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The central proЬlem of supercompilation is to fi.nd а finite set of 
configurations (gener~lized states) of the computing sysLem which 
is, for а given initial configuration, self-suГ:ficient in the 
sense that the process of computation can Ье defined Ьу а finile 
graph of statP.s and transitions using only these configurations 
as nodes. Generalization over configurations is neces~ary for 
this. 'Гhе paper describes an algorithm of generali?.ation in the 
process of outside-in driving (forced unfolding of function calls 
;n the l~zy evaluation semantics) which always tP.rminatP.s and 
produce~ а finite graph of states and transitions with а self­
sufficient set of basic configurations. 

l. INTRODUCTION. WHY ТО G~NERдLIZE? 

It may secm strange that the proЬlem of generali?.ation is raiAed 
in the context of partial evaluation. Indeed, part.ial evaluation 
is mostly used for, and therefore perceived as, program speciali­
zation, and this is somP.thing opposite to generaliz~tion. 

Howevcr, we discuss herc а special technique of fnn~tion transfor­
mation, which is referred to as sцpercompilation (see [1-Зj). When 
supercompilation is uAed for the sake of partial evaluation (whi~h 
is not always the case, because supercompilation can do more) it 
comes to the specialized program in а different way than the 
straighforward partial evaluation. 

In partial evaluation we have an original, general, program, nnn а 
specia1ized function call . Then we make а global ~nalysis of known 
and unknown arguments, and specialize the original definition step 
Ьу Atep, watching that а certain limit is not ovPrsteppP.d . Tht1s 
the loops in the specialized program are the old loops of thc 
original program, bt1t (possiЬly) specialized. Partial ev<Jluation 
technique is, in а sense, monotonous with respect to specializa­
tion. 

In supercompilation we, again, have an original, general, program, 
and а specialized function call. Here, however, we never specia­
li?.e the original program . We start from the ultimate speci<ili.za­
tion of the initial call, and then construct а program for it Ьу 
drtving. If the program can Ье made self-contained without looping 
back (а simple tree), there will Ье no generalization necessary. 
Usual.ly, however, we have to loop back, and these are new loops, 
created ad hoc for current configurations. This may make it neces­
sary to generalize configurations, because the former configura-
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tion will not always Ье general enough. Thus the process of super­
compilation is not monotonous: we first jurnp to the cornpletely 
specialized initial call, considered as the initial (degenerate) 
graph of states and transitions, and then develop it into а self­
contained graph i.e. а program, using generalization when necessa­
ry. 

While partial evaluation has the narrow goal of specializing 
functions, supercornpilation is а much wider framework for general 
function transformations. We believe that it follows closer than 
other techniques to the way we, hurnan beings, think. Thinking is 
creating rnental rnodels of the processes in the world around us. 
How do we create those rnodels? We watch the processes and try to 
forrn some generalized states of the explored systerns in terrns of 
which we can construct а self-sufficient rnodel of the processes, 
i . e. represent the processes as transitions between the basic 
generalized states. But this is exactly what the supercornpiler is 
doing. 

2. HOW ТО GENERдLIZE? 

дs an introduction to the proЬlem of generalization, consider this 
example. Suppose, two strings are given: 

'дВд' 

'дВХУдВд' 

and we are asked to write а generalization which is, in some 
intuitive sense, the best. Then we should ask, before anything 
else, what is meant Ьу а generalization? The first step to define 
а generalization is to notice that а generalization of а number of 
objects is а set which includes all of these objects. This defi­
nition is not sufficient, however, because then the best generali­
zation in our example would Ье sirnply the set of exactly the two 
strings mentioned, and а similar trivial solution would exist in 
any situation. дctually, when we speak of generalizations, we have 
in mind а language in which sets of objects are defined, and we 
want not just а set of objects, but an expression of this language 
defining а set of objects which includes all the objects to Ье 
generalized -- and, possiЬly, sorne other objects. Then the proЬlem 
of а "good" generalization is non-trivial. 

Let the language to describe sets of strings Ье that of simple 
patterns, as in Refal, where sl, s2 etc. stand for single symbols, 
i.e., in our context, letters of the alphabet, and el, е2, etc. 
stand for arЬitrary e~pressions -- here for strings, including the 
empty string. Thus, 'д'еl is the set of strings starting with 'д'; 

el s2 s2 is а string ending with two identical letters, etc. Then 
for the two strings above, even after we exclude those generaliza­
tions for which we see obviously better (tighter) generalizations, 
we still have quite а number of reasonaЬle solutions, for example: 

(1) 
(2) 
( 3) 
( 4) 

'дВ'еl 

'дB'sl е2 
еl'дВд' 

'дВ'еl'д' 

Which one to choose? 

We faced this proЬlem when working on the Refal supercompiler, 
because intelligent generalization is the central proЬlem of su-
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percompilation. We do not discuss here the concept of а super­
compiler in detail; the reader сап address [1], or [2], or an 
P-arlier and detailed (but not so easily availaЬle) puЬlication 
[3). The objects to Ье generalized in supercompilation are func­
tion calls in Refal. Experimentation with different ways of gene­
ralization led us to the following principle, which we believe to 
Ье of universal significance for symbolic objects: 

The Generalization Principle. Generalization of objects has а 

meaning only in the context of some processes of computation in 
which the objects take part. Then the language of generalization 
should have means to describe computation histories, and generali­
zations should Ье sets of objects which have соттоn computational 
histories up to а point. 

дccording to this principle, we should not generalize unless we 
know in what computational processes our two strings are taking 
part. If we know, for instance, that the strings are scanned form 
left to right, then the appropriate series of generпlizations, 
each next being tighter than (а subset of) the preceding, will Ье: 

sl е2 
'д'е2 

'д'sl е2 

'дВ'е2 
'дB'sl е2 

Thus if we want the tightest generalization, we take the last one. 
Should the strings Ье processed differently, the generalizations 
would Ье defined -differently. If no algorithmic processes are 
defined over strings, there is no sense in generalization. 

