
Partial Evaluation and Mixed Computation
D.Bj~rner, A.P.Ershov and N. D . Jones (Editors)
Elsevier Science PuЬlishers B .V . (North-Hollabd)
© IFIP 1988

Т8Е дLGORITHM OF GENERдLIZдTION IN ТНЕ SUPERCOMPILER

Valentin F. Turchin

Computer Science OepartmP.nt
The City Collegc of New York
New York, N.Y 1~~31 USд

531

•

The central proЬlem of supercompilation is to fi.nd а finite set of
configurations (gener~lized states) of the computing sysLem which
is, for а given initial configuration, self-suГ:ficient in the
sense that the process of computation can Ье defined Ьу а finile
graph of statP.s and transitions using only these configurations
as nodes. Generalization over configurations is neces~ary for
this. 'Гhе paper describes an algorithm of generali?.ation in the
process of outside-in driving (forced unfolding of function calls
;n the l~zy evaluation semantics) which always tP.rminatP.s and
produce~ а finite graph of states and transitions with а self­
sufficient set of basic configurations.

l. INTRODUCTION. WHY ТО G~NERдLIZE?

It may secm strange that the proЬlem of generali?.ation is raiAed
in the context of partial evaluation. Indeed, part.ial evaluation
is mostly used for, and therefore perceived as, program speciali­
zation, and this is somP.thing opposite to generaliz~tion.

Howevcr, we discuss herc а special technique of fnn~tion transfor­
mation, which is referred to as sцpercompilation (see [1-Зj). When
supercompilation is uAed for the sake of partial evaluation (whi~h
is not always the case, because supercompilation can do more) it
comes to the specialized program in а different way than the
straighforward partial evaluation.

In partial evaluation we have an original, general, program, nnn а
specia1ized function call . Then we make а global ~nalysis of known
and unknown arguments, and specialize the original definition step
Ьу Atep, watching that а certain limit is not ovPrsteppP.d . Tht1s
the loops in the specialized program are the old loops of thc
original program, bt1t (possiЬly) specialized. Partial ev<Jluation
technique is, in а sense, monotonous with respect to specializa­
tion.

In supercompilation we, again, have an original, general, program,
and а specialized function call. Here, however, we never specia­
li?.e the original program . We start from the ultimate speci<ili.za­
tion of the initial call, and then construct а program for it Ьу
drtving. If the program can Ье made self-contained without looping
back (а simple tree), there will Ье no generalization necessary.
Usual.ly, however, we have to loop back, and these are new loops,
created ad hoc for current configurations. This may make it neces­
sary to generalize configurations, because the former configura-

--·------
• This work was supported Ьу the National Science ~oundation under
grant DCR-8412986.

532

tion will not always Ье general enough. Thus the process of super­
compilation is not monotonous: we first jurnp to the cornpletely
specialized initial call, considered as the initial (degenerate)
graph of states and transitions, and then develop it into а self­
contained graph i.e. а program, using generalization when necessa­
ry.

While partial evaluation has the narrow goal of specializing
functions, supercornpilation is а much wider framework for general
function transformations. We believe that it follows closer than
other techniques to the way we, hurnan beings, think. Thinking is
creating rnental rnodels of the processes in the world around us.
How do we create those rnodels? We watch the processes and try to
forrn some generalized states of the explored systerns in terrns of
which we can construct а self-sufficient rnodel of the processes,
i . e. represent the processes as transitions between the basic
generalized states. But this is exactly what the supercornpiler is
doing.

2. HOW ТО GENERдLIZE?

дs an introduction to the proЬlem of generalization, consider this
example. Suppose, two strings are given:

'дВд'

'дВХУдВд'

and we are asked to write а generalization which is, in some
intuitive sense, the best. Then we should ask, before anything
else, what is meant Ьу а generalization? The first step to define
а generalization is to notice that а generalization of а number of
objects is а set which includes all of these objects. This defi­
nition is not sufficient, however, because then the best generali­
zation in our example would Ье sirnply the set of exactly the two
strings mentioned, and а similar trivial solution would exist in
any situation. дctually, when we speak of generalizations, we have
in mind а language in which sets of objects are defined, and we
want not just а set of objects, but an expression of this language
defining а set of objects which includes all the objects to Ье
generalized -- and, possiЬly, sorne other objects. Then the proЬlem
of а "good" generalization is non-trivial.

Let the language to describe sets of strings Ье that of simple
patterns, as in Refal, where sl, s2 etc. stand for single symbols,
i.e., in our context, letters of the alphabet, and el, е2, etc.
stand for arЬitrary e~pressions -- here for strings, including the
empty string. Thus, 'д'еl is the set of strings starting with 'д';

el s2 s2 is а string ending with two identical letters, etc. Then
for the two strings above, even after we exclude those generaliza­
tions for which we see obviously better (tighter) generalizations,
we still have quite а number of reasonaЬle solutions, for example:

(1)
(2)
(3)
(4)

'дВ'еl

'дB'sl е2
еl'дВд'

'дВ'еl'д'

Which one to choose?

We faced this proЬlem when working on the Refal supercompiler,
because intelligent generalization is the central proЬlem of su-

533

percompilation. We do not discuss here the concept of а super­
compiler in detail; the reader сап address [1], or [2], or an
P-arlier and detailed (but not so easily availaЬle) puЬlication
[3). The objects to Ье generalized in supercompilation are func­
tion calls in Refal. Experimentation with different ways of gene­
ralization led us to the following principle, which we believe to
Ье of universal significance for symbolic objects:

The Generalization Principle. Generalization of objects has а

meaning only in the context of some processes of computation in
which the objects take part. Then the language of generalization
should have means to describe computation histories, and generali­
zations should Ье sets of objects which have соттоn computational
histories up to а point.

