Partial Evaluation and Mixed Computation 531
D.Bjgrner, A.P.Ershov and N.D.Jones (Editors)

Elsevier Science Publishers B.V. (North-Hollabd)

© IFIP 1988

THE ALGORITHM OF GENERALIZATION IN THE SUPERCOHPILER*

Valentin F. Turchin

Computer Science Department
The City College of New York
New York, N.Y 10831 USA

The central problem of supercompilation is to find a finite set of
configurations (generalized states) of the computing system which
is, for a given initial configuration, self-sufficient in the
sense that the process of computation can be defined by a finite
graph of states and transitions using only these configurations
as nodes. Generalization over configurations is necessary for
this. The paper describes an algorithm of generalization in the
process of outside-in driving (forced unfolding of function calls
in the lazy evaluation semantics) which always terminates and
produces a finite graph of states and transitions with a self-
sufficient set of basic configurations.

1. INTRODUCTION. WHY TO GENERALIZE?

It may seem strange that the problem of generalization is raised
in the context of partial evaluation. Indeed, partial evaluation
is mostly used for, and therefore perceived as, program speciali-
zation, and this is something opposite to generalization.

However, we discuss here a special technique of function transfor-
mation, which is referred to as supercompilation (see [1-3]). When
supercompilation is used for the sake of partial evaluation (which
is not always the case, because supercompilation can do more) it
comes to the specialized program in a different way than the
straighforward partial evaluation.

In partial evaluation we have an original, general, program, and a
specialized function call. Then we make a global analysis oFf known
and unknown arguments, and specialize the original definition step
by step, watching that a certain limit is not overstepped. Thus
the loops in the specialized program are the old loops of the
original program, but (possibly) specialized. Partial evaluation
technique is, in a sense, monotonous with respect to specializa-
tion.

In supercompilation we, again, have an original, general, program,
and a specialized function call. Here, however, we never specia-
lize the original program. We start from the ultimate specializa-
tion of the initial call, and then construct a program for it by
driving. If the program can be made self-contained without looping
back (a simple tree), there will be no generalization necessary.
Usually, however, we have to loop back, and these are new loops,
created ad hoc for current configurations. This may make it neces-
sary to generalize configurations, because the former configura-

) This work was supported by the National Science Foundation under
grant NCR-8412986.

532

tion will not always be general enough. Thus the process of super-
compilation is not monotonous: we first jump to the completely
specialized initial call, considered as the initial (degenerate)
graph of states and transitions, and then develop it into a self-
contained graph i.e. a program, using generalization when necessa-
ry.

While partial evaluation has the narrow goal of specializing
functions, supercompilation is a much wider framework for general
function transformations. We believe that it follows closer than
other techniques to the way we, human beings, think. Thinking is
creating mental models of the processes in the world around us.
How do we create those models? We watch the processes and try to
form some generalized states of the explored systems in terms of
which we can construct a self-sufficient model of the processes,
i.e. represent the processes as transitions between the basic
generalized states. But this is exactly what the supercompiler is
doing.

2. HOW TO GENERALIZE?

As an introduction to the problem of generalization, consider this
example. Suppose, two strings are given:

'ABA'
'ABXYABA'

and we are asked to write a generalization which is, in some
intuitive sense, the best. Then we should ask, before anything
else, what is meant by a generalization? The first step to define
a generalization is to notice that a generalization of a number of
objects is a set which includes all of these objects. This defi-
nition is not sufficient, however, because then the best generali-
zation in our example would be simply the set of exactly the two
strings mentioned, and a similar trivial solution would exist in
any situation. Actually, when we speak of generalizations, we have
in mind a language in which sets of objects are defined, and we
want not just a set of objects, but an expression of this language
defining a set of objects which includes all the objects to be
generalized -- and, possibly, some other objects. Then the problem
of a '"good" generalization is non-trivial.

Let the language to describe sets of strings be that of simple

patterns, as in Refal, where sl, s2 etc. stand for single symbols,
i.e., in our context, letters of the alphabet, and el, e2, etc.

stand for arbitrary expressions -- here for strings, including the
empty string. Thus, 'A'el is the set of strings starting with 'A’;
el s2 s2 is a string ending with two identical letters, etc. Then
for the two strings above, even after we exclude those generaliza-
tions for which we see obviously better (tighter) generalizations,
we still have quite a number of reasonable solutions, for example:

(1) 'AB'el
(2) 'AB'sl e2
(3) el 'ABA'
(4) ‘AB'el’A’

Which one to choose?

We faced this problem when working on the Refal supercompiler,
because intelligent generalization is the central problem of su-

533

percompilation. We do not discuss here the concept of a super-
compiler in detail; the reader can address {1], or {2], or an
earlier and detailed (but not so easily available) publication
[3]. The objects to be generalized in supercompilation are func-
tion calls in Refal. Experimentation with different ways of gene-
ralization led us to the following principle, which we believe to
be of universal significance for symbolic objects:

The Generalization Principle. Generalization of objects has a
meaning only in the context of some processes of computation in
which the objects take part. Then the language of generalization
should have means to describe computation histories, and generali-
zations should be sets of objects which have common computational
histories up to a point.

