is *(fs(A)(•V(fs(~)(S)))) in our theo­

ry. E'lch step of set formation brings ~~-!!'E!!~£o_c_3~-~rar:!~~~-r:~ation_ 

more. 

It is easy to define functicn uni ~hich implements set-

41 



theoretical union. You simply run t~o or more set generators in 

parallel. 
Set theory requires the existence of at least one infinite 

set, namely, the set which contains the empty set ¢ ns its ele­
ment, and together with any element x contains also the element 
formed as the union x U (x} . Thus the elements of this set are: 

To construct a generator producing (1), we define: 

!.D.f(X) • (X) lnf(uni(X,fs(X))) 

In every step, function inf(X) produces X and calls itself t-Jith 
XU {X} as the next argument. 

It is easy to see that with any interpretable argument ex 

the process <in! ex> is interpretable, and if ex is a regular 
set. then it produces only regular sets. Hence inf(fs()) is the 

desired infinite set. This is a constructor without ~aramete:s 

which gives us exactly one set. 

Our next constructor will produce sets with ele~ents selec­

ted for a certain property. Its format is: 

which is read: the set of all those eletn'!nts x of th.e set S for 

which the process (search) H depending on x as a parameter is 

finite. The search H(x) will mostly be the proving of a cc~tai~ 
property P of x, or its negation, i.e. ~(P} or v(P). The s~~ 

machine works as follows. G is run step by step. Each time thatit 

produces an object x, this object is substituted into the search 

H and the search is run in parallel ~ith the continued run~in1 ~f 
G. Those branches for which H(x) stops p~oduce the correspondir.~ 
object x. 

The construct 

42 



(2) r - z:et(x E s, H(x)!) 

Is a regular set if and only if the following three conditions 

are satisfied: (a) the generator S is interpretable, (b) the 

search H(x) is interpretable for every element x produced by s. 
and (c) all elements x of S for which H(x) is finite represent 

ur-elements or regular sets. 

If Sis regular, then the necessary and sufficient condition 

for (2) to repr~sent a legitimate set is that the process H(x) is 

interpretable for every possible element of S. 
Can we use lgs in the role of S in the ~ constructor? 

Consider 

T = s~t(x E lg§: H(x)!) 

Alth~ugh ~is not regular, it is interpretable, because it 

produces only interpretable generators. So, condition (a) is 

satisfied. Consider condi~ion (b). Take the case when the search 

H(x) is Y(P(x)) or y(P(x)). As mentioned before, this is the most 

typical use of the~ constructor. In particular, the set used 

by Russell to co~e to his famous paradox, namely 

R • set(x ~ lgs: y(P(x))!) 

with P(ll) x E x, is of that type. For R to be interpretable, 

the property P(x) must be interpretable for every x E ~. and 

since P(x) is within a v-call, this interpretability must be 

proven before and independently of the interpretability of R. 
7hat is, R is sem~ntically dependednt on x and P(x), for every 

X E l~E"!· 

At first glanr.e it may se~m that we could prove the legiti-

~~cy of R by th~ following reasoning. ~produces only regular 

sets; th~refore P(x) and v(P(x)) are interpretable for every x. 

Then R is interpretable and regular. This reasoning, however. is 

faulty. The error is that a metamechanical process is thought of 

as If It "'ere m~cho.n i cal. When ~~e say "lgs produces only regular 

43 



sets", the l~pllcation is that~ is somehow giv~n to us as an 
external, completely definite reality. But it is not. It is part 

of our (the user's) activity. The correct reading is: ·~e should 

manipulate our machinery in such a fashion that lgs always pre­
duces only regular sets". The correct reading of "is R regular?" 
ls1 "can we include R in ~ without violating the rules?" 

To answer the last question, we tentatively add R to lgs and 
see whether this will violate the rules. It will. t-J!'len t-1~ 3d-:l R 

to 19§. R becomes semantically dependent on itself. It ls unin­

terpretable. The set constructor cannot be used with the univ~r­

sal generator lgs. We can collectivize objects by an arbitrary 
property only if they belong to a definite regular set. 