In the following sections of this paper we describe the algorithm 
of generalization in the supercomiler based on this principle. ln 
the context of the language we use in the supercompiler, namely, 
Refal, computation histories become tangiЬle formal objects. It 
should Ье noted that Refal fits the needs of generalization on two 
counts. First, it has the concept of а pattern, which is, of 
course, the simplest form of generalization, built into the lan­
guage. Second, the functioning of the Refal machine is а simple 
sequence of substitutions, which facilitates the formalization of 
computational histories. 

3. NEIGHBORHOODS 

The objects we deal with in supercompilation are Refal graphs, 
which are, essentially, graphs of states and transitions of the 
Refal machine. The nodes of а Refal graph are Refal expressions, 
the edges (directed) are transformations of two kinds: contrac­
tions and assignments. Both are pattern-matching operations over 
variaЬles, with the variaЬles in the left-hand side having some 
values, and the variaЬles in the right-hand side being defined Ьу 
the operation. д contraction has а single variaЬle in the left 
side, and а pattern in the right side, e.g. 

el ~ s2 el 

is а conditional operation which checks that the value of el 
starts with а symbol on the left, assigns that symbol to s2, пnd 

redefines el as the remaining part of the original value. дn 
assignment has а single variaЬle on the right and defines its new 
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value through constants and the variaЬles of the left side, e.g. 

'д'еХ s2(eY) ~ еХ 

д Refal program сап Ье represented as а Refal graph defining one 
step of the Refal machine, e.g. the program: 

FдВ {el = <FдBl ()el>; ) 
FдBl ( 

} 

(еl)'д'е2 = <FдBl (el'B')e2>; 
(el)sЗ е2 = <FдBl (el s3)e2>; 
(el) = el; 

is, essentially, the graph: 

:( еИ ~ <FдВ el>; <FдBl ()el> ~ е0 

+ е0 ~ <FдBl el> :( el ~ (еl)'д'е2; <FдBl (el'B')e2> ~ еИ 

) 

+ el ~ (el)sЗ е2; <FдBl (el s3)e2> ~ еИ 
+ el ~ (el); el ~ eS 
) 

Here we used the form :(В 1 + ... +Bn) to represent n branches в 1 ... 
etc., which start from the same node. The nodes themselves are 
left out in this graph; they can Ье restored when reading the 
graph. Refal graphs are read as follows. The variaЬle еИ stands 
always for the content of the view-field (the current expression 
being transformed) of the Refal machine. Our graph consists of two 
subgraphs. The first begins with the contraction eS ~ <FдВ el>, 
which corresponds to the case where the expression in the view­
field of the Refal machine is а call of the function FдВ with а 

completely unspecified argument represented Ьу the free variaЬle 
el. The state of the view-field at this moment is, obviously, 
<FдВ el>; we skip it. The next operation is the assignment to the 
view-field eS of а new value, which is а call of FдBl; we can skip 
the node again, without losing information. When we construct the 
graph of states for an arbitrary expression in the view-field еИ, 
we need not write out nodes explicitely, because the current node 
is always identical to the current value of еИ. 

The second subgraph is а definition of the function FдBl. Here we 
separated the general configuration of the call of а given func­
tion, <FдBl el>, from the detalization provided Ьу sentences. This 
gives us our first insight into the concept of а neighborhood. The 
first thing the Refal machine does to perform а step is to identi­
fy а function symbol, which should follow the left evaluation 
bracket <. Thus <FдВ 'дВС'> and <FдВ 'ХУ'> appear the same for the 
Refal machine at this stage; they belong to the same neighborhood 
<FдВ el>. дnу call of FдBl belongs to а different neighborhood, 
namely <FдBl el>. Inside this neighborhood we sec а further diffe­
rentiation: <FдBl ('Х' )'дВС'> and <FдBl ('РQ')'дС'> are indistin­
guishaЬle to the Refal machine as long as it executes one step on 
them: in both cases the first sentence is used. The expression 
<FдBl ('XY')'BCD'>, however, will Ье distinguished in the first 
step from those two. The former neighborhood is <FдBl (еl)'д'е2>, 
the latter <FдBl (el)sЗ е2>, with the restriction that sЗ is not 
equal to 'д'. 

Complex contractions which we find in the left sides of Refal 
sentences can Ье decornposed into simpler contractions. In the 
example above, the left side of the first sentence of FдBl was 
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decomposed as follows: 

е~~ <FдBl (еl)'д'е2> = е~~ <FдBl el>; el ~ (еl)'д'е2 

We could go further and decompose it into 

е0 ~ <FдBl el>; el ~ (el)e2; е2 ~ 'д'е2 

Contractions are elements of computation histories. The more wc 
decompose contraction, the more detailed the description of histo­
ries will Ье. This process comes to its natural close if we decom­
pose all left sides of Refal sentences into elementary contrac­
tions. There are seven of these, namely: 

l. еХ ~ sY' еХ 

2. еХ ~ (еУ')еХ 

3. еХ ~ еХ sY' 

4. еХ ~ еХ(еУ') 

5. еХ ~ 

6. sX ~ s 

7. sX ~ sY 

Here S stands for а definite (but arbitrary) symbol, and the 
primed variaЫes sY' and еУ' symbolize that the index У' of the 
variaЫe is new, i.e. was not used before. 

The decomposition of the left side above into elementary contrac­
tions is: 

е~~ <FдBl (е2)'д'еl> = 

е0 ~ <FдBl el>; el ~ (e2)el; el 4 sЗ el; sЗ ~ 'д' 

(We renamed some variaЬles in the left side; this, of course, 
changes nothing). 