дccording to this principle, we should not generalize unless we
know in what computational processes our two strings are taking
part. If we know, for instance, that the strings are scanned form
left to right, then the appropriate series of generпlizations,
each next being tighter than (а subset of) the preceding, will Ье:

sl е2
'д'е2

'д'sl е2

'дВ'е2
'дB'sl е2

Thus if we want the tightest generalization, we take the last one.
Should the strings Ье processed differently, the generalizations
would Ье defined -differently. If no algorithmic processes are
defined over strings, there is no sense in generalization.

In the following sections of this paper we describe the algorithm
of generalization in the supercomiler based on this principle. ln
the context of the language we use in the supercompiler, namely,
Refal, computation histories become tangiЬle formal objects. It
should Ье noted that Refal fits the needs of generalization on two
counts. First, it has the concept of а pattern, which is, of
course, the simplest form of generalization, built into the lan­
guage. Second, the functioning of the Refal machine is а simple
sequence of substitutions, which facilitates the formalization of
computational histories.

3. NEIGHBORHOODS

The objects we deal with in supercompilation are Refal graphs,
which are, essentially, graphs of states and transitions of the
Refal machine. The nodes of а Refal graph are Refal expressions,
the edges (directed) are transformations of two kinds: contrac­
tions and assignments. Both are pattern-matching operations over
variaЬles, with the variaЬles in the left-hand side having some
values, and the variaЬles in the right-hand side being defined Ьу
the operation. д contraction has а single variaЬle in the left
side, and а pattern in the right side, e.g.

el ~ s2 el

is а conditional operation which checks that the value of el
starts with а symbol on the left, assigns that symbol to s2, пnd

redefines el as the remaining part of the original value. дn
assignment has а single variaЬle on the right and defines its new

534

value through constants and the variaЬles of the left side, e.g.

'д'еХ s2(eY) ~ еХ

д Refal program сап Ье represented as а Refal graph defining one
step of the Refal machine, e.g. the program:

FдВ {el = <FдBl ()el>;)
FдBl (

}

(еl)'д'е2 = <FдBl (el'B')e2>;
(el)sЗ е2 = <FдBl (el s3)e2>;
(el) = el;

is, essentially, the graph:

:(еИ ~ <FдВ el>; <FдBl ()el> ~ е0

+ е0 ~ <FдBl el> :(el ~ (еl)'д'е2; <FдBl (el'B')e2> ~ еИ

)

+ el ~ (el)sЗ е2; <FдBl (el s3)e2> ~ еИ
+ el ~ (el); el ~ eS
)

Here we used the form :(В 1 + ... +Bn) to represent n branches в 1 ...
etc., which start from the same node. The nodes themselves are
left out in this graph; they can Ье restored when reading the
graph. Refal graphs are read as follows. The variaЬle еИ stands
always for the content of the view-field (the current expression
being transformed) of the Refal machine. Our graph consists of two
subgraphs. The first begins with the contraction eS ~ <FдВ el>,
which corresponds to the case where the expression in the view­
field of the Refal machine is а call of the function FдВ with а

completely unspecified argument represented Ьу the free variaЬle
el. The state of the view-field at this moment is, obviously,
<FдВ el>; we skip it. The next operation is the assignment to the
view-field eS of а new value, which is а call of FдBl; we can skip
the node again, without losing information. When we construct the
graph of states for an arbitrary expression in the view-field еИ,
we need not write out nodes explicitely, because the current node
is always identical to the current value of еИ.

The second subgraph is а definition of the function FдBl. Here we
separated the general configuration of the call of а given func­
tion, <FдBl el>, from the detalization provided Ьу sentences. This
gives us our first insight into the concept of а neighborhood. The
first thing the Refal machine does to perform а step is to identi­
fy а function symbol, which should follow the left evaluation
bracket <. Thus <FдВ 'дВС'> and <FдВ 'ХУ'> appear the same for the
Refal machine at this stage; they belong to the same neighborhood
<FдВ el>. дnу call of FдBl belongs to а different neighborhood,
namely <FдBl el>. Inside this neighborhood we sec а further diffe­
rentiation: <FдBl ('Х')'дВС'> and <FдBl ('РQ')'дС'> are indistin­
guishaЬle to the Refal machine as long as it executes one step on
them: in both cases the first sentence is used. The expression
<FдBl ('XY')'BCD'>, however, will Ье distinguished in the first
step from those two. The former neighborhood is <FдBl (еl)'д'е2>,
the latter <FдBl (el)sЗ е2>, with the restriction that sЗ is not
equal to 'д'.

Complex contractions which we find in the left sides of Refal
sentences can Ье decornposed into simpler contractions. In the
example above, the left side of the first sentence of FдBl was

535

decomposed as follows:

е~~ <FдBl (еl)'д'е2> = е~~ <FдBl el>; el ~ (еl)'д'е2

We could go further and decompose it into

е0 ~ <FдBl el>; el ~ (el)e2; е2 ~ 'д'е2

Contractions are elements of computation histories. The more wc
decompose contraction, the more detailed the description of histo­
ries will Ье. This process comes to its natural close if we decom­
pose all left sides of Refal sentences into elementary contrac­
tions. There are seven of these, namely:

l. еХ ~ sY' еХ

2. еХ ~ (еУ')еХ

3. еХ ~ еХ sY'

4. еХ ~ еХ(еУ')

5. еХ ~

6. sX ~ s

7. sX ~ sY

Here S stands for а definite (but arbitrary) symbol, and the
primed variaЫes sY' and еУ' symbolize that the index У' of the
variaЫe is new, i.e. was not used before.

The decomposition of the left side above into elementary contrac­
tions is:

е~~ <FдBl (е2)'д'еl> =

е0 ~ <FдBl el>; el ~ (e2)el; el 4 sЗ el; sЗ ~ 'д'

(We renamed some variaЬles in the left side; this, of course,
changes nothing).