According to this principle, we should not generalize unless we
know in what computational processes our two strings are taking
part. If we know, for instance, that the strings are scanned form
left to right, then the appropriate series of generalizations,
each next being tighter than (a subset of) the preceding, will be:

sl e2
'Ale2
'A'sl e2
'AB'e2
'‘AB'sl e2

Thus if we want the tightest generalization, we take the last one.
Should the strings be processed differently, the generalizations
would be defined .differently. If no algorithmic processes are
defined over strings, there is no sense in generalization.

In the following sections of this paper we describe the algorithm
of generalization in the supercomiler based on this principle. In
the context of the language we use in the supercompiler, namely,
Refal, computation histories become tangible formal objects. It
should be noted that Refal fits the needs of generalization on two
counts. First, it has the concept of a pattern, which is, of
course, the simplest form of generalization, built into the lan-
guage. Second, the functioning of the Refal machine is a simple
sequence of substitutions, which facilitates the formalization of
computational histories.

3. NEIGHBORHOODS

The objects we deal with in supercompilation are Refal graphs,
which are, essentially, graphs of states and transitions of the
Refal machine. The nodes of a Refal graph are Refal expressions,
the edges (directed) are transformations of two kinds: contrac-
tions and assignments. Both are pattern-matching operations over
variables, with the variables in the left-hand side having some
values, and the variables in the right-hand side being defined by
the operation. A contraction has a single variable in the left
side, and a pattern in the right side, e.qg.

el -+ s2 el

is a conditional operation which checks that the value of el
starts with a symbol on the left, assigns that symbol to s2, and
redefines el as the remaining part of the original value. An
assignment has a single variable on the right and defines its new

534

value through constants and the variables of the left side, e.qg.
'‘A'eX s2(eY) ¢« eX

A Refal program can be represented as a Refal graph defining one
step of the Refal machine, e.g. the program:

FAB {el = <FABl ()el>;)

FABLl
(el)'A'e2 = <FABl (el'B’')e2>;
(el)s3 e2 = <FABl (el s3)e2>;
(el) = el;
}

is, essentially, the graph:

:(e@ » <FAB el>; <FABl ()el> « ef@

+ ef » <FABl el> :(el - (el)'A'e2; <FABl (el'B')e2> « el
+ el » (el)s3 e2; <FABl (el s3)e2> « e@
+ el » (el); el « ed
)

)

Here we used the form :(B +...+B,) to represent n branches B

etc., which start from the same node. The nodes themselves are
left out in this graph; they can be restored when reading the
graph. Refal graphs are read as follows. The variable e@ stands
always for the content of the view-field (the current expression
being transformed) of the Refal machine. Our graph consists of two
subgraphs. The first begins with the contraction e@® - <FAB el>,
which corresponds to the case where the expression in the view-
field of the Refal machine is a call of the function FAB with a
completely unspecified argument represented by the free variable
el. The state of the view-field at this moment is, obviously,

<FAB el>; we skip it. The next operation is the assignment to the
view-field ef of a new value, which is a call of FABl; we can skip
the node again, without losing information. When we construct the
graph of states for an arbitrary expression in the view-field ed,
we need not write out nodes explicitely, because the current node
is always identical to the current value of e0.

The second subgraph is a definition of the function FABl. Here we
separated the general configuration of the call of a given func-
tion, <FAB1l el>, from the detalization provided by sentences. This
gives us our first insight into the concept of a neighborhood. The
first thing the Refal machine does to perform a step is to identi-
fy a function symbol, which should follow the left evaluation
bracket <. Thus <FAB 'ABC'> and <FAB 'XY'> appear the same for the
Refal machine at this stage; they belong to the same neighborhood
<FAB el>. Any call of FAB]l belongs to a different neighborhood,
namely <FABl el>. Inside this neighborhood we see a further diffe-
rentiation: <FABl ('X')'ABC'> and <FABl ('PQ')'AC'> are indistin-
guishable to the Refal machine as long as it executes one step on
them: in both cases the first sentence is used. The expression
<FABl1 ('XY')'BCD'>, however, will be distinguished in the first
step from those two. The former neighborhood is <FABl (el)'A'e2>,
the latter <FABl (el)s3 e2>, with the restriction that s3 is not
equal to 'A’'.

Complex contractions which we £find in the left sides of Refal
sentences can be decomposed into simpler contractions. In the
example above, the left side of the first sentence of FABl was

535

decomposed as follows:

ed » <FABl (el)'A'e2> = e@ - <FABl el>; el - (el)'A'e2
We could go further and decompose it into

ed - <FABl el>; el - (el)e2; e2 - 'A'e2
Contractions are elements of computation histories. The more we
decompose contraction, the more detailed the description of histo-
ries will be. This process comes to its natural close if we decom-

pose all left sides of Refal sentences into elementary contrac-
tions. There are seven of these, namely:

1. eX » sY' eX

2. eX » (eY')eX
3. eX -» eX sY'

4. eX -+ eX(eY')
5. eX -»

6. sX » S

7. sX » sY

Here S stands for a definite (but arbitrary) symbol, and the
primed variables sY' and eY' symbolize that the index Y' of the
variable is new, i.e. was not used before.

The decomposition of the left side above into elementary contrac-
tions is:

ed » <FABl (e2)'A'el> =
ed - <FABl el>; el » (e2)el; el » s3 el; s3 - 'A'

(We renamed some variables in the left side; this, of course,
changes nothing).

