
On Generalization of Lists and Strings in
Supercompilation *

Valentin F Turchin
The City College of New York

1 Introduction

Supercompilation [25, 26, 7, 20, 8, 21, 22, 17, 29, 301 is a technique of
equivalent transformation of programs based on driving [23, 24, 121, which
can be seen as forceful unfolding of function calls, even in cases where it
is impossible to choose between several alternatives. Supercompilation is a
close relative of several other transformation techniques: partial evaluation
[4, 3, 9, 10, 11, 51, deforestation,[31], and similar techniques based on logic
programming, [15, 13, 6, 161 and, especially, [14, 191

The basic principle of supercompilation is: drive the initial configur%
tion of a computing machine (a function call, possibly nested, which may
include free variables), and make the resulting graph of configurations and
transitions finite by reducing some configurations to their predecessors, after
generalizing some of the predecessors if necessary. Correct generalization is
a key to obtaining an optimized program. It is one of the central problems
of supercompilation.

Generalization breaks down, naturally, in two parts:

1. Decision to generalize or not generalize the current configuration C
with one of its predecessors C' with a view of reducing C to the gen-
eralized configuration Cge,; this predicate of C and C' is known as a
whistle which warns us that if we do not try reduction, we may end
up with infinite driving.

2. Generalization proper, i.e. the choice of a configuration Cg,, such that
both C and C' are its subsets.

'This material is based upon work supported by the US Civilian Research and Develop-
ment Foundation under Award No RM1-254

In [27] an algorithm of whistling was defined for lazy evaluation of nested
function calls, and termination of supercompilation with this whistle was
proven. This algorithm was implemented in a supercompiler and worked
very well within its domain of applicability, which is generalization of stacks
which represent nested function calls (see, e.g., [30]).

With regard to generalization of flat configurations, i.e. ones without
nested function calls, the algorithm of [27] used a very simple strategy: if
a variable has the same value in both configurations, then it has the same
value in the generalization. Otherwise, the variable in the generalization
remains free. This strategy guarantees termination (the whistle is given for
any pair of configurations with the same function, and the number of func-
tions is finite), but for problems where a non-trivial structure of arguments is
essential it leads to over-generalization, hence the supercompilation would
not do the transformation that could be expected. Thus, the problem of
generalization of flat configurations, or just data structures, remains. Since
in the general case (and most advanced supercompilers) we have to intelli-
gently generalize both stacks of function calls, and the constituing function
calls themselves, this problem is complementary to the one considered in

~ 7 1 .
Ssrensen and Gliick [22] use the Higman-Kruskal theorem on homet~

morphic embedding, HK for short, (see [2]) to define a whistle for super-
compilation which is of proven termination. Their data domain is the set
of functional terms with fixed arity of each functional symbol. This kind
of data is sufficient for the languages, such as Lisp and Prolog, which op-
erate on binary trees referred to as lists. But the data structures of Refal,
which is used as the basic programming language in several existing super-
compilers, does not belong to this category. We refer to this structures as
R-expressions and R-terms. An R-expression is a concatenation of any
number of R-terms. An R-term is either an elementary syntax unit, or an
R-expression parenthesized. This can be seen as the use of a functional
symbol of arbitrary arity (a varyadic symbol).

Fortunately, HK allows varyadic symbols, so the first thing we do in this
paper is define a whistle for supercompilation in Refal following the line of
[22]. Then we define and compare the algorithms for evaluating homeomor-
phic embedding on R-expressions and lists. We show that although in a
written form lists and R-expressions are similar, the algorithms for them
are different, and even are of different time complexity. After that we con-
sider and compare generalization proper on these two kinds of data. We
find considerable differences between them and show that these differences

are consequential for the performance of a supercompiler. Finally, we prove
that under certain natural assumptions the supercompilation process using
the defined algorithms is bound to terminate.

2 Homeomorphic embedding

In this section we follow the work by Dershowitz [2].
Let a finite set F of functional symbols be given. Consider the set T (F)

of all functional terms f (tl , . . . , t,) with functional symbols f E F Some
symbols may be of arity n = 0; they are constants, and we shall write
them without parentheses: f = f 0. Some of the symbols may be varyadic:
different n in different terms.

Definition 1 The homeomorphic embedding relation g on a set T (F) of
terms is defined as follows:
Base:

s s for all s E F

Recursion. The relation:

t = g(t1, t2,. . . , tn) d f(tl,, t;, . . , t i) = t'

holds if either:

t d t i forsome i = l , . . . , m

or:

f = g and t j g tij for all j = 1, , n

where 1 5 i l < i2 < < in 5 m.

Note that in the second rule f and g must be identical, but their calls may
have different number of terms: n < m: some of the terms in f may be
ignored.

Theorem 1 (Higman,Kruskal) If F is a finite set of function symbols,
then any infinite sequence tl,t2, of terms in the set T (F) of terms
over F contains two terms t j and tk , where j < k, such that t j 4 tk.

The definition of the set T (F) and the relation I] in HK can be extended
by including in F as constants all natural numbers n E N , and adding to
the base of the definition of the clause:

n l I] n2 * nl 5 n 2 for all nl , nz E N

Theorem 2 Theorem 1 holds for the extended relation of embedding.