De(initions. дn expression without free variaЫes is а ground 
expression. We say that а contraction is executed positively over 
а ground expression, if the contraction is found applicaЫe and 
applied; we say that it is executed negatively if it is estab­
lished that the contraction is not applicaЫe. The sequence of 
elementary contractions executed positively or negatively over а 

ground expression in n steps of the Refal machine is its computa­
tion history of n-th order. The set of all ground expressions with 

а common computation history of n-th order is а neighborhoood of 
n-th order. 

Thus to every computation history а neighborhood corresponds. We 
shall denote neighborhoods Ьу the same symbols as histories. If а 
history н 1 is а prefix of н 2 , then the neighborhood н 2 is а subset 
of н 1 . Th1s relation between neighborhoods is а partial order. 

д Refal program defines а system of partially ordered neigh­
borhoods, in other words, а topology, in the space of ground ex­
pressions. The longer is the common part of computation histories 
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of two points in this space, the tighter is their common genera­
lization to а neighbothood, in other words, the closer are these 
points. Note that speaking of ground expressions we have in mind 
only active ground expressions, i.e. those including at least one 
pair of activation brackets. дll passive expressions fall in one 
big class with а zero-length computation history, and are of no 
concern to us . This is, of course, а consequence of the genera­
lization principle formulated above. 

д compact representation of а neighborhood as а set can Ье ob­
tained Ьу folding the contractions of the corresponding history 
into one pattern. With the program above, the system of first­
order neighborhoods is as follows: 

(а) 

(Ь) 

(с) 

(d) 
(е) 
( f) 
(g) 

<FдВ el> 
<FдBl el> 
<FдBl (e2)el> 
<FдBl (e2)s3 el> 
<FдBl (е2)'д'еl> 
<FдBl (e2)s3 el> CtsЗ ~ 'д') 
<FдBl (е2)> 

The restriction (negative contraction) in (f) indicates that only 
those ground expressions are in the pattern in which sЗ is dis­
tinct from 'д'. These neighborhoods are partially ordered as 
follows: 

Ь > с > d > е 
d > f 

с > g 

where > denotes being а superset. 

То compute the neighborhoods of the second order, we use driving 
(see, e.g., (1]) . Driving every active end-node in the graph for 
FдBl, we соте to the graph that represents two steps of the opera­
tion of the Refal machine if it starts with any call of FдBl. It 
contains all possiЬle computation histories of length two. Six new 
neighborhoods will Ье added to the system. Three of them are 
refinements of (е): 

(h) 
( i) 
( j) 

<FдBl (е2)'дд'еl> 

<FдBl (е2)'д's3 el> 
<FдBl (е2)'д'> 

(f sЗ ~ 'д') 

and the other three, analogously, develop (f). 

Driving can Ье repeated as long as there are active end-nodes in 
the graph . We refer to this process as exhaцstive driviпg. It can, 
and typically will, go on infinitely. Exhaustive driving defines 
the set of цltimate neighborhoods, which correspond to terminated 
computation histories. In the case of FдBl the ultimate neighbor­
hoods are: 

( l) <FдBl (е2) > 
(2) <FдBl (е2) 1 д'> 

( 3) <FдBl (е2)sЗ> (lt sЗ ... 1 д 1) 

(4) <FдBl ( е2) 'дд' > 
(5) <FдBl (е2)'д'sЗ> (lt sЗ -> 1 д 1) 

( 6) <FдBl (е2)sЗ'д 1 > а sЗ ... 1 д 1) 

(7) <FдBl (e2)s3 s4> Clt sЗ -+ 1 д 1) (lt s4 ... 1 д') 

etc. 
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The expresfiions which belong to the same ultimate neighborhood 
pass through the Refal machine in the exactly identical ways; the 
machine has never а chance to discover the difference between 
them. 

4. WHEN ТО GENERдLIZE? 

The idea of а supercompiler is to superwise the construction of 
the full graph of states for the initial configuration, and at 
certain moments loop back, i.e. reduce an end-configuration -­
directly, or with а generalization -- to one of the previous 
configurations, and in this way construct а finite graph on the 
basis of а potentially infinite process . д direct reduction is 
possiЬle when the later configuration is а subset of the earlier 
one. This is an easy case, when it is pretty obvious that the 
reduction can Ье made and has sense. The difficult case is when 
the later configuration is not а subset of the previous one, bul 
is "close" to it in some sense. If we simply ignore this close­
ness, and go on with driving, we may never loop back, and the 
process will never stop. 

Take а simple example with the functions we defined above. We want 
to supercompile the configuration 

(1) <FдВ el> 

Nothing especially interesting is expected here. The supercompiler 
must simply return the original definition . Our purpose is to see 
that the supercompiler can indecd find the correct basic configu­
rations for looping back whenever necessary to terminate the work. 

The graph of states we construct in supercompilation must include 
nodes, i.e. configurations of the Refal machine, explicitely, 
because we want to compare and generalize configurations . Let the 
nodes in graphs Ье represented Ьу references to configuration 
definitions. The first step of driving replaces (1) Ьу the call of 
FдBl, so the graph is the unconditional transition: 

(1) (2) 

with the definition: 

(2) <FдBl ()el> 

Next step of driving results in the graph: 

(l) (2) :( el ... 'д'еl: (3) 
+ el ... s2 el: (4) 
+el-+[]:(5) 

(3) <FдBl ('B')el> 
(4) <FдBl (s2)el> 
( 5) [ ] 

(For readaЬility, we use [] to represent the empty expression). 

The passive configuration (5) terminates the walk in the graph. 
None of the new active configurations (3) and (4) is а subset of 
any of the previous configurations (1) and (2). If this were our 
criterion for looping back, we would go on with driving. Дfter the 
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next steps we would have such configurations as 

(6) <FдBl ('BB')el> 
(7) <FдBl ('B's2)el> 

etc., none of which, again, would loop back onto any of the pre­
vious configurations. In this way we would never соте to а finite 
graph. 

