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THE SUPERCOMPILER 

The supercompiler is a meta-evaluator developed at the City College of 
New York by the author of the present book with the help of a small group 
with a varying composition (see historic notes). The concept of metacomputa­
tion is very wide and allows different implementations. The supercompiler is 
one of them. Probably, almost any design decision used here can be replaced 
by another, and certainly should be critically examined. 

6.1 How to generalize? 

The central problem of metacomputation is to find a finite set of con­
figurations (generalized states) of the computing system which is, for a given 
initial configuration, self-sufficient, in the sense that the process of computa­
tion can be defmed by a fmite graph of states and transitions using only theses 
conftgurations as nodes. Generalization over configurations is necessary for 
this. Thus we start this chapter with a description of the algorithm of 
generalization used in the supercompiler. This algorithm always terminates 
and produces a fmite graph of states and transitions with a self-sufficient set 
of basic conftgurations. 

As an introduction to the problem of generalization, consider this ex­
ample. Suppose, two strings are given: 

'ABA' 
'ABXYABA' 

and we are asked to write a generalization which is, in some intuitive sense, 
the best. Then we should ask, before anything else, what is meant by a 
generalization? The first step to define a generalization is to notice that a 
generalization of a number of objects is a set which includes all of these ob­
jects. This definition is not sufficient, however, because then the best 
generalization in our example would be simply the set of exactly the two 
strings mentioned, and a similar trivial solution would exist in any situation. 
Actually, when we speak of generalizations, we have in mind a language in 
which sets of objects are defmed, and we want not just a set of objects, but an 
expression of this language defming a set of objects which includes all the ob­
jects to be generalized -- and, possibly, some other objects. Then the problem 
of a "good" generalization is non-trivial. 

Let the language to describe sets of strings be that of Refal patterns. 
Then for the two strings above, even after we exclude those generalizations 
for which we See obviously better (tighter) generalizations, we still have quite 
a number of reasonable solutions, for example: 

(1) 'AB'el 
(2) 'AB'sl e2 
(3) el'ABA' 
(4) 'AB'el'A' 
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Which one to choose? 
Experimentation with different ways of generalization led the author to 

the following principle, which we believe to be of universal significance for 
symbolic objects: 

The Generalization Principle. Generalization of objects has a meaning only in 
the context of some processes of computation in which the objects take part. 
Then the lauguage of generalization should have means to describe computa­
tion histories. and generalizations should be sets of objects which have com­
mon computational histories up to a point. 

According to this principle, we should not generalize unless we know in 
what computational processes our two strings are taking part. If we know, for 
example, that the strings are scanned from left to right, then the appropriate 
series of generalizations, each next being tighter than (a subset of) the preced­
ing, will be: 

slel 
'A'el 
'A'slel 
'AB'el 
'AB'sl e2 

Thus if we want the tightest generalization, we take the last one. Should the 
strings be processed differently, the generalizations would be defmed dif­
ferently. If no algorithmic processes are defmed over strings, there is no sense 
in generalization. 

In the following sections we describe the algorithm of generalization in 
the supercompiler based on this principle. When we use Refal, computation 
histories become tangible formal objects. It should be noted that Refal fits the 
needs of generalization on two counts. First, it has the concept of a pattern 
(which, of course, is the simplest form of generalization) built into the lan­
guage. Second, the functioning of the Refal machine is a simple sequence of 
substitutions, which facilitates the formalization of computational histories. In 
order to define computation histories in detail, we break contractions in the 
Refal graphs into elementary contractions (see Sec. 3.7). 

6.2 Neighbortaoods 

Definitions. We say that a contraction is executed positively over a ground ex­
pression, if it is found applicable and applied; we say that a contraction is ex­
ecuted negatively if it is established that it is not applicable. The sequence of 
elementary contractions executed positively or negatively over a ground ex­
pression in n steps of the Refal machine is its computation history of the n-th 
order. Take some computation history of n-th order. The set of all ground ex­
pressions with this computation history is a neighborhood of n-th order. 
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Thus to every computation history a neighborhood corresponds. We 
shall denote neighborhoods by the same symbols as histories. If a history H1 is 
a prefiX of H2, then the neighborhood H2 is a subset of H1. This relation be­
tween neighborhoods is a partial order. 

A Refal program defmes a system of partially ordered neighborhoods, in 
other words, a topology, in the space of ground expressions. The longer is the 
common part of computation histories of two points in this space, the tighter 
is their common generalization to a neighborhood; in other words, the longer 
the the common history, the closer are the points. Note that speaking of 
ground expressions we have in mind only active ground expressions, i.e. those 
which include at least one pair of activation brackets. All passive expressions 
fall in one big class with a zero-length computation history, and are of no con­
cern to us. This is, of course, a consequence of the generalization principle 
formulated above. 

The reason why we need neighborhoods in metacomputation is exactly 
that a neighborhood characterized the passage of its member configurations 
through the working Refal machine. If we know the neighborhood to which a 
given configuration Q belongs, we know how it will develop during some num­
ber of steps to come. If we already have in the current walk a past conftgura­
tion Q' which belongs to the same neighborhood as Q even though it cannot 
be reduced to Q, this is an indication that driving may go on infmitely, so we 
should consider looping back and generalizing Q and Q'. 

Let us take a program of a familiar structure: 

Fab { e1 = <Fabl ()el>;} 

Fabl { 
(e2) 'A' e1 = < Fabl (e2 'B')el >; 
(e2) s3 e1 = < Fabl (e2 s3)el >; 
(e2) = e2;} 

Its graph, completely factorized, is: 

{(eO-> < Fab e1 >) ( < Fabl ()el > <- eO) 
+(eO-> <Fablel>) 

} 

{(el-> s3 el) {(s3 -> 'A') ( < Fabl (e2 'B')el > <- eO) 
+ (# s3 -> 'A') ( < Fabl (e2 s3) <- eO) 
} 

+ (el-> ) (e2 <- eO) 
} 

The first thing the Refal machine does to perform a step is to identify a func­
tion symbol, which should follow the left evaluation bracket. Thus 
< Fab 'ABC'> and < Fab 'XY' > appear the same for the Refal machine at 
this stage; they belong to the same neighborhood < Fab e1 > . Any call of 
Fabl belongs to a different neighborhood, namely < Fabl e1 >. Within this 
neighborhood we see further differentiations: for example, 
< Fabl ('X')' ABC' > and < Fabl ('PQ') 'CC' > will both come to the next 
branching point, but then will diverge. 
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To represent a neighborhood as a pattern we fold up the contractions of 
the corresponding history. With the graph above, the system of first-order 
neighborhoods is as follows: 

computation history pattern expression 

(a) 'f(Fab) < FAB e1 > 
(b) 'f(Fab1) < F AB1 e1 > 
(c) 'f(Fab1)8 12 <FAB1 (e2)el> 
(d) 'f(Fab1)8 12 S 13 <FAB1 (e2)s3 el> 
(e) 'f(Fab1)8 12 S 13 f3 'A' < FAB1 (e2)'A'el> 
(f) 'f(Fab1)8 12 S 13 (#I 3'A') < FAB1 (e2)s3 e1 > (#s3 -> 'A') 
(g) 'f(Fab1)X 1 N < FAB1 (e2) > 

These neighborhoods are partially ordered as follows: 

a 
b > c > d > e 

d > f 
c>g 

where > denotes being a superset. 
To compute neighborhoods of the second order, we drive every active 

walk-end node in the graph for Fab1, and thus come to a graph that repre­
sents two steps of the Refal machine if it starts with any call of Fab1. It con­
tains all possible computation histories of length two. Six new neighborhoods 
will be added to the system. Three of them are refmements of (e): 

(h) <Fab1 (e2)'AA'el> 
(i) < Fab1 (e2)'A's3 e1 > (# s3 $'A') 
G) < Fab1 (e2)'A' > 

and the other three, analogously, develop (f). 
Driving breadth-first can be repeated as long as there are active walk­

ends in the graph. We refer to this process as exhaustive driving. It can, and 
typically will, go on infmitely. Exhaustive driving defmes the set of ultimate 
neighborhoods; they correspond to terminated computation histories. In the 
case of Fab1 the ultimate neighborhoods are: 

(1) 
(2) 
(3) 
(4) 
(5) 
(6) 
(7) 

... etc. 

<Fab1 (e2) > 
<Fab1 (e2)'A'> 
< Fab1 (e2)s3 > 
<Fab1 (e2)'AA'> 
< Fab1 (e2)'A's3 > 
<Fabl (e2)s3'A'> 
< Fabl (e2)s3 s4 > 

(# s3 $'A') 

(# s3 $'A') 
(# s3 $'A') 
(# s3 $'A') (# s4 $'A') 
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The expressions which belong to the same ultimate neighborhood pass 
through the Refal machine in exactly identical ways; the machine has never a 
chance to discover the difference between them. 

The idea of the supercompiler is to supervise the construction of the full 
graph of states for the initial configuration, and at certain moments loop back, 
i.e. reduce an end-configuration-- directly, or with a generalization-- to one 
of the previous conftgUl'ations, and in this way construct a finite graph on the 
basis of a potentially infinite process. A direct reduction is possible when the 
later confJgUration is a subset of the earlier one. This is an easy case, when it 
is pretty obvious that the reduction can be made and is necessary. The difficult 
case is when the later configuration is not a subset of the previous one, but is 
"close" to it in some sense. If we simply ignore this closeness, and go on with 
driving, we may never loop back, and the process will never stop. 

Take a simple example with the functions we defmed above. We want to 
meta-evaluate the configuration 

(Q1) <Fabel> 

Nothing especially interesting is expected here. The supercompiler must 
simply return the original defmition. Our purpose is to see that the super­
compiler can indeed fmd the correct basic configurations for looping back 
whenever necessary to terminate the work. 

The fust step of driving replaces Q1 by the call of Fabl, so the graph is 
the unconditional transition: 

Next step of driving results in the graph: 

Q1 = Q2 {(el-> 'A'el) = Q3 
+ (el-> s2 el) = Q4 
+ (el->) = Q5 
} 

(Q3) < Fabl ('B')el > 
(Q4) < Fabl (s2)el > 
(Q5) empty 

The passive configuration Q5 terminates the walk in the graph. None of 
the new active conftgUl'ations Q3 and Q4 is a subset of any of the previous 
conftgUl'ations Q1 and Q2• If this were our criterion for looping back, we 
would go on with driving. After the next steps we would have such conftgu.ra­
tions as 

< Fabl ('BB')el > 
< Fabl ('B's2)el > 

etc., none of which, again, would loop back onto any of the previous con­
ftgUl'ations. In this way we would never come to a fmite graph. 
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To loop back properly, we must recognize that Q3 and Q are close 
enough for looping back, or, better to say, not far enough from ea~ other for 
driving on. Indeed, they belong to the same frrst-order neighborhood 

(N) < Fabl (e2)el > 

If we set as a principle that belonging to the same frrst-order neighborhood is 
a sufficient reason for looping back, we generalize Q3 and Q2 toN, express 
Q2 throughN: 

Q2 = (empty<- e2) IN 

and recompute the graph for the generalized configuration N: 

Q1 (empty<- e2) N {(el-> 'A'el) = Q'3 
+ (el-> s3 el) = Q'4 
+ (el-> empty) Q5 
} 

(Q'3) <Fabl(e2'B')el> 
(Q'4) <Fabl (e2 s3)el> 

Now Q3 and Q4 are subsets of N; reducing them toN, we come to a graph 
equivalent to the initial definition. 

The algorithm of generalization used in the supercompiler is based on 
keeping in memory the frrst-order neighborhoods of past configurations. We 
formulate it first for the case where all function calls have passive arguments 
only, i.e. there are no nested calls. Nested calls will be considered in the next 
section. 

As the Refal machine applies to the function argument one elementary 
contraction after another, the configuration that describes the current func­
tion call becomes more narrow. Then the replacement is executed, another 
descending sequence starts, etc. We have the following row of configurations 
in each branch of the graph (vertical bars mark replacement points): 

Q1, 1 Q1,2 ·•• Q1,M11 Q2' 1 Q2' 2 ... Q2,M21 · · · I Qn, 1 Qn,2 ··· Qn,Mn 

They are partially ordered as follows: 

Q. 1 > Q. 2 > ... > Q. 11· ,, ,, ,, , for i = 1,2, ... n 

In a graphic form: 
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Fig. 6.1 Extension of neighborhoods in a branch of the graph of states 

There are several variants of the algorithm, which place the resulting 
program in different positions on the compilation-interpretation axis. The 
most interpretive variant is as follows. Each time before we make the replace­
ment of Qn lin' we compare now configurations with before configurations. 
The first now configuration is Qn 1. The before configurations are all the con­
figurations preceding Qn 1; they' are examined from right to left. The now 
configuration~now is compared with each before configuration Qbefore. If it is 
a subset of Q efore, we loop back, i.e. do not execute the replacement due, 
but reduce Qnow to Qbefore. If the two configurations belong to the same 
neighborhood, we loop back With generalization. In this way we fmd the 
tightest generalization for the now configuration. If Qn . .1 does not loop back, 
we take Qn 2 as the now configuration, etc. Thus we 'rmd the most general 
configuration that can be looped back. Since the number of different first­
order neighborhoods is fmite, the algorithmic process is always fmite. 