Proof Define the unary representation of natural numbers:

where the number of 1's is n, and J/ is a new varyadic functional symbol.
Given tl and t2, replace every number n by U(n) in both terms, and denote
the result as t i , ti. Obviously, nl na is true for the extended relation if
and only if U(nl) I] U(n2) is true for the original relation. Hence tl I] t:!
holds if and only if ti I] t i , which makes the extended HK theorem true,

3 Embedding on R-expressions

The syntax of data structures in Refal is defined as follows:

t ::= s.i I t . i I e.i (s (n I (e)
e ::= empty I t e

Here:

a t is in the set TR of all R-terms;

a e is in the set ER of all R-expressions;

a n is in the set N of all natural numbers;

a s is in a finite set S of all non-numerical symbols;

a s.i, t . i and e.i, where i is a numerical index, are three types of free
variables: s-variables, t-variables and e-variables;

a round parentheses (...) are structure brackets to construct expres-
sions;

Mrt [s.i] = s,
M,.t[t.i] = st
Mrt[e.i] = se
Mrt [s] = s
Mrt [n] = n
MTt [(e l] = fpr.(Mre[e])

Table 1: The mapping Mrt TR + T(FR) .

In our notation the variables like e (in italics) are elements of a metalan-
guage describing constructions of the language Refal. Thus e is a metavari-
able taking values from the domain ER of all Refal expressions, while e.i is
a free variable used in Refal expressions.

To use HK in the context of Refal, we map the set of all Refal terms
TR onto the domain of functional terms T (F R) over a certain set FR of
functional symbols:

where fp,. is a varyadic functional symbol, while all the other symbols are
const ants.

The mapping Mrt TR + T (F R) is recursively defined in Table 1

Example The R-term

is transformed into:

where we presume that the English letters are among the symbols in S.
Now we simplify the notation of terms in T (F R) . Since we have only

one functional symbol in FR, we can drop it, keeping in mind that each left
parenthesis (stands for f,,,(. We shall also replace commas that separate
terms in expressions by blanks. The resulting term looks, and in fact is, an
R-term, as long as ss, st , se are included in the set S:

We define the homeomorphic embedding relation d~ on R-terms TR as
the image of the relation 5 on T(FR):

To evaluate an instance of relation d~ on TR we first use the mapping
MYt to T(FR) and then work in T(FR). As we have just seen, T(FR) differs,
with our notation, from TR only in that all free variables are replaced with
constants. Therefore, we shall use the same symbol g~ for the embedding
relation in both sets.

Rewriting the definition of d R in terms of Refal, we have:

Definition 2 The homeomorphic embedding relation R on the set T(FR)
holds in the following cases:

1. s < I R s , wheresESU{s,,st ,s ,};

2. n l 5 R n 2 , wherenl ,n2€ N and nl I n 2 ;

3. t d (elt1e2), where t t1 and ei for i = 1,2 are some expressions
(this case to be referred as term embedded as term);

4. (tlt2 . . . t7,)dR(elt\e2tk . . . e7,tLe7,+l) where t i d Rti for i = 1, . . . , n, and
any of the expressions ei may be empty (the case of term embedded
as expression).

In Refal the most general data structure is that of expressions, not terms.
But it is easy to reduce a relation on expressions to a relation on terms:

It is nice to know that an extra pair of parentheses on both terms does
not change the embedding relation.

Theorem 3

Proof If tl d ~ t 2 , then by case 4 of Definition 2, (tl) a ~ (t 2) . The converse is
a bit more complicated. Let (tl) d R(t2) be given (see Fig.1). This means that
there is a validity demonstration in accordance with Definition 2. Consider
the last step of this demonstration. It cannot be case 1 or 2 because of
parentheses. Suppose it is case 4. Our goal, (tl) Ll (t2), is the following
instance of the stated relation:

n = 1; tl = t l ; t i = t2; el = e2 = empty

For this relation to be proven, the condition tl d ~ t i , which with our instan-
tiation is t l d~ tp, must have been proven before; so it is true.

etc. I
Figure 1: Proof of Theorem 3

Suppose the last step was according to case 3. The instance is:

t = (t l); t' = t2; el = e2 = empty

The relation that is assumed to be proven before is, after instatiation, (t l) R
t2. Now we have to consider the possible ways this relation at the one but
last level of demonstration could have emerged (see Fig.1). As at the last
level, this could have taken place through either case 4 or case 3.

In case 4 the instantiation is:

The preproven relation, after instantiaiton, is tl I]R t i , where ti is one of
the constituing terms of t2. If this relation was proven then we derive, by
case 3, that tl g~ t2 is also true.

The case 3 on the one but last level of demonstration is considered with
the instantiation:

The relation assumed to be proven is (t l) g R t' It is similar to the relation
on the preceding level, but t2 is replaced by t', which has at least one pair
of parentheses less. Since removing parentheses from t2 cannot go infinitely,
only those cases remain where tl t2.

Definition 2 translates into the program in Table 3, which is written in
a version of Refal. For a reader not familiar with the Refal notation the
following comments will be sufficient.

A function call f (arg) is written in Refal as < f arg>. The main format
of a function definition is:

arg,, = value,;)

where argi are patterns of the argument, and valuei the corresponding pat-
terns after one step of computation. Equations are tried in the order they
are written. Variables in patterns are written without dots; their syntactic
types are recognized by the first letter of the variable's name: s for symbol
variables, t for term variables, and any of e , x , y , z for expression variables.
We assume that natural numbers are used only in the format (NAT n) . The
part of a line starting with / is a comment.