De(initions. дn expression without free variaЫes is а ground
expression. We say that а contraction is executed positively over
а ground expression, if the contraction is found applicaЫe and
applied; we say that it is executed negatively if it is estab­
lished that the contraction is not applicaЫe. The sequence of
elementary contractions executed positively or negatively over а

ground expression in n steps of the Refal machine is its computa­
tion history of n-th order. The set of all ground expressions with

а common computation history of n-th order is а neighborhoood of
n-th order.

Thus to every computation history а neighborhood corresponds. We
shall denote neighborhoods Ьу the same symbols as histories. If а
history н 1 is а prefix of н 2 , then the neighborhood н 2 is а subset
of н 1 . Th1s relation between neighborhoods is а partial order.

д Refal program defines а system of partially ordered neigh­
borhoods, in other words, а topology, in the space of ground ex­
pressions. The longer is the common part of computation histories

536

of two points in this space, the tighter is their common genera­
lization to а neighbothood, in other words, the closer are these
points. Note that speaking of ground expressions we have in mind
only active ground expressions, i.e. those including at least one
pair of activation brackets. дll passive expressions fall in one
big class with а zero-length computation history, and are of no
concern to us . This is, of course, а consequence of the genera­
lization principle formulated above.

д compact representation of а neighborhood as а set can Ье ob­
tained Ьу folding the contractions of the corresponding history
into one pattern. With the program above, the system of first­
order neighborhoods is as follows:

(а)

(Ь)

(с)

(d)
(е)
(f)
(g)

<FдВ el>
<FдBl el>
<FдBl (e2)el>
<FдBl (e2)s3 el>
<FдBl (е2)'д'еl>
<FдBl (e2)s3 el> CtsЗ ~ 'д')
<FдBl (е2)>

The restriction (negative contraction) in (f) indicates that only
those ground expressions are in the pattern in which sЗ is dis­
tinct from 'д'. These neighborhoods are partially ordered as
follows:

Ь > с > d > е
d > f

с > g

where > denotes being а superset.

То compute the neighborhoods of the second order, we use driving
(see, e.g., (1]) . Driving every active end-node in the graph for
FдBl, we соте to the graph that represents two steps of the opera­
tion of the Refal machine if it starts with any call of FдBl. It
contains all possiЬle computation histories of length two. Six new
neighborhoods will Ье added to the system. Three of them are
refinements of (е):

(h)
(i)
(j)

<FдBl (е2)'дд'еl>

<FдBl (е2)'д's3 el>
<FдBl (е2)'д'>

(f sЗ ~ 'д')

and the other three, analogously, develop (f).

Driving can Ье repeated as long as there are active end-nodes in
the graph . We refer to this process as exhaцstive driviпg. It can,
and typically will, go on infinitely. Exhaustive driving defines
the set of цltimate neighborhoods, which correspond to terminated
computation histories. In the case of FдBl the ultimate neighbor­
hoods are:

(l) <FдBl (е2) >
(2) <FдBl (е2) 1 д'>

(3) <FдBl (е2)sЗ> (lt sЗ ... 1 д 1)

(4) <FдBl (е2) 'дд' >
(5) <FдBl (е2)'д'sЗ> (lt sЗ -> 1 д 1)

(6) <FдBl (е2)sЗ'д 1 > а sЗ ... 1 д 1)

(7) <FдBl (e2)s3 s4> Clt sЗ -+ 1 д 1) (lt s4 ... 1 д')

etc.

537

The expresfiions which belong to the same ultimate neighborhood
pass through the Refal machine in the exactly identical ways; the
machine has never а chance to discover the difference between
them.

4. WHEN ТО GENERдLIZE?

The idea of а supercompiler is to superwise the construction of
the full graph of states for the initial configuration, and at
certain moments loop back, i.e. reduce an end-configuration -­
directly, or with а generalization -- to one of the previous
configurations, and in this way construct а finite graph on the
basis of а potentially infinite process . д direct reduction is
possiЬle when the later configuration is а subset of the earlier
one. This is an easy case, when it is pretty obvious that the
reduction can Ье made and has sense. The difficult case is when
the later configuration is not а subset of the previous one, bul
is "close" to it in some sense. If we simply ignore this close­
ness, and go on with driving, we may never loop back, and the
process will never stop.

Take а simple example with the functions we defined above. We want
to supercompile the configuration

(1) <FдВ el>

Nothing especially interesting is expected here. The supercompiler
must simply return the original definition . Our purpose is to see
that the supercompiler can indecd find the correct basic configu­
rations for looping back whenever necessary to terminate the work.

The graph of states we construct in supercompilation must include
nodes, i.e. configurations of the Refal machine, explicitely,
because we want to compare and generalize configurations . Let the
nodes in graphs Ье represented Ьу references to configuration
definitions. The first step of driving replaces (1) Ьу the call of
FдBl, so the graph is the unconditional transition:

(1) (2)

with the definition:

(2) <FдBl ()el>

Next step of driving results in the graph:

(l) (2) :(el ... 'д'еl: (3)
+ el ... s2 el: (4)
+el-+[]:(5)

(3) <FдBl ('B')el>
(4) <FдBl (s2)el>
(5) []

(For readaЬility, we use [] to represent the empty expression).

The passive configuration (5) terminates the walk in the graph.
None of the new active configurations (3) and (4) is а subset of
any of the previous configurations (1) and (2). If this were our
criterion for looping back, we would go on with driving. Дfter the

538

next steps we would have such configurations as

(6) <FдBl ('BB')el>
(7) <FдBl ('B's2)el>

etc., none of which, again, would loop back onto any of the pre­
vious configurations. In this way we would never соте to а finite
graph.