This algorithm can be obviously generalized for neighborhoods of an ar­
bitrary order. The higher the order, the more compilative will the resulting 
program be. The same effect can be achieved by function iteration, using only 
the first-order neighborhood algorithm. If we defme functions that cor­
respond to two, three, etc. steps of the Refal machine, and use the first-order 
algorithm with them, then this will be equivalent to higher-order neigh­
borhoods for the original system of functions. We can control the process of 
generalization by iterating some functions, while leaving alone others. There­
fore, the algorithm based on first-order neighborhoods has a certain property 
of completeness. If we accept the principle that the closeness of expressions 
should be measured by the length of the common part of their computation 
histories (the program-induced topology), then all strategies of generalization 
can be presented as refmements of an algorithm based on first-order neigh­
borhoods. 

6.3 Generalization of nested calls 

If nested function calls are executed according to the inside-out prin­
ciple, known also as the applicative evaluation order, then the computation of 
every active expression can be broken down into a sequence of computations 
and substitutions independent of function defmitions. For example, the as­
signment 

( < F e1 < G e2 > < H e3 > > <- eO) 

will be decomposed into the sequence of assignments: 

(<Ge2> <-eX) (<He3> <- eY) (<FeleXeY> <-eO) 

We shall refer to such decompositions as stacks. Since the order of execution 
is strictly left-to-right, computation histories-- and, therefore, neighborhoods 
-- for stacks break into pieces corresponding to the first, second, etc. segments 
of the stack. If a stack s1 is a preftx of another stack, s2, then the neigh-
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borhoods of S1 are supersets (generalizations) of the neighborhoods of S2. 
There is no interaction between neighborhoods corresponding to different 
segments of the stack. 

In the supercompiler, however, we use the outside-in (normal, lazy) or­
der of evaluation, because it provides one of the primary means of optimiza­
tion. In this case the situation is much more complicated. A prefix of a decom­
position is still a generalization of a longer decomposition, of course -- this is 
a definition of a stack. But we cannot decompose a nested call into a stack 
without consulting function defmitions. The decomposition is still made, but it 
is made in the process of moving from outside in, and it may depend on the 
values of variables. Computation histories may consist of alternating pieces 
from different function calls. Indeed, suppose that the computation process 
starts with < F E > , but after executing a number of contractions the Refal 
machine fmds that a not yet computed call in E is a hindrance for further ap­
plication of sentences. Then it will leave the unfinished function call as a con­
text, and switch to the computation of that internal call, which, in turn, may 
send the machine further inside. After computing the internal call -- com­
pletely or partially -- the process returns to the point in the outer function call 
where it was interrupted. 

Let us describe this in somewhat more detail. We call an expression 
unitary active, or just unitary, if it is of the form < E >, where E is any expres­
sion (possibly active, so that there are nested function calls). If the result of 
replacement in the execution of a Refal step is unitary, we drive it further. If it 
is not unitary, it is either passive (completed computation), or non-unitary ac­
tive (partly computed, with some passive parts outside of activation brackets, 
e.g. 'A'< Fab el > ). In both cases we substitute the result into the context, 
and take the context as the next active subexpression to drive. If there is no 
context (the top-of-stack call) and the result of the step is passive, this is the 
end of driving. If there is no context and the result is only partly passive, the 
passive part is kept in the view-field of the Refal machine, and the active parts 
are driven further. 

We shall consider a few examples which typify different structures of 
recursion. We shall demonstrate how we come to our algorithm of generaliza­
tion, and how it works. Then we shall prove that this algorithm has a 
guaranteed termination. 

The first example is the classical recursive definition of the factorial: 

Fact {0 = 1; 
sN =· < Mul sN <Fact < Sub sN, 1 > > >; } 

We assume that the arithmetic functions Sub and Mul are built-in (not 
defmed in Refal) functions which require their arguments to be ready-for-use 
numbers. Then the inside-out and outside-in orders of evaluation will lead to 
the same sequence of operations. We see here three neighborhoods involved: 

(f) <Facts1> 
(m) <Muls1s2> 
(s) <Subs1s2> 
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(To simplify things, we ignore such neighborhoods as <Fact e1 >,which in a 
way goes over in <Fact sl > ). A stack will be denoted as a string of neigh­
borhoods, e.g., sfm will stand for any of the nested calls like that in the defmi­
tion of Fact. When we simply drive < Fact sl > exhaustively we have, on one 
of the branches, the sequence of neighborhoods: 

f; sfm; fm; sfmm; fmm; sfmmm; fmmm; ... etc. 

which goes on infmitely. Let us now apply the simple algorithm of comparing 
neighborhoods which we developed for the case of one-level function calls. 
We extend it by recalling that a stack is a specialization (subset of) its every 
prefiX. At the third stage of the "process above we recognize thatfm is a subset 
of f. Thus we declare f basic, and come to the original algorithm. 

This experience suggests to accept as the general criterion of generaliza­
tion a situation where the current stack is of the form XY, where X is a previ­
ous stack. This, of course, includes the special case of an empty Y. 

However, if we only slightly change our example, this criterion will not 
work. Let the factorial function be computed in the context of some other 
function, say, 

(*) <Add 1, <Fact sN> > 

If we denote by a the neighborhood corresponding to Add, the sequence of 
stacks in driving will be: 

fa; sfma; fma; sfmma; fmma; sfmmma; fmmma; ... etc. 

One can see that none of the previous stacks is a prefix of a subsequent one. 
Therefore, the process will never terminate. 

The reason for this failure is that the algorithm, as it is at this point, does 
not draw a line between the part of stack that is recurrent, and the part that 
does not really participate in action, but is a passive context. We, therefore, 
modify the algorithm as follows. The stack will not be just a linear segment, 
but a structure of parenthesized segments, where the context part is taken 
outside of parentheses. Accordingly, the computation history will be written in 
such a way that the context is left outside of the parentheses as a common part 
to all the stages of the process, as long as it has no impact on the deve­
lopments. 

The nested call (*) will now be characterized by the formula (/)a. It 
results from the outside-in driving where we start from the call of Add, and 
then see that before anything is done on this call, we must drive Fact. So, we 
leave Add as a context, and Fact becomes the active subexpression. 

After the first step of the Refal machine, the history of computation 
takes the form: 

(/; ((s)f)m )a 

Then Sub is computed, and the next history record will be: 

(/,· (sf;f)m )a 

9 



We have followed here the Orwellian principle of permanently rewriting 
the history. We have a better reason, though, than in Orwell's novel. When s is 
computed, the result is substituted into f; thus the real previous state to be 
used in comparisons should now be seen as sf, not ( s )f. Each time that a con­
text enters the play, we open the parentheses that separate it from the active 
part at the current stage and all previous stages of history since this context 
appeared. 

As before, we compare the last stack with all the previous stacks at every 
stage of development. When we exit context parentheses while tracing the his­
tory backwards, we add the context to the current stack before comparing it 
with other previous stacks. Thus, after the first step of the Refal machine, we 
compare sfm with f. After the second step we compare f with sf, and thenfm 
with f. The last comparison discovers that/ is a repeated prefiX, and the algo­
rithm successfully terminates. 

Consider one more example. Let function F scan the argument from left 
to right and replace each pair of identical symbols by one symbol of the same 
kind: 

F{ s2s2el = s2 <Fel>; 
s2el = s2 <Fel>; 
=;} 

Let the initial configuration be 

1. <F <F <Fel> > > 

We want to meta-evaluate it using, as always, the outside-in order of evalua­
tion, so that the fmal program performs in one pass the job which is defmed 
by the initial configuration as a three-pass job. In this problem, it is easy to 
discover that the same function F is called again and again by itself, and 
declare it basic. But if we do so, we, obviously, return to the original three­
pass program. The problem here is of just the opposite kind: how to delay 
looping back in such a manner that the result is a one-pass program. The al­
gorithm must steer carefully between the Scylla of looping back too early, and 
the Charybdis of never looping back at all. We are going to show that our al­
gorithm is capable of this navigational feat. 

Let us concentrate on the first branch in every step of driving. Should we 
drive manually, we would produce this sequence of nodes: 

2. <F <Fs2<Fel> > > 
3. <F<Fs2s2<Fel>>> 
4. <Fs2<F <Fel> > > 
5. < F s2 < F s2 < F e1 > > > 
6. < F s2 < F s2 s2 < F e1 > > > 
7. <Fs2s2<F<F<Fel>>> 
8. s2 <F <F <Fel> > > 

At this stage, we would notice that the initial configuration re-appears at the 
top level. We would separate it and terminate the branch. We want now to see 
how the supercompiler will do this. 

There are three neighborhoods at work in this example, which will be 
denoted as a, b, and c: 
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(a) <FeX> 
(b) <Fs2eX> 
(c) <Fs2s2el> 

Let us trace how the history changes while the supercompiler works. The ini­
tial history is 

1. ((a)a)a 

There is no semicolon here, which signifies the fact that no step has yet been 
made. We simply decomposed ·the initial configuration into a stack. We shall 
now go through the stages 1 - 8 of the driving above, using the stack-of­
neighborhoods notation. 

In the first step of the Refal machine, we use the contraction: 

(el-> s2 s2 el) 

The replacement results in s2 < F e1 > . We now have the node 

<F <Fs2 <Fel> > > 

Driving it outside-in, in order to decompose it into a stack, we fmd both the 
first, and the second call ofF impossible to complete, so the active subexpres­
sion will be the third F again. The decomposition is: 

(<Fel> <-eX) (<Fs2eX> <- eY) (<FeY><- eO) 

In the short notation, 

((a)b)a 

Since the second F from outside (the context of the active third F) takes 
part in this transformation, we must open the corresponding parentheses: it is 
not just a which becomes b, but aa which becomes (a)b. Thus on the second 
stage the computation history is: 

2. (aa;(a)b)a 

When we compare the current situation with every stage of history, we 
do not exit from the subgraph common to both. So, what we actually compare 
at this stage is ab with aa. The result is negative, and we go on. After the 
second step the node is 

<F <Fs2 s2<Fel> > > 

Driving from outside in, we find the second F to be the active subexpression. 
The third F is not seen by the Refal machine; the neighborhood formula is 
(c)a. Since the context, which is now b, has taken part in the process again, we 
open the parentheses, and the history becomes: 

3. (aa; ab; c)a 
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Proceeding in this manner, we produce the further members of the "history of 
histories": 

4. aaa; aba; ca; ((a)a)b 
5. aaa;aba;ca;(aa;(a)b)b 
6. aaa; aba; ca; (aa; ab; c)b 
7. aaa; aba; ca; aab; abb; cb; c 
8. aaa; aba; ca; aab; abb; cb; c; ((a)a)a 

Nowhere in the history before the last stage did we see a repeating context, so 
the process went on. At the last stage, ((a)a)a compares positively with aaa, 
and this combination is declared basic. One can see that on all branches of the 
graph a similar situations takes place, so that in the end we have a finite 
graph. 

Our last example is the merge-sort algorithm, which illustrates one more 
pattern of recursion. 

Sort { e1 = <Check <Merge <Pairs el > > >; }; 

Merge { 
(el)(e2)eR = (<Merge2 (el)(e2)>) <MergeeR>; 
(el) = (el); 
= ; } 

Check { 
(el) = el; 
e1 = <Check < Merge e1 > >; } 

We shall not use the definitions of the functions Pairs and Merge2. The 
former makes up the initial list of pairs from the input list of items, which are 
assumed to be, syntactically, Refal symbols (e.g., numbers). The latter merges 
two lists. We assume that Pairs has been executed, so that the initial configu­
ration is 

1. <Check < Merge e1 > > 

where e1 is a list of pairs. 
Driving this configuration outside-in, we have the following row of con­

figurations in the branch where el in the argument of Merge is not yet ex­
hausted. We write C and M for Check and Merge, and put the ellipsis instead 
of Merge2 calls, which make no impact on driving: 

2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 

< C ( ••• ) < M el > > 
<C ( ••• )( ••• ) <Mel>> 
<C <M ( ••• )( ••• )<Mel>>> 
<C ( ••• ) <M <Mel>>> 
< C ( ••• ) < M ( ••• ) < M e1 > > > 
<C ( ••• ) <M ( ••• )( ••• )<Mel>>> 
<C ( ••• )( ••• ) <M <Mel>>> 
<C <M ( ••• )( ••• ) <M <Mel>>>> 
< C ( ••• ) < M < M < M e1 > > > > 
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The neighborhoods involved are: 

(m) 
(m1) 
(m2) 
(c) 
(c1) 

(c2) 

<Mergeel> 
<Merge (e2) el> 
<Merge (e3)(e2) e1 > 
<Checkel> 
<Check (e2) e1 > 
<Check (e3)(e2) el > 

The problem with this type of recursion is that the function Check is not a 
passive context, but one of the functions responsible for recursion; it cannot 
be taken outside of parentheses. If we look at the states of the stack at the 
moments when e1 is tested, i.e. 2, 5, 10, etc., we see the sequence: 

where no stage is a prefix of any subsequent stage. 
Nevertheless, our algorithm discovers the potential infinity of recursion, 

and declares <Check (e3)(e2)el > a basic configuration. We leave it to the 
reader to verify that the computation history will develop as follows: 

1. (m)e 
2. me; (m)e1 
3. me; me1; e2 
4. me; me1; e2; (m2)e 
5. me; me1; e2; m2e; ((m)m)c1 
6. me; me1; ei m2e; (mm; (m)m1)e1 
7. me; me1; ei m2e; (mm; mm1; m2)e1 
8. me; me1; e2; m2e; mme1; mm1e1; m2e1; e2 

At this stage the stack e2 repeats itself, and the supercompiler declares it 
basic. 