As an extension of the basic format of function definitions, we allow to
use auxiliary functions without giving them explicit names. The format of
an equation can be:

argi , expression
{argl = valuel;

When argi is matched succesfully, compute expression and start match-
ing it to the left sides of equations, computing the nameless function defined
by these equations, with expression as its argument.

Example Trace the evaluation of the relation:

Termination cases 1 and 2 are not applicable. Under case 3, function Em
compares t . I = (a(b)c) with each of the four terms in t .2: (a) , p, (b) , ((c)) ;
none is embedding t . 1. The case becomes 4 now; the constituents o f t . 1 are
compared one by one with the constituents of t .2, calling Embr recursively.
a R (a) is successful under case 3; now we try to find embedding for (b)
among the remaining terms. (b) I]Rz, does not work, so we try (b) L]R (b) .
Case 3 does not work, but case 4 requires b A R b, which is satisfied. Finally,
c d R ((c)) is found to be true. after a double use of case 4. The answer:
true

Definition 3 The size of an R-expression is computed according to these
rules:

size[s] = size[n] = 1;

size[(e)] = size[e] + 2;

size[tl t 2 t,,] = size[tl] + size[t2] + + size[t,].

Theorem 4 The m a x i m u m run t ime for evaluation of the relation t d R
t' by the embedding algorithm o n the set of R-terms is linear with
size[t'].

Proof by structural induction on the number of pairs of parentheses p in
the term t' Obviously, the statement is true for the basis, p = 0: see the
initial sentences in the definition of the function Em.

Our inductive assumption is that the theorem is true for t' with no more
than p parentheses, i.e. there exists a constant c such that

Time[t L] t'] I c size[t']

for all such t'
Let t' = (tll tk t k) be a term with p + 1 pairs of parentheses. The

maximal run time is the sum of the maximal times under the cases 3 and 4.

/ < h b r t 1 t2> is the predicate t 1 d~ t2
Embr {tl t2 = <Dee ti t2 <Em 3 tl t2>>; }

/ sc in Em is 3 when cases 3 and 4 of Definition 2
/ must be checked, and 4 when only case 4 remains
/ termination cases 1 and 2 are checked with any sc

Em {
sc sl sl = T;
sc tl s2 F ; a symbol embeds only itself
sc (NAT sl) (NAT s2) <Lesseq sl s2> / 1 s2
sc t 1 (NAT s2) F; / a number may embed only a number
sc () (e2) = T; / empty is embedded in any expression

/ t2 = 0 signifies the end of a loop over terms in e2
3 tl () = 4; / case 3 failed; try case 4 (see f-n Dec)
4 t 1 () F; / case 4 failed; the answer is F

/ a loop over terms in e2, case 3
3 tl (t2 e3), <Embr tl t2>:

{T = T;
F = <Em 3 tl (e3)>;);

/ a loop over terms in e2 and el, case 4
4 (tl e2)(tls e2s), <Embr tl tls>:

{T = <Em 4 (e2) (e2s)>;
F = <Em 4 (tl e2)(e2s)>;);

1

/ This function decides if case 4 must be considered
Dec { tl t2 T = T;

tl t2 F = F;
tl t2 4 = <Em 4 tl t2>;)

Table 2: A Refal program for the embedding relation I]R.

In case 3 we compare t with the constituent terms ti, i = 1, . . , n. Since
each of them has no more than p pairs of parentheses, the processing time for.
each ti will be no more than csize[ti]. In the worst case t will be compared
with all of them. We assume that the maximal overhead for the treatment
of the two parentheses which delimit the term is no greater than 2c (since
this time is a constant, we can always choose a big enough c). So, we have:

n n

Tirne[t g n t'] 5 size[tj] + 2c = c (x size[t:] + 2) = c size[tf]
i=l i=l

In case 4 let t = (tl, t2, . . . , t,). We start comparing tl with ti, where
i = 1 , 2 , . . . , n. If among those terms none is embedding t l , it will pass to the
end, examining each node ti, the same way as in case 3, and with the same
result for the run time. If one of the terms in t', say t;, happens to embed
t l , then the past terms are ignored, and the next constituent term tg will be
compared with the remaining terms, starting with t>+,. The process goes
on like this, so that each constituent term of t' is examined no more than
once. Therefore,,we an-gin have the same limit as in case 3,,which proves the
theorem.

4 Embedding on lists

A list is a special kind of s-expression. An s-expression is defined as the
set T(FL) of all functional terms constructed on the set FL of all functional
symbols which includes symbols from some finite set S (usually referred to
as atoms), the constructor cons of arity two, and a special symbol nil. It
can also be seen as a tree. A list is an s-expression which obeys the following
restriction: the second argument y in the term cons(x, y) is never an atom,
but either a term cons(x, y), or nil. A list may include variables. For the
purpose of establishing the embedding relation we replace every variable
with the symbol s,, which we include in S. The set of such lists is denoted
as TL. As a simplification, we do not include numbers into TL. If necessary,
it is easy to do the way we did it for TR.

The purpose of lists (as one can see from the word list itself) is to
represent sequences, i.e. linear structures, not just binary trees, which they
formally are. This goal is achieved by using the list notation, instead of
the notation which is implied in their formal definition. In the list notation
we write

to stand for

where each of the terms ti must also be understood in this way.
The inverse transformation from the binary tree form into the list n e

tation is done as follows: (1) delete all constructors cons; (2) delete all
left parentheses that follow immediately after the comma, and erase their
corresponding right parentheses; (3) delete all symbols nil (4) replace all
commas by spaces.