То loop back properly, we тust recognize that (3) and (2) are 
close enough for looping back. Indeed, they bP.long to the sате 
first-order neighborhood 

(N) <FдBl (P.2)el> 

If we set as а principle that belonging to the sате first-order 
neighborhood is а sufficient reason for looping back, we genera­
lize (3) and (2) to (N), express (2) through (N): 

(2) = [] ~ е2; (N) 

and recoтpute the graph for the generalized configuration (N): 

(1) [) ~ е2; (N) :( el-+ 'д'еl; (3') 

(3') <FдBl (e2'B')el> 
(4') <FдBl (е2 s3)el> 

+ el-+ s3 el; (4') 
+ el-+ (]; (5) 

Now (3') and (4') are subsets of (N); reducing theт to (N) we соте 
to the graph 

(1) [] ~ е2; (N) :( el-+ 'д'еl; 'В'е2 ~ е2; (3') 
+ el-+ s3 el; е2 s3 ~ е2; (4') 
+el-+(];(5) 

Our algorithт of generalization is based on keeping in тетоrу the 
first-order neighborhoods of past configurations. Wc forтulate it 
first for the case where all function calls have passive arguтents 
only, i.e. there are no nested calls. Nested calls will Ьс consi­
dered in the next section. 

дs the Refal тachine applies to the function arguтent one eleтen­
tary contraction after another, the neighborhood that describes 
the function call becomes more narrow. Then the replaceтent is 
executed, another descending sequence starts, etc. We have the 
following row of neighborhoods in each branch of the graph: 

fl 
1 

fl 
2 . . . Rl f2 

1 
f2 

2 ... R2 f" 1 f" 2 .. - t" m 

They are partially ordered as follows: 

fl 
1 > fl 

2 > 

f2 
1 > f2 

2 > 

Е" 1 > f" 2 > ... f" 
т 
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In а graphic form: 

There are several variants of the algorithm, which place lhe 
resulting program in different positions on the compilation-intP.r­
pretation axis (the more detailed is the set of basic configura­
tions, the more compilative the program; the more general the 
basic configurations are, the more interpretive the program, sec 
(1]). The most interpretive variant is as follows. Each time 
before we make the neкt replacement, R", we compare each neighbor­
hood of the current step, starting with the f~~~t one, Е", with 
all the previous neighborhoods, moving from R backwards, to the 
beginning of the walk. If we find the same neighborhood, we loop 
back to it. In this way we find the most general from the recur­
ring neighborhoods. If we loop back, Rn is ignored and the step 
due is not eкecuted; reduction takes place instead. Since the 
number of different first-order neighborhoods is finite, the algo­
rithmic process is always finite. 

This algorithm can Ье obviously generalized for neighborhoods of 
an arЬitrary order. The higher the order, the more compilative 
will the resulting program Ье. The same effect can Ье achieved Ьу 
function iteration, using only the first-order neighborhood algo­
rithm. If we define functions that correspond to two, three, etc. 
steps of the Refal machine, and use the first-order algorithm with 
them, then this will Ье equivalent to higher-order neighborhoods 
for the original system of functions. We сап control the process 
of generalization Ьу iterating some functions, while leaving alone 
others. Therefore, the algorithm based on first-order neighbor­
hoods has а certain property of completeness. If we accept the 
principle that the closeness of eкpressions should Ье measured Ьу 
the length of the common part of their computation histories (the 
program-induced topology), then all strategies of generalization 
can Ье presented as refinements of an algorithm based on first­
order neighborhoods. 

5. GF:NERдr.IZдTION OF NESTED CдLLS 

If nested function calls are executed according to the inside-out 
principle, known also as the applicative evaluation order, then 
the computatioп of every active eкpression сап Ье brokeп down into 
а sequence of computations and substitutioпs, this sequeпce being 
indepeпdent of fuпctioп defiпitioпs. For example, the assigпment 

<F el <G е2> <Н еЗ>> ~ е0 

will Ье decomposed into the sequence of assigпments: 

<G е2> ~ еХ; <Н еЗ> ~ еУ; <F el еХ еУ> ~ е0 

We shall refer to such decompositions as stacks. Since the order 
of execution is strictly left-to-right, computation histories -­
and, therefore, neighborhoods -- for stacks break into pieces 
corresponding to the first, second, etc. segmeпts of the stack. If 
а stack s 1 is а prefix of another stack, s2 , theп the neigh­
borhoods of s 1 are supersets (generalizations) of the neighbor-
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hoods of s2 . There is no interaction between neighborhoods cor­
responding to different segments of the stack. 

In the supercompiler, however, we use the outside-in (normal, 
lazy) order of evaluation, because it provides one of the primary 
means of optimization. In this case the situation is much more 
complicated. д prefix of а decomposition is still а generalization 
of а longer decomposition, of course. But we cannot decompose а 

nested ca1l into а stack without consulting function definitions. 
The decomposition is still made, but it is made in the process of 
moving from outside in, and it may depend on the values of vari­
aЬles. Computation histories may consist of alternating pieces 
from different function calls. Indeed, suppose that the computa­
tion process starts with the all-embracing function call, but 
after eкecuting а number of contractions the Refal machine finds 
that а not yet computed call inside is а hindrance for further 
application of sentences . Then it wi11 leave the unfinished func­
tion call as а context, and switch to the computation of that 
int~rnal call, which, in turn, may send the machine further in­
side. Дfter computing the internal call -- completely or partially 

the process returns to the point in the outer function call 
where it was interrupted. 

Let us describe this in somewhat more detail. We call an expres­
sion unitary active, or just unitary, if it is of the form <Е>, 

where Е is any expression (possiЬly active, so that there are 
nested function calls). If the res11lt of replacement in the execu­
tion of а Refal step is unitary, we make it our ncxt active 
subexpression to compute . If it is not unitary, it is either 
passive (completed computation), or non-unitary active (partially 
computed, with some passive parts outside of activation brackets, 
e.g. 'д'<FдВ el>). In both cases we substitute the result into the 
context, and take the context as the next active subexpression to 
compute. If there is no context (bottom of the stack call) and the 
result of the step is passive, this is the end of driving . If the 
result is partly passive, the passive part is kept in the view­
field of the Refal machine, and the unitary active part is driven 
further. 