Without coming into detail at the present time, w~ contend 
that all paradov.es of set theory are resolved in our the<•ry in 
the aame way we resolved Russell's paradox: by showing th~t they 
use uninterpretable propositions. The failure to interpret s~t 
theory in a ~ons~~uctive ~a~ha~_been the r~~ult of thinking and 
arguing about metamechanical processes as if they were mecha­

nical. 

When set theory is defined a~iomatically, the aKio~s ar~ 
chosen t" order to avoid paradoxes. This is hardly a ~atisfactcry 

way to found a theory. We start our the~ry_from a certain cc•r.cep­

tlon of wha~~~«:_-~eaning ~.!I~!:~~£~.LJ.~rOEo~itions_is .. We do 
not ~ave to do anything to avoid paradoMes. As far as we use onl1 
meaningful prepositions the paradoMes simply do not appear. 

We saw that the set constructor with the universal generator 
~cannot be used to collectivize objects by an arbitrary pro­

perty. However, if we specify the collectivizing property in a 
certain way, namely by putting: 

P(x) = x sub S 

where S is a definite regular set, then we still can form a 
universal set. This set, i.e. the set of all subs~ts of s. kno~n 
as the pow~rsct of S, plays a most important role in Cantor's set 
theory. It deserves a special constructor: 



pow(S) • set(x E lga: y(x subS)!) 

If S is a regular set, pow(S) is also a regular set. To 
prove it, add pow(S} to ~- The process pow(S) is weakly Inter­

pretable. Its semantic graph is presented in Fig.?. It inclu-des a 

semantically infinite path, but it does not prevent us from 

labeling all the propositions involved. x 1 , x •• and other ele­
ments of pow(S) may or may not be elements of S, but S itself 
certainly ls not an element of S, being regular. Thus 

pow(S) sub S 

is interpretable and false; pow(S) is not produced by pow(S), 
while all other x's produced by it are regular because they have 
been in lgs before the introduction of pow(S). This proves the 
reguiarity of pow(S) foe any regular s. 

By allowing pow into our theory, we add a new type of set 
g~nerators. The meaning of the concept of objective interpretabi­
lity remains the snme, but the user has now two 'degrees of free­

dom' : 9DA and lru!.-

7. Functions 

In set theory, a (unction is a certain subset of the Carte­

sian p.-ljduct of certain sets. As e_v~_ything in set theory, t_h_i_$ 

~efi.ni lion i~___a:--~-~~tic ~J!J~_ntat Lon o.LarLintuitiv.e _c.onc.ep_t 
that is inheren_t:___ly d.;r:narn_iE, __ p_r_2_cedu~~!- Intuitively, a function 
((x,y) is a device which for every given x initiates a process 
(search) which ultimately halts, yielding the corresponding y. 

Our theory returns to the concept of function its intuitive 

procedural content . .An obj_ectj_v~Jy_ 5#~-~l)_g._~l~ {u.nct ion is a para­

metriz~d search which for every set of parameters (arguments) is 

objectiv~ly interpcetable, and such that if it is finite on more 

than ono:: parall•~l branch, then the final passive stage (the value 

of the fun~tion) is the same on all br&nches. It can be easily 

4S 



shown that this definition is equivalent to the usual set-theore­

tical definition when eMpressed in terms of o~r theory. 
We identify function with the procedure of its "computa­

tion"; the quotes are here because we extend the cor.cept of 
computation by allowing reference to real-time processes gns and 
~- Such a procedure may not be ~xecutabl~ in a computer; it is 
a definition, not an algorithm. ~ccording to the current ter~ino­
logy, a function is computable if it can be defined by a purely 
mechanical process, an algorithm. We should better call such 

functions_~ech~nlcal. Non-computable functions should be proprly 

called non-mechanical. 
To compute a function ((x) defined through a metamechanical 

process we have to replace the calls of r and ~ by the best of 

our 'gnosis' and 'logos' for today: r 1 and ~,. The resulting 
machanical function f 1(x) will be referred to as an implemP.nta­
tlon of the function f(x). Where the exact function calls y(P) or 
i(Q), its implementation calls Y 1(P) and Yt(Q). the following 
theorem, the proof of which is left to the reader, is f~r func­
tions what Correctness theorem is for prop~sitions: 

Theorem 9. 

r t (x) its 

infinite, 
f 1 (x) may 

Let ((x) be an objectively definable function, and 

implementation. For a given x, if the 

then r,<x> is also infinite; if f(x) 

search ((x) is 

is finite, then 

be either finite or infinite, but if it is finite then 
it value f 1(x) is equal to the value of f(x). 