Definitions. An expression without free variables is a ground
expression. We say that a contraction is executed positively over
a ground expression, if the contraction is found applicable and
applied; we say that it is executed negatively if it is estab-
lished that the contraction is not applicable. The sequence of
elementary contractions executed positively or negatively over a
ground expression in n steps of the Refal machine is its computa-
tion history of n-th order. The set of all ground expressions with

a common computation history of n-th order is a neighborhoood of
n-th order.

Thus to every computation history a neighborhood corresponds. We
shall denote neighborhoods by the same symbols as histories. If a
history H, is a prefix of H,, then the neighborhood H, is a subset
of Hl' Thls relation between neighborhoods is a partial order.

A Refal program defines a system of partially ordered neigh-
borhoods, in other words, a topology, in the space of ground ex-
pressions. The longer is the common part of computation histories

536

of two points in this space, the tighter is their common genera-
lization to a neighbothood, in other words, the closer are these
points. Note that speaking of ground expressions we have in mind
only active ground expressions, i.e. those including at least one
pair of activation brackets. All passive expressions fall in one
big class with a zero-length computation history, and are of no
concern to us. This is, of course, a consequence of the genera-
lization principle formulated above.

A compact representation of a neighborhood as a set can be ob-
tained by folding the contractions of the corresponding history
into one pattern. With the program above, the system of first-
order neighborhoods is as follows:

(a) <FAB el>

(b) <FAB1l el>

(c) <FABl (e2)el>

(d) <FABl1 (e2)s3 el>

(e) <FABl (e2)'A'el>

(£) <FABl1 (e2)s3 el> (#s3 -» 'A'")
(9) <FABl (e2)>

The restriction (negative contraction) in (f) indicates that only
those ground expressions are in the pattern in which s3 is dis-

tinct from 'A'. These neighborhoods are partially ordered as
follows:

where > denotes being a superset.

To compute the neighborhoods of the second order, we use driving
(see, e.g., [1]). Driving every active end-node in the graph for
FABl, we come to the graph that represents two steps of the opera-
tion of the Refal machine if it starts with any call of FABl. It
contains all possible computation histories of length two. Six new
neighborhoods will be added to the system. Three of them are
refinements of (e):

(h) <FABl (e2)'AA’'el>
(i) <FABl (e2)'A's3 el> (# s3 - 'A'")
(3 <FABl (e2)'A'>

and the other three, analogously, develop (f).

Driving can be repeated as long as there are active end-nodes in
the graph. We refer to this process as exhoustive driving. It can,
and typically will, go on infinitely. Exhaustive driving defines
the set of ultimate neighborhoods, which correspond to terminated

computation histories. In the case of FABl the ultimate neighbor-
hoods are:

(1) <FABl (e2) >

(2) <FABl (e2)'A'>

(3) <FABl (e2)s3> (§ s3 - 'A")

(4) <FABl (e2)'AA'>

(5) <FABl (e2)'A's3> (§ s3 » 'A')

(6) <FABl (e2)s3'A'> (§ s3 » 'Aa")

(7) <FABl (e2)s3 s4> (% s3 > 'A') (§ s4 -~ 'A")

etc.

537

The expressions which belong to the same ultimate neighborhood
pass through the Refal machine in the exactly identical ways; the
machine has never a chance to discover the difference between
them.

4. WHEN TO GENERALIZE?

The idea of a supercompiler is to superwise the construction of
the full graph of states for the initial configuration, and at
certain moments loop back, i.e. reduce an end-configuration --
directly, or with a generalization -- to one of the previous
configurations, and in this way construct a finite graph on the
basis of a potentially infinite process. A direct reduction is
possible when the later configuration is a subset of the earlier
one. This is an easy case, when it is pretty obvious that the
reduction can be made and has sense. The difficult case is when
the later configuration is not a subset of the previous one, but
is “close” to it in some sense. If we simply ignore this close-
ness, and go on wWith driving, we may never loop back, and the
process will never stop.

Take a simple example with the functions we defined above. We want
to supercompile the configuration

(1) <FAB el>

Nothing especially interesting is expected here. The supercompiler
must simply return the original definition. Our purpose is to see
that the supercompiler can indeed find the correct basic configu-
rations for looping back whenever necessary to terminate the work.

The graph of states we construct in supercompilation must include
nodes, i.e. configurations of the Refal machine, explicitely,
because we want to compare and generalize configurations. Let the
nodes in graphs be represented by references to configuration
definitions. The first step of driving replaces (1) by the call of
FABl, so the graph is the unconditional transition:

(1) (2)
with the definition:
(2) <(FABl ()el>
Next step of driving results in the graph:

(1) (2) :(el » 'A'el; (3)
+ el » s2 el; (4)
+ el - []; (5)

(3) <FABl ('B')el>
(4) <FABl (s2)el>
(5 [

(For readability, we use {] to represent the empty expression).

The passive configuration (5) terminates the walk in the graph.
None of the new active configurations (3) and (4) is a subset of
any of the previous configurations (1) and (2). If this were our
criterion for looping back, we would go on with driving. After the

538

nesxt steps we would have such configurations as

(6) <FABl ('BB')el>
(7) <FABl ('B's2)el>

etc., none of which, again, would loop back onto any of the pre-
vious configurations. In this way we would never come to a finite
graph.