То loop back properly, we тust recognize that (3) and (2) are
close enough for looping back. Indeed, they bP.long to the sате
first-order neighborhood

(N) <FдBl (P.2)el>

If we set as а principle that belonging to the sате first-order
neighborhood is а sufficient reason for looping back, we genera­
lize (3) and (2) to (N), express (2) through (N):

(2) = [] ~ е2; (N)

and recoтpute the graph for the generalized configuration (N):

(1) [) ~ е2; (N) :(el-+ 'д'еl; (3')

(3') <FдBl (e2'B')el>
(4') <FдBl (е2 s3)el>

+ el-+ s3 el; (4')
+ el-+ (]; (5)

Now (3') and (4') are subsets of (N); reducing theт to (N) we соте
to the graph

(1) [] ~ е2; (N) :(el-+ 'д'еl; 'В'е2 ~ е2; (3')
+ el-+ s3 el; е2 s3 ~ е2; (4')
+el-+(];(5)

Our algorithт of generalization is based on keeping in тетоrу the
first-order neighborhoods of past configurations. Wc forтulate it
first for the case where all function calls have passive arguтents
only, i.e. there are no nested calls. Nested calls will Ьс consi­
dered in the next section.

дs the Refal тachine applies to the function arguтent one eleтen­
tary contraction after another, the neighborhood that describes
the function call becomes more narrow. Then the replaceтent is
executed, another descending sequence starts, etc. We have the
following row of neighborhoods in each branch of the graph:

fl
1

fl
2 . . . Rl f2

1
f2

2 ... R2 f" 1 f" 2 .. - t" m

They are partially ordered as follows:

fl
1 > fl

2 >

f2
1 > f2

2 >

Е" 1 > f" 2 > ... f"
т

539

In а graphic form:

There are several variants of the algorithm, which place lhe
resulting program in different positions on the compilation-intP.r­
pretation axis (the more detailed is the set of basic configura­
tions, the more compilative the program; the more general the
basic configurations are, the more interpretive the program, sec
(1]). The most interpretive variant is as follows. Each time
before we make the neкt replacement, R", we compare each neighbor­
hood of the current step, starting with the f~~~t one, Е", with
all the previous neighborhoods, moving from R backwards, to the
beginning of the walk. If we find the same neighborhood, we loop
back to it. In this way we find the most general from the recur­
ring neighborhoods. If we loop back, Rn is ignored and the step
due is not eкecuted; reduction takes place instead. Since the
number of different first-order neighborhoods is finite, the algo­
rithmic process is always finite.

This algorithm can Ье obviously generalized for neighborhoods of
an arЬitrary order. The higher the order, the more compilative
will the resulting program Ье. The same effect can Ье achieved Ьу
function iteration, using only the first-order neighborhood algo­
rithm. If we define functions that correspond to two, three, etc.
steps of the Refal machine, and use the first-order algorithm with
them, then this will Ье equivalent to higher-order neighborhoods
for the original system of functions. We сап control the process
of generalization Ьу iterating some functions, while leaving alone
others. Therefore, the algorithm based on first-order neighbor­
hoods has а certain property of completeness. If we accept the
principle that the closeness of eкpressions should Ье measured Ьу
the length of the common part of their computation histories (the
program-induced topology), then all strategies of generalization
can Ье presented as refinements of an algorithm based on first­
order neighborhoods.

5. GF:NERдr.IZдTION OF NESTED CдLLS

If nested function calls are executed according to the inside-out
principle, known also as the applicative evaluation order, then
the computatioп of every active eкpression сап Ье brokeп down into
а sequence of computations and substitutioпs, this sequeпce being
indepeпdent of fuпctioп defiпitioпs. For example, the assigпment

<F el <G е2> <Н еЗ>> ~ е0

will Ье decomposed into the sequence of assigпments:

<G е2> ~ еХ; <Н еЗ> ~ еУ; <F el еХ еУ> ~ е0

We shall refer to such decompositions as stacks. Since the order
of execution is strictly left-to-right, computation histories -­
and, therefore, neighborhoods -- for stacks break into pieces
corresponding to the first, second, etc. segmeпts of the stack. If
а stack s 1 is а prefix of another stack, s2 , theп the neigh­
borhoods of s 1 are supersets (generalizations) of the neighbor-

540

hoods of s2 . There is no interaction between neighborhoods cor­
responding to different segments of the stack.

In the supercompiler, however, we use the outside-in (normal,
lazy) order of evaluation, because it provides one of the primary
means of optimization. In this case the situation is much more
complicated. д prefix of а decomposition is still а generalization
of а longer decomposition, of course. But we cannot decompose а

nested ca1l into а stack without consulting function definitions.
The decomposition is still made, but it is made in the process of
moving from outside in, and it may depend on the values of vari­
aЬles. Computation histories may consist of alternating pieces
from different function calls. Indeed, suppose that the computa­
tion process starts with the all-embracing function call, but
after eкecuting а number of contractions the Refal machine finds
that а not yet computed call inside is а hindrance for further
application of sentences . Then it wi11 leave the unfinished func­
tion call as а context, and switch to the computation of that
int~rnal call, which, in turn, may send the machine further in­
side. Дfter computing the internal call -- completely or partially

the process returns to the point in the outer function call
where it was interrupted.

Let us describe this in somewhat more detail. We call an expres­
sion unitary active, or just unitary, if it is of the form <Е>,

where Е is any expression (possiЬly active, so that there are
nested function calls). If the res11lt of replacement in the execu­
tion of а Refal step is unitary, we make it our ncxt active
subexpression to compute . If it is not unitary, it is either
passive (completed computation), or non-unitary active (partially
computed, with some passive parts outside of activation brackets,
e.g. 'д'<FдВ el>). In both cases we substitute the result into the
context, and take the context as the next active subexpression to
compute. If there is no context (bottom of the stack call) and the
result of the step is passive, this is the end of driving . If the
result is partly passive, the passive part is kept in the view­
field of the Refal machine, and the unitary active part is driven
further.