Function r1 may be defined on just a part of the domain cf 
f. If f is non-mechanical. it will always be a part, not the 
whole domain. However. for those x for which fi(x} is defined, 
its value will be e):actly the sam.;: as that of f(x}. Uo _irnplerr.en-
tatlon of an objectively defined but non-mechanical fur.ction is 

complete; at any moment in time there will be an argument x for 

which the search f 1(x) is infinite. But for any x from the domain 

of r there exists such an implementation fi of f that fi(x} is 
finite and produces the correct value. 

One can see that our defi10ition of a function is. basi.:ally. 

constructive: a function is a computational procedu:-e.~~~5"~.:"a1 ~· 
!J.II'?~()~ meta!ll~c-~a~!c~J ...P_t:.<?£.!=~5~~· This extension of the conce;!: of 

46 



ccmputation is fully justified. Metamechanical processes are 
distinguished from mechanical not in that they appeal to some 
"transcending" powers or use non-eMistent omniscient creatures 
("oracles"), but in that they include the activities of the 
subject of knowledge, the user of the mechanical device. Turing, 

who introduced machines on paper into mathematics, identified 

computation with the activity of an autonomous machine. But 
cornputat ional processes which we see around are autonomotJS only 
durinq some finite stretches of time: say, while a computer 

p~~gram is working. &ut it is the user of the computer who has 
written the program, and who will soon throw it away and write a 
better one. It is the user who proves theorems and bases new 
algorithms on them. Mathematics is being done by human beings. 

not computers. _A metc.tt-eo~y __ o~ mat_hell!-atic::.~ should. ~.t.~rt .. wJ.t.~ .. !lll 
acknowledgement of the existence of metamechanical processes. -------A •• .~ .. ~-
Computation is a metamechanical process. Mechanical. algorithmic 

CQmputation is only a special case. 
Calling non-mechanical functions "non-computable" is con­

f~sing; it is something of a contradiction in terms. Non-compu­
tability implies that the function cannot be computed. Then is it 
a function? We know, however, that every objectively defined 
function can l·e computed, even though at the present time we may 
not know how. 

There is a fundamental d_:ij:fe~_ence be_t':l_cen t~_e use of paral­
lel processes .!n p~op?siti~ns and in functions. The interpreta­

tion of a parallel search in a proposition depends only on the 

finiteness or infiniteness of the branches, but not on their 
final stages. We could agree that the final stages of all 

searches the finitenss of which is asserted in propositions are 

ahJCWS idr.mtic::al to the symbol T: or ~e could simply ignor'! 
them. Therefore, a parallel search is interpretable if every 
branch is interpretable. A functional parallel search is inter­
pretabl~ only if all finite branches produce one and the same 

result. 
A functional search which runs an interpretable generator 

is, genP.rally, uninterpretable, beca~se it may cut th'! process at 

47 



some moment, and both this moment, and the result of the search 

may depend on "the competition" of the branches, which is imple­
mentation dependent. In particular, the concept "the first m~mber 
produced by the set generator" is uninterprctable if the gene­

rator involves metamechanical processes. So is, of course, "the 

second member", etc. ~hile_!:.hl! _l:lc!ong~~g to the set __ q_~_~ined by_.~ 

metamechan~ C:.CI ~- g«:~~rato...l' .. _i.s_ c;>~jec;~ i ve:l_~--~.~~~'i".~~e !:.<:'.1;1.1.~. -~Ji~ .. ~-r~.e_r 
ln which the members a.re pr_O~!Jc;ed !_~ _no~t.: This ev.plains why sets 
of set theory must be unordered if we want to consider not only 

recursively-enumerable sets. 
In logic, a functional dependence is a predicate F(x,y) 

which has the property: 

(*) (AxJCEyJ(Az)[F(x,z) : y=z) 

It states that for every x there is eHactly one y such that 
F(x-,y) holds. 