6.4 Termination of metacomputation 

We now want to prove that the algorithm we have outlined and il­
lustrated above always leads to a finite graph, because the driving of every 
branch of the graph will terminate, either because the resulting node is pas­
sive, or because the current stack has one of the previous stacks as its prefix 
(looping back). To formulate our algorithm in exact terms and to prove its 
termination, we must first review the formal objects which are used in the al­
gorithm. 

We represent the nodes of the graph of states by stacks, which consist of 
neighborhoods and are used in two forms: with and without parentheses. The 
current stack, as it appears from a step of the Refal machine, is represented in 
fully parenthesized form, which can be described by the following BNF: 

e.C-stack = empty 
I ( e.C-stack ) s.F 
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Here s.F is a neighborhood (function call). In the examples above, the neigh­
borhoods were represented by letters. 

When stacks stand for the past states, however, they are represented by 
strings of neighborhoods, which reflects the fact that these neighborhoods 
took part in the computation and must be considered together as representing 
one composite configuration of the Refal machine. Thus we introduce past 
stacks, which make up the class of objects e.Stack: 

e.Stack = empty 
I e.Stack s.F 

The consecutive members of a computation history are separated by semi­
colons, hence we need history segments, class e.H: 

e.H = empty 
I e.H e.Stack ';' 

As a result of maintaining the history records at every parenthesis level of the 
current stack, the overall record, which we shall designate as the ongoing his­
tory, e.On-hist, is from the class: 

e.On-hist = e.H s.F 
I e.H ( e.On-hist ) s.F 

In a more reviewable form, the ongoing history is: 

here each H; is a history segment, and F; a neighborhood. 
Now every branch of the graph of states which is being constructed by 

driving has a formal representation as e.On-hist. The next thing to do is to for­
mulate the rules according to which the ongoing history is transformed in driv­
ing, and defme in exact terms the conditions under which a given branch is cut 
off, either because of the termination of the current branch, or because of 
looping back to a past stage. After that we shall be able to prove that under 
those condition no ongoing history, i.e. no branch in the graph, can be infinite. 

Below F, H, and S with subscripts stand for neighborhoods, history seg­
ments, and past stacks, respectively, and C is a current stack. The starting 
point of driving is a current stack which represents the initial configuration of 
the Refal machine. There are three transformation rules for the ongoing his­
tory: 

Tl.Active replacement rule: 

T2. Partly passive replacement rule: 

T3. Tennination role: 
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H F -> H n n n 

Here Fn stands for the cumnt active (top of stack) neighborhood, and Hn is 
the immediately preceding history segment. The active neighborhood in an 
ongoing history is located as the one just before the first right parenthesis. 
The operation H*f in Rule T2 is the distribution of a neighborhood over a his­
tory segment: 

When a step of the Refal machine is performed in the process of driving, one 
rule must be applied to the ongoing history representing the current branch. 
The three transformation rules correspond to the three cases in the GMA. If 
the result of the step is a unitary active expression, Rule T1 is applied. Accord­
ing to this rule, the current active neighborhood is added to the history of 
computation on its parenthesis level, the context remains unchanged; a new 
Current Stack C results from the step. If the result of the step is passive or 
non-unitary active, and there is a context (i.e. n > 0), Rule T2 is applied. In 
this case one level of parentheses is eliminated; the context neighborhood 
F n-1 is added to each stack in the history segment H n; one more history stack, 
FnFn_1, is added to the history, and followed by a semicolon; then a new cur­
rent stack C appears. If there is no context and the result of the step is passive, 
Rule T3 is used. It terminates the branch. In case of a non-unitary result and 
n = 0 (no context) Rule T1 is used. 

The Cut-Off Rules 

Cl. Before applying the transformation rules, compare every stack of Hn with 
Fn, then every stack of H _1 with F Fn_1, etc. till the stacks of H0 are com­
pared with F nF n-1 .. F 0. If in one of such comparisons the first element is a 
preftx of the second, terminate the ongoing history. 

C2. Terminate the ongoing history if Rule T3 is used. 

We now limit our attention to those ongoing histories only that could have 
appeared in the process of driving, i.e. those which can be constructed starting 
with a C and applying Rules T1 and T2, before Rule C1 is used. 

Lemma 1. If a history segment is not empty then its last stack consists either 
of one, or of two neighborhoods. 

Proof. The lemma is true at the beginning of driving when all history segments 
are empty. When Rule T1 is used, a stack which consists of one neighborhood 
Fn is added at the end of Hn. When Rule T2 is used, Hn disappears, and Hn_1 
gets an addition which ends with F F 1. n n-

We shall refer to stacks of length one or two as short stacks. 

Lemma 2. The situation where one of the history stacks in a segment is a 
prefiX of a later stack in the same or a later segment is impossible. 

15 



Proof. Suppose that such a situation occurs. Let the earlier stack (to become a 
preftx) be ab ... z, where letters stand for neighborhoods. Each history stack 
starts at a certain moment when its ftrst neighborhood is the top element of 
the current stack. The ongoing history at this moment can be seen as: 

... ( ... ab ... z; ... (Hk ... (Hn F nJ'Fn_1 ... )Fk ) ... 

Here we left out the history segments and context neighborhoods which are 
common to ab ... z and the current stack F F 1 .. F ... , because they only add n n- .. 
common endings to both strings. For the earlier stack to be a preftx of the 
later, F n must obviously be identical to a. But it is also necessary that F n-1 be 
identical to b. Indeed, F can be lengthened only if we open by Rule T2 the in-

n . 
temal parentheses marked by the prime'. The use of Rule T1 With any subse-
quent uses of both rules is irrelevant as long as the marked parenthesis is not 
opened (it only creates history stacks subsequent to the stack of interest). This 
reasoning is also valid for all other elements of the earlier stack up to z; thus 
we conclude that ab ... z must be a preftx of the string FnFn_1 .. Fk. This, 
however, is impossible, because Rule C1 (our algorithm of looping back) 
should have stopped the process at this stage. 

Lemma 3 The number of different short stacks is ftnite. 

Proof. The number of different neighborhoods of the first order is finite, be­
cause it is the number of paths in a finite tree. Therefore, the number of dif­
ferent stacks of length one or two is also finite. 

Theorem. With the driving algorithm described above, no branch of the graph 
of states may be infinite. 

Proof .. As shown above, to every branch in the graph, as long as it is not cut 
off, an ongoing history corresponds. We are now going to show that an infinite 
ongoing history is impossible. 

First we construct yet another model, namely a model of the growth of the 
ongoing history (which itself is a model of the growth of a branch in driving). 
The general form of the ongoing history is given by(*). At every stage of the 
process it consists of a finite number of levels separated by parentheses. The 
part outside of all parentheses is counted as level 0. Fori > 0, the i-th level is 
delimited by the i-th and the i + J-st nested pair of parentheses, and consists of 
a history segment H; and the neighborhood F;. We want a model which for 
each level i of the ongoing history will indicate a number of guaranteed short 
stacks in it. We shall denote this number as G;. Thus the number of short seg­
ments in H; must be at least G . . The model describing the dynamics of the 

• 1 
numbers G; 1s as follows. 

At each moment, the highest level n is the level on which an action is 
taken. There are two types of action, which correspond to Rules T1 and T2 
above: A1, addition on the level n : 

and A2, cancellation on level nand addition on level n-1: 
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(A2) Gn becomes 0, and 

G n-1 becomes G n-1 + 1, where n > 0. 

Indeed, when we apply Rule T1 to the ongoing history, a stack of length 1 is 
added to Hn. When we apply Rule T2, the n-th level disappears, every term in 
H is lengthened by 1 and added to Hn_1. We do not know how many short 
(of length 2) stacks will be there after the operation, and we count it as zero. 
But one guaranteed stack of length 2 is added to H n-1. After any of the two 
actions, a new current stack C is created according to both rules, which in our 
model means that the top level n is incremented by some positive number, 
and the values of G; for the new levels are all set to zero. 

Suppose now that there is an infinite branch, i.e. an infmite ongoing 
history. Then the number of levels in it is either limited by a fmite number, or 
infmite. Suppose it is infmite. Some of the history segments may be empty, 
others non-empty. We want to prove that if the total number of levels is in­
fmite, the number of levels with non-empty history segments must also be in­
fmite. The total number of empty segments in the ongoing history increases 
when a new C with at least one new parenthesis is created. Consider 
separately the cases when the number of parentheses is one, i.e. C is (j)g , or 
more: ( ... ((f)g) ... )h. In the former case, the use of Rule T1 transforms one 
empty segment into a non-empty segment (namely,[;). If Rule T2 is used then 
the only empty history disappears. In the case of more than one level in the 
current stack C, one of the empty segments on the level off or g will be neces­
sarily made non-empty, no matter which of the rules is used. We conclude 
that the number of empty segments cannot become infmite without making 
the number of non-empty segments infmite too. Therefore, if the total num­
ber of levels is infinite, the number of levels with non-empty history segments 
will be also infmite. 
By Lemma 1 each non-empty history segment H; ends with a short stack. 
Since the number of different short stacks is fmite (Lemma 3), we must have a 
situation where two history stacks are identical. This is, however, impossible 
byLemma2. 

Therefore, the number of levels must be limited by a fmite number, even 
though the number of actions grows infmitely. Then there must be at least one 
level i such that an infmite number of actions takes place on that level. The 
actions, as we know, are of two types: A1 and A2. If the number of actions A2 
at the i-th level were fmite, then G; would be infmite, because the number of 
additions would be infmite while the number of cancellations fmite. But this 
would imply that there are two identical short stacks in H;, and this is impos­
sible. Therefore, the number of actions A2 must be infmite. However, each 
action A2 on level i creates an addition on level i-1, hence the number of can­
cellations, and, therefore, actions A2 on level i-1 must also be infmite. 
Reasoning in this way we come to the conclusion that the number of actions 
A2 on level 0 must also be infmite, but this is impossible, because only actions 
A1 can be performed on that level. 

Thus the assumption of an infmite ongoing history leads to a contradic­
tion, which proves the theorem. 

6.5 Driving with elementary contractions 
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As discussed in Chapter 3, one step of driving can be seen as a nor­
malization (an equivalence transformation) of the graph 

(Q <- eO) GP 

where Q is the initial configuration which depends on C-variables, and GP is 
the graph representing the full program field of the Refal machine and using 
P-variables. In the course of driving the C-part of the graph grows at the ex­
pense of the P-part, until there· is no more P-part left, and the step of dri\ling 
is completed. 

In the supercompiler, we use the P-graph GP in the form where contrac­
tions are factorized down to the level of elementary contractions (see 
Sec. 3.7). Factorization of contractions requires some modification in the al­
gorithm of outside-in driving described in Sec. 3.5. We shall explain this on 
the following example. 

Consider this clash: 

(<F <Gel> B> <-eO) (eO-> <Fs2elA>) 

where the part coming from the P-graph is not factorized. This requires the 
matching 

< G el > B : s2 el A 

The algorithm of outside-in driving which we described in Sec. 3.5 will work as 
follows. We first try to project s2, but see that on the left edge of the argument 
there is a hindrance. Then we switch to the other edge, and see that the 
matching is impossible. We have spared the effort of driving the hindrance 
<Gel>. 

If the P-graph is factorized into elementary contractions, the same clash 
will be: 

(<F <Gel> B> <-eO) (eO-> <Fel>)(el-> s2el)(el-> elA) 

Each elementary contraction describes one act of projecting an element of the 
pattern on the argument. When we factorize a contraction, we fix the order of 
projecting. Thus we come to the matching: 

<Gel> B:s2el 

which is aborted because of a hindrance. If we make the hindrance <Gel> 
the next primary active expression, we shall do unnecessary work on its driv­
ing, because in the end all the branches starting from this point will be cut off 
on the account of the next contraction. The supercompiler will go on with 
'conditional driving'. It will examine further contractions and execute those 
which can be 'easily' (we do not want to go into details) executed, even though 
some of the previous contractions stopped were because of the hindrance. If 
there was no 'matching impossible', it will return to the hindrance and drive it. 
In our case ( el <- e1 A) will be executed, and the supercompiler will dis­
cover, without driving the hindrance, that the matching is impossible. 
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This algorithm is somewhat messy; the factorization of contractions cer­
tainly does not help, and this can be seen as a disadvantage of factorization. 
The advantages, however, are more significant. 

We can point at two advantages of reducing graphs to elementary con­
tractions. The first is the simple structure of paths in the graphs. This creates 
the possibility of to various efficient codings and helps in writing algorithms. 
The second, and the most important, advantage is the simplification of opera­
tions on neighborhoods. As we drive a function call, say, <FE> , against the 
graph of F, the neighborhood to which each next contraction of < F E > 
belongs is uniquely defmed by the path from the root of the P-graph for F to 
the current point. In the supercompiler, we identify neighborhoods with these 
paths (in the three-symbol code). Thus when we make each step of the nor­
malization involving an elementary contraction, we simply concatenate it to 
the current P-path. If we kept neighborhoods in their natural form as 
L-expressions, we would have to make a composition of contractions, which 
requires a substitution, and this is a costly operation. To establish that one 
neighborhood is a subset of another, we check that the latter is a prefix (the 
beginning part) of the former. With L-expressions, we would have to use the 
GMA. 