Lists in the list notation look exactly the same as R-terms. Thus what
in the list notation, say in a Lisp program, is written as:

(a b c)

is, actually, an element of T(FL):

cons(a, cons(b, cons(c, nil)))

To compare relations and algorithms on TR and TL, we shall represent
lists by R-terms that look the same way in writing, but we shall treat them
differently, keeping in mind that, the appearance notwithstanding, lists re-
main binary trees, not strings of terms we deal with in Refal. Refal expres-
sions on their own are not allowed in TL; they must always be kept inside
some parentheses which delimit a list. There is no concatenation, as we
know it in Refal. Lists are constructed and deconstructed on the left side
only. Construction requires that the second operand always be a list proper,
not an atom:

Deconstruction can be reduced to two basic functions:

head [(t e2)] = t 1 ; tail[(tle2)] = (ea)

nil is represented as ().

Definition 4 The homeomorphic embedding relation L on the set of lists
TL is a special case of Definition 1 for F = FL In Refal representation it
becomes:

1. s s, if s is an atom;

2. 0 -a L 0
3. t I] , (tie',) if t g ~ t i

4. t a (tie',) if t il L (e',)

5. (t le2) _ a L (tie',) i f t l d~ t'l and (e2) d~ (4)

The specialization is done as follows.
The constants of FL are atoms and the special symbol nil , which results

in statements 1 an 2. In the recursive part we have the only constructor
cons, so f = g = cons with the arity m = 2. The first case in Definition 1
produces, with i = 1,

which is statement 3 in the Refal notation, and with i = 2,

which is statement 4.
In the second recursive case of Definition 1 the constituent terms of the

compared terms must be in relation A L pairwise, because they are in the
same number: m = 2. Hence:

cons(t l , t 2) a L cons(ti , t/2) if tl I] L tll and t2 il L t/2

This is nothing but our statement 5.
The relation 9 L is similar to R in that a sequence of terms may be em-

bedded in another sequence if all the terms are found there, even if separated
by other terms, but still in the right order.

Example (a b) (p a r b q) holds, as one can see from the following
derivation:

a~ 0 case 2
9~ (9) case 4

(b) a, (b 9) case 5

(b) a L (T b q) case 4
(a b) (a T b q) case 5
(a b) I] L (p a r b q) case4

However, these relations are not identical.

Example The following relation holds on TL, but not on TR:

Embl {
s1 s1 T; / case 1
t1 s2 F;
0 (el) = T; / case 2
t1 0 F;
s1 (t2 e3), < h b l s1 t2>:

{ T = T; /case 3 when t is s
F < h b l s1 (e 3) > } ;

(tl e2) (tls e2s), <Embl (tl e2) tls>:
{T = T; / case 3
F, < h b l (tl e2) (e2s)>:
{T = T; / case4
F, c h b l tl tis>: /case5,checkheads
{T = < h b l (e2) (e2s) >; / case 5, check tails

F = F } 1) 1

Table 3: Homeomorphic embedding on TL; a recursive algorithm

The derivation in TL is:

(b 4 5' L ((b 4) case 3
(b c) g~ ((b c) q) case 3
(b c) a (iu (b c) q) case 4

(a b c) g~ (a p (b c) q) case5

Here parts of the left side are all on the same level, while in the right side
they are distributed between two levels. It is easy to see that the relation
R does not include such situations. Obviously, (a b c) is not embedded as

a term. Then we try to embed it as an expression. Term a is immediately
found, and the problem now becomes to embed first b and then c (not the
term (b c) , as in the case of lists!). Term b is embedded in (b c), but then for
c only q remains, so there can be no embedding.

Definition 4 directly translates into the Refal program shown in Table 4.

Theorem 5 The run t ime of the recursive algorithm for t d L t' is,
in the worst case, at least exponential with the size of the smaller
operand:

Proof Consider the case where both t and t' are lists of atoms, and let the
number of atoms be m in t, and n in t' Let T(m, n) be the worst run time
for t L t' when m and n are given. There are four calls of the function
Embl, and in the worst case all of them will be evaluated, hence

The time T(m, 1) for the evaluation of <Embr (t . 1 e2) tls> where tls
is an atom, is constant (the result is always F in one step). T (1 , l) is also a
constant: the time needed to compare two atoms. Hence we have:

It can be seen that T(m, n - 1) 2 T(m - 1, n - 1). Indeed, compare the
trees of recursive calls generated by the corresponding initial calls. Since we
consider the worst case, the recursion will go on as long as each of the two
arguments becomes 1 or 0. Therefore, T(m, n - 1) cannot generate less calls
than T(m - 1, n - I), because it has the initial m which is greater by one
than in T(m - 1, n - 1).

Thus we have:

from which we derive that there exists such a constant c that

Because of its exponential time complexity, the recursive algorithm is
hardly of any direct use. But using the method of dynamic programming
(see, e.g., [I]) it can be converted into an iterative algorithm which is pre-
sented in [28]. The average run time of this algorithm is given by:

i f m s n
Time[(tl . . . t,) d (ti . . tb)] = T { :[$:! n/2)) if m 2 n

where T is the average time required for evaluation of t d~ t' by recursive
calls of Embl.