Wc shall consider а few examples which typify different structures 
of recursion. We shall demonstrate how we come to our algorithm of 
generalization, and how it works. Then we shall prove that this 
algorithm has а guaranteed termination. 

The first example is the classical recursive definition of the 
factorial: 

FACT (~ = l; 
l = l; 
sN = <MULT sN <FACT <SUB sN 1>>>; 

} 

We assume that the arithmetic functions SUB and MULT are built-in 
(not defined in Refal) functions which require their arguments to 
Ье ready-for-use numbers. Then the inside-out and outside-in or­
ders of evaluation will lead to the same sequnese of operations. 
We see here three neighborhoods involved: 

(f) <FACT sl> 
(m) <MULT sl s2> 
(s) <SUB sl s2> 
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(То simplify things, wc ignore such neighborhoods as <РдСТ P.l>, 
<РдСТ яl е2>, etc., which cause unique transitions). д slack will 
Ье denoted as а string of neighborhoods, e.g., sfm will stand for 
any of the nested calls like that in the definition of FдСТ. 

When we simply drive <FдСТ sl> eкhaustively we have, on one of the 
branches, the sequence of neighborhoods: 

f; sfm; fm; sfmm; fmm; sfmmm; fmmm; ... etc. 

which goP.s on infinitely. Let us now apply the simple algorithm 
of comparing neighborhoods which we developed for the case of onc­
level function calls. We eкtend it Ьу recalling that а stack is а 
specialization (subset of) its every prefix. дt the third stage of 
the process above we recognize that fm is а subset of f. Thus we 
declare f basic, and come to the original algorithm. 

This experience suggests to accept as the general criterion of 
generalization а situation where the current stack is of the form 
ХУ, where Х is а previous stack. This criterion, of course, in­
cludes the one-level situation as а special case where У is empty 
and Х is one segment. 

However, if we only slightly change our example, this criterion 
will not work. Let the factorial function Ье computed in the 
context of some other function, say, 

(*) <дDD 1 <FдСТ sN>> 

If we denote Ьу а the neighborhood corresponding to дDD, the 
sequence of stacks in driving will Ье: 

fa; sfma; fma; sfmma; fmma; sfmmma; fmmma; ... etc. 

One can see that none of the previous stacks is а prefix of а 
subsequent one. Therefore, the process will never terminate. 

The reason for this failure is that the algorithm, as it is at 
this point, does not draw а 1ine between the part of stack that is 
recurrent, and the part that does not really participate in ac­
tion, but is а passive context. We, therefore, modify the algo­
rithm as follows. The stack will not Ье just а lineur segment, but 
а structure of parenthesized segments, where thc context part is 
taken outside of parenthescs. дccordingly, the computation history 
will Ье written in such а way that the context is left outside of 
the parentheses as а common part to all the stages of the process 
as long as it has no impact on developments. 

The nested call («) will now Ье characterized Ьу the formula (f)a. 
It results from outside-in driving, where we start driving from 
the call of дDD, an then see that before anything is done on this 
call, we must drive FдСТ. So, we leave дDD as а context, and FдСТ 
becomes the active subexpression. 

After the first step of the Refal machine, the history of computa­
tion takes the form: 

(f; ((s)f)m )а 

Then SUB is computed, and the next history record will Ье: 



542 

(f; (sf; f)m )а 

We have followed here the Orwellian principle of permanently 
rewriting the history. We have а better reason, though, than in 
Orwell's novel. When s is computed, the result is substituted into 
f; t.l1t1s tl1e real previous state to Ье used in compar isons should 
now Ье seen as sf, not (s)f. Each time that а context enters the 
play, we open the parentheses that separate it from the active 
part at the current stage and all previous stages of history since 
this context appeared. 

дs before, we compare the last stack with all the previous stacks 
at every stage of development. When we exit context parentheses 
while tracing the history backwards, we add the context to the 
current stack before comparing it with next previous stacks. So, 
after the first step of the Refal machine, we compare sfm with f. 
Дfter the second step we compare f with sf, and then fm with f. 
The last comparison discovers that f is а repeated prefix, and the 
algorithm successfully terminates. 

Consider one more example. Let F Ье the function that scans the 
argument from left to right and replaces each pair of identical 
symbols Ьу one symbol of the same kind: 

F { 
s2 52 el = s2 <F el>; 
s2 el = s2 <F el>; 

= 
} 

r.et the initial configuration Ье 

1. <F <F <F el»> 

We w~nt to supercompile it using, as always, the outside-in order 
of evaluation, so that the final program performs in one pass the 
job which is defined Ьу the initial configuration as а three-pass 
job. In this proЬlem, tt ts easy to discover that the same func­
tion F is called again and again Ьу itself, and declare it basic. 
But if we do so, we, obviously, return to the original three-pass 
program. The proЬlem here is of just the opposite kind: how to 
delay looping back in such а manner that the result is а one-pass 
program. The algorithm must steer carefully between the Scylla of 
looping back too early, and the Charybdis of never looping back at 
all. We are going to show that our algorithm is сараЬlе of this 
navigational feat. 

Let us concentrate on the first branch in every step of driving. 
Should we drive manually, we would produce this sequence of nodes: 

2. 
3. 
4. 
5. 
6. 
7. 
8. 

<F <F s2<F el>>> 
<F <F s2 s2<F el>>> 
<F s2<F <F el»> 
<F s2<F s2<F el>>> 
<F s2<F s2 s2<F el>>> 
<F s2 s2<F <F<F el>>> 
s2 <F <F <F el>>> 

дt this stage, we would notice that the initial configuration re­
appears at the top level. We would separate it and tertninate the 
branch. We want now to see how the supercompiler will do this. 
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There are three neighborhoods at work in this example, which will 
Ье denoted as а, Ь, and с: 

(а) <F еХ> 
(Ь) <F s2 еХ> 
(с) <F s2 s2 el> 

Let us trace how the history changes while the supercompiler 
works. The initial history is 

1. ((а)а)а 

There is no semicolon here, which signifies the fact that no step 
has yet been made. We simply decomposed the initial configuration 
into а stack. We shall now go through the stages 1 - 8 of driving 
above, using the stack-of-neighborhoods notation. 