To loop back properly, we must recognize that (3) and (2) are
close enough for looping back. Indeed, they belong to the same
first-order neighborhood

(N) <FABl (e2)el>

If we set as a principle that belonging to the same first-order
neighborhood is a sufficient reason for looping back, we genera-
lize (3) and (2) to (N), express (2) through (N):

(2) = [1 « e2; (N)
and recompute the graph for the generalized configuration (N):

(1) [) « e2; (N) :(el » 'A'el; (3')
+ el » 83 el; (4')
+ el - [1; (5)

(3') <FAB1 (e2'B')el>
(4') <FAB1 (e2 s3)el>

Now (3') and (4') are subsets of (N); reducing them to (N) we come
to the graph

(1) [] ¢« e2; (N) :(el » 'A'el; 'B'e2 « e2; (3')
+ el » s3 el; e2 s3 « e2; (4")
+ el » [1; (5)

Our algorithm of generalization is based on keeping in memory the

first-order neighborhoods of past configurations. We formulate it

first for the case where all function calls have passive arguments
only, i.e. there are no nested calls. Nested calls will be consi-

dered in the next section.

As the Refal machine applies to the function argument one elemen-
tary contraction after another, the neighborhood that describes
the function call becomes more narrow. Then the replacement is
executed, another descending sequence starts, etc. We have the
following row of neighborhoods in each branch of the graph:

1 1 1 2 2 2 n n n
fl £ ... R El £, ... R RN fl £y ... fn
They are partially ordered as follows:
1 1
fj > f2 >

2 2
£5 > £5 >

n n
£7 > £

33

539

In a graphic form:

Q00| Q00|+ 0o

There are several variants of the algorithm, which place the
resulting program in different positions on the compilation-inter-
pretation axis (the more detailed is the set of basic configura-
tions, the more compilative the program; the more general the
basic configurations are, the more interpretive the program, see
{1]). The most interpretive variant is _as follows. Each time
before we make the next replacement, R". we compare each _neighbor-
hood of the current step, starting with the f%git one, En, with
all the previous neighborhoods, moving from R backwarés, to the
beginning of the walk. If we find the same neighborhood, we loop
back to it. In this way we find the most general from the recur-
ring neighborhoods. If we loop back, R" is ignored and the step
due is not executed; reduction takes place instead. Since the
number of different first-order neighborhoods is finite, the algo-
rithmic process is always finite.

This algorithm can be obviously generalized for neighborhoods of
an arbitrary order. The higher the order, the more compilative
will the resulting program be. The same effect can be achieved by
function iteration, using only the first-order neighborhood algon-
rithm. If we define functions that correspond to two, three, etc.
steps of the Refal machine, and use the first-order algorithm with
them, then this will be equivalent to higher-order neighborhoods
for the original system of functions. We can control the process
of generalization by iterating some functions, while leaving alone
others. Therefore, the algorithm based on first-order neighbor-
hoods has a certain property of completeness. If we accept the
principle that the closeness of expressions should be measured by
the length of the common part of their computation histories (the
program-induced topology), then all strategies of generalization
can be presented as refinements of an algorithm based on first-
order neighborhoods.

S. GENERALIZATION OF NESTED CALLS

1€ nested function calls are executed according to the inside-out
principle, known also as the applicative evaluation order, then
the computation of every active expression can be broken down into
a sequence of computations and substitutions, this sequence being
independent of function definitions. For example, the assignment

<F el <C e2> <H e3>> « e@
will be decomposed into the sequence of assignments:
<G e2> « aX; <H e3> « eY; <F el eX e¥Y> « ef

We shall refer to such decompositions as stacks. Since the order
of execution is strictly left-to-right, computation histories --
and, therefore, neighborhoods -- for stacks break into pieces
corresponding to the first, second, etc. segments of the stack. If
a stack S, is a prefix of another stack, S2Y then the neigh-
borhoods of SI are supersets (generalizations) of the neighbor-

540

hoods of S,. There is no interaction between neighborhoods cor-
responding to different segments of the stack.

In the supercompiler, however, we use the outside-in (normal,
lazy) order of evaluation, because it provides one of the primary
means of optimization. In this case the situation is much more
complicated. A prefix of a decomposition is still a generalization
of a longer decomposition, of course. But we cannot decompose a
nested call into a stack without consulting function definitions.
The decomposition is still made, but it is made in the process of
moving from outside in, and it may depend on the values of vari-
ables. Computation histories may consist of alternating pieces
from different function calls. Indeed, suppose that the computa-
tion process starts with the all-embracing function call, but
after executing a number of contractions the Refal machine finds
that a not yet computed call inside is a hindrance for further
application of sentences. Then it will leave the unfinished func-
tion call as a contex!, and switch to the computation of that
internal call, which, in turn, may send the machine further in-
side. After computing the internal call -- completely or partially
-- the process returns to the point in the outer function call
where it was interrupted.

Let us describe this in somewhat more detail. We call an expres-
sion unitary active, or just unitary, if it is of the form <>,
where £ is any expression (possibly active, so that there are
nested function calls). If the result of replacement in the execu-
tion of a Refal step is unitary, we make it our next active
subexpression to compute. If it is not unitary, it is either
passive (completed computation), or non-unitary active (partially
computed, with some passive parts outside of activation brackets,
e.g. 'A'<FAB el>). In both cases we substitute the result into the
context, and take the context as the next active subexpression to
compute. If there is no context (bottom of the stack call) and the
result of the step is passive, this is the end of driving. If the
result is partly passive, the passive part is kept in the view-
field of the Refal machine, and the unitary active part is driven
further.