Let us consider the driving with a neighborhood in greater detail. The 
initial stage is: 

(1) (<FE><- eO) GP 

Only the subgraph of GP for F is used, which is 

(eO -> <F el >) GP[F] 

where GP[F] is the graph for F. The first step of driving by normalization is 
the resolution of the clash for eO results in stage number two: 

(2) ( <F el > <- el) (E <- el) GP[F] 

Suppose that GP starts with the contraction (el -> s2 el). Then at the 
next step we have the clash for el: 

( <F e1 > <- el) (E <- el) (el -> s2 el) GP[F(e1 -> s2 el)] 

The part of the P-graph which is still there is what remains after we use the 
first two elementary contractions. The resolution of the clash required here 
may give zero, one, or two branches of the form: 

(3) C1 ( <F e1 > <- el) ( ••• <- el) ( ... <- s2) GP[F(el -> s2 el)] 

where C1 is the C-contraction (for this branch) resulting from the clash 
resolution, and we have put dots for some values of the P-variables e1 and s2. 

Let us now look at the sequence of neighborhoods to which the current 
configuration belongs. The following table shows the three initial stages of 
the neighborhood, the corresponding path, and the code for the path we use 
in the supercompiler: 
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Stage Neighborhood Path Code of Path 

1 eO empty empty 

2 <Fel> (eO -> <Fel>) 'f(F) 

3 <F s2 e1 > (eO-> <F e1 > )(el-> s2 el) 'f(F)'S'12 

The configuration is defmed by the neighborhood to which it belongs and the 
assignments for the P-variables of the neighborhood. Suppose that the initial 
configuration is < F 'A8' e4 >. Then the C-to-P assignments and the cor­
responding configurations for tlie initial stages of driving are: 

C-to-P assiwments Confiwation 

1 ( <F 'A8' e4 > <- eO) <F'AB' e4> 

2 ('AB' e4 <- el) <F'AB' e4> 

3 ('8' e4 <- el)('A' <- s2) <F'AB' e4> 

The configuration is the same at all three stages of driving in this case, be­
cause it passed through them without contractions. It is only its representation 
that has changed. If we take < F e4' 8' > as the original configuration, it will 
split into two configuration at stage 3. They will still belong to the same neigh­
borhood as above but for one branch the contraction c1 in (3) will be (e4 -> ), 
the configuration <F'8'>, and the C-to-P assignments 

( <- e1)('8'<- s2) 

while for the other branch C1 will be (e4 -> sS e4), the configuration 
< F s5 e4'8' >, and the assignments 

(e4'8' <- el)(sS <- s2) 

Thus when we 'drive with a neighborhood', the current configuration Q 
is split into a neighborhood Nand its specialization by a C-to-P assignments: 

Q = (E <- YN..(N))/N 

This representation of Q characterizes the current situation (in driving). We 
also include in the situation the current restrictions on the C-variables var(Q), 
and a whole number s.Frind which gives us the ftrst index which is free to use 
for the index of the next new variable (each time we introduce a new variable, 
s.Frind is increased by one). With these additions the situation includes all in­
formation we need to go on with driving in the current branch. 

In Sec. 3.6.3 we gave the scheme of driving by normalization. The input 
to the procedure is the assigl,!lD.ent to eO of the initial restricted configuration, 
which has the formula RcA co, and a path (not factorized) in the P-graph rep-
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resenting one Refal sentence, with the formula c 0PRP ApO. If we split the con­
traction in the P-graph in two parts: from eO to the p1 -set, and from this set to 
p, then we have the formula: 

We shall understand the p 1 -set as the variables defmed in the current point of 
the P-graph, which moves forward as we drive on. 

The procedure of driving starts with the concatenation of the C-piece 
and the P-piece: 

RcA cOcDP 1 RP 1 CP 1 PRP ApO 

After the normalization of the part RcA cO COp 1 RP 1 , i.e. after traveling from 
the root of the P-graph to the current point, we have the picture: 

Here the parenthesized part represents what we called above the current 
situation. It stands at the juncture of the C-part and the P-part. On the left of 
the situation is the ready part of the graph. The contractions of this part trans­
form the original set of C-variables into the current derivative set C'. On the 
right of the situation we have the part of the original P-graph that did not yet 
take part in normalization. Its current set of variables is P'. We must expect 
further contractions and restrictions for P' -variables, until we come to the 
fmal assignment. The situation, as it is seen in this formula, includes only the 
restrictions for the current C-variables C', and the C-to-P assignments. There 
is no neighborhood. Indeed, we do not need the neighborhood for further 
driving. We keep it in the situation because it is needed for other phases of 
metacomputation. 

6.6 P-graphs and C-graphs 

We are now in a position to defme the basic formats we use to represent 
metacoded Refal graphs as Refal objects for the supercompiler. In the general 
structure of objects we closely follow the defmition of Refal graphs in Sec. 
3.6.1; variations serve the purposes of efficiency. But the whole object we deal 
with in driving is a combination of P-graphs and C-graphs, and it also must 
keep the history of computation. Therefore it is much more complex. 

The graph we keep in the computer in the course of metacomputation 
can be seen as a three-dimensional structure. The objects we deal with are 
structured in space by structure and activation brackets; thus space is the first 
dimension. We trace the development of these objects in time, and record its 
history-- the second, time, dimension. We have free variables, and for dif­
ferent cases of the values of these variables the development in space and 
time is different. This is the third, the case dimension. This three-dimensional 
object must me mapped on a Refal expression, which is a one-dimensional ob­
ject. 

6.6.1 CONTRACTIONS, RESTRICTIONS, ASSIGNMENTS 
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In the formulas below, the indexes of Refal variables represent various 
syntax types of objects. Different representatives of the same type are distin­
guished by adding numbers to their names. The bar I (to read 'or') separates 
different variants of a syntax type. Some syntax types are designated with the 
use of u as a variable type. Of course, there are no such variables in Refal. 
They are used only in syntax definitions. Au-variable (from 'Unit') stands for 
a structure which has a definite (but different for different variables) number 
of ultimate terms. For instance, u.contraction consists of exactly three symbols 
(see below). When we design structures for a Refal program, we try to define 
as many of the needed structures s- or t- or u-variables, so as to be able to 
recognize them efficiently when we scan the expression from left to right or 
from right to left. e-variables should be used only when the structure is a se­
quence of an arbitrary number of basic units. Of course, we can do without 
u-structures by using one more pair of parentheses. A contraction, for ex­
ample, could be represented by a t-structure (sT sl s3). But we can equally 
well do without the spare parentheses. 

u.Contraction = s.Contr-type s.Var-index s3 

t.Restridion = ('#' e.Contr-graph) 

e.Contr-graph = u.Contraction e.Contr-list 
I e.Contr-Iist ':'(e.Contr-gr-sum) 

e.Contr-gr-sum = (e.Contr-gr) 
I (e.Contr-gr) '+' e.Contr-gr-sum 

e.Contr-list = empty 
I u.Contraction e.Contr-list 

e.Assignment = (e.Expression) s.Var-type s.Var-index 

e.Assign-Iist = empty 
I e.Assignment e.Assign-list 

Examples: the contraction (e3 -> e3(e4)) is represented as 'C' 3 4. The as­
signment 

( (Xl '*' X2) ' + 's.Gone eX s7) <- e. lOS) 

becomes 

((Xl '*V' X2)' + *S' Gone '*E'X '*S'7)'E'105 
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6.6.2 P-GRAPHS. FACTORIZATION NODES 

Syntax: 

e.P-Graph = e.P-Segment t.P-Walk-end 
I e.P-Segment ':'(e.P-Graph-sum) 

e.P-Graph-sum = ( e.P-Graph) 
I (e.P-Graph) '+' e.P-Graph-sum 

e.P-Segment = e.Contr-list 
I e.Contr-list (Restriction 

t.P-Walk-end = (' =' e.Expression) 

Thus restrictions in a P-graph can be placed only immediately before branch­
ings or walk-ends. The expressions in walk-ends are the right sides of sen­
tences. 

In the interpretation of a P-graph, the sentences of the Refal program, 
which are now the branches of the graph, are tried consecutively until one that 
is applicable is found. This dictates a certain interpretation of the nodes in the 
P-graph which result from factorization. 

Consider the graph 

where C; are some contraction segments, and W; some walk-ends. After fac­
torization it becomes 

This graph is presented in Fig.6.1, where we have denoted the two nodes in 
the graph as 0 1 and 0 2. The node 0 2 appears because of factorization. 

Fig. 6.1 A P-graph with a factorization node 
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How should this graph be interpreted? Suppose C1 is found applicable, 
then C2 inapplicable. We proceed to the second branch starting at 0 2, after 
restoring the situation as it became after c1, i.e just before entering the node. 
If C3 is applicable, we take up the walk-end W2, and this is the end of the step. 
If c3 inapplicable, we do not yet declare an abnormal stop, but go back 
beyond 0 2, restore the situation as it was at the point 0 1, and try C4, in order 
not to miss the third sentence in the original definition. 

This interpretation is different from the interpretation of a graph of 
states where the nodes represent configurations resulting from completed 
steps of the Refal machine. Indeed, suppose that the graph in Fig ... is a graph 
of states (e.g., a C-graph resulting from metacomputation) where 0 2 marks 
the configuration Q2 resulting under condition c1 from one step of the Refal 
machine with the preceding configuration Q1. In the interpretation of this 
graph, if C2 and c3 are inapplicable, we must not go back beyond 0 2, but 
declare an abnormal stop. 

The difference between the interpretation of factorization nodes and 
configuration nodes creates a problem. A factorization node in the P-graph 
must go over into a node in the C-graph which also should be interpreted as a 
factorization, not a configuration, node. This can be best seen from the special 
case when the argument of the current function is simply a free variable; the 
C-graph then replicates the P-graph. Thus we have to maintain a difference 
between two kinds of branchings, or nodes: configuration, no-return nodes, 
and factorization nodes, which must be passed around in interpretation. This 
is inconvenient in many respects. It is especially unpleasant that the semantics 
of factorization nodes complicates the concept of the history of computation. 
Indeed, if we passed through a factorization node, it does not yet mean that 
this node will be present in the fmal history of computation; it may still be 
passed on the way back, and disappear. 

To avoid these complications, we put a restriction on factorization which 
allows only such nodes that do not require passing them in backward direc­
tion; these nodes, are essentially configuration (functional) nodes -- they 
break the domain of the function into disjoint subfunction domains. 

Examples. Let the graph produced directly from Refal sentences be 

{ (el-> 'AB'el) Q1 
+ (el-> 'AC'el) Q2 
+ (el-> 'BCB'el) Q3 
} 

It can be factorized in the obvious way: 

{ (el-> 'A'el) { el· > 'B'el) Q1 
+ (el-> 'C'el) Q2 

} 
+ (el-> 'BCB'el) Q3 
} 

Because (el-> 'A'el) is orthogonal to (el-> 'BCB'el), the factorization node 
which has appeared in the graph is a no-return node, thus this factorization is 
legitimate. Consider, however, this modification of the graph: 
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{ (el-> 'AB'el) Q1 
+ (el-> 'AC'el) Q2 
+ (el -> s2 e1 s2) Q3 
} 

Now the first elementary contraction chopping 'A' cannot be factorized. 
Indeed, if we try to do this, we have 

{ (el-> 'A'el) { ( (el-> 'B'el) Q1 
+ (el-> 'C'el) Q2 

} 
+ (el-> s2 e1 s2) Q3 
} 

which includes a prohibited factorization node. If the argument starts with 'A', 
this does not yet mean -- against our best habits -- that the frrst branch will be 
taken. If the argument is 'ADA', we pass the frrst branch, enter the node, try 
both branches in the subgraph, fail, and --in violation of our agreement -­
must return to the opening node to fmd fmally that the last sentence is ap­
plicable. This situation cannot be corrected by adding restrictions. If the 
restriction on a branch is produced by subracting only the preceding parallel 
segments, not full branches, then the algorithm will be altered. In our ex­
ample, if on the last branch we put the restriction(# e1 -> 'A'el), then the 
function becomes undefmed on such arguments as 'ADA'. 

The requirement we set for a P-graph used in metacomputation is as fol­
lows. In any subgraph of the P-graph, consider a segment W2 which leads to a 
branching point: 

Then W2 must be orthogonal to all branches in G3. If this condition is met, 
the node at the root of G2 can be treated as a no-return node. 

