
An Approach to Polyvariant Binding Time
Analysis for a Stack-Based Language

Yuri A. Klimov?

Keldysh Institute of Applied Mathematics, Russian Academy of Sciences
RU-125047 Moscow, Russia, yuklimov@keldysh.ru

Abstract. Binding time analysis (BTA) is used in specialization by
means of partial evaluation method. Usual BTA only annotates a source
program. Polyvariant BTA transforms a source program to an annotated
one. Polyvariant BTA is known technique for functional languages. In
this paper polyvariant BTA for a model imperative stack-based language
is presented. It is described by means of building annotated control-flow
graph for a source program.

1 Introduction

Partial evaluation is well known program specialization method [9]. Given val-
ues of static (known) arguments of a program, partial evaluation constructs a
residual program — a specialized version of the source program, which on ap-
plication to values of remaining dynamic arguments produces the same result as
the source program applied to values of all arguments.

Offline partial evaluation stages the specialization in two phases: binding time
analysis (BT-analysis, BTA) and residual program generating. BTA starts with
a source program and a binding time values (BT-values) of all arguments and
produces an annotated program.

There are two kinds of BT-analysis: monovariant and polyvariant. A mono-
variant BTA annotates the source program, does not transform it, whereas a
polyvariant BTA generates a new annotated program. Monovariant BTAs are
simple and efficient to implement [1,2,9,15,16]. Polyvariant BTAs [3,5,7,17] are
more complex, but performs better result in many situations, when the same
methods or variables are used in different contexts.

This paper consists of two part. First syntax and operational semantics of
model imperative stack-based languages (SIL) are described. Then the polyvari-
ant BTA for this language is presented by means of building annotated control-
flow graph for a source program.

? Supported by Russian Foundation for Basic Research project No. 06-01-00574-a and
No. 08-07-00280-a, and Russian Federal Agency of Science and Innovation project
No. 2007-4-1.4-18-02-064.

An Approach to Polyvariant Binding Time Analysis 79

Grammar

p ∈ Program ::= instr∗

instr ∈ Instruction ::= Pop | Dup | Swap | Const(c) | Goto(n) | IfGoto(n)
Unary(op) | Binary(op) | LoadVar(n) | StoreVar(n)

Fig. 1. Abstract syntax of SIL-programs

2 Imperative Stack-Based Language

For describing the polyvariant BTA the imperative stack-based language (SIL)
is used. SIL is a very simple stack language (fig. 1). A program at this language
is just sequence of instructions (no methods and invoke instructions) with con-
ditional and unconditional goto instructions (IfGoto(m) and Goto(m)). Other
instructions are load (LoadVar(n)) and store (StoreVar(n)) data from stack to
local variables, operations with data on stack (Unary(op) and Binary(op)) and
simple stack operations (Pop, Dup, Swap).

Instructions

Pop ìnt (x : st, σ) → (st, σ) Dup ìnt (x : st, σ) → (x : x : st, σ)
Swap ìnt (x1 : x2 : st, σ) → (x2 : x1 : st, σ) Const(c) ìnt (st, σ) → (c : st, σ)
Unary(op) ìnt (x : st, σ) → (op(x) : st, σ)
Binary(op) ìnt (x1 : x2 : st, σ) → (op(x1, x2) : st, σ)
LoadVar(n) ìnt (st, σ) → (σ(n) : st, σ)
StoreVar(n) ìnt (x : st, σ) → (st, σ[n 7→ x])

Instructions with control point

Goto(n) ìnt (m, (st, σ)) → (n, (st, σ))
IfGoto(n) ìnt (m, (0 : st, σ)) → (m + 1, (st, σ))
IfGoto(n) ìnt (m, (1 : st, σ)) → (n, (st, σ))

instr ìnt (st, σ) → (st′, σ′)

instr ìnt (m, (st, σ)) → (m + 1, (st′, σ′))

Program

p(m) ìnt (m, (st, σ)) → (m′, (st′, σ′))

p ìnt (m, (st, σ)) → (m′, (st′, σ′))

p ìnt (0, (st, σinit)) →∗ (length(p), (st′, σ))

p ìnt st ⇒ st′

Fig. 2. Operational semantics of SIL-programs

80 Yuri A. Klimov

The data in SIL is integer numbers. Nevertheless it is easy to extend data
by other data (double numbers or boolean values). Operation op in Unary(op)
and Binary(op) can be any operation with integer numbers, including, but not
limited to, addition (+), subtraction (−), multiplication (×), compare (<, ≤, >,
≥), negate and etc.