Clven an interpretable functional dependence F(x,y), we can 
build the corresponding computational process using the Refal 

function fun defined as follows: 

(**) fun(x: F(x,y)) • sch(y E ~= y(F(x,y))) 

With a given x, function fun tries ever1. ele~ent y of lg~. i.e. 
every legitimate object of the theory known up to date, lookin1 
for such a y that F(x,y) is true. The eKpression y is th~n given 

out as the value of the function (see function sch ir. Part I). 
The search defining ((x: F(x,y)) is objectively interpr~t­

able because lgs produces only interpretable eY.pressions. ar.1 
F(x,y) is supposed to be interpretable for every ir.terpretdhl~ % 

and y. We have no problems of the kind we had ~lith the set 

function, because (**) defines a search, not a new object (it is 

no constructor). Since F(x,y) has the property (*), there ~ill b~ 

no more than one branch that is finite. Therefore, fun is an 
objectively defined function. 

We shall need a Refal generator which computes a !unctio:l 

48 



and outputs ~ts value as its single element. This generator is: 

~(f~n(z: r(x.y))), where 91§ ("generator form search) is defined 
trivially: 

5. The ZF axioms 

Using the set constructors we defined above and adding a few 
more ~e can explain the meaning of the axioms of ZF and show why 
they are true. A more formal proof of consistency of the ZF 
system will be published later. 

There are no ur-elements in the ZF system. All objects are 
sets. 

1,. Ext~n5,Jonal1ty axiom. Sets having the same elements are 
equal: 

(EXT) (Ax}(x E a _ z ~ b) ~ a = b 

~his is one part of our definition of equality between sets. 

Using t~e reversed implication one can easily prove that the 
equolity so defined is, as required, reflexive. symmetric, and 
transitive. 

11. Axio~ of the empty set. There is a set which has no elr.ments: 

(E~P) (Ea)(Ax}[-(x E a)] 

This s~t is fs(). 

lJl. Sep~c~tion axiom. For every set a and every property P(~) of 
sets there eMists a set whose elements are those and only those 

elements of a which have the property P: 

49 



(SEP) (£'b)(Ax)[x c b a x s: a & P(x)) 

This set is: b • set(x s: a: y(P(x))) 

IV. Pairing axioiJI,. Given any sets a and b, there exists a set c 

whose elements are exactly a and b: 

(PAIR) (£'c)(Ax)[.x E c: : (x=a v x=b)] 

This set is: 

v. S~aet aKi~ For every set a there exists a set b, who~e 

elements are exactly those objects occurring in at least one 

element of a: 

(SUM) (£'b)(.Ax)[.x E b 5i (£'y)[y C a & X E y]) 

Ne introduce a new constructor to satisfy this axiom: 
sum(S). It runs S, takes every element of S as a set g~nerator, 

and runs them all in parallel. §Um(S) ls obvio~slt re~ular if S 

is regular. 

VI. Powecs~t axiqm~ For every set a there exiuts a set b the 

elements of which are exactly the subsets of a: 

(POW) (£'bJ(Ax)[x t b e x !n a] 

The set b is I!.Q!i(a). 

VJ1. Axiom of infinity. There exists a set which includes the 
empty set and with every set x includes xU {x}: 

(INF) CEa)[~ £ a ' (x c a • (x U {x}) £ a)) 

The set a is lnf(fs()) • 

ss 



VlJI. AxJ,om of l'eplaceraent,. The image of a set under an operation 

(functional dependence) is again a set. More precisely, if a is a 

set a~d F(x,y) is a formula such that for every x from a there is 

exactly one y such that F(x,y), then there exists a set the 

eleme~ts of which are exactly those y's for which an x e a exists 

such that F(x,y): 

(REP) (Ax)(Ey)(Az)[F(x,z) = y=z] • 

(Eb}(Ay)[y e b _ (Ex}[x e a & F(x,y))) 

To eY.pect that a set required by (REP) exists, we must first 

prove that the antecedent of the implication is true, i.e. for 

every ~there is a corresponding y. Suppose we did. Then we also ------------have ~roved that all the y's are regular, which is to have proved 

that all of them are generated by the current 1\i "hooked" on lgs. 