The no-return limitation on factorization is rather strong. Sometimes it 
will demand that we abandon a very useful factorization. In such cases it may 
be worthwhile to restructure the Refal defmition giving priority to the desired 
factorization, and agreeing to pay some price for it in terms of the size of the 
program. Consider the following variation of the example above. Let the 
Refal program be: 

Fl{ 
'ABCDEFGHUKX' e1 = Q1; 

'ABCDEFGHUKY' e1 = Q2; 
'ABCDEFGHUKZ' e1 = Q3; 

s2 e1 s2 = Q4; } 

In this defmition we cannot factorize (el -> 'ABCDEFGHIJK' el) without 
violating the no-return requirement. But it would be a shame to check several 
times that the argument starts, or does not start, with the letters from A to K. 
We can incorporate this check into the algorithm so that it is performed only 
once: 
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Fl{ 
'ABCDEFGHUK' e1 

with {el: 'X' e1 = Q1; 
el: 'Y' e1 = Q2; 
el : 'Z' el = Q3; 
el: el 'A' = (('A')('BCDEFGHUK') <- (s2)(el))/Q4; 

}; 
s2 e1 s2 = Q4; 
} 

The price we had to pay for this is one extra sentence. But in terms of execu­
tion time this program, when ii is transformed into a Refal graph and inter­
preted, is fully efficient. 

Exercise ••. Derive formally the second definition from the first. 

Another situation where the no-return requirement may prevent a useful 
factorization is an overgeneralized 'catch-all' sentence. Consider a function 
which has the format < F (el)(e2)e3 >.Suppose that two sentences: 

<F(A)(B)C> = R1 
< F (D)(E)F > = R2 

where A, B, etc. are some L-expressions, describe two cases we want to distin­
guish. And then, suppose, we want to add that otherwise something else 
should be done, like sending an error message or stopping, which does not re­
quire an analysis of the arguments. We can simply write: 

<Fel> = R3 

But then it will be impossible to to take out the format of the first two sen­
tences as the factor 

(el-> (e2)(e3)el) 

To be able to do this factorization, we must rewrite the third sentence using 
the format, i.e. 

<F (e2)(e3)el> = R3 

Unfortunately, this kind of transformation can hardly be made automatically, 
because when we use the format in the last sentence we limit the domain 
where our function is defmed. If a program makes this transformation, it will 
not know whether the human programmer simply neglected to write out the 
format, or he wanted the definition to work also in the case when the format 
of the preceding sentences is violated. 

One part of the supercompiler is a program which transforms a Refal 
program into a P-graph with no-return nodes. Thus all nodes in the C-graph 
produced by the supercompiler must be interpreted as no-return nodes too. 

26 



6.6.3 C-GRAPHS 

Syntax: 

e.C-Graph = e.C-segment e.Final-C-assign 
I e.C-segment ':'(e.C-Graph-sum) 

e.C-segment = empty 
I u.Contraction e.C-segment 
I u.C-func-assign e.C-segment 
I u.C-graph-assign e.C-segment 

u.Final-C-assign = ('C' e.Passive-expression)'E'O 
I ('F'e.Func-name e.Assign-list)'E'O 

u.C-func-assign = ('F'e.Func-name e.Assign-list)'E's.Var 

u.C-graph-assign = 'G'(e.C-graph)'E's.Var 

e.C-Graph-sum = (e.C-Graph) 
I (e.C-Graph) '+' e.C-Graph-sum 

There are no restrictions in C-graphs (they are implicit). The function 
calls in function-call assignments u.C-func-assign and fmal assignments 
u.Final-C-assign represent basic configurations. The arguments of these 
functions are the free variables in the corresponding ccmfigurations. The as­
signment lists assign values to these variables. Function names are of two 
kinds. First, it may be the name of a predefmed basic configuration, in par­
ticular, a built-in function. This name will usually be an identifier. Second, it 
may be a configuration declared as basic in the course of metacomputation. 
This will be a whole number. The initial configuration has 1 as its number. 

There are also graph assignments u.C-graph-assign in C-graphs. To ex­
ecute such an assignment we execute the graph e.C-graph and reassign the 
fmal value of eO to the e.variable with the index s.Var. While in P-graphs the 
walk-ends are simply right sides of Refal sentences, the structure of a C-graph 
reflects decompositions with the separation of subgraphs, which the super­
compiler performs in the process of computation. A walk-end in a C-graph 1s 
the final stage of a walk-end in a CP-graph, which we proceed to discuss. 

6.7 CP-graphs. History records 

The overall data structure with which the supercompiler works is a CP­
graph. It includes P-graphs, C-graphs, and situations as interfaces between 
them. The supercompiler uses the multibracket technique to pass the CP­
graph from left to right, so that at the pointer we have the current C-to-P in­
terface, and at the left from it there is the C-part, and at the right the P-part of 
the graph. As it moves through the CP-graph, it transforms P-parts into 
C-parts. 

There are two major differences between the C-part of the CP-graph 
and a fmished C-graph. First, a CP-graph is a structure of parallel and nested 
subgraphs of several types (a C-graph can include only C-graph- assignments). 
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Second, a CP-graph includes history records, which are necessary in order to 
compare the current node with the past nodes and loop back at appropriate 
moments. History records may also include the information about the basic 
situations which are declared at the moment. 

First we discuss history records. There are two types of those: nodes and 
situations. 

t.Node = ('N'e.Node) = ('N' s.Frind (e.Contr-graph) e.Expression) 

A node represents a configuration of the Refal machine in its "natural", i,e, 
not decomposed into a stack of function calls, form. The expression in the 
node is an arbitrary general R:efal expression; it may have any member of 
levels of nested function calls. The contraction graph represents the restric­
tion ('#'e.Contr-graph) on the variables of the expression. The empty 
e.Contr-graph signifies the absence of restrictions. 

We keep nodes in the history of metacomputation in order to be able to 
loop back to a node if we meet it, or its specialization, again. However, from 
the examples in the beginning of this chapter we know that if we always waited 
till a node repeats itself in order to loop back, we would almost certainly never 
finish the construction of the graph. This is why we also keep situations as his­
tory records. 

The syntax of situations is: 

e.Situation = s.Frind ( e.Contr-graph) e.Func-call e. Context 

t.Func-call = ( ( e.Path) e.Assign-list) 

e.Path = 'r(e.Func-name) e.Contr-list 

e.Context = e.Stack 

e.Stack = empty 
I t.Func-call e.Stack 

Function calls are represented as neighborhoods specialized by assign­
ment lists, as discussed above. The path in a function call can be seen as a new 
function name. This is a function which is defmed only on a subset of the 
original function e.Func-name, but in this subset it is identical to e.Func· 
name. A stack is defmed in Sec.... In the decomposition of nested function 
calls into stacks we always use the same standard variable as a liaison between 
function calls in the stack. It has a special type indicator h and the character 
'X' as the index: h.X. In the metacode it is '*HX'. The function call on the top 
of the stack in a situation determines the further development of the situation 
at the moment. The further part of the stack is a context. There is a difference 
between the function call in the situation and the function calls that constitute 
the context. The former does not include h-variables, while each of the latter 
has exactly one entry of h.X. 

The general syntax of CP-graphs is: 

e.CP-graph = e.Contr-list e.CP-walk-end 
I e.Contr-list e.Ready-grs e.Reduction u.Brancbing 
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u.Branching = u.Fork-situation ':'(e.CP-graph-sum) 
I u.Past-situation ':'(e.Cp-graph-sum) 

e.CP-graph-sum = e.C-begin (e.CP-graph) e.P-end 

e.C-begin = empty 
I (e.C-graph)' +' e.C-begin 

e.P-end = empty 
I '+ '(e.P-graph) e.P-end 

u.Fork-situation = '$'(e.Situation) 

u.Past-situation = ( e.Basics-list )' P$' (e. Situation) 

A situation is found in a CP-graph in front of every branching point, and 
at the interface between the C-part and the P-part. The role of the interface 
situation was described in Sec.6.5 (old). The situation at a branching point 
represents the configuration at that point. We need it in order to jump to the 
next branch of the P-graph when the current branch comes to an end. We dis­
tinguish between Fork situations and Past situations. The former are kept only 
for jumping to parallel P-branches, as we have just described. The latter have 
an additional role as possible points to loop back in the process of metacom­
putation. We never try to loop back on a fork situation. 

It should be noted that past situations can appear only in front of branch­
ing points. This reflects our strategy of dealing with transitory situations. If a 
configuration goes over into another configuration without contractions, there 
will no branching point, and therefore, no e.Past-situation. The history of 
computation by unique steps is not recorded. From this rule, however, as from 
any rule, there may be exceptions. In some situations we still want to keep a 
history record of a configuration, even though it is transitory. Then we create 
for it a special fictitious branching point which consists of only one branch. 
Thus the syntax is not violated. 

In order to understand why we have to do this distinction, we must recall 
that we loop back only to a configuration which is separated from the current 
configuration by at least one step of the Refal machine. If two situations are 
separated only by contractions, the later is only a specialization of the earlier, 
and to loop back would be absurd. However, when we meet a factorization 
node in the-current P-graph, we have to remember the current situation, and 
thus create a branching point with a Fork situation. This is a situation 
separated only by contractions from the next situation up the tree, so we do 
not want to loop back. An analogous situation can appear because of outside­
in driving, even without factorization nodes. In outside-in driving it happens 
that after we have left a situation at a branching point Q 1 and made a con­
traction, we meet a hindrance at a point Q2, and have to decompose the con­
figuration and use the P-graph for another function. Again, we cannot loop 
back from Q2 to Q1. Generally, we have a number of consecutive situations 
which belong to the same step of the Refal machine. At a certain moment 
one, or some, of them must be chosen as Past situations, while the other 
remain Fork-situations. We do not go here into the details of the algorithm 
used by the supercompiler. 
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The situation at the C-to-P interface is a part of e.CP-graph in e.CP-gr­
sum. The CP-graph e.CP-graph can, of course, contain e.CP-gr-sum. This 
recursion can take place any number of times, but in the end e.CP-graph will 
end with a walk-end e.CP-walk-end. This data structure will be described in 
Sec. 6.7 and 6.9. One of the variants of e.CP-walk-end is a C-to-P interface. 

An example of an actual computer output will help to see the data struc­
tures used by the supercompiler. We take a very simple problem. The defmi­
tions in the program field are: 

Fa { 
'A'e1 = 'B'<Fa e1>; 
s2 e1 = s2 <Fa e1>; 
= . , 
}; 

* Iterative Fb 
Fbi { e1 = <Fbi1 ()e1>;}; 
Fbi1 { 

(e1)'B'e2 = <Fbi1 (e1'C')e2>; 
(e1)s2 e3 = <Fbi1 (e1s2)e3>; 
(e1) = e1; 

}; 

Fe { 
'C'e1 = 'D'<Fc e1>· 
s2 e1 = s2 <Fe e1>i 

, 
}; 

The function Prout, which is used by the supercompiler for output, is 
primarily oriented at printing strings of characters; it prints such a string ex­
actly as it is in the argument, without any quotes. Refal does not set any par­
ticular way of printing expressions; this is left to the user. However, if there 
are non-character symbols and parentheses in the argument of Prout, it will 
print them out in a certain manner, namely, parentheses are printed as paren­
theses, identifiers and numbers are printed as the corresponding strings of 
characters separated from adjacent symbols by blanks. Obviously, this must 
be used only when there is no risk of confusing parentheses with character­
parentheses, and non-character symbols like the number 25 with their charac­
ter representations like '25 '.Since the user, as a rule, knows what to expect 
from the output, the simple use of Prout usually is satisfactory. Below we shall 
list object expressions as printed by Prout. 

The P-graph for Fa printed in this way is: 

:((S 1 2 :((1 2 A(=B*<<Fa )*E 1 ))) 
+((#1 2 A)(=*S 2 *<<Fa )*E 1 ))))) 
+(X 1 N(=)) 
) 

Let us give the following initial configuration to the super compiler: 

< Fe < Fbi < Fa e1 > > > 

The initial node is: 
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('N' 2 ()'*'( (Fe)'*'((Fbi)'*'((Fa)'*E'l)))) 

Printed by the computer, it is 

(N 100 ()*((Fe )*((fbi )*((fa )*E 1 )))) 

We leave the numbers from 1 to 99 for the variables in the initial configura­
tion, and start the indexes of new variables from 100. The initial situation, 
which represents the same configuration as the node, is: 

$(100 ()((f(Fc ))(*((Fbi )*((Fa )*E 1 )))E 1 )) 

Note that at the beginning the the stack consists of one function call only-­
the outermost one. The breaking down of this nested call will be done in the 
process of outside-in driving. 

The reader, hopefully, has already had enough exposure to metacom­
putation in order to see what will the supercompiler do with this task. Since 
Fbi calls Fbil, and the latter calls itself recursively, without putting anything 
out of the activation brackets, there is no choice but to declare 

(1) <Fbil <Fael> > 

a basic configuration. The two-pass processing represented by this nested call 
will be replaced by a new one-pass function (namely F2, except that F2 will 
include Fe as a context, as discussed below). The function Fe will remain as it 
is, except that it is renamed as F3. Thus the three-pass algorithm will be trans­
formed into a two-pass algorithm. 