In the first step of the Refal machine, we use the contraction: 

el ... s2 s2 el 

The replacement results in s2<F el>. We now have the node 

<F <F s2 <F el>>> 

Driving it outside-in, in order to decompose it into а stack, we 
find both the first, and the second call of F impossiЬle to com­
plete, so the active subexpression will Ье the third F again. The 
decomposition is: 

<F el> + еХ; <F s2 еХ> + еУ; <F еУ> + е0 

In the short notatation, 

((а)Ь)а 

Since the second F from outside (the context of the active third 
F) takes part in this transformation, we must open the correspon­
ding parentheses: it is not just а which becomes Ь, but аа which 
becomes (а)Ь. Thus on the second stage the co1nputation history is: 

2. (а а; (а) Ь) а 

When we compare the current situation with evcry stage of 
history, we do not exit from the subgraph common to both. So, what 
we actually compare at this stage is аЬ with аа. The result is 
negative, and we go on. After the second step the node is 

<F <F s2 s2<F el>>> 

Driving from oнtfiide in, we find the second F to Ье the active 
subexpression. The third F is not seen Ьу the Refal machine; the 
neighborhood formula is (с)а. Since the context, which is now Ь, 
has taken part in the process again, we open the parentheses, and 
the history becomes: 

3. (аа; аЬ; с)а 

Procedeing in this manner, we produce the further members of the 
"history of histories": 
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4. ааа; аЬа; са; ((а)а)Ь 
5. ааа; аЬа; са; (аа; (а)Ь)Ь 

6. ааа; аЬа; са; (аа; аЬ; с)Ь 

7. ааа; пЬа; са; апЬ; аЬЬ; сЬ; с 

8. апа; аЬа; са; ааЬ; аЬЬ; сЬ; С; ((а)а)а 

Nowhere in the history before the last stage did we see п repeat­
ing context, so the process went on . At thc last stage ((а)а)а 
compares positively with ааа, and this combinalion is declared 
basic. One can see that on all branches of the graph а similar 
~ituations take place, so that in the end we have а finite graph. 

Our last example is the merge-sort algorithm, which illustrates 
one more pattern of recursion. 

SORT { el = <СНЕСК <MERGE <PдiRS el>>>; }; 

MERGE { 
(el)(e2)eR = (<MERGE2 (el)(e2)>) <MERGE eR>; 
(е1) = (el); 

= 
} ; 

СНЕСК { 
(е1) = el; 
е1 = <СНЕСК <MERGE е1>>; 

} ; 

Wc shall not use the dcfinitions of the functions PдiRS пnd 
M~RGE2. The former makes up the initiпl 1ist of pairs from the 
input 1ist of items, which are assumed to Ье, syntactically, Refпl 
symbols (e.g., numbers). The latter merges two lists. Wc assume 
that PдiRS has been executed, so that the initial config11ration is 

1. <СНЕСК <MERGE е1» 

where el is а list of pairs. 

Driving this configuration outside-in, we havc the following row 
of configurations in thc branch where el in the argument of MERGE 
is not yet exhausted. We write С and М for СНЕСК and MERGE, and 
put the e1lipsis instead of MERGE2 ca1.1s, which make no impact on 
driving: 

2 . <С ( ... ) <М е l > > 
З . <с ( ... ) ( ... ) <М е 1 > > 
4 . <С <М ( ... ) ( ... ) <М е 1 > > > 
5 . <С ( ... ) <М <М е l » > 
6. <с ( ... ) <М ( ... ) <М el»> 
7. <С( ... ) <М( ... )( ... ) <М el>>> 
8. <С ( ... )( ... ) <М <М е 1 » > 
9 . <С <М ( ... ) ( ... ) <М <М е 1 > > > > 
10. <С ( ... ) <М <М <М е1>»> 

The neighborhoods involved are: 

(m) <MERGE е1> 

(m 1) <MERGE (е2) el> 
(mJ) <MERGE (еЗ)(е2) cl> 
(с <СНЕСК е1> 

(cl) <СНЕСК (е2) el> 
(с2) <СНЕСК (еЗ)(е2) el> 
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The proЬlem with this type of recursion is that the function СНЕСК 
is not а pa~sive context, but one of the functions responsiЬle for 
recursion; it cannot Ье taken outside of parentheses. If wc look 
at the states of the stack at the moments when el is tested, i.e. 
2, 5, 1g, etc., wc see the sequence: 

where no stage is а prefix of any subsequent stage. 

Nevertheless, our algorithт discovers the potential infiniteless 
of recursion, and declares <СНЕСК (e3)(e2)el> а basic configura­
tion. We leave it to the reader to vcrify that the coтputation 
history will develop as follows: 

1. (т)с 

2. те; (т)с 1 
з. mc; те 1 ; 
4. те; те 1 ; 
5. те; те 1 ; 
б. mc; те 1 ; 
7. те; те 1 ; 
8. те; те 1 ; 

дt this stage 

с2 
С2; 

С2; 

С2; 

С2; 
С2; 

the 

(т2 )с 
т2 с; ((т)т)с 1 
т 2 с; (mm; (m)т 1 )с 1 
т 2 с; (mm; mm 1 ; m2 )c 1 
т 2 с ; ттс 1 ; mn1 1 с 1 ; т 2 с 1 ; с 2 

declares it basic. 
stack с 2 repeats itself, and the supercompiler 

б . T~:RMINдTION OF ТНЕ дLGOR ITHM 

We w~nt to prove now that the algorithт we have outlined and 
illustratP.d above always leads to а finite graph, because the 
nriving of every branch of the graph will t~rminate, P.ither be­
cause the resulting node is passive, or because the current stack 
has one of the previous stacks as its prefix (looping back). То 
forтulate our algorithm in exact terms and to prove its termina­
tion, we тust first review the forтal objects which are used in 
the algorithm. 