We shall consider a few examples which typify different structures
of recursion. We shall demonstrate how we come to our algorithm of
generalization, and how it works. Then we shall prove that this
algorithm has a guaranteed termination.

The first example is the classical recursive definition of the
factorial:

FACT (9
1 ;
sN = <MULT sN <FACT <SUB sN 1>>>;
}

1;
1

We assume that the arithmetic functions SUB and MULT are built-in
(not defined in Refal) functions which require their arguments to
be ready-for-use numbers. Then the inside-out and outside-in or-
ders of evaluation will lead to the same sequnese of operations.
We see here three neighborhoods involved:

(f£) <FACT sl>
(m) <MULT sl s2>
(s) <SUB sl s2>

541

(To simplify things, we ignore such neighborhoods as <FACT el>,
(FACT sl e2>, etc., which cause unique transitions). A slack will
be denoted as a string of neighborhoods, e.g., sfm will stand for
any of the nested calls like that in the definition of FACT.

When we simply drive <FACT sl> exhaustively we have, on one of the
branches, the sequence of neighborhoods:

f; sfm; fm; sfrm; fmm; sfmmm; fmmm; ... etc.

which goes on infinitely. Let us now apply the simple algorithm

of comparing neighborhoods which we developed for the case of one-
level function calls. We extend it by recalling that a stack is a
specialization (subset of) its every prefix. At the third stage of
the process above we recognize that fm is a subset of f£. Thus we
declare f basic, and come to the original algorithm.

This experience suggests to accept as the general criterion of
generalization a situation where the current stack is of the form
XY, where X is a previous stack. This criterion, of course, in-
cludes the one-level situation as a special case where Y is empty
and X is one segment.

However, if we only slightly change our example, this criterion
will not work. Let the factorial function be computed in the
context of some other function, say,

(*) <ADD 1 <FACT sN>>

If we denote by a the neighborhood corresponding to ADD, the
sequence of stacks in driving will be:

fa; sfma; fma; sfmma; fmma; sfmmma; fmmma; ... etc.

One can see that none of the previous stacks is a prefix of a
subsequent one. Therefore, the process will never terminate.

The reason for this failure is that the algorithm, as it is at
this point, does not draw a line hetween the part of stack that is
recurrent, and the part that does not really participate in ac-
tion, but is a passive context. We, therefore, modify the algo-
rithm as follows. The stack will not be just a linear segment, but
a structure of parenthesized segments, where the context part is
taken outside of parentheses. Accordingly, the computation history
will be written in such a way that the context is left outside of
the parentheses as a common part to all the stages of the process
as long as it has no impact on developments.

The nested call (*¥) will now be characterized by the formula (f)a.
It results from outside-in driving, where we start driving from
the call of ADD, an then see that before anything is done on this
call, we must drive FACT. So, we leave ADD as a context, and FACT
becomes the active subexpression.

After the first step of the Refal machine, the history of computa-
tion takes the form:

(f; ((s)f)m)a

Then SUB is computed, and the next history record will be:

542

(f; (sf; £)m da

We have followed here the Orwellian principle of permanently
rewriting the history. We have a better reason, though, than in
Orwell's novel. When s is computed, the result is substituted into
£; thus the real previous state to be used in comparisons should
now be seen as sf, not (s)f. Fach time that a context enters the
play, we open the parentheses that separate it from the active
part at the current stage and all previous stages of history since
this context appeared.

As before, we compare the last stack with all the previous stacks
at every stage of development. When we exit context parentheses
while tracing the history backwards, we add the context to the
current stack before comparing it with next previous stacks. So,
after the first step of the Refal machine, we compare sfm with f.
After the second step we compare f with sf, and then fm with f.
The last comparison discovers that f is a repeated prefix, and the
algorithm successfully terminates.

Consider one more example. Let F be the function that scans the
argument from left to right and replaces each pair of identical
symbols by one symbol of the same kind:

F {
s2 s2 el = s2 <F el>;
s2 el = s2 <F el>;
}

LLet the initial configuration be

1. <F <F <F el>>>

We want to supercompile it using, as always, the outside-in order
of evaluation, so that the final program performs in one pass the
job which is defined by the initial configuration as a three-pass
job. In this problem, it is easy to discover that the same func-
tion F is called again and again by itself, and declare it basic.
But if we do so, we, obviously, return to the original three-pass
program. The problem here is of just the opposite kind: how to
delay looping back in such a manner that the result is a one-pass
program. The algorithm must steer carefully between the Scylla of
looping back too early, and the Charybdis of never looping back at
all. We are going to show that our algorithm is capable of this
navigational feat.

Let us concentrate on the first branch in every step of driving.
Should we drive manually, we would produce this sequence of nodes:

CF <F s2<F el>>>

<F <F s2 s2<F el>>>
CF s2<F <F el>>>

C(F s2<F s2<F el>>>

C(F s2<F s2 s2<F el>>>
CF s2 s2<F <F<F el>>>
s2 <F <F <F el>>»>

DNV W

At this stage, we would notice that the initial configuration re-
appears at the top level. We would separate it and terminate the
branch. We want now to see how the supercompiler will do this.