This is the final output of the supercompiler: 

Recurrent Basic #3 : 
$(103 ()((f(Fc ))(E 102 )E 1 )) 

Graph: 
: ( ( 

s 102 103 
: ( ( 

I 103 C(F 3 C*E 102 )E 102 )E 104 (CD*E 104 )E 0 
)+( 

(F 3 (*E 102 )E 102 )E 104 CC*S 103 *E 104 )E 0 
)) 

)+( 

X 102 N(C)E 0 
)) 

==================== 
Recurrent Basic #2 : 
$(103 0 

) 

((f(Fa ))(*E 1 )E 1 ) 
((f(Fbi1 )B 1 2 )(*E 102 )E 2 C*HX)E 1 ) 
((f(Fc ))(*HX)E 1 ) 

Graph: 
: ( ( 

s 1 103 
: ( ( 

I 103 A(F 2 C*E 1 )E 1 C*E 102 C)E 102 )E 0 
)+( 

I 103 B(F 2 C*E 1 )E 1 C*E 102 C)E 102 )E 0 
)+( 
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(F 2 C*E 1 )E 1 C*E 102 *S 103 )E 102 )E 0 
)) 

)+( 

X 1 N(F 3 <*E 102 )E 102 )E 0 
)) 

==---=========== 
Graph for the initial configuration: 
(F 2 C*E 1 )E 1 ()E 102 )EO 

Both basic configurations emerged from looping back to a situation, not 
to a node. Thus they are defined in terms of situations. The basic F2 has three 
calls in the stack, not two as one could expect. Even though it is the two-call 
configuration (1) that necessitates looping back, the basic configuration, as ul­
timately defined by the supercompiler, incorporates the context Fe. As a 
result, the final graph does not use the nested call < F3 < F2 ... > > , but 
simply calls FZ, which calls F3 when it completes its part of the job. 

6.8 Local lists of basic configurations 

When we generalize Qafter with Qbefore, we return to the point 
Qbefore, delete the whole development of this configuration, reduce it to the 
generalization, and go on from this point. This situation is represented 
schematically in Fig. 6.2, where solid lines stand for Refal steps, and dashed 
lines show reductions. Conftglll'ation Q1 produces Q~, which is of the same 
neighborhood Qn as Q:l' but cannot be reduced to it, t.e..is not its subset. So 
we must form a generalization, in accordance with our algorithm. We can take 
the full neighborhood Qn as the generalization. But it may be possible to 
make a tighter generalization, and the supercompiler uses this possibility. 
Those variables of Qn for which the values in Q1 and Q2 are identical are 
retaining these values; the variables which have different values are general­
ized to their syntactic types, i.e. sf or el. 

Fig. 6.2 Repeated generalization 

Let the generalization of Q 1 and Q be Q . The whole previous develop­
ment of Q1, including Q2, is now deletel and d1 is reduced to Q (Fig. 6.2a). 
We develop Q now. Suppose that, as shown in Fig. 6.2b, the frrst~ranch exit­
ing from Q , w\ich produced Q2 before, produces Q' 2 recognizable as Q9. So 
this part 8f development is successfully complete(!. The other branch, 
however, produces Q3, which belongs to the same neighborhood Qn, but can-
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not, again, be reduced to Q9, so it requires a next generalization. Therefore, 
Q9 does not stay in the fmal graph as a basic configuration. If we included it in 
the list of configurations declared basic, it must be excluded from that list at 
this stage, reduced to the new generalization (that of Q3 and Q9), and 
redeveloped. 

This is, however, only one part of the problem. Consider the situation in 
Fig.3. A basic configuration Q1 produces confJ.gUration Q2, which loops on it­
self, and is thus declared basic. The development of Q 2 includes a call of Q' 1, 

which is reduced to Q1. There is only one more branch of Q2, which happens 
to lead to a passive node P. Now the development of Q2 is successfully com­
pleted; we have not only a basic configuration, but also completed develop­
ment, which we may output as a part of the fmal program. 

Fig. 6.3 Generalization of a parent confJ.gUration 

Then we go on developing Q1, and discover that it produces Q3, which 
demands generalization of Q 1• We have to throw away the whole develop­
ment of Q1, reduce it to its generalization with Q3, and redevelop it. However, 
we have in the output the basic confJ.gUration Q , which calls the now non­
existent basic configuration Q 1, for which we sh:Jf never have a graph. So, not 
only must we delete Q2 from the list of basic configurations, but we must also 
delete its definition from the output. In fact, we should not have sent the 
graph for Q2 to the output, in the first place. 

These problems are solved by making basic configurations local to those 
nodes of the graph on the existence of which they may depend. Instead of 
maintaining one global list of basic configurations, we keep local lists at the 
branching points leading to the current configuration; see the variable 
e.Basic-list in u.Past-situation. For each basic confJ.gUration in the list we 
keep: its index (a whole number) and its definition in C-terms, which is a 
restricted configuration. We might also keep the configuration's development 
(a graph for it), but it could take too much space in the memory. Therefore, 
we do not keep it in the list, but put on disc as part of a separate list of con­
fJ.gUration graphs. At the end of metacomputation this list is read, and the 
graphs for the disappeared basic confJ.gUrations are removed. 

The local lists of basics are maintained in the following way. When a Past 
situation is looped at, we declare it a tentative basic. 
As we develop a tentative basic, one of three things can happen: (1) it is 
generalized again with some configuration in its development and 
redeveloped, still remaining a tentative basic; (2) it disappears because some 
node up the tree is generalized and redeveloped; (3) its development is suc­
cessfully fmished. In the third case the tentative basic becomes a (real) basic 
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and is added to the list stored at the next Past situation up the tree. In this way 
every configuration declared basic at any branch will become available for all 
following branches. When we check whether the current configuration is 
basic, we consult all Basic lists up to the root of the whole CP-graph. 

Those basic configurations that originate from nodes, not situations, are 
never generalized. When They are simply added to the closest e.Basic·llst 
when we move up the graph in the process of depth-first scan of the tree.( See 
the next section for the syntax of a node used as an historic record). 

There are a few more decisions a meta-evaluator must take when run­
ning through the lists of basic configurations. If the current configuration Q 
and some basic co~ation Qb belong to different neighborhoods, then we 
certainly can ignore Qb and go over to the next basic configuration. If Q is a 
subset of Qb then, again, it is clear that the reduction is in order. Suppose, 
however that Q belongs to the same neighborhood that Qb, but is not its sub­
set. Then two courses of action are possible. 
(1) We can generalize Q and Qb, and substitute the generalization for Qb in 
the Basic list. We must then reduce Q to the generalization and go on with 
metacomputation. The inconvenience of this method is that we also have to 
look through the developments of all basic configurations and replace the 
calls of Qb by equivalent calls of the more general basic. 
(2) We can ignore Qb, and this is what the supercompiler does. With this 
method, Q may become a new basic configuration which belongs to the same 
neighborhood as Q, but may be in different relations to Qb: disjoint, partially 
overlapping, or covering (more general). 

The choice of the second method raises other questions. Since the lists of 
basic configurations may include overlapping configurations, the order in 
which we examine them may be of significance. Suppose we have two basic 
configurations Qb1 and Qb2, such that the former is a subset of the latter. 
Then we must frrst compare Q with Qb1, and only then, if the reduction is im­
possible, with Qb2, otherwise Qb2 will never be used. But to use a tighter 
basic configuration is always desirable; as we know, this can give a gain in ef­
ficiency. Since more general basics come later than their subsets (a subset 
cannot come later because it will be recognized as belonging to an already ex­
isting basic configuration), we must compare the current configuration with 
basic configurations in the same order in which they are added to the lists. As 
far as different lists go, this means that we should use the Basic lists starting 
with root of the CP-graph and ending with the current node. This order is op­
posite to that highly desirable for the efficiency of looping back. Indeed, algo­
rithms often have the structure of nested loops. Thus we have better chances 
to loop back (either to a basic configuration, or to a Past situation) if we ex­
amine the nodes of the CP-graph in the direction from the current configura­
tion to the root. To satisfy both requirements we have to go through the graph 
twice: frrst from the root to the node, and then back to the root. This also is 
undesirable. 

The supercompiler makes a compromise decision. It passes the current 
branch only once, and in the direction from the node to the root, comparing 
the current configuration both with Past situations, and with basic configura­
tions. Inside a local list, however, the scan is in the same direction (left to 
right) as the direction in which the list grows when new basics are added. 
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6.9 CP-graphs. Subgraph structure 

Syntax: 

e.CP-walk-end = u.Node-context 
I e.Interface 
I u.Past-node 
I u.X-subgraph 
I u.NuD-subgraph 
I e.Subgraph-Ust ('A' u.Final-C-assign) 
I e.Subgraph-Ust ('A' u.Final-C-assign) '$'(e.Sit)e.P-graph 
I e.Subgraph-Ust e.Reduction '$'(e.Sit)e.P-graph 

u.Node-context = ('N'e.Node)'X'(e.Context) 

e.Interface = '$'(e.Situation) e.P-graph 

u.Past-node = s.Index ('N'e.Node) 'G'(e.CP-graph)'E's.Var 

u.X-subgraph = 'G'(e.CP-graph)'X's.Var (e.Context-situation) 

e.Context-situation = e.Situation 

u.NuD-subgraph = 'G'(e.CP-graph)'O' 

e.Subgr-Ust = e.Ready-grs 'G'(e.CP-graph)'E's.Var e.Wait-grs 

e.Reduction = empty 
I ('A' e.Assign-Ust) e.Reduction 

e.Ready-grs = empty 
I u.C-func-asslgn e.Ready-grs 
I u.C-graph-asslgn e.Ready-grs 

e.Wait-grs = empty 
I 'G'(('N'e.Node)'X'(e.Context))'E's.Var e.Wait-grs 

Metacomputation starts with a node-context, where the e.Node is the ini­
tial node, and e.Context is empty. The context in a node-context is referred to 
as the internal context of the node, as distinguished from its external context 
found in the e.Context-Situation part of an enclosing X-subgraph. The context 
e.Context in u.Situation is also an internal context. The internal context is an 
integral part of the configuration; it is taken into account when we compare 
and generalize configuration. The external context does not take part in 
operations on configurations. The difference between external and internal 
contexts arises in decompositions, as we shall discuss in a moment. At the 
beginning, before any decomposition is made, the internal context is empty. 

Let the initial node be < F E > . Then the P-graph for F is read, and the 
node is transformed into the corresponding situation with empty internal con­
text. We have now an interface. This is the format in which the driving takes 
place, as discussed in Sec. 6.5. If a hindrance < Q > is met in E, a decomposi­
tion is made: 
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<FE> = (<Q> <- eV)/ <FE'> 

This is how an X-subgraph appears: 

'G'( ('N' ••• <Q> )'X'() )'X' V( <FE'>) 

The process of metacomputation enters the subgraph, and the node < Q > is 
developed in the empty internal context The external context-situation 
<FE'> is the situation in the driving of the function F frozen at the moment 
of decomposition. Vis the liaison variable s.Var. In the language of Sec. 6.3 
we have the stack ( q)f. 

During the metacomputation of < Q > it may or may not happen that 
the X-subgraph will be opened. If it is opened, the external context <FE'> is 
added to all situations and nodes inside the subgraph as internal context. In 
the language of Sec. 6.3, on all walk-end in the subgraph we have now the 
stacks of the form q'f, where q' is any neighborhood that resulted from q. If 
the subgraph is never opened, its computation is completed independently of 
the context. We say in this situation that the root configuration of the sub­
graph is separated. The result in the C-graph is a C-assignment to the variable 
eV; it will be u.C-func-assign if the whole subgraph is reduced to one function 
call (as, is the case, e.g., when < Q > is a call of a basic configuration), or 
u.graph-assign otherwise. 

Sooner or later, the pointer of the su~rcompiler will return to the 
deferred context. If the subgraph was opened, then a passive or partly passive 
expression may be substituted for the liaison variable eV in the context­
situation; otherwise eV in it is treated as a free variable. In any case, we must 
resume the driving from the moment when it was interrupted by decomposi­
tion. The context-situation becomes an interface again. Obviously, we must 
restore the P-graph exactly as it was before decomposition. In earlier versions 
of the supercompiler, the current P-graph was saved together with the 
context-situation. This may require, however, a lot of space, if P-graphs are 
big and stacks long. Therefore, in the later model of the supercompiler we re­
store the P-graph from the context-situation and the initial full P-graph for F. 

Decomposition and opening create walk-ends of recursive structure 
which we ftrst introduced in Sec. 6.3. An example: the walk-end ((abc)d)e, 
where letters stand for some neighborhood has the following structure in the 
supercompiler (schematically): 

••• 'G'(-'G'( ... func-call(a) stack(b,c) )'X' sit( d) )'X'(sit( e)) 

The dots represent all other elements of CP-graph except walk-ends. They in­
clude contractions (the case dimension), and history records (the time 
dimension). 

Null-subgraphs appear when a Refal step creates a unitary active expres­
sion. Before driving it on, we enclose it into the brackets of a null-subgraph. 
Thus what we denoted as 'a; b; c' in Sec. 6.3 will look as 

... hist-rec(a) .. .'G'( ... hist-red(b) ... 'G'( ... hist-rec(c) ... )'O')'O' 

The dots stand for contractions, branchings, etc. 
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The past-node structure is introduced for keeping some nodes in the his­
tory records. This is an optional feature. The supercompiler could do without 
it, using only past situations, and still build a fmite graph. But in some cases a 
past-node makes a short-cut and leads to a shorter program. The node re­
corded as u.Past-node may lie in the mainstream of the development, in 
which case s.Var is '0'; or it may be separated as a subgraph, with s.Var as the 
liaison variable. 

When a past-node record is left, we do not know whether there will be a 
looping-back to il But a number s.Index is reserved for the case there will be. 
As we mentioned, there is no generalization of past-nodes in the supercom­
piler. If there is a reduction to e.N ode from one of the descending configura­
tions, it becomes a basic configuration. Otherwise the past-node record is 
erased when it is passed on the way back and out from the subgraph. 