In the d~finition of the function ~~~(x: F(x,y)) we can replace 

los by "a~ denote the resulting function as fu~1 _(x: F(x,y)); it 

is eqaivalent to furr(x: F(x,y)). Now we can construct the set 

req~ired by (P.~P) as follows. Run set a, and for every element x 

g~nerat~ the corr~sponding y using ~(fun,(x: F(x,y))). It is, 

of course. regular. 

IX. AKiom of (egulal'ity (oc foundation). Every non-empty set is 

disjoint from at least one of its elements: 

(R::C) a ~ ~ • (Eb)(b E a & (Ax}[x E a ~ ~ex E b))] 

If every element of a has another element of a as its ele­

ment, then there is ~n infinite (cyclic or acyclic) sequence of 

sets su~h that each next set is an element of the preceding one, 

~hich ~~arts with a. Since a is regular this is impossible. 

X. ~io~ of choice. lf a is a set the elements of which are 

non-c~~ty s~ts. then thc~e e~ists a function f with domain a such 

that Eo-r every member b of a it is tru<! that {(b) E: b. 

51 



Such a function is referred to as a choice (unction; let 

us denote it as cho. ~e could try to construct ch~ as a machine 
which runs b as a generator and stops the moment it produces the 

first element. This clement becomes £Po(b). Since no element of 
a is an empty set, this function is defined on the whole set a. 

Function cho, however, cannot be legitirr.atcly us~d in set 
theory. As we saw above, a function which employs running a 
generator is, generally, unlnterpretable. The interpretability of 
cho(b) can be guaranteed only when b is countable; for this case, 

however, the axiom of choice has little siynlflcance because it 
can be proved as a theorem: one only needs to map the set b on 

natural numbers and pick up the element which corresponds to 

number 1. If b is uncountable it calls lGs, which cha~gcs in real 

time. Let the element of b picked up by the function cho at a 

certain moment be b 1 . We cannot guarantee that later in real time 

cho will pick up b 1 again. The belonging to b is objectively 
Interpretable, but the Qrdcr in which the elements of b are 

generated is not. 
The following theorem we put foreward tentatively, becau5e 

not everything about the interaction of ~- and~~~~~~~J is zet 
clear to us. 

Theorem lB~ There exists no objectively definable choice func­
tion. 

Proof. Let us denote by ~ 1 • ~2 • the sequence of universes of 
discourse as they occur in real time as a result of u~ing curtent 

values of ,.. and r. Suppose that an objecti•1ely dcfin;;!Jlc ftmr.tion 

cho docs exist. Let £DQ 1 , cho2 , ... ~tc. b~ its impl~~entati~ns 

Under ~l• "'2• ... etc. By Theorem 9, if the search CbQi (b) is 
finite, then chQJ(h) for. all j>t are al~Jo finite and h·:!V~ the 

same value as chQi(b), i.e. the true value of £Po(b). This must 

be true for any !;cqucnce of 11 1 • provided that ~~ su!J fl.i., 1 . :.-:e are 

going to prove Theotcm 10 by constructing such a sequence 11 1 , ~2 • 

Let a in the axiom of choice be the set of all non-empty 

subsets of some set S. Take a s~t b E a. Take scme set 112 and two 

of its non-empty subsets ~~ and ~j. such that ~~ n ~i = ¢, 

b n ~~ ~ ~. b n llj I ~ . (If b is uncountable, this is always 

52 



possible). We can now consider two ~-sequences: one starts with 

~1.~2 ·:·;the other with ~j.~2 •••• Consider implementation 

£1:!~1 (b) with th~ ri .-st. !'il'!qur.nr.e. Function £h..Q.(b) r."'" di'!I•P.nd on b 

!"-"'·11 t :., .-.u~l· ll,.· r •. , .. ,: ion P.\(x c b). Hence diQ.J(b) rl•·1 .. -.. cls on b 

"Ill)" t.hlough t!l1(x c b). Since those and only those ele:nents are 

available to el 1 which are in ~ 1 • el 1 (x E b)= P.l(x E b n ~1). 