5 Simulation whistles

A whistle is a relation on a set of terms T which is used in the termination
algorithm as defined below. It can be used in supercompilation or elsewhere
to terminate generation of a potentially infinite sequence of terms from T

Definition 5 The termination algorithm. Given a relation whistle(t, tl)
on a set of terms T and a potentially infinite sequence of terms: t l , t2,.
to be referred to as a T-process, do:

i := 1;
Loopl i := i + 1;

j := i - 1;
Loop2 if whistle(tj, ti) then stop;

j : = j - 1 ;
if j 2 1 then goto Loop2 else goto Loop1

Definition 6 A whistle is unfailing if the termination algorithm using it
always stops.

As we have proven above, the whistles <I R and d L on their respective
sets of terms are unfailing.

Theorem 6 Let Wl(t, t l) be a whistle on a set of terms TI. Let M
T2 -f Tl be a mapping from some set of terms T2 to TI. Define a
simulation whistle W2 on T2 as:

If the whistle Wl is unfailing, then W2 is also unfailing.

Proof Consider an arbitrary T2-process. Define a parallel TI-process by - --
mapping each its term onto TI by M.

At every stage of the T2-process the whistle W2(t, tl) blows if and only
if the whistle Wl(M(t), M(tl) blows. Since the TI-process always stops, so
does the T2-process.

We can use Theorem 6 to prove the acceptability of various non-trivial
whistles on various sets of terms. We did it already when we defined embed-
ding on Refal terms and expressions by reducing it to the relation on T(FR)
by the mapping M,?.

Here is another application of this theorem. Since there exists a mapping
M TL + TR from lists to R-terms, we can use the efficient unfailing whistle
d~ to define the corresponding unfailing and efficient whistle on TL. We
just treat lists as R-terms. In this case the mapping is especially simple
because in the list notation these objects look identical.

The sets TI and T2 are not necessarily different. Mapping can take place
within the same set of terms, but the resulting whistle may be different from
the original one.

Definition 7 Let Wl(t, t') and W2(t, t') be two whistles on a set T If
W2(t, t') blows (i.e. is true) whenever Wl(t, t') blows, and there exists at
least one pair (t, t') such that W(t, t') blows, while Wl(t, t') does not, we
say that W2 is more eager than Wl, or Wl is more conservative than W2.

Theorem 6 opens a way to construction of unfailing whistles by mapping
some basic embedding relation. If the mapping is many-to-one, the resulting
whistles will be more eager than the original one.

Examples Assuming that Wl(s, s) = true, a simulation whistle which uses
the mapping M(t) = s, where s is a fixed symbol, terminates the process at
the second stage. Or consider a not so radical transformation. If we want,
for the purpose of whistling, to make no distinction between symbols a and
b, we can use a mapping that converts each b into a.

In the following example the functional symbol of a term becomes a part
of the list of arguments. This makes the whistle different.

Let the set F of functional symbols include three constants: a , 6, c and
three varyadic symbols: f , g, u. Let Wl(t, t') = t II t' be an unfailing whistle
on T(F). Define the mapping M T (F) --+ T (F) where M(s) = s for all
constants s and

for all functional symbols s f . The whistle W2, as defined in Theorem 6, is
different from Wl. Indeed, let t = f (a), and t' = g(f (c), a , 6). Then Wl, i.e.

is false, while W2, i.e.

is true.

6 Generalization proper

With a given whistle algorithm, various algorithms of the generalization
proper may be used. We do not present any specific and completed general-
ization algorithms in this paper. We only want to show some relationships
between whistling at a situation of embedding and the subsequent general-
ization.

Definition 8 Let t , t ' E T , where T is TR or TL. We write t C t' if there
exists a substitution for the variables in t' that converts t' into t. We call a
generalization of t and t', denoted as gen(t, t'), any such term tg E T that
t tg and t' C tg.

First, let T = TR. R-expressions (strings of terms) can be generalized
keeping identical parts on both left and right sides.

Examples
gen[(p q a bc), (r a bc)] = (xl a bc)
gen[(abcp) ,(a bcq r)] = (abcx l)

gen[(a b c p) , (r a b c q)] = (xl a b c x2)

Such, and more complicated, generalizations arise, in a natural way, from the
algorithm that discovers the embedding relation. When a term is embedded
as an expression, according to Definition 2,

where ti d R ti for i = 1, . . . , n, we generalize the corresponding terms and
replace non-empty expressions ei by new free variables:

where tq = gen[ti, ti].

Examples
g e n [(a b c c d m) , (p a b c q r c d n)] = (X I abcx2cdx3)

gen[(a (b) c), (p a (b q) c) = (xi a (b 2 2) C)

With T = TL, i.e. the lists as the basic data structure, generalization
can preserve only that common substructure which is on the left, but not on
the right side. Even though a list, such as (a b c), looks like a parenthesized
string, it is, as we remember, a binary tree:

(a (b (c nil)))

We can generalize it with a list which extends it on the right side, without
loosing the common part:

but if the extension is on the left, the most specific generalization is a free
variable. The common part is lost:

gen[(a (b (c nil))), O, (a (b (c nil))))] = X I

Unfortunately, when a program works by iterations (as opposed to re-
cursive programs where data is passed from the value of one function to the
argument of another) it is exactly on the left side that the lists are growing.
The following example of supercompilation shows what are the results.

Example Suppose we want to find if a given string of symbols (atoms)
contains a substring of four consecutive symbols which are either a or b.
The method we choose is this: go through the string replacing every a by b;
then go through it looking for b b b b. An iterative algorithm doing this job
can be defined by recursive equations, Refal style, as follows:

f (21) = fa ([] ,XI)

This program can be understood as using either strings or lists. Con-
catenation of a term on the left side can be done and undone both on
R-expressions, and on lists. stands for the empty expression or nil.