X- and null-subgraphs can only be nested, not parallel. Parallel sub­
graphs are of the E-type, i.e. have the format: 

'G'( e.Subgraph )'E's.Var 

We refer to such subgraphs as separated subgraphs. They appear in the follow­
ing four situations. 

1. PfJitly passive top-level walk-end. A simple example of this situation is when 
we drive the configuration <Fe e.lOl >, as defined in Sec. 6 ... (see basic #3), 
and after one Refal step have the configuration 'D' <Fe e.lOl >. When the 
walk-end is partly passive, we decompose it, taking out all active subexpres­
sions: 

('D' < Fe e.lOl > <- eO) = 
( < Fe 2.102 > <- e.104) ('D' e.104 <- eO) 

The remaining passive expression is formatted as u.Final·C-assign and 
enclosed in parentheses with the flag 'A', which is a sign to the driving algo­
rithm to jump over it as a ready component of the fmal C-graph. The exact 
computer form is: 

G((N 105 ()*((Fe )*E 102 ))X())E 104 (A(CD*E 104)E 0) 

The process enters the subgraph now, and it is soon discovered that the 
node must be reduced to the root node <Fe e.102 >. The final walk-end in 
the C-graph becomes 

(f 3 C*E 102 )E 104 (CD*E 104 )E 0 

If there are more than one subexpressions, the decomposition will create 
a sequence of parallel subgraphs, e.g.: 

('B'( < F1 e1 > ( < F2 e2 >' + '< F1 < F3 e1 > >)) <- eO) = 
( <Fl el> <- e.UO) ( < F2 e2 > <- e.lll) ( <Fl <F3 el> > <- 112) 
('B' (e.UO (e.lll '+' e.112)) <- eO) 
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The subgraphs will be processed sequentially, thus we have the structure 
e.Subgraph-Ust, which consists of the ready part of the subgraphs e.Ready­
grs, the subgraph where the pointer is, and the subgraphs e.Wait-grs, which 
are still to be processed. 

It is important that the configuration from which we take out active sub­
expressions is on the top level of the initial graph or a separated subgraph. If a 
partly passive expression is found inside at least one pair of activation brack­
ets, we have no need of taking out its active subexpressions: those which are 
needed for the computation of the enclosing function calls will be found 
automatically in the process of outside-in driving, and those which are not 
needed will find their way, uncomputed, into the final answer, i.e. a top-level 
walk-end, or disappear at some point on this way. When an active subexpres­
sion enters this top-level walk-end, there is no choice but to compute it. 

2. Reduction to a basic configuration. When we reduce a conftguration Q to a 
basic configuration Qb, we match the former to the latter and find the reduc­
tion assignment (E <- m(Q~). Some of the expressions in the list E may in­
clude active subexpressions. As in the preceding case, we have no choice but 
to compute the values of these before proceeding to the evaluation of Qb. 
Indeed, it is in the concept of a basic configuration that its arguments are 
computed independently of its definition, so that in the metacomputation of 
the graph of the basic configuration the arguments can be treated as free vari­
ables. The overall metacomputation is thus split into two parts. Without this 
split we could go on infinitely. 

Therefore, the active subexpressions from all members of E are taken 
out and form a list of separated subgraphs. The remaining passive parts are 
substituted in the arguments of the basic conftguration. As in the preceding 
case, the formula for the CP-walk-end is: 

e.CP-walk-end = e.Subgraph-Ust ('A'u.Final-C-assign) 

but while the final C-assignment in that case was passive, 

u.Final-C-assign = ('C' e.Passive-expression)'E'O 

it is active now: 

u.Final-C-assign = ('F'e.Func-name e.Assign-Ust)'E'O 

We have assumed that configuration Q which is reduced to Qb is simply 
a specialization of Qb. We know, however, that this is not the only situation 
when a reduction to Qb is necessary. If Qb, when decomposed into a stack, is 
ab ... c, and Q is a'b' ... c'xy ... z, where function calls a', b', etc. to c' are specializa­
tions of a, b, etc. to c, respectively, we have to reduce Q to a specialization of 
Qb in the context xy ... z. If we remember that the reduction assignments, again, 
may include active subexpressions which we must separate as subgraphs, we 
have the decomposition: 

(Q <- eO) = e.Subgraph-Ust (Q~pec <- eV) (Qcontext <- eO) 

38 



where Q~Rec is a specialized call of the basic configuration, and Q con~eJSt is 
what remams of Q when the letter it taken out and replaced by the liaiSon 
variable eV. In the supercompiler this is represented as 

e.Subgraph-Ust ('A' u.Final-C-assign) '$'(e.Sit)e.P-graph 

The ending starting with '$' is a reserved interface corresponding to 

(Q context <- eO) 

As in the case of no context, the action pointer is set at the first separated sub­
graph; the true interface, therefore, will be there. But sooner or later the 
pointer will pass the subgraphs and jump over the final C-assignment. Then 
the reserved interface will become active. 

3. Looping back (without generalization). This case does not differ much from 
the preceding case. When we reduce Q to a past configuration QP, which can 
be represented by a situation or by a node, we treat QP as a basic configura­
tion and reduce Q to it in the same manner. (QP becomes formally basic when 
the development of its graph is completed). 

Declaring a recurrent configuration basic and the resulting separation of 
the function calls in the arguments, effectively stops the process of outside-in 
interpretation of the program at the border-line and replaces it by the inside­
out interpretation. Indeed, the separated subgraphs are unconditionally ex­
ecuted first, regardless of whether this is necessary for further computation of 
the recurrent configuration or not. This change in the order of evaluation af­
fects only the border between the two graphs. Each of the separated sub­
graphs can include nested function calls, and the evaluation of these calls will 
start in the usual outside-in order. 

4. Generalization. In generalization we reduce Qbefore to Q9. Again, we take 
out active subexpressions from the assignments to m(Q9). Unlike all preced­
ing cases, there will be no ftnal C-assignment; we have the reduction assign­
ments instead (or, rather, what is left of them after taking out active 
subexpressions). They are parenthesized with the same flag 'A', which tells the 
driving subprogram to jump over them. At the end we have a reserved inter­
face for driving Qg: 

e.CP-walk-end = e.Subgraph-Ust ('A'e.Assign) '$'(e.Sit)e.P-graph 

Let us give an example of the CP-graph at an early stage of work on the 
problem in Sec. 6.7. The program in the supercompiler which prints out the 
current state of the CP-graph (for debugging purposes) replaces situations 
and basic-lists by SIT and BAS, and prints them on separate lines. 

:(( 
1 (N 2 ()*((Fe )*((Fbi )*((Fa )*E 1 )))) 
G( 

G( 
G( 

(BAS)PS(SIT) 
BAS= -
SIT= 102 ()((f(Fa ))(*E 1 )E 1 ) 
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: ( ( 
S 1 102 $(SIT) 

SIT= 103 ()((f(Fa )S 1 2 )(*S 102 )S 2 C*E 1 )E 1 
:(( 

)) 

I 102 A AAA (N 103 ()B*((Fa >*E 1 ))X() 
)+( 

(#I 2 A)(=*S 2 *((Fa >*E 1 )) 
)) 

)+( 
X 1 N(=) 

)) 
)X 101 (102 ()((f(Fb;1 )8 1 2 )()E 2 (*HX)E 1 )) 

)X 100 (101 ()((f(Fc ))(*HX)E 1 )) 
)E 0 

The moment we have caught is after the ftrst step of the Refal machine is 
simulated in driving. The graph starts with a past-node structure ftxing the ini­
tial node given to the supercompiler. Three nested subgraphs reflect the his­
tory of the supercompiler going deeper into the nested structure of activation 
brackets in search of a call which can be driven without a hindrance. This call 
is <Fa el >.The context of this call is remembered as two context-situations 
of the X-subgraphs: the closer context is made by Fbil, and the farther by Fe. 
A past situation is preceding the development of < Fa el >, so that if we meet 
this call again, we will be aware of the recurrence. 

The structure of the C-graph already produced reflects the factorization 
of the P-graph for Fa: entering the ftrst branching point, we chop off the ftrst 
symbol of the argument el, then have a second branching point, which distin­
guishes between the cases A and not-A. The second branch of the ftrst branch­
ing point take up the case of the empty argument. 

The situation in front of the second branching point is a fork-situation, 
not a past-situation. It is not separated from the preceding past-situation by a 
step, but is a narrowing of it. Indeed, while the neighborhood of the ftrst situa­
tion is f(Fa), that of the second is f(Fa)'S'l 2, which reflects the path (in the 
P-graph) which was covered between the two situations. 

The three hats " " " represent the pointer. It faces the node we have 
just obtained by making a step in the function Fa: the result is B < Fa e1 >. 
The part of the graph before the pointer is a C-graph, after it a P-graph. One 
can see the difference in the numbers used as variable indexes. In the C-part, 
all variables except the input variable e1 are new, and thus have the indexes 
101, 102, etc.; the indexes in the P-part are the original indexes 1 and 2. 

10. Protection from unwanted generalization 

The algorithm of generalization described in Sec. 6.1-4 often results in 
looping back and generalization which could be avoided without making the 
graph of states inftnite. This algorithm takes into account the recursive struc­
ture of the program, and only it. When the initial configuration is full of free 
variables, as it was in the examples we considered above, our algorithm rightly 
indicated the moment when we must loop back to avoid an inftnity. But when 
instead of free variables we have specific expressions in the initial configura­
tion, we may (and usually will) wish to postpone looping back, in order to give 
the supercompiler a chance of partial evaluation of some function calls. 
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As an example, consider interpretation of a program in a language 
which features sequential execution of statements and jumps by the GO-TO 
instruction. We take the simplest case of such a language, and give it the name 
L. A program in L is a sequence of statements which are terminated semi­
colons: 

Some statements may be labeled by an identifier which precedes the state­
ment and is separated from it by a colon. A statement is either a regular state­
ment which makes some transformation of the current state of the computing 
system and passes control to the next statement, or by a statement of the form 

'COND-JUMP 's.Label 

which either does nothing, or sends control to the statement labeled by 
s.Label (conditional jump). We do not care here about the syntax of regular 
statements; we only assume that they do not include colons or semicolons on 
the top level of parenthesis structure. 

To defme the semantics of L, we defme in Refal a recursive function 
which interprets a given program in L with a given set of input data. Let this 
function's name be L too. An important part of the semantics of such lan­
guages as L is the concept of a state of the computing system, which changes 
as computation proceeds. The state will usually include the values of all vari­
ables defmed at the moment. The details, again, are not important for our 
purpose. The input data can be treated as a part of the initial state. Then the 
function L must depend on the state and the program, and show how the 
program causes the state to change. 

Besides the values of variables, there is one more element of the state of 
the system: the position of the control point which shows the next statement to 
execute. Thus L will have the format: 

< L (e.Past-prog) e.Prog (e.State) > 

Here e.Past·prog is the part of the program which has been passed already, 
but we still have to keep it because a GO-TO statement can take us to any 
point in the program. The initial call of L is 

< L () e.Program ( e.lnitial-state) > 

Here is its defmition in strict Refal: 

* The interpreting function of the language L 
L{ 
*1. Jump over a label 

(el) s.Lab':'e2 (e.State) = < L (e1 s.Lab':')e2 (e.State) >; 
*2. Execute a C-JUMP statement. First check the condition. 

(el)'C·JUMP 's.Lab';'e2 (e.State) = 
< C·Jump (el)'C·JUMP 's.Lab';'e2( < Cond e.State >) >; 

*3. End of program. Print out the state as the output. 
(el) (e.State) = <Prout e.State >; 

*4. Scan and execute a regular statement. 
41 



(el) e2 (e.State) = <Scan (e1)()e2 (e.State) >; 
} 

* Scan a regular statement for its end, and execute. 
Scan { 
*1. Semicolon found. Execute the statement. 

(el)(e.S)';'e2 (e.State) = 
< L (e1 e.S';') e2 (<Exec-s e.S (e.State) >) >; 

*2. Recursion. A symbol. 
(e1)(e.S) sX e2(e.State) = <Scan (e1)(e.S sX) e2 (e.State) >; 

*3. Recursion. Parentheses. 
(el)(e.S) (eX)e2 (e.State) = <Scan (el)(e.S(eX)) e2 (e.State) >; 

*4. Error in the program. Print a message. 
(el)(e.S) (e.State) = 

<Prout 'Error. No semicolon after statement' e.S >; 
} 

* Conditional jump to a label. 
C-jump { 
*1. Condition is false. Go on. 

(e1)'C-JUMP 's.Lab';'e2 (0 e.State) = 
< L (el'C·JUMP 's.Lab';')e2 (e.State) >; 

*2. Condition is true. Send to Jump. 
(e1)'C·JUMP 's.Lab';'e2 (1 e.State) = 

<Jump s.Lab ()el'C·JUMP 's.Lab';'e2 (e.State) >; 
} 

• Jump to a label. 
Jump{ 
*1. The label is found 

s.Lab (el) s.Lab':'e2 (e.State) = < L (el s.Lab':') e2 (e.State) >; 
*2. Recursion. A symbol. 

s.Lab (e1) sX e2 (e.State) = <Jump s.Lab (e1 sX) e2 (e.State) >; 
*3. Recursion. Parentheses. 

s.Lab (e1) (eX) e2 (e.State) = <Jump s.Lab (el(eX)) e2 (e.State) >; 
*4. Error. No label. 

s.Lab (e1) (e.State) = 
< Prout 'Error. No label ' s.Lab >; 

} 

The function Cond examines the state (e.g. the value of a certain variable, say 
I) and puts 1 in front of it if the condition is true, or 0 otherwise. The function 
Exec-s executes one statement in a given state. Its value is the state resulting 
from the execution of the statement. The exact definition of these two func­
tions does not matter. 