We represent the nodes of the graph of states Ьу sta~ks, which 
consist of neighhorhoods and are used in two forms: with and 
without parentheses. The current stack, as it appears froт а step 
of the Refal machine, is represented in fully parenthcsized form, 
which can Ье described Ьу the following BNF: 

с-sт : := empty • < • с-sт · ) • f 

Here quoted objects stand for themselves, and unquoted objects are 
classes of objects. The bar 1 separates alternatives. C-ST is а 
current stack, and f а neighborhood (function call) . In our ex­
aтples above, the neighborhoods were represented Ьу letters. 

When stacks stand for the past states, however, they are represen­
ted Ьу strings of neighborhoods, which reflects the fact that 
these neighborhoods took part in the computation and must Ье 
considered together as representing one composite configuration of 
the Refal machine. Thus we introduce past sta~ks, which make up 
the class of objects SТдСК: 

SТдСК : := empty SТдСК f 
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The consecutive members of computation histories are separated Ьу 
semicolons, hence we need history segments, class Н: 

н : := empty Н SТдСК '.' • 

дs а result of rnaintaining the history records at every parenthe­
sis level of the current stack, the overall record, which we shall 
designate as the ongoing history, ON-HIS, is from the class: 

ON-HIS : := Н Н ' ( ' ON- Н I S ' ) ' f 

In а more reviewaЬle form, the ongoing history is: 

( *) 

where each Hi is а history segrnent, and fi а neighborhood. 

Now every branch of the graph of states which is being constructed 
Ьу driving has а formal representation as an ON-BIS. The next 
thing to do is to formulate the rules according to which the 
ongoing history is transforrned in driving, and define in exact 
terms the conditions under which а given branch is cut off, eithP.r 
because of the termination of driving, or because of looping back 
to а past stage. After that we shall Ье аЬlе to prove that under 
those condition no ON-HIS, i.e. no branch in the graph, can Ье 
infinite. 

The starting point of driving is а current state C-ST which repre 
sents the initial configuration of the Refal rnachine. There are 
three transofrmation rules for ON-HIS. То put them as replacement 
forrnulas, we denote objects Ьу the same symbols as the BNF classes 
to which they belong, adding s1зbscripts when nccessary. 

Transformation Rules for ON-HIS 

Tl. дctive replacement rule 

Hn fn --> Hn fn: C-ST 

Т2. Passive replacement rule: 

Hn-J (Hn fn) fn-1 --> 

тз. Termination rule: 

Hn fn --> Hn 

Here fn stands for the current active (top of stack) neighborhood, 
and Н is the immediately preceding history segment. The active 
neighSorhood in an ON-HIS is located as the one just before the 
first right parenthesis. The operation н~Е in Rule Т2 is the 
distribution of а neighborhood ovcr а history segment defined Ьу 
the formula: 

н~ f = [SТдСК 1 ; SТдСК 2 ; ... STдCKk]*f 

STдCK 1 f: STдCK 2 f: ... STдCKkf; 

When а step of the Refal machine is performed in the process of 
driving, one r11le must Ье applied to the ON-HIS represr:nt.ing t.he 
current branch. The three transformation rules correspond to the 
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three cascs in the дlgorithm of outside-in driving above. If the 
result of the step is а unitary active expression, Rule Tl is 
applied. дccor~ing to this rule, the current active neighborhood 
is anded to the history of computation on its parP.ntheяis level, 
the contcxt remains unchanged; а new Current Stack C-ST results 
form the step. If the result of the step is passive or non-unitary 
active, and there is а context (i.e. n > 9), Rule Т2 is applied. 
In this case one level of parentheses is eliminatP.d; the context 
ncighborhood f~-l is added to each stack in the history segment 
Hn; onc more History Stack, fnfn_ 1 , is added to the history, and 
followed Ьу а semicolon; then new C-ST appears. Tf thP.re is no 
context and the result of the step is passive, Rulc ТЗ is used. It 
terminates the branch. In case of а non-unitary result and n = g 
(no context) Rule Tl is used. 

The Cut-Off Rules 

Cl. Before applying the transformation rules, compare every SТдСК 
of Н with fn• then every SТдСК of Hn_ 1 with fnfn_ 1 , elc. till the 
sтдcRs of н 0 are compared with fnfn_ 1 ... f 0 . If in one of such 
comparisons the first element is а prefix of the sP.cond, lerminate 
the ongoing history. 

С2. Terminate the ongoing history if Rule ТЗ is used. 

We now limit our attention to those ongoing histories only that 
could have appeared in the process of driving, i.e. those which 
can Ье constructed starting with а C-ST and applying Rules Tl and 
Т2, hefore Rule Cl is used. 

1еmщ~1. If а history segment is not empty then its last stack 
consists either from one, or from two neighborhoods. 

Proof. The lcmma is true at the beginning of driving when all 
hislory segments are empty. When Rule Tl is used, а SТдСК which 
consists of one neighborhood fn is added at the end of Hn. When 
Rule Т2 is used, Hn disappears, and Hn_ 1 gets an addition which 
ends with fnfn_ 1 . 

We shall refer to stacks of length one or two as shoгt stacks. 

Lemma 2. The situation where one of the history stacks in а seg­
ment-is а prefix of а later stack in the same or а later segment 
is impossiЬle. 

~~Q9~. Suppose that such а situation exists. Let the e~rlier stack 
(to become а prefix) Ье аЬ ... z, where letters stand for neighbor­
hoods. P.ach history stack starts at а certain moment when its 
first neighborhood is the top element of the current stack. The 
ongoing history at this moment can Ье seen as: 

... ( ... ab ... z; ... (Hk ... (Hn fn)'fn_ 1 ... )fk ) ... 