Wc shall consider а few examples which typify different structures
of recursion. We shall demonstrate how we come to our algorithm of
generalization, and how it works. Then we shall prove that this
algorithm has а guaranteed termination.

The first example is the classical recursive definition of the
factorial:

FACT (~ = l;
l = l;
sN = <MULT sN <FACT <SUB sN 1>>>;

}

We assume that the arithmetic functions SUB and MULT are built-in
(not defined in Refal) functions which require their arguments to
Ье ready-for-use numbers. Then the inside-out and outside-in or­
ders of evaluation will lead to the same sequnese of operations.
We see here three neighborhoods involved:

(f) <FACT sl>
(m) <MULT sl s2>
(s) <SUB sl s2>

541

(То simplify things, wc ignore such neighborhoods as <РдСТ P.l>,
<РдСТ яl е2>, etc., which cause unique transitions). д slack will
Ье denoted as а string of neighborhoods, e.g., sfm will stand for
any of the nested calls like that in the definition of FдСТ.

When we simply drive <FдСТ sl> eкhaustively we have, on one of the
branches, the sequence of neighborhoods:

f; sfm; fm; sfmm; fmm; sfmmm; fmmm; ... etc.

which goP.s on infinitely. Let us now apply the simple algorithm
of comparing neighborhoods which we developed for the case of onc­
level function calls. We eкtend it Ьу recalling that а stack is а
specialization (subset of) its every prefix. дt the third stage of
the process above we recognize that fm is а subset of f. Thus we
declare f basic, and come to the original algorithm.

This experience suggests to accept as the general criterion of
generalization а situation where the current stack is of the form
ХУ, where Х is а previous stack. This criterion, of course, in­
cludes the one-level situation as а special case where У is empty
and Х is one segment.

However, if we only slightly change our example, this criterion
will not work. Let the factorial function Ье computed in the
context of some other function, say,

(*) <дDD 1 <FдСТ sN>>

If we denote Ьу а the neighborhood corresponding to дDD, the
sequence of stacks in driving will Ье:

fa; sfma; fma; sfmma; fmma; sfmmma; fmmma; ... etc.

One can see that none of the previous stacks is а prefix of а
subsequent one. Therefore, the process will never terminate.

The reason for this failure is that the algorithm, as it is at
this point, does not draw а 1ine between the part of stack that is
recurrent, and the part that does not really participate in ac­
tion, but is а passive context. We, therefore, modify the algo­
rithm as follows. The stack will not Ье just а lineur segment, but
а structure of parenthesized segments, where thc context part is
taken outside of parenthescs. дccordingly, the computation history
will Ье written in such а way that the context is left outside of
the parentheses as а common part to all the stages of the process
as long as it has no impact on developments.

The nested call («) will now Ье characterized Ьу the formula (f)a.
It results from outside-in driving, where we start driving from
the call of дDD, an then see that before anything is done on this
call, we must drive FдСТ. So, we leave дDD as а context, and FдСТ
becomes the active subexpression.

After the first step of the Refal machine, the history of computa­
tion takes the form:

(f; ((s)f)m)а

Then SUB is computed, and the next history record will Ье:

542

(f; (sf; f)m)а

We have followed here the Orwellian principle of permanently
rewriting the history. We have а better reason, though, than in
Orwell's novel. When s is computed, the result is substituted into
f; t.l1t1s tl1e real previous state to Ье used in compar isons should
now Ье seen as sf, not (s)f. Each time that а context enters the
play, we open the parentheses that separate it from the active
part at the current stage and all previous stages of history since
this context appeared.

дs before, we compare the last stack with all the previous stacks
at every stage of development. When we exit context parentheses
while tracing the history backwards, we add the context to the
current stack before comparing it with next previous stacks. So,
after the first step of the Refal machine, we compare sfm with f.
Дfter the second step we compare f with sf, and then fm with f.
The last comparison discovers that f is а repeated prefix, and the
algorithm successfully terminates.

Consider one more example. Let F Ье the function that scans the
argument from left to right and replaces each pair of identical
symbols Ьу one symbol of the same kind:

F {
s2 52 el = s2 <F el>;
s2 el = s2 <F el>;

=
}

r.et the initial configuration Ье

1. <F <F <F el»>

We w~nt to supercompile it using, as always, the outside-in order
of evaluation, so that the final program performs in one pass the
job which is defined Ьу the initial configuration as а three-pass
job. In this proЬlem, tt ts easy to discover that the same func­
tion F is called again and again Ьу itself, and declare it basic.
But if we do so, we, obviously, return to the original three-pass
program. The proЬlem here is of just the opposite kind: how to
delay looping back in such а manner that the result is а one-pass
program. The algorithm must steer carefully between the Scylla of
looping back too early, and the Charybdis of never looping back at
all. We are going to show that our algorithm is сараЬlе of this
navigational feat.

Let us concentrate on the first branch in every step of driving.
Should we drive manually, we would produce this sequence of nodes:

2.
3.
4.
5.
6.
7.
8.

<F <F s2<F el>>>
<F <F s2 s2<F el>>>
<F s2<F <F el»>
<F s2<F s2<F el>>>
<F s2<F s2 s2<F el>>>
<F s2 s2<F <F<F el>>>
s2 <F <F <F el>>>

дt this stage, we would notice that the initial configuration re­
appears at the top level. We would separate it and tertninate the
branch. We want now to see how the supercompiler will do this.