The semantic of SIL is straightforward and it is described at fig. 2. A SIL-
program is evaluated by steps. Each step changes a state. Each state (m, (st, σ))
has three parts: m — number of current instruction (control point), st — stack
of values, σ — mapping from local variables to their values.

A computation of a program begins from initial state (0, (st, σinit)), where
st — program arguments, and σinit — mapping from local variables to initial
value 0. At each step state is changed in according to the rules. When number
of current instruction becomes equal to length of the program then evaluation of
this program is finished. Values at a stack are results of this program. If number
of current instruction becomes more than length of the program or no rules can
be applied then evaluation of this program is terminated with error.

The SIL is similar to stack-based languages described in [2] or [15]. It contains
same instruction set except array instructions and method invoke instructions.

3 Binding Time Analysis

The goal of BTA is to divide all instructions in two classes: static (S) and
dynamic (D). Static instructions will be evaluated during residual program gen-
erating, dynamic instructions will be put to residual program.

The presented method of building annotated program is close to the Su-
percompilation [18]. It uses driving and whistling for building possibly infinity
binding time tree (BT-tree) and for reducing it to finite binding time graph
(BT-graph) respectively.

3.1 Driving

BT-tree is a tree with annotated instructions at nodes and with binding time
states (BT-states) at ridges (fig. 4). BT-tree is similar to control-flow graph
without ridge to previous nodes, each ridge is going to a new node. This BT-tree
can be applied to arguments values like usual program. The BT-tree is fully
equivalent to the source program: on application to values it produces the same
result as the source program applied to same values.

BT-state is a state with binding time values (BT-values) S and D instead of
usual values. Bold style for binding time values and variables are used below: S
and D are BT-values, x is a binding time variable (BT-variable) that rages over
BT-values S and D.

Building of BTA tree begins with a initial BT-state (0, (st, σinit)), where st
— BT-values of arguments (S corresponds to known arguments and D corre-
sponds to unknown during specialization arguments) and σinit — mapping from
local variables to initial BT-value S.

An Approach to Polyvariant Binding Time Analysis 81

Lifting instruction

Lifting(n) ìnt (st, σ) → (st, σ)

Instructions

Pop b̀ta (x : st, σ) → 〈Popx; (st, σ)〉
Dup b̀ta (x : st, σ) → 〈Dupx; (x : x : st, σ)〉
Swap b̀ta (x : x : st, σ) → 〈Swapx; (x : x : st, σ)〉
Swap b̀ta (S : D : st, σ) → 〈SwapS; (D : S : st, σ)〉
Swap b̀ta (D : S : st, σ) → 〈SwapS; (S : D : st, σ)〉
Const(c) b̀ta (st, σ) → 〈Const(c)S; (S : st, σ)〉
Unary(op) b̀ta (x : st, σ) → 〈Unary(op)x; (x : st, σ)〉
Binary(op) b̀ta (x : x : st, σ) → 〈Binary(op)x; (x : st, σ)〉
Binary(op) b̀ta (S : D : st, σ) → 〈Lifting(0)D, Binary(op)D; (D : st, σ)〉
Binary(op) b̀ta (D : S : st, σ) → 〈Lifting(1)D, Binary(op)D; (D : st, σ)〉
LoadVar(n) b̀ta (st, σ) → 〈LoadVar(n)σ(n); (σ(n) : st, σ)〉
StoreVar(n) b̀ta (x : st, σ) → 〈StoreVar(n)x; (st, σ[n 7→ x])〉

Instructions with control point

Goto(n) b̀ta (m, (st, σ)) → 〈Goto(n)S; (n, (st, σ))〉

IfGoto(n) b̀ta (m, (x : st, σ