Function fa, as it traverses the argument, reverses it: this is the only
way available with lists (barring the use of append at each step).

Let us see how partial evaluation can be done by supercompilation. Let
the initial call (configuration) be:

We expect that supercompilaiton will transform it into an identical True.
In our tracing of supercompilation below, each line represents a triplet

in the process of the graph construction: a starting node, an edge, and the
ending node. A colon after a node notation Fi signifies that the definition
of the node (configuration) follows.

Driving Fl, we have an unconditional transition to F2:

Here the starting node is Fl, the edge is empty (no condiitons, no opera
tions), and the ending node is F2. Such configurations as Fl are referred to
as transient; they need not be kept in the graph constructed by driving.

The configuration F2 is also transient, ar are a few more, while function
fa processes the known part of the argument. Then:

This configuration is not transient: there is a branching on xi. We proceed
driving along the first branch:

where XI 2 a x1 is a contraction: a pattern-matching operation which
separates the symbol a from the value of the variable XI.

Configuration F4 is not transient either, so we examine the history of
driving looking for a possible need of generalization. We immediately find
that F3 9 F4. Further development depends on the data structure we use.
First, we consider the case of R-expressions:

Now we redefine F3 by reducing it to the generalized configuration which we
still address as F3:

F2; 0 22; F3 fa (22 c b b b b d, xi)

Here the assignment [I x2 is an operation which assigns to x2 the value

[I .
The processing of F3 results in a finite graph whose meaning is a recursive

program, the exit from which is a call F4 of function fb with a partially known
argument:

Going on, we drive F4, which results in the graph:

F4;x2 5 bbbbx2;True
F4; x2 5 ~1x2 ; F4
F4;x2 5 [] ;F5 fb(cbbbbd)
F5; True

In this graph there are three edges from the root F4. One loops back
to the root F4, the other two return the value True. It is easy to have a
supercompiler transforming F4 into True in this situation; the supercompiler
described in [26] does it. After the substitution of True for F4 in the graph
of F3, this graph also comes to have a similar structure and will be replaced
by True. Finally, the root Fl of the whole graph becomes True. Partial
evaluation is done in full. The new definition of the function f is:

f (xl) = True

Now consider the case of the list data structure. Generalization of I73

and F4 yields fa (x2), and the redefinition of F3 is:

Now the configuration F3 does not include the known part of the initial
argument. The graph for it,

as well as the graph for F4 it calls, treats function calls in their full generality.
Partial evaluation has failed. It returned the original program.

The reader could have noticed that the generalization algorithm for Refal
data structure is given only for the case where the term is embedded as
expression; the case of a term embedded as term was ignored. When a
term is embedded as term we have the same problem as in the case of list
structure: the only generalization is a free e-variable, e.g.

gen[a, (a)] = XI

There is no way of keeping the common part, a in this example, in the
generalization. This should be kept in mind when designing algorithms to

be supercompiled. Parentheses must be used to separate static substruc-
tures, such as different arguments and subarguments of a function; dynamic
accumulation of data should take place in the same substructure, as a grow-
ing string of terms. Such strings, however, may grow on different levels
simultaneously, e.g.

7 Terminat ion of Supercompilat ion

HK alone does not immediately lead to the conclusion that the process of
supercompilation is always finite. This would be true only if every walk
(i.e. a path from the root to the current leaf) of the driving tree were grow-
ing monotonously. In fact, however, when a whistle ti t j is given, the
tree constructor returns and reduces either ti, or t j to the generalization
gen[ti, tj] (there are two versions of the supercompilation algorithm) Then
the process is resumed starting from the generalization. To prove that su-
percompilation always terminates, we need to know that generalization of a
term cannot be repeated infinitely.

Definition 9 Let gen[tl, t2], where t l , t2 E TR be a generalization function.
Let ti 4 ti+l denote that ti+l = gen[ti, ti], where ti is some term, and ti ti.
Function gen is a bounded generalization if for every t l the sequence

can only be finite.

Not every generalization function is bounded.

Example Let gen be such that

gen[(E), (E')] = (E e.i)

where E and E' are some Refal expressions (with variables, generally), and
the variable e.i has a new (i.e. not used in E) index i. Then the sequence

goes on infinitely; hence this gen is not bounded.

However, "reasonable" generalization algorithms tend to be bounded. In
[24] a proof is given that algorithms resulting in a certain class of generalized
expressions are all bounded.

Below we give a simple proof of termination in abstraction from many de-
tails of the algorithm of supercompilation; we only make a few assumptions
about it.

Theorem 7 The process of supercompilation using an unfailing whistle
and a bounded generalization algorithm is finite.

Proof Supercompilation is a controlled construction, through the use of
driving, of a graph of configurations and transitions of the underlying com-
puting machine. We assume that configurations, i.e. the nodes of the graph,
are represented by the terms from some set T The graph is, essentially, a
tree resulting from driving with two kinds of additions:

A reduction of a configuration to its generalization, which does not
violate the character of the graph as a tree.

A reference from a node to one of its ancestors which indicates a reduc-
tion. It creates a cycle, but we shall consider such nodes as leaves of
the tree, because so they are with regard to supercompilation process.