543

There are three neighborhoods at work in this example, which will
Ье denoted as а, Ь, and с:

(а) <F еХ>
(Ь) <F s2 еХ>
(с) <F s2 s2 el>

Let us trace how the history changes while the supercompiler
works. The initial history is

1. ((а)а)а

There is no semicolon here, which signifies the fact that no step
has yet been made. We simply decomposed the initial configuration
into а stack. We shall now go through the stages 1 - 8 of driving
above, using the stack-of-neighborhoods notation.

In the first step of the Refal machine, we use the contraction:

el ... s2 s2 el

The replacement results in s2<F el>. We now have the node

<F <F s2 <F el>>>

Driving it outside-in, in order to decompose it into а stack, we
find both the first, and the second call of F impossiЬle to com­
plete, so the active subexpression will Ье the third F again. The
decomposition is:

<F el> + еХ; <F s2 еХ> + еУ; <F еУ> + е0

In the short notatation,

((а)Ь)а

Since the second F from outside (the context of the active third
F) takes part in this transformation, we must open the correspon­
ding parentheses: it is not just а which becomes Ь, but аа which
becomes (а)Ь. Thus on the second stage the co1nputation history is:

2. (а а; (а) Ь) а

When we compare the current situation with evcry stage of
history, we do not exit from the subgraph common to both. So, what
we actually compare at this stage is аЬ with аа. The result is
negative, and we go on. After the second step the node is

<F <F s2 s2<F el>>>

Driving from oнtfiide in, we find the second F to Ье the active
subexpression. The third F is not seen Ьу the Refal machine; the
neighborhood formula is (с)а. Since the context, which is now Ь,
has taken part in the process again, we open the parentheses, and
the history becomes:

3. (аа; аЬ; с)а

Procedeing in this manner, we produce the further members of the
"history of histories":

544

4. ааа; аЬа; са; ((а)а)Ь
5. ааа; аЬа; са; (аа; (а)Ь)Ь

6. ааа; аЬа; са; (аа; аЬ; с)Ь

7. ааа; пЬа; са; апЬ; аЬЬ; сЬ; с

8. апа; аЬа; са; ааЬ; аЬЬ; сЬ; С; ((а)а)а

Nowhere in the history before the last stage did we see п repeat­
ing context, so the process went on . At thc last stage ((а)а)а
compares positively with ааа, and this combinalion is declared
basic. One can see that on all branches of the graph а similar
~ituations take place, so that in the end we have а finite graph.

Our last example is the merge-sort algorithm, which illustrates
one more pattern of recursion.

SORT { el = <СНЕСК <MERGE <PдiRS el>>>; };

MERGE {
(el)(e2)eR = (<MERGE2 (el)(e2)>) <MERGE eR>;
(е1) = (el);

=
} ;

СНЕСК {
(е1) = el;
е1 = <СНЕСК <MERGE е1>>;

} ;

Wc shall not use the dcfinitions of the functions PдiRS пnd
M~RGE2. The former makes up the initiпl 1ist of pairs from the
input 1ist of items, which are assumed to Ье, syntactically, Refпl
symbols (e.g., numbers). The latter merges two lists. Wc assume
that PдiRS has been executed, so that the initial config11ration is

1. <СНЕСК <MERGE е1»

where el is а list of pairs.

Driving this configuration outside-in, we havc the following row
of configurations in thc branch where el in the argument of MERGE
is not yet exhausted. We write С and М for СНЕСК and MERGE, and
put the e1lipsis instead of MERGE2 ca1.1s, which make no impact on
driving:

2 . <С (...) <М е l > >
З . <с (...) (...) <М е 1 > >
4 . <С <М (...) (...) <М е 1 > > >
5 . <С (...) <М <М е l » >
6. <с (...) <М (...) <М el»>
7. <С(...) <М(...)(...) <М el>>>
8. <С (...)(...) <М <М е 1 » >
9 . <С <М (...) (...) <М <М е 1 > > > >
10. <С (...) <М <М <М е1>»>

The neighborhoods involved are:

(m) <MERGE е1>

(m 1) <MERGE (е2) el>
(mJ) <MERGE (еЗ)(е2) cl>
(с <СНЕСК е1>

(cl) <СНЕСК (е2) el>
(с2) <СНЕСК (еЗ)(е2) el>

545

The proЬlem with this type of recursion is that the function СНЕСК
is not а pa~sive context, but one of the functions responsiЬle for
recursion; it cannot Ье taken outside of parentheses. If wc look
at the states of the stack at the moments when el is tested, i.e.
2, 5, 1g, etc., wc see the sequence:

where no stage is а prefix of any subsequent stage.

Nevertheless, our algorithт discovers the potential infiniteless
of recursion, and declares <СНЕСК (e3)(e2)el> а basic configura­
tion. We leave it to the reader to vcrify that the coтputation
history will develop as follows:

1. (т)с

2. те; (т)с 1
з. mc; те 1 ;
4. те; те 1 ;
5. те; те 1 ;
б. mc; те 1 ;
7. те; те 1 ;
8. те; те 1 ;

дt this stage

с2
С2;

С2;

С2;

С2;
С2;

the

(т2)с
т2 с; ((т)т)с 1
т 2 с; (mm; (m)т 1)с 1
т 2 с; (mm; mm 1 ; m2)c 1
т 2 с ; ттс 1 ; mn1 1 с 1 ; т 2 с 1 ; с 2

declares it basic.
stack с 2 repeats itself, and the supercompiler

б . T~:RMINдTION OF ТНЕ дLGOR ITHM

We w~nt to prove now that the algorithт we have outlined and
illustratP.d above always leads to а finite graph, because the
nriving of every branch of the graph will t~rminate, P.ither be­
cause the resulting node is passive, or because the current stack
has one of the previous stacks as its prefix (looping back). То
forтulate our algorithm in exact terms and to prove its termina­
tion, we тust first review the forтal objects which are used in
the algorithm.