Here we left out the history segments and context neighborhoods 
which are common to аЬ ... z and the current stack fnfn-J· .. fk, 
because they only add common endings to both strings. ~or tne 
earlier stack to Ье а prefiк of the later, fn must obviously Ье 
i~entical to а. But it is also necessary that fn-J Ьс idenlical to 
Ь. Indeed, f can Ье lengthened only if we open Ьу Rпle Т2 the 
internal par~ntheses marked Ьу the prime '. The use of Rulc Tl 
with any subsequent uses of both rules is irrelevant as long as 
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the marked parenthesis is not opened (it only creatcs history 
slacks subscquent to the stack of interesl). This reasoning is 
also valid for all other elements of the earlier stack up to z; 
thus we conclude that аЬ ... z must Ье а prefix of the string 
f fn-J· .. fk. This, howcver, is impossiЬle, because Rule Cl (our 
a~gor1thm of looping back) should have stopped the proce~s at this 
stage. 

,!:.em!'lg_~ The nпmber of different short stacks is finite. 

P~9of. The number of different neighborhoods of the first oruet is 
finite, Ьесапsе it is the number of paths in а finite tree. There­
fore, the number of different stacks of length one or two is also 
finite. 

Th~em. With the driving algorithm described above, no branch of 
the graph of states may Ье infinite. 

_f!Q9~. дs ~hown above, to every branch in the graph, as long as 
it is not cut off, an ongoing history corresponus. We are now 
going to show that an infinite ongoing history is impossiЬle. 

First we construct yet another model, namely а model of the growlh 
of the ongoing history (which itself is а model of the growth of а 
branch in driving). The general form of the ongoing history is 
given Ьу (*). дt every stage of the process it consists of а 

finite number of levels separated Ьу parentheses. The part outside 
of all parentheses is counted as level в. For i > в, the i-th 
level is delimited Ьу the i-th and the i+l-st nested pa;r of 
parentheses, and consists of а hislory segment н. and the neighbor­
hood fi . We want а model which for each level i ~f the ongoing 
history will indicate а number of guaranteed short stacks in it. 
We shall denote this number as Ci. Thus the number of short seg­
ments in Ht must Ье at least Ci . The model descriЫng the dyna­
mics of the numbers Ci is as follows. 

дt each moment, the highe~t level n is the level on which an 
action is taken. There are two types of action, which correspond 
to Rules Tl and Т2 above: дl, addition on the level n : 

(дl) becomes С +1 n 

and д2, cancellation on the level n and addition on the level n-1: 

(д2) Cn becomes 0, and 

с n-1 becomes Cn_ 1+l, where n > 0. 

Indeed, when we apply Rule Tl to the ongoing history, а stack of 
length 1 is added to Hn. When we apply Rule Т2, the n-th level 
disappears, every term in Н is lengthened Ьу l and added to 
Н _1 . We do not know how m~ny short (of length 2) slacks will Ье 
tПere after the operation, and we count it as zero. But one gua­
ranteed stack of length 2 is added to Hn_ 1 . After any of the two 
actions, а new с-sт is created accoruing to both rules, which in 
our model means that the top level n is incremented Ьу some posi­
tive number, and the values of Ct for the new levels are all set 
to zero. 

Suppose now that there is an infinite branch, i.e. an infinite 
ongoing history. Then the number of levels in it is either limited 
Ьу а finite number, or infinite. Suppose it is infinite. Some of 
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the history segments may Ье empty, othcrs non-empty. We want to 
prove that if the total number of levels is infinite, thc n11П1Ьеr 
of levels with non-empty history segments must also Ье infinite. 
The total number of empty segrnents in the ongoing history in­
crea~es when а new C-ST with at le~st one new parenthe~is is 
created. Consider separately the cases when the n11mber of paren­
thP.ses is one, i.e. C-St i.s (f)g, or more: ( ... ((f)g) ... )h. In 
tlte former case, the use of Rнle Tl transforrns one empty ~egment 
into а non-empty segment (namely, f;). If Rule Т2 is 11scd thcn thc 
only empty history disappears. In the case of more than one level 
in the с-sт, one of the empty segments on the level of f or g will 
Ье necessarily made non-empty, no matter which of the rules is 
uscd. We conclude that the number of empty segments cannot become 
infinite without making the number of non-empty segments infinite 
too. Therefore, if the total number of levels is infinite, the 
number of levels with non-empty history segments will Ье also 
infinite. 

Ву Lemma l each non-cmpty history segment н 1 ends with а short 
stack. Since the number of different short stacks is finite (Lemma 
3), wc must have а situation where two history stacks are i.denti­
cal. This is, however, impossiЬle Ьу Lemma 2. 

Therefore, the number of levels must Ье li.mited Ьу а fi.nite 
number, even though the number of'actions grows infinitely. Then 
there mнst Ье at least one level i such that an infinite number of 
actions takes place on that level. The actions, as we know, are of 
two types: дl and д2. If the number of actions д2 at the i-th 
level were finite, then Gi would Ье infinite, because the nuшber 
of additions would Ье inf1nite whilc the number of cancellations 
finite. But this would imply that there are two i.dentical short 
stacks in Hi, and this is impossiЫe. 'Гherefore, the number of 
aclions д2 mнst Ье infinite. However, each action д2 on level i 
creates an addition on level i-1, hence the nurnber of cancP.lla­
tions, and, therefore, actions д2 on level i-1 must also Ье infi.­
nite. Rcasoning in this way we соте to the concl11sion that the 
number of actions д2 on level ~ must also Ье infinite, but thi.s i.s 
impossiЬle, because only actions дl can Ье performed on that 
level. 

Thus the assumption of an infinite ongoing histoty leads to а 
contradiciton, which proves the theorem. 
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