Let us give to L a completely defmed program, e.g.: 

A= B + C; Labl: I= 1-3; C-JUMP Labl; I= 1-1; C-JUMP Labl; 
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where we just put some plausibly looking strings for statements. The input 
data is unspecified, and so is, of course, the state of the computing system. We 
want to meta-evaluate the call of L under these circumstances, in order to 
compile the program (see Sec. 1.8). The initial configuration is 

(Q1) < L 0 A= B + C; Labl: I= I-3; C·JUMP Labl; I= I-1; C-JUMP Lab1; 
(e1) > 

Let us now trace the work of the supercompiler. Configuration Q1 is 
transitive: it goes over into the next configuration: 

<Scan 00 A= B + C; Lab1: I= I-3; C-JUMP Lab1; I= I-1; 
C·JUMP Lab1; (el) > 

without any contractions. Therefore, the supercompiler will leave no past 
situation for Q1, and there will be no attempt to loop back to it. In the same 
manner, a number of following configurations, which appear as Scan looks 
through its completely defmed argument, will be transitive and leave no his­
tory records. The supercompiler works as a partial evaluator. 

After finding the end of the first statement, we come to the configura­
tion: 

< L (A=B+C;) Lab1: I= I-3; C·JUMP Lab1; I=I·1; C·JUMP Lab1; 
(<Exec-s A=B+C; (e1) >) > 

According to the semantics of L, which is defmed in the standard Refal with 
the inside-out evaluation order, the statement A= B + C must be now ex­
ecuted over the unknown state el. However, our supercompiler is an outside­
in evaluator. At this moment it does not need the value of Exec-s. It will go on 
with scanning the program, and will do this until some of the statements in the 
program -- it will be, of course the conditional statement C-JUMP -- requires 
the value of the state for doing the next Refal step. 

As we discussed before, the switch to outside-in evaluation often leads to 
an improved program. On the other hand, we often want to stick to the exact 
semantics of the language we deal with, L. This can be achieved by using cer­
tain tricks in the context of the general outside-in supercompiler, which we 
will consider in Chapter 7; or we can use a version of the supercompiler which 
sticks to the inside-out evaluation order. In the following we go on with the 
standard-- for the supercompiler --outside-in order. 

As the reader can verify, a sequence of transitive configurations will take 
the process to the configuration: 

<C·jump (A=B+C; Lab1: I=I-3;) 
C·JUMP Lab1; I= I-1; C·JUMP Lab1; 
( <Cond <Exec-s I=I·3 (<Exec-s A=B+C(e1) >) > >) > 

Now the calls of Cond, and then, sequentially, the two calls of of Exec-s be­
come hindrances, which causes the decomposition: 

(<Exec-sA=B+C (e1)> <- e.103) 
( < Exec-s I= I-3 ( e.103) > <- e.102) 
( < Cond e.102 > <- e.101) Q2 
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(Q2) <C·Jump (A=B+C; Lab1: I=I-3;) 
C·JUMP Lab1; I= I-1; C·JUMP Lab1; (e.101) > 

Next steps depend on the definition of Exec-s and Cond. Since we have 
left these functions undefmed, the supercompiler will not ftnd their definitions 
in the program and automatically declare them basic, leaving their calls in the 
fmal C-program. Then it will proceed with the development of Q2. 

Note that as the result of partial evaluation and decomposition, the 
program has taken on a typical structure of program written in a command 
language: execute the ftrst statement and assign the value to e.103; execute the 
second statement (using e.103) and assign to e.102, etc. It can be easily trans­
lated into a machine-oriented language. The scanning of the program has 
been made, and will not be repeated at the execution time. 

Unlike all preceding configurations, Q2 is not transitive. It is kept as a 
history record. When Q~ is further developed, two branches appear. On the 
first branch (false condition, e.101 -> 0 e.101) we proceed with scanning the 
program and come to the next configuration of the same kind: 

(Q3) <C·Jump (A=B+C; Lab1: I=I·3; C·JUMP Lab1; I=I-1;) 
C·JUMP Lab1; (e.105) > 

It is here that the unwanted generalization will take place, if we do not 
prevent it. We know that there must be no looping-back here; we should go 
further scanning the program until we register all sequential statements and 
identify all loops. But Q3 belongs to the same neighborheod as Q2• The algo­
rithm of generalization, as we defmed it above, will demand looping back. The 
generalization of Q3 and Q2 will result in the configuration 

(Q9) < C·Jump e.106 (e.105) > 

which will be developed instead of Q2. All information about the program is 
lost in Q9. The metacomputed program from this point will simply interpret 
the program, repeating the definition of L. 

The solution of this problem in the supercompiler is a special interpreta­
tion of delayed metacoding (see Sec. 3.9). All graphs and their elements are 
downgraded to metacode when they are handled by the supercompiler. When 
we form the initial configuration Q1, we do not actually downgrade the 
program, but use delayed metacoding. The metacode of Q 1 becomes: 

*(L () *!(A= B + C; Lab1: I= I-3; C·JUMP Lab1; I= 1-1; C·JUMP Lab1;) 
(*E 1)) 

All subprograms of the supercompiler recognize that *!(E) stands for the 
metacode of the object expression E, and behave correspondingly. Besides 
that, delayed metacoding serves as protection from generalization. If an 
operation of generalization requires a replacement of two unequal protected 
expressions by a free variable, this operation is not permitted. A looping-back 
which requires such a generalization will not be executed, and the driving will 
go on instead. A generalization of two identical protected expressions is, of 
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course permitted, and the result will be the same expression -- protected, 
again. If an expression is protected, all its subexpressions, possibly separated 
and handled by different functions, will also be protected. 

In our case, the generalization of Q3 and Q2 is not permitted, because it 
requires to generalize 

A=B+C; Labl: 1=1-3; C-JUMPLabl; 1=1-1; 

with 

A=B+C; Labl: 1=1-3; 

Therefore, the driving will go on, as it should. On the other hand, when the 
supercompiler explores the second branch which starts at Q2 , 

(e;lOl -> 1 e.lOl), the configuration Q2 returns exactly as it was before, ex­
cept for the names of variables. There will be no obstacles for looping back, 
and the metacomputation will be finite. 

The general rule of using generalization protection is: protect those ob­
ject expressions which you want to be incorporated into the structure of the 
future program, and not interpreted. Generalization protection is a way of 
controlling the process of metacomputation. The dark side of this method is 
that there is no more guarantee that the process will terminate. If protection 
of some expression results in infinite metacomputation, or too big a program, 
this protection can be removed. 

6.11 Freezer 

Consider a configuration Q which has no free variables. It is, certainly, 
transitive and, therefore, leaves behind no history record. All the supercom­
piler is doing is a trivial step of driving over Q, simulating one step of the 
Refal machine. This is, however, a costly simulation. It will typically take a 
hundred of Refal steps -- and only in order to make one Refal step. If we can 
revert in such cases to a direct execution of Refal step over Q, it could mean a 
significant gain in efficiency. 

One way to do it is this: before every step of driving examine the con­
figuration, and if it has no free variables (ground configuration), upgrade it 
from metacode into the main code, and pass to the Refal interpreter. Since a 
ground configuration remains ground after any number of steps, the Refal in­
terpreter should be allowed to work in the usual manner until the result is a 
passive expression. Then the result must be downgraded and passed back to 
the driving function of the supercompiler. 

This can be easily done, but we can do more. The cases when the whole 
configuration includes no variables are, usually, of a secondary importance; 
this happens only to some parts of the overall configuration, because other­
wise there would be no need to call the supercompiler. But it happens very of­
ten that even though there are free variables in the configuration, they have 
no role to play along considerable stretches of computation, so that we have a 
sequence of transitive configurations, as if there were no variables. We have 
seen an example of this situation in the preceding section, where the con­
figuration Q 1: 
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< L 0 A= 8 + C; Labl: I= 1-3; C-JUMP Labl; I= 1-1; C-JUMP Labl; (el) > 

includes a free variable, but still gives rise to a row of transient configurations 
as the program is scanned in a search for a semicolon. The driving procedure 
does not even notice the existence of the variable el. The same situation will 
take place later when Exec-s makes a parse of a statement. 

We want to take advantage of such situations in order to conduct 
metacomputation more efficiently. We want a system which automatically ad­
justs the metasystem level of computation: wherever metacomputation be­
comes a simulation of computation, the system must switch to the lower level 
and do direct computation. When direct computation becomes impossible be­
cause of variables, the system must call the function which does metacom­
putation. 

We achieve these automatic switches by using the idea of a freezer. We 
endow the implementation of Refal with the following additional capabilities. 

1. An additional type of object is allowed in the view-field, which will be 
referred to as a object variables. The information content of an object variable 
is its type (s, tor e) and its index (a symbol). As long as the values of object 
variables are not required for execution of a Refal step, they are passed from 
one expression to another and may be copied like object expressions; their ex­
istence, or rather their difference from object expressions, is not noticed by 
the system. When the step becomes impossible because of an unknown value 
of an object variable, a freeze takes place. 
2. The function call in the view-field which caused the freeze must be located 
within the argument of the special built-in function Freezer: 

< Freezer ... < F ... trouble-spot ••• > ... > 

Freeze is then executed as follows. First the enclosing call of Freezer is found. 
If there are more than one, the innermost call is taken; if there are none, an 
error condition occurs. Then the whole argument of Freezer is downgraded to 
metacode, and control is passed to this call of Freezer. 
3. Functions Do and Up are extended to include operations on object vari­
ables: 

<Do .Qb.i.:m(s.Type, s.lod) > = '*'s.Type s.Iod 
<Up '*'s.Type s.Iod > = .Qb.i.:m(s.Type s.Ind) 

Note that even though object variables stand essentially for the same things as 
free variables, we had to introduce a special notation for them in order to ex­
press the operations above as Refal sentences. Indeed, something like 

<Up '*EX'> = eX 

would violate the syntax of Refal (a free variable in the right side which is not 
found in the left side), while 

< Do eX> = '*EX' 

would defme Do as a completely different function. 
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~('E','X') and eX are, essentially, identical. It is only in Refal sen­
tences that they are not interchangeable, because of a special use of free vari­
ables in Refal. Object variables can be compared to imaginary numbers in al­
gebra. When we limit ourselves to functions defined on object expressions 
only, as all Refal functions are, function Dn is defined everywhere, like squar­
ing a real number, but the reverse function Up is not defined on such argu­
ments as '*EX', like the extraction of a square root is undefmed on negative 
numbers. We extend the defmition of Up by introducing "imaginary'' object 
expressions. 
3. Function Freezer is defmed as follows. If it gets control as a result of a 
freeze then it puts 1 in front of the argument, i.e. for this case 

< Freezer eX> = 1 eX 

If it gets control as always in Refal, because the argument is computed and is 
passive, then 

< Freezer eX> = 0 eX 

The supercompiler uses the "freezer" Freezer in the following way. 
Whenever a new node is formed in a step, the function Devlp, which is to 
develop a graph for it, upgrades the configuration to the main code, puts it in 
the freezer, and calls function Chfrzr which checks the outcome of the 
freezer: 

Devlp {. .. 
r e1 A ('N'sN(eR>'*'((sF) eE))'X'(eX) J = 

<Chfrzr r e1 A ('N'sN(eR) <Freezer <Up eE>> )'X'(eX) J>; 

Note that when eE is upgraded (demetacoded), its big subexpressions, like the 
program in L in the example above, are inside delayed-metacoding brackets; 
they are demetacoded in one step, without scanning the expression. 

The result of the upgrading of eE is active, so its direct evaluation is 
started by the Refal interpreter. For evaluation to become possible, the 
program which is loaded into the Refal machine must include not only the 
functions of the supercompiler, but also the "object" functions of the graph 
GP (the latter are not necessary if the freezer is not used). 

Function Chfrzr is defme as follows (with small simplifications): 

* Check freezer 
Chfrzr { 
*1. Lower-level computation completed. Freezer contains 
* a passive expression in the main code. 

r e1 A ('N'sN(eR) 0 eE )'X'(eX) J = 
<Step r e1 A ('N'sN(eR) <Dn eE> )'X'(eX) J; 

*2. Lower-level computation aborted. Freezer contains a metacoded 
* configuration 

r e1 A ('N'sN(eR) 1 eE )'X'(eX) J = 
<Step r e1 A ('N'sN(eR) eE )'X'(eX) J; 

} 
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As the the direct evaluation goes on, one of the two outcomes will take 
place (not counting inftnite loops in the program), which is reflected in the 
two sentences for Chfrzr. The evaluation may go through completely. Then 
the result is metacoded, and a new node is formed and passed to the function 
Step which decides what to do next. Or the evaluation may abort on some 
stage. Then it is continued on the level of metacomputation. 
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