We represent the nodes of the graph of states Ьу sta~ks, which
consist of neighhorhoods and are used in two forms: with and
without parentheses. The current stack, as it appears froт а step
of the Refal machine, is represented in fully parenthcsized form,
which can Ье described Ьу the following BNF:

с-sт : := empty • < • с-sт ·) • f

Here quoted objects stand for themselves, and unquoted objects are
classes of objects. The bar 1 separates alternatives. C-ST is а
current stack, and f а neighborhood (function call) . In our ex­
aтples above, the neighborhoods were represented Ьу letters.

When stacks stand for the past states, however, they are represen­
ted Ьу strings of neighborhoods, which reflects the fact that
these neighborhoods took part in the computation and must Ье
considered together as representing one composite configuration of
the Refal machine. Thus we introduce past sta~ks, which make up
the class of objects SТдСК:

SТдСК : := empty SТдСК f

546

The consecutive members of computation histories are separated Ьу
semicolons, hence we need history segments, class Н:

н : := empty Н SТдСК '.' •

дs а result of rnaintaining the history records at every parenthe­
sis level of the current stack, the overall record, which we shall
designate as the ongoing history, ON-HIS, is from the class:

ON-HIS : := Н Н ' (' ON- Н I S ') ' f

In а more reviewaЬle form, the ongoing history is:

(*)

where each Hi is а history segrnent, and fi а neighborhood.

Now every branch of the graph of states which is being constructed
Ьу driving has а formal representation as an ON-BIS. The next
thing to do is to formulate the rules according to which the
ongoing history is transforrned in driving, and define in exact
terms the conditions under which а given branch is cut off, eithP.r
because of the termination of driving, or because of looping back
to а past stage. After that we shall Ье аЬlе to prove that under
those condition no ON-HIS, i.e. no branch in the graph, can Ье
infinite.

The starting point of driving is а current state C-ST which repre
sents the initial configuration of the Refal rnachine. There are
three transofrmation rules for ON-HIS. То put them as replacement
forrnulas, we denote objects Ьу the same symbols as the BNF classes
to which they belong, adding s1зbscripts when nccessary.

Transformation Rules for ON-HIS

Tl. дctive replacement rule

Hn fn --> Hn fn: C-ST

Т2. Passive replacement rule:

Hn-J (Hn fn) fn-1 -->

тз. Termination rule:

Hn fn --> Hn

Here fn stands for the current active (top of stack) neighborhood,
and Н is the immediately preceding history segment. The active
neighSorhood in an ON-HIS is located as the one just before the
first right parenthesis. The operation н~Е in Rule Т2 is the
distribution of а neighborhood ovcr а history segment defined Ьу
the formula:

н~ f = [SТдСК 1 ; SТдСК 2 ; ... STдCKk]*f

STдCK 1 f: STдCK 2 f: ... STдCKkf;

When а step of the Refal machine is performed in the process of
driving, one r11le must Ье applied to the ON-HIS represr:nt.ing t.he
current branch. The three transformation rules correspond to the

547

three cascs in the дlgorithm of outside-in driving above. If the
result of the step is а unitary active expression, Rule Tl is
applied. дccor~ing to this rule, the current active neighborhood
is anded to the history of computation on its parP.ntheяis level,
the contcxt remains unchanged; а new Current Stack C-ST results
form the step. If the result of the step is passive or non-unitary
active, and there is а context (i.e. n > 9), Rule Т2 is applied.
In this case one level of parentheses is eliminatP.d; the context
ncighborhood f~-l is added to each stack in the history segment
Hn; onc more History Stack, fnfn_ 1 , is added to the history, and
followed Ьу а semicolon; then new C-ST appears. Tf thP.re is no
context and the result of the step is passive, Rulc ТЗ is used. It
terminates the branch. In case of а non-unitary result and n = g
(no context) Rule Tl is used.

The Cut-Off Rules

Cl. Before applying the transformation rules, compare every SТдСК
of Н with fn• then every SТдСК of Hn_ 1 with fnfn_ 1 , elc. till the
sтдcRs of н 0 are compared with fnfn_ 1 ... f 0 . If in one of such
comparisons the first element is а prefix of the sP.cond, lerminate
the ongoing history.

С2. Terminate the ongoing history if Rule ТЗ is used.

We now limit our attention to those ongoing histories only that
could have appeared in the process of driving, i.e. those which
can Ье constructed starting with а C-ST and applying Rules Tl and
Т2, hefore Rule Cl is used.

1еmщ~1. If а history segment is not empty then its last stack
consists either from one, or from two neighborhoods.

Proof. The lcmma is true at the beginning of driving when all
hislory segments are empty. When Rule Tl is used, а SТдСК which
consists of one neighborhood fn is added at the end of Hn. When
Rule Т2 is used, Hn disappears, and Hn_ 1 gets an addition which
ends with fnfn_ 1 .

We shall refer to stacks of length one or two as shoгt stacks.

Lemma 2. The situation where one of the history stacks in а seg­
ment-is а prefix of а later stack in the same or а later segment
is impossiЬle.

~~Q9~. Suppose that such а situation exists. Let the e~rlier stack
(to become а prefix) Ье аЬ ... z, where letters stand for neighbor­
hoods. P.ach history stack starts at а certain moment when its
first neighborhood is the top element of the current stack. The
ongoing history at this moment can Ье seen as:

... (... ab ... z; ... (Hk ... (Hn fn)'fn_ 1 ...)fk) ...