We assume that each new configuraiton Ci is first compared with its
ancestors, in order to determine if it can be reduced to one of them. If it
can, the reduction is made, and the current branch of the transition tree
comes to an end. If there is no ancestor to reduce to, the whistle algorithm
is called. If whistle(tk, t i) = True for some ancater Ck, generalization is
done as described above, and the generalized configuration is driven on.

We shall prove that under this assumptions every branch in the transition
tree may only be finite. The order in which the graph is constructed, as well
as other details of the algorithm remain arbitrary.

Let a current walk in a driving tree be a sequence of terms which starts
with the root term, and such that if ti is a term in the walk then the next
term ti+l is either one of the children of t i or the child's generalization. Let
a historical walk be an actual history of supercompilation which includes
all nodes that have ever been constructed.

We define the following abstraction of the process of supercompilation.
Two walks are constructed simultaneously: historical and current. Driving
ti and selecting a child t;+l we add one more term to both historical and

current walks. Returning from ti to some tk , where k < i , and generalizing
it to t i , we delete all terms succeeding t i in the current walk, but leave them
in the historical walk. A return takes place every time when whistle(tk, ti)
is found to However be true, which means that no current walk will ever
include such a pair of terms.

The construction of a walk ends when either the current ti becomes
passive (a constant, not a function call), or when it is looped back and
reduced to one of its predecessors. In particular, when an attempt is made
to generalize ti with tk which has the maximum of generality (the term
(e.k)), any ti is sure to be reduced to it; this will end the walk.

Since the out-degree of a node in the driving tree is bounded, we only
have to prove that no historical walk in the tree is infinite.

Figure 2: Generalization columns

We call the generalization column of a term ti the sequence of its
generalizations:

which is always finite, because the generalization is assumed to be bounded.
We assume, for simplicity, that at each level of generalization there is only
one term; in fact there may be several of them, but this does not require
any changes in our proof. Let us arrange the terms and their generalization
columns as in Figure 2. If the current walk is finite (its end is shown in
Figure 2 by a), then the historical walk must also be finite, because at each
return the level of generalization in one column increases by one. Taking
the contrapositive, we conclude that if the historical walk is infinite, so is
the current walk. However, if the current walk is infinite then we have an
infinite sequence such that whistle(tk, ti) does not hold for any pair k, i ,
where k < i . But this contradicts to the assumption that the whistle (see
Definition 6) is unfailing. Therefore, every historical walk, and thus the
process of supercompilation, is always finite.

In practice, supercompilers are transient-skipping, which means that
no attempt is made to reduce or generalize a transient configuration. Ob-
viously, Theorem 7 will not hold in the general case of transient-skipping
supercompilation. It will hold, however, if computation by the original pro-
gram always terminates.

Theorem 8 If computation of the root node in supercompilation al-
ways terminates then, under the other assumptions of Theorem 7, the
process of transient-skipping supercompilation is always finite.

Proof We modify the proof of Theorem 7 as follows. Each transient node
is left in both current, and historical walks. As before, the historical walk
is finite if the current walk is finite, because the number of possible returns
is still finite, and the total number of transient nodes is finite. By contra-
position, if the historical walk is infinite then the current walk should be
infinite. But it consists of two kinds of items: generalizable nodes and tran-
sient nodes. Both kinds must be finite in numbers: the former for the same
reason as in Theorem 7, the latter because of computability of the initial
configuration. This makes a contradiction. Hence the historical walk must
be finite.

References

[I] Cormen T.H., Leiserson C.E., Rivest R.L. Introduction to Algorithms,
MIT Press, 1994.

[2] Dershowitz,N. Termination in rewriting, J . Symbolic Computation, 3,
pp.69-116, 1987.

[3] A.P.Ershov. On the essence of compilation, Programmirovanie (5):21-
39, 1977 (in Russian). See translation in: E.J.Neuhold, ed., Formal
description of Programming Concepts pp 391-420, North-Holland,
1978.

[4] Y.Futamura. Partial evaluation of computation process - an approach
to compiler compiler. Systems, Computers, Controls, 2,5, pp.45-50,
1971,

[5] Y.Futamura, K.Nogi and A.Takano. Essence of generalized partial eval-
uation, Theoretical Computer Science, 90, pp. 61-79, 1991.

[6] Gallagher, J., Tutorial on Specialisation of Logic Programs, a tutorial,
PPEPM'93, pp.88-98, ACM Press, 1993.

[7] R.Gliick and A.V.Klimov. Occam's razor in metacomputation: the no-
tion of a perfect process tree, in: P.Cousot, M.Falaschi, C:.Fil&, and
Rauzy, ed. Static Analysis, LNCS vo1.724, pp.112- 123, Springer 1993.

[8] R.C:liick and J.Jorgensen. Generating transformers for deforestation
and supercompilation, in: B. LeCharlier ed. Static Analysis, Pro-
ceedings, Namur, Belgium, 1994, LNCS, vo1.864, pp.432-448, Springer,
1994.

[9] N.D.Jones, P.Sestoft and H.Sondergaard. An Experiment in Partial
Evaluation: The Generation of a Compiler Generator. In: Jouannaud
J.-P. (Ed.) Rewriting Techniques and Applications, Dijon, France,
LNCS 202, pp.124-140, Springer, 1985.

[lo] N.D.Jones. Automatic program specialization: a re-examination from
basic principles, in: D.Bjorner, A.P.Ershov and N.D. Jones, ed. Par -
tial Evaluation and Mixed Computation, North-Holland, pp.225-282,
1988.