Therefore. chQ1 (b) = cho(b n ~ 1 ). Since b n ~J is a subset of S 

and is not empty, function cho must be defined on it; let its 

value be c 1 . Reasoning in the same way for the second ~-sequence. 

i.e. "i• ~2 •.•. r.tc., we find that the implemP.nt.ation for the 

fir!'it. f;t.-'lg~ llj is: choj(b) = !<lJQ(b n llj) = c}. Since ~J and II} 
are disjoint, c 1 ~ cj. Let chQ2 (b) for the second stage of both 

~-sequences be c- 2 ; it i~ distinct from at least one of c 1 and cj. 
The~efore. at least one of the two /\-sequences is such that 

ch~2 (b) 1 cho 1(b), which is impossible if cho is objectively 

defineiL 

A5 proven by Goedel [1940], if set theory without the aKiom 

of choice is con~islent, then so is set theory with the aKiom of 

choice. This ~ugg~5ts that there must be a way to interpret set 

theory so that the axiom of choice co~es true. Indeed, we can do 

lt by ~,~akeni~y the requirement of objectivity. The interpre­

tation we have been discussing may be called the many-user inter­

pretation. Objectively defined functions in this interpretation 

~~st not d~pend on the ~r-sequence that leads the user's way to 

truth, because for different users they may be different. But if 

there is only one subject of knowledge who uses the machinery of 

~ath~matics (or he docs not care about other users). then there 

i5 only one ~r-scquencc. This is the one-user interpretation. 

Th<~n Th-:!crer:• 1" do~lj not ap:>lY, and it is easy to construct a 

choice function. For every uncountable set b we take the first 

i:rtDlci!'O~:atation bl of b which is not er.tply. Since bi is a mechani­

ca"!. ger;r:rator, we can uniquely pick up one of its elements a.nd 

ccclnr~ lt £~Q(b). 

~cchnically, this idea can be real~zed as follows. Modify 

the expression r•~Jltr.s.~nti.ng a set so that it becomes a pai.t: the 

53 



generator (as before) and one of its elements, if the set is not 
empty. When ~roving the regularity of a new candidate for ~. p\ck 
up an element which is av<~Uahle with the current ~ 1 ; rnaltP. up t.he 

prop~r pair. The choice Cun~tion will ~imply tak~ the s~cond 

member of the pair. 

The many-usct interpretation, in which the axiom of choice 
does not hold, seems more natur~l. But because of Cocdcl's re5ult 
mentioned above, the interpretation of the axiom of choir.P. is 
unimportant for the ptoblem of consistency of set theory. 

9. Uncountable Sets 

The pow constructor stands alone from the ~ther con&tructors 

we have defined. It calls the function lqs l-lhich proviues access 
to the real-time process A representing our developing universe 
of discourse. If S is an infinite set, then there exists no 
generator which produces all the objects which can be produced by 

pow(S). This was first proven by Cantor, who interpreted it in 
the Platonist spirit as the evidence that pow(S) has "more" 

elements than S. 
The notion of a hierarchy of static actual infinities is 

counterintuitive. Cantor's set theory introduced into math~matics 
a host of unimaginable entities, which later beca~e being passed 

for the only "real" obje:cts of mathematics. Yet in ~~-r~as~~~~ 

.!~..!!~!~d~ .';!'~:;,«;!. cnt it h:s exist, for ':"~ find __ t_!l_cm nei th~r in reali­
ty nor in our intuition. The philosop!'lical unsoundness of Can­
tor's theory has been recognized by many outstanding philosophers 

of mathematics starting with H~nri Poincar~ ~ho considered it as 
a perverse pathological condition that would one day be cured. 