Here we left out the history segments and context neighborhoods
which are common to аЬ ... z and the current stack fnfn-J· .. fk,
because they only add common endings to both strings. ~or tne
earlier stack to Ье а prefiк of the later, fn must obviously Ье
i~entical to а. But it is also necessary that fn-J Ьс idenlical to
Ь. Indeed, f can Ье lengthened only if we open Ьу Rпle Т2 the
internal par~ntheses marked Ьу the prime '. The use of Rulc Tl
with any subsequent uses of both rules is irrelevant as long as

548

the marked parenthesis is not opened (it only creatcs history
slacks subscquent to the stack of interesl). This reasoning is
also valid for all other elements of the earlier stack up to z;
thus we conclude that аЬ ... z must Ье а prefix of the string
f fn-J· .. fk. This, howcver, is impossiЬle, because Rule Cl (our
a~gor1thm of looping back) should have stopped the proce~s at this
stage.

,!:.em!'lg_~ The nпmber of different short stacks is finite.

P~9of. The number of different neighborhoods of the first oruet is
finite, Ьесапsе it is the number of paths in а finite tree. There­
fore, the number of different stacks of length one or two is also
finite.

Th~em. With the driving algorithm described above, no branch of
the graph of states may Ье infinite.

_f!Q9~. дs ~hown above, to every branch in the graph, as long as
it is not cut off, an ongoing history corresponus. We are now
going to show that an infinite ongoing history is impossiЬle.

First we construct yet another model, namely а model of the growlh
of the ongoing history (which itself is а model of the growth of а
branch in driving). The general form of the ongoing history is
given Ьу (*). дt every stage of the process it consists of а

finite number of levels separated Ьу parentheses. The part outside
of all parentheses is counted as level в. For i > в, the i-th
level is delimited Ьу the i-th and the i+l-st nested pa;r of
parentheses, and consists of а hislory segment н. and the neighbor­
hood fi . We want а model which for each level i ~f the ongoing
history will indicate а number of guaranteed short stacks in it.
We shall denote this number as Ci. Thus the number of short seg­
ments in Ht must Ье at least Ci . The model descriЫng the dyna­
mics of the numbers Ci is as follows.

дt each moment, the highe~t level n is the level on which an
action is taken. There are two types of action, which correspond
to Rules Tl and Т2 above: дl, addition on the level n :

(дl) becomes С +1 n

and д2, cancellation on the level n and addition on the level n-1:

(д2) Cn becomes 0, and

с n-1 becomes Cn_ 1+l, where n > 0.

Indeed, when we apply Rule Tl to the ongoing history, а stack of
length 1 is added to Hn. When we apply Rule Т2, the n-th level
disappears, every term in Н is lengthened Ьу l and added to
Н _1 . We do not know how m~ny short (of length 2) slacks will Ье
tПere after the operation, and we count it as zero. But one gua­
ranteed stack of length 2 is added to Hn_ 1 . After any of the two
actions, а new с-sт is created accoruing to both rules, which in
our model means that the top level n is incremented Ьу some posi­
tive number, and the values of Ct for the new levels are all set
to zero.

Suppose now that there is an infinite branch, i.e. an infinite
ongoing history. Then the number of levels in it is either limited
Ьу а finite number, or infinite. Suppose it is infinite. Some of

549

the history segments may Ье empty, othcrs non-empty. We want to
prove that if the total number of levels is infinite, thc n11П1Ьеr
of levels with non-empty history segments must also Ье infinite.
The total number of empty segrnents in the ongoing history in­
crea~es when а new C-ST with at le~st one new parenthe~is is
created. Consider separately the cases when the n11mber of paren­
thP.ses is one, i.e. C-St i.s (f)g, or more: (... ((f)g) ...)h. In
tlte former case, the use of Rнle Tl transforrns one empty ~egment
into а non-empty segment (namely, f;). If Rule Т2 is 11scd thcn thc
only empty history disappears. In the case of more than one level
in the с-sт, one of the empty segments on the level of f or g will
Ье necessarily made non-empty, no matter which of the rules is
uscd. We conclude that the number of empty segments cannot become
infinite without making the number of non-empty segments infinite
too. Therefore, if the total number of levels is infinite, the
number of levels with non-empty history segments will Ье also
infinite.

Ву Lemma l each non-cmpty history segment н 1 ends with а short
stack. Since the number of different short stacks is finite (Lemma
3), wc must have а situation where two history stacks are i.denti­
cal. This is, however, impossiЬle Ьу Lemma 2.

Therefore, the number of levels must Ье li.mited Ьу а fi.nite
number, even though the number of'actions grows infinitely. Then
there mнst Ье at least one level i such that an infinite number of
actions takes place on that level. The actions, as we know, are of
two types: дl and д2. If the number of actions д2 at the i-th
level were finite, then Gi would Ье infinite, because the nuшber
of additions would Ье inf1nite whilc the number of cancellations
finite. But this would imply that there are two i.dentical short
stacks in Hi, and this is impossiЫe. 'Гherefore, the number of
aclions д2 mнst Ье infinite. However, each action д2 on level i
creates an addition on level i-1, hence the nurnber of cancP.lla­
tions, and, therefore, actions д2 on level i-1 must also Ье infi.­
nite. Rcasoning in this way we соте to the concl11sion that the
number of actions д2 on level ~ must also Ье infinite, but thi.s i.s
impossiЬle, because only actions дl can Ье performed on that
level.

Thus the assumption of an infinite ongoing histoty leads to а
contradiciton, which proves the theorem.

R Е ~ Е R Е N С Е S

[l] Turchin, V.~. The concept of а supercompiler. дСМ Trans.
on Progr. Languages and Systcms, vol. В, No.3, 1986,
рр. 292-325.

[2] Turchin, V.~. Program transformation Ьу supercompila­
tion. In Programs as Oata Objects, Lecture Note in
Comp.Sci. No. 217, рр. 257-325, Springer Verlag, 1985.

[3] Turchin, V.F. The language Refal, the theory of compilation,
and metasystem analysis. Courant Institute Rep. i2~. New York
198~.