543

There are three neighborhoods at work in this example, which will
be denoted as a, b, and c¢:

(a) <F eX>
(b) <F s2 eX>
(c) <F s52 s2 el>

Let us trace how the history changes while the supercompiler
works. The initial history is

1. ((a)a)a

There is no semicolon here, which signifies the fact that no step
has yet been made. We simply decomposed the initial configuration
into a stack. We shall now go through the stages 1 ~ 8 of driving
above, using the stack-of-neighborhoods notation.

In the first step of the Refal machine, we use the contraction:
el » s2 s2 el

The replacement results in s2<F el>. We now have the node
<F <F 82 <F el>>>

Driving it outside-in, in order to decompose it into a stack, we
find both the first, and the second call of F impossible to com-
plete, so the active subexpression will be the third F again. The
decomposition is:

<F el> « eX; <F s2 eX> « e¥Y; <F e¥Y> + ef
In the short notatation,
((a)b)a

Since the second F from outside (the context of the active third
F) takes part in this transformation, we must open the correspon-
ding parentheses: it is not just a which becomes b, but aa which
becomes (a)b. Thus on the second stage the computation history is:

2. (aa; (a)b)a

When we compare the current situation with every stage of
history, we do not exit from the subgraph common to both. So, what
we actually compare at this stage is ab with aa. The result is
negative, and we go on. After the second step the node is

{F <F s2 s2<F el>>>

Driving from outside in, we f£ind the second F to be the active
subexpression. The third F is not seen by the Refal machine; the
neighborhood formula is (c)a. Since the context, which is now b,
has taken part in the process again, we open the parentheses, and
the history becomes:

3. (aa; ab; ¢)a

Procedeing in this manner, we produce the further members of the
"history of histories":

544

aaa; aba; ca; ((a)a)b

aaa; aba; ca; (aa; (a)b)b

aaa; aba; ca; (aa; ab; ¢)b

aaa; aba; ca; aab; abb; cb; ¢

aaa; aba; ca; aab; abb; cb; ¢; ((a)a)a

DNV

Nowhere in the history before Lthe last stage did we see a repeat-
ing context, so the process went on. At the last stage ((a)a)a
compares positively with aaa, and this combination is declared
basic. One can see that on all branches of the graph a similar
situations take place, so that in the end we have a finite graph.

Our last example is the merge-sort algorithm, which illustrates
one more pattern of recursion.

SORT (el = <CHECK <MERGE <PAIRS el>>>; };

MERGE (
(el)(e2)eR = (<KMERGE2 (el)(e2)>) <MERGE eR>;
(el) = (el);
}s
CHECK {
(el) = el;
el = <CHECK <MERGE el>>;
}s

We shall not use the definitions of the functions PAIRS and
MERGE2. The former makes up the initial list of pairs from the
input list of items, which are assumed to be, syntactically, Refal
symbols (e.g., numbers). The latter merges two lists. Wec assume
that PAIRS has been executed, so that the initial configuration is

1. <CHECK <MERGE el>>
where el is a list of pairs.

Driving this configuration outside-in, we have the following row
of configurations in the branch where el in the argument of MERGE
is not yet exhausted. We write C and M for CHECK and MERGE, and
put the ellipsis instead of MERGE2 calls, which make no impact on
driving:

2. <C (...)<M el>»
3. <C (...)(...) <M el>>
4, <C <M (...)(...) <M el>>>
5. <C (...)XM <M el>>
6. <C (...) <M (...) <M el>>»
7. <C (...)y <M (...)(...) <M el>>>
8. <C (...)(C...) <M <M eld>>>
9. <C <M (...)(C...) <M <M el>>>>
10. <C (...) <M <M <M el>>>>
The neighborhoods involved are:
(m) <{MERGE el>
(ml) <MERGE (e2) el>
(m,) <{MERGE (e3)(e2) el>
(c% {CHECK el>
(cl) {CHECK (e2) el>

(cz) <CHECK (e3)(e2) el>

545

The problem with this type of recursion is that the function CHECK
is not a passive context, but one of the funclions responsible for
recursion; it cannot be taken outside of parentheses. If we look
at the states of the stack at the moments when el is tested, i.e.
2, 5, 18, etc., we see the sequence:

mC,; mmMC,; mmmc,; ... etc.
where no stage is a prefix of any subsequent stage.

Nevertheless, our algorithm discovers the potential infiniteless
of recursion, and declares <CHECK (e3)(e2)el> a basic configura-
tion. We leave it to the reader to verify that the computation
history will develop as follows:

(m)c

mc; (m)cl

mc; mc,; c,

mC; MC,;; C,; (m)c

MC; MC;; Ch; MyC; ((m)m)c

mC; MC,; Cy; MyC; (mm; (mfml)c

MC; MC;; Cp; MyC; (mm; mm; ; mzfc

mc; mcl; Cz; mzc; mmcl; mmIcI; mzcl; c2

DA WA

At this stage the stack Cqy repeats itself, and the supercompiler
declares it basic.

6. THERMINATION OF THE ALGORITHM

We want to prove now that the algorithm we have outlined and
illustrated above always leads to a finite graph, because the
driving of every branch of the graph will terminate, either be-
cause the resulting node is passive, or because the current stack
has one of the previous stacks as its prefix (looping back). To
formulate our algorithm in exact terms and to prove its termina-
tion, we must first review the formal objects which are used in
the algorithm.