We interpret the mathematical formalistr. of set theory in 
terms of intuitively clear and un<~_mbiguous cor.t::epts. !vhen Canter 

proves that J!ow(S) has "rr.ore" elements than S, he only pro\·c!; 

that whatever mu.chinc is offered to us as a gener;~tor or er.t:r..era­

tcr of the elements of I?Q!:!(S), we always can com;truct a n2u 
element, not yet accounted for. These 'us' and 'we' are absolute­

ly Essential for the meaning of the proof, even if they arc 

54 



avoided by using a different grammatical form. It is impossible 

to understand Cantor's proof ~ithout ·~e al~ays can'. It shows 
that the construct pow(S) cannot be interpreted in terms of 

=odel-time processes only, but involves inextricably the idea of 
real time in which we live and in which 'we always can• create 
one more element. 

The identification of sets with generators in constructive 
approaches to the founclation of mathematics usually stumbles over 
the interpretation of non-denumerable sets. In our theory, be­

cause of the introduction of metamechanical processes and the 

concept of objective interpretability, the constructive founda­

tion is compatible with the e~istence of genuinely non-denume­

rable sets. We should discuss how this becomes possible. 

Take a set S. If it is mechanical, the order in which the 
members a~e produced is objectively defined. A set S whose gene­
rator is a metamechanical process can be seen as the limit of the 
real-~i~e sequence s,.s 1 ,S~, ... etc., where s 1 is the set gene­
rated by the m~chanical generator corresponding to our knowledge 
at the i-th moreent in time. Since the knowledge of the subject 

can o~)Y gro~. each next set in this series includes all previous 
sets as 5Ubsets. We also can see S as the union of all the sets 

S 1 ,S 11 •••• etc. Can we enumerate the members of such a set? 
There is a way to do it, which has been used since Cantor, and is 

kno~n as diagonalization. Arranging the members of all the sets 
in the infinite rectangular table 

sl z: <a I • a,, a~ • a •• ... > 
sa <b,. bl. bs • b •• ..• > 
s~ <c' • C I • c~ • c •• ••• > 
s. <d,. dl. ds • d •• . •. > 

the diagondllzation process generates all of them in the order: 

a 1 , a 1 , b 1 , a~ • b 1 , c , , a • • . . . etc. 

ss 



When an element appears repeatedly, we ignore it, thus counting 
only the first entry. This allows to enumerate the union set S. 

If there is a mechanical generator which gen~rates the 

sequences,. 5 1 , .•• of mechanical generators, and the cq~~lity 
of the elements of the sets is tested by a finite mechanical 

procedure, then the diagonaliz~tion is also a mechanical proce­
dure. A recursively-enumerable set of recursively-enumerable sets 
of objects is recursively-enumerable. If the elcm~nts of the sets 
are infinite sets themselves, we need a recourse to human knoc.;­

ledge to decide on their equality. This makes the diagonLlization 
procedure not recursively-enumerable, but still leaves it objec­
tively definable. We can now consider a more gen~ral case where 

the sets S1 are denumerable, and so is the set of the sets Si. 
Then the diagonalizatlon procedure will be objectiv~ly definable, 
and the union set S denumerable. 

Consider, however, the case where the sets s 1 are generated 
in real time by !g~. Although He can go on jumping from s1 to 

S1+1 infinitely, we can do it only in real time, and are unable 
to construct -- once and forever -- an objectively defined ~~ne­

rator which produces all of them. Therefore. we cannot use diago­
nalization. Although the limit of ~~ for t~~ (loosely un~crstocd) 
ls the same for all subjects of knowledge, the specific stages in 
which it is achieved may be different. The order in t:hich the 
interpretability of different eRpressions is proved may vary frcm 
subject to subject. it is not objectively defined. Therefore, the 

resulting enumeration is not objectively defined P.ithr.r. More­

over. even with a given sequP.nce of s,•s, the enumeration; which 

must be a process in real time, will give different results 
depending on the frequency with which this proce55 reads current 

values of S. For example, lf it makes readings twice as frequcr.t­
ly as was assumed in the rectangular table above, then the tabl~ 

will be different. namely: 

s, • <a, • a •• a,.. a •• ... ) 
s. = <a, • a •• a,., a •• . .. ) 
s, 1: <b,. b ••. b:a. b •• . .. ) 

56 



Now the ordering given by diagonalization is different from what 

it was above; e.g., a~ precedes b 1 , while they were in thP. oppo­
site ord~r before. 