[ll] N.D.Jones, P.Sestoft and H.Sondergaard, Mix: a self-applicable partial
evaluator for experiments in compiler generation, in: Lisp and Sym-
bolic computation 2(1), 1989, pp.9-50.

[12] N.D.Jones. The essence of program transformation by partial evalua-
tion and driving, in: N.D.Jones, M.Hagiya, and M.Sato ed. Logic, Lan-
guage and Computation, LNCS vo1.792, pp.206-224, Springer, 1994.

[13] Komorowski, J., An Introduction to Partial Deduction, in:
A.Pettorossi, Ed. Proceedings META'9.2, pp.49-69, LNCS 649,
Springer, 1992.

[14] Leuschel, M. and Martens, B. Global Control for Partial Deduction
through Characteristic Atoms and Global Trees, in: O.Danvy, R.C:lueck
and P.Thiemann Eds., Partial Evaluation, Intern. Seminar, Dagstuhl
Castle, Germany, Febr. 1996, LNCS ~01.1110, pp.263-283, Springer
1996.

[15] Lloyd, J.W and Shepherdson, J.C., Partial Evaluation in Logic Pro-
gramming, Journal of Logic Programming, 11 (3-4)) pp.217-242, 1991.

[16] Martens, B. and Gallagher J., Insuring Global Termination of Partial
Deductions while Allowing Flexible Polyvariance, in: L.Sterling, Ed.
ICLP'95 pp. 597-613, MIT Press, 1995.

[17] Nemytykh,A.P., Pinchuk, V.A., and Turchin,V.F., A Self-applicable
Supercompiler, in: O.Danvy, R.Glueck and P.Thiemann Eds., Partial
Evaluation, Intern. Seminar, Dagstuhl Castle, Germany, Febr. 1996,
LNCS ~01.1110, pp.322-337, Springer 1996.

[18] Nemytykh, A.P. and Pinchuk, V.A. Program Transformation with
Metasystem Transitiom: Experiments with a Supercompiler, in:
D.Bj@rner, M.Broy and 1.Potossin Eds., Perspectives of System Infor-
matics, 2-nd Internat. Andrei Ershov Conf. Novosibirsk, Russia, June
1996, Springer, LNCS vo1.1181, pp. 249-261, Springer 1996.

[I91 Pettorossi, A. and Proietti,M., A Comparative Revisitation of Some
Program Transformation Techniques in: O.Danvy, R.Glueck and
P.Thiemann Eds., Partial Evaluation, Intern. Seminar, Dagstuhl Cas-
tle, Germany, Febr. 1996, LNCS ~01.1110, pp.355-385, Springer 1996.

[20] M.H.Sprrensen. Turchin's Supercompiler Revisited, Master's thesis,
Dept. of Computer Science, University of Copenhagen, 1994.

[2 11 M.H. S~rensen, R.Gluck and N.D. Jones. Towards unifying deforestation,
supercompilation, partial evaluation and generalized partial evaluation,
in: D.Sannella ed., Programming Languages and Systems, LNCS,
vo1.788, pp.485-500, Springer, 1994.

[22] S~rensen, M.H. and Gluck, R. An Algorithm of Generalization in Posi-
tive Supercompilation, in: Lloyd, J. W Ed., Logic Programming: Pro-
ceedings of the 1995 International Symposium, pp.465-479, 1995.

[23] V.F.Turchin. Equivalent transformations of recursive functions defined
in Refal (in Russian), in: Teoriya Yazykov I Metody Postroeniya
Sistem Programmirovaniya (Proceedings of the Symposium), Kiev-
Alushta (USSR), pp.31-42, 1972.

[24] Turchin, V.F. The Language Refal, the Theory of Compilation and
Metasystem Analysis, Courant Computer Science Report #20, New
York University, 1980.

[25] V.F.Turchin, R.M.Nirenberg and D.V.Turchin. Experiments with a su-
percompiler. In: ACM Symposium on Lisp and Functional Pro-
gramming, ACM, New York, pp. 47-55, 1982.

[26] Turchin, V.F. The concept of a supercompiler, ACM Transactions on
Programming Languages and Systems, 8, pp.292-325, 1986.

[27] Turchin, V.F. The algorithm of generalization in the supercompiler.
In: Bjprrner D., Ershov A.P., Jones N.D. Eds, Partial Evaluation and
Mixed Computation, Proceedings of the IFIP TC2 Workshop, pp. 531-
549, North-Holland Publishing Co., 1988.

[28] Turchin, V.F., On Generalization in Supercompilation, CCNY Tech-
nical Report, 1996.

[29] Turchin,V.F. Metacomputation: Metasystem Transition Plus Super-
compilation, pp. 481-510 in: O.Danvy, R.Glueck and P.Thiemann Eds.
Partial Evaluation, Intern. Seminar, Dagstuhl Castle, Germany, Febr.
1996, LNCS vol.lll0, pp. 481-510, Springer 1996.

[30] Turchin V.F., Supercompilation: Techinques and Results (invited talk)
in: D.Bj@rner, M.Broy and 1.Potossin Eds., Perspectives of System
Informatics, 2-nd Internat. Andrei Ershov Conf. Novosibirsk, Russia,
June 1996, Springer, LNCS vo1.1181, pp. 227-248, Springer 1996.

[31] Wadler, P., Deforestation: Transforming Programs to Eliminate Trees,
TCS, vo1.73, pp. 231-248, 1990.