We represent the nodes of the graph of states by stacks, which
consist of neighhorhoods and are used in two forms: wilh and
without parentheses. The current stack, as it appears from a step
of the Refal machine, is represented in fully parenthesized form,
which can be described by the following BNF:

C-ST ::= empty | '(*' C-ST ')*' £

Here quoted objects stand for themselves, and unquoted objects are
classes of objects. The bar | separates alternatives. C-ST is a
current stack, and f a neighborhood (function call). In our ex-
amples above, the neighborhoods were represented by letters.

When stacks stand for the past states, however, they are represen-
ted by strings of neighborhoods, which reflects the facl that
these neighborhoods took part in the computation and must be
considered together as representing one composite configuration of
the Refal machine. Thus we introduce past! stacks, which make up
the class of objects STACK:

STACK ::= empty | STACK ¢

546

The consecutive members of computation histories are separated by
semicolons, hence we need history segments, class H:

H ::= empty | H STACK ';'

As a result of maintaining the history records at every parenthe-
sis level of the current stack, the overall record, which we shall
designate as the ongoing history, ON-HIS, is from the class:

ON-HIS ::= H | H '(' ON-HIS '")'
In a more reviewable form, the ongoing history is:
") Ho("'(Hn-I(Hn fn)fn_l)...)fo

where each H; is a history segment, and f£; a neighborhood.

Now every branch of the graph of states which is being constructed
by driving has a formal representation as an ON-HIS. The next
thing to do is to formulate the rules according to which the
ongoing history is transformed in driving, and define in exact
terms the conditions under which a given branch is cut off, either
because of the termination of driving, or because of looping back
to a past stage. After that we shall be able to prove that under
those condition no ON-HIS, i.e. no branch in the graph, can be
infinite.

The starting point of driving is a current state C-ST which repre
sents the initial configuration of the Refal machine. There are
three transofrmation rules for ON-HIS. To put them as replacement
formulas, we denote objects by the same symbols as the BNF classes
to which they belong, adding subscripts when necessary.

Transformation Rules for ON-HIS

Tl. Active replacement rule

Hn fn -=2 Hn fn; C-ST
T2. Passive replacement rule:
By (B £ Eq0p ==> B p B %6,) Epf, s C-ST

T3. Termination rule:
H f --> H

Here f_ stands for the current active (top of stack) neighborhood,
and H is the immediately preceding history segment. The active
neighgorhood in an ON-HIS is located as the one just before the
first right parenthesis. The operation H*f in Rule T2 is the
distribution of a neighborhood over a history segment defined by
the formula:

H*E = [STACKI; STACK,; ... STACKk]*f =
STACKIE; STACK,f; ... STACK.f;
When a step of the Refal machine is performed in the process of

driving, one tule must be applied to the ON-HIS represent.ing the
current branch. The three transformation rules correspond to the

547

three cases in the Algorithm of outside-in driving above. If the
result of the step is a unitary active expression, Rule Tl is
applied. According to this rule, the current active neighborhood
is added to the history of computation on its parenthesis level,
the context remains unchanged; a new Current Stack C-ST results
form the step. If the result of the step is passive or non-unitary
active, and there is a context (i.e. n > 8), Rule T2 is applied.
In this case one level of parentheses is eliminated; the context
neighborhood £ is added to each stack in the history segment
H_; one more H1s€ory Stack, f.f, 1, is added to the history, and
followed by a semicolon; then new C~-ST appears. Tf there is no
context and the result of the step is passive, Rule T3 is used. It
terminates the branch. In case of a non-unitary result and n =0
(no context) Rule Tl is used.

The Cut-0ff Rules

Cl. Before applying the transformation rules, compare every STACK
of H with f then every STACK of H -1 with £ f -7+ etc. till the
STACRS of Ho are compared with fnfn 1...f0. If 1n one of such
comparisons the first element is a prefix of the second, terminate
the ongoing history.

C2. Terminate the ongoing history if Rule T3 is used.

We now limit our attention to those ongoing histories only that
could have appeared in the process of driving, i.e. those which
can be constructed starting with a C-ST and applying Rules Tl and
T2, before Rule Cl is used.

Lemma 1. If a history segment is not empty then its last stack
consists either from one, or from two neighborhoods.

Proof. The lemma is true at the beginning of driving when all
history segments are empty. When Rule Tl is used, a STACK which
consists of one neighborhood fn is added at the end of H,. When
Rule T2 is used, H, disappears, and H,_ ; gets an add1t1on which
ends with fnfn—l'

We shall refer to stacks of length one or two as short stacks.

Lemma 2. The situation where one of the history stacks in a seg-
ment is a prefix of a later stack in the same or a later segment
is impossible.