So, this is how non-denumerability is inl~rrreted in our 
theory. tJon-denumerable sets are generated by metamechanical 
processes. in the interaction between the user and the machine. 

The property of belonging to such a set is objectively definable. 

Since the only way a proposition of set theo=y can include a set 

is throu~h the mediation of the predicate of membership e, propo­

sions rnay refer to non-denumerable sets and still be objectively 

defined. But the order in which the elements of a non-denumerable 

set are produced is not objectively defined: it depends on the 

user. There e~ists no objectively definable function which would 
map all elements of such a set on the set of whole numbers. 

This interpretation is radically different from the one 
given by Car.tor, according to which a non-denumerable set has 

•more'" elements than a denum~rable set. In our theory every set. 
and every el~ment of every set, is represented by an eKpression. 

The set of all eKpressions (including uninterpretable) is, of 
course, denumerable (and even recursively-enumerable). Th~_aX~-

ln_!_!~i-~~ sets i!J_ol.l_!_____!:heory --~!e i~tuitive_ly P~!.<::~Y.fJ_!! ~~~~~Yill~­

:_~o -~-C)_i~: __ ~l_c~ents_ than the d~ll-~merable set_of all eMpressions.-. 

The thP.orcm that a sub5et of a denumerable set is denumerable 
re~ain~. of course, true, but this does not lead to a contradic­

tion. b~~au5e the generator of all expressions is not a regular 
set. 7hc fact that our universe of discourse stays alwaye within 

th~ ~ct of all cxpre5~ions does not help us to P.numP.rate it. By 

Theorc~ 3, it Ls impo6siblc to separate interpretable expressions 

frc.n •n•intcrpCf:lable. even if we are allot~cd to usc metame­
r:innir:;•l rr(Jt;t;!,<;cs, not only mech;tni.cal. The "universe of uni­

v~n;e:;" is uncl·~finablc. Meaningful objects and propositions can 
ofily b~ constructed inductively, from bott~~ up, in the int•rac­

tiQn L~twcen the user and the machine. Period. 



Acknowledgements 

I appreciate discussions of the Cybernetic Foundations which 
I had with several colleagues: ~arel Hrbacek and Michael Anshel 
of the City College. Angus Macintyre of Yale. Avgustin Tuzhilin 
of the College of Staten [sland. and Hartin Davis of the Courant 
Institute in New York. 

REFERENCES 

Beth [1968] The Foundation of Mathematics 

Goedel. ~urt [1948] The consistency of the axiom of choice and 
the generalized continuum-hypothesis with the axioms of s~t 

theory. Annah of Math. Studies. tlo 3. Princeton. N.J. 
Orlov. Yuri F. (1978] Wave calculua based upon wave logic. 

Intern. J. of Theor. Physics. Vol 17-. pp.Se~-598. 

Orlov. Yuri F. [1982] The wave loyic of consciousness: a 

hypothesis. Intern. J. of Theor. Physics. vol 21. pp.37-S~­

Tarski. A. [1933) The Concept of Truth in the Lan~uc~es of 

Deductive Sciences. 

Turchin. V.F. [1989) The Language Rc(al. Courant Cor.~puter Scienr.:e 
Report I 20. New York University. 

58 



~~--- )f..J. € ..s 

ks·7. W.e...lt. twt~f"'-~ h'J 
t~{ ~(s) 

f' s ~ .s 



H.(.\ • StMIIW\ht '('1.Ctp~ 
~r- At~ e,! 

Rt -~. S .tw-a.d.i c. ~~~ .f_o'\ 
!f r(t~)~ .YA~M 9! (f (A-'.), r (A?))~ 

r.:i~- ~ . Tk r~'/.. 
t{ iJv..t f;M 

k».s-. T~ ~~,. 
6f -t!...t. Jo1Jot 