Proof. Suppose that such a situation exists. Let the earlier stack
(to become a prefix) be ab...z, where letters stand for neighbor-
hoods. Fach history stack starts at a certain moment when its
first neighborhood is the top element of the current stack. The
ongoing history at this moment can be seen as:

(... ab...z;... (Hk oo (Hpy £ E gy) E D

Here we left out the history segments and context neighborhoods
which are common to ab...z and the current stack £ nfn

because they only add common endings to both sfrungs éor tﬁe
earlier stack to be a prefix of the later, f_ must obviously be
identical to a. But it is also necessary that f__, be idenlical to
b. Indeed, fn can be lengthened only if we open by Rule T2 the
internal parentheses marked by the prime '. The use of Rule Tl
with any subsequent uses of both rules is irrelevant as long as

n

548

the marked parenthesis is not opened (it only creates history
stacks subsequent to the stack of interest). This reasoning is
also valid for all other elements of the earlier stack up to z;
thus we conclude that ab...z must be a prefix of the string

...f . This, however is impossible, because Rule Cl (our
aTgorlthm of loop1ng back) should have stopped the process at this
stage.

Lemma_ 3 The number of different short stacks is finite.

Proof. The number of different neighborhoods of the first order is
finite, because it is the number of paths in a finite tree. There-
fore, the number of different stacks of length one or two is also

finite.

Theorem. With the driving algorithm described above, no branch of
the graph of states may be infinite.

Proof.. As shown above, to every branch in the graph, as long as
it is not cut off, an ongoing history corresponds. We are now
going to show that an infinite ongoing history is impossible.

First we construct yet another model, namely a model of the growth
of the ongoing history (which itself is a model of the growth of a
branch in driving). The general form of the ongoing history is
given by (*). At every stage of the process it consists of a
finite number of levels separated by parentheses. The part outside
of all parentheses is counted as level 8. For i > @, the i-th
level is delimited by the i-th and the i+l-st nested pair of
parentheses, and consists of a hislory segment Hi and the neighbor-
hood f.. We want a model which for each level i of the ongoing
history will indicate a number of guaranteed short stacks in it.
We shall denote this number as Gi' Thus the number of short seg-
ments in Hi must be at least G; . The model describing the dyna-
mics of the numbers Gi is as follows.

At each moment, the highest level n is the level on which an
action is taken. There are two types of action, which correspond
to Rules T1 and T2 above: Al, addition on the level n

(Al) Gn becomes Gn+l

and A2, cancellation on the level n and addition on the level n-1:
(A2) Cn becomes @, and
Gn—l becomes G, _,+1, where n > 0.

Indeed, when we apply Rule Tl to the ongoing history, a stack of
length 1 is added to H . When we apply Rule T2, the n-th level
d1sappears every tPrm in Hn is lengthened by 1 and added to

. We do not know how many short (of length 2) stacks will be
tpere after the operation, and we count it as zero. But one gua-
ranteed stack of length 2 is added to H,.;- After any of the two
actions, a new C-ST is created according to both rules, which in
our model means that the top level n is incremented by some posi-
t.ive number, and the values of Gi for the new levels are all set
to zero.

Suppose now that there is an infinite branch, i.e. an infinite
ongoing history. Then the number of levels in it is either limited
by a finite number, or infinite. Suppose it is infinite. Some of

549

the history segments may be empty, others non-empty. We want to
prove that if the total number of levels is infinite, the number
of levels with non-empty history segments must also be infinite.
The total number of empty segments in the ongoing history in-
creases when a new C-ST with at least one new parenthesis is
created. Consider separately the cases when the number of paren-
theses is one, i.e. C-St is (f)g , or more: (...((f)g)...)h. 1In
the former case, the use of Rule Tl transforms one empty segment
into a non-empty segment (namely, £;). If Rule T2 is nsed then the
only empty history disappears. In the case of more than one level
in the C-ST, one of the empty segments on the level of £ or g will
be necessarily made non-empty, no matter which of the rules is
used. We conclude that the number of empty segments cannot become
infinite without making the number of non-empty segments infinite
too. Therefore, if the total number of levels is infinite, the
number of levels with non-empty history segments will be also
infinite.

By Lemma 1 each non-empty history segment Ht ends with a short
stack. Since the number of different short stacks is finite (Lemma
3), we must have a situation where two history stacks are identi-
cal. This is, however, impossible by Lemma 2.

Therefore, the number of levels must be limited by a finite
number, even though the number of actions grows infinitely. Then
there must be at least one level i such that an infinite number of
actions takes place on that level. The actions, as we know, are of
two types: Al and A2. If the number of actions A2 at the i-th
level were finite, then G, would be infinite, because the number
of additions would be infinite while the number of cancellations
finite. But this would imply that there are two identical short
stacks in H,, and this is impossible. Therefore, the number of
actions A2 must be infinite. However, each action A2 on level i
creates an addition on level i-1, hence the number of cancella-
tions, and, therefore, actions A2 on level i-1 must also be infi-
nite. Reasoning in this way we come to the conclusion that the
number of actions A2 on level @ must also be infinite, but this is
impossible, because only actions Al can be performed on that
level.

Thus the assumption of an infinite ongoing histoty leads to a
contradiciton, which proves the theorem.

REFERENCES

[1] Turchin, V.F. The concept of a supercompiler. ACM Trans.
on Progr. Languages and Systems, vol. 8, No.3, 1986,
pp. 292-325.

[2] Turchin, V.F. Program transformation by supercompila-
tion. In Programs as Data Objects, Lecture Note in
Comp.Sci. No. 217, pp. 257-325, Springer Verlag, 1985,

[3] Turchin, V.F. The language Refal, the theory of compilation,
and metasystem analysis. Courant Institute Rep. #20, New York
1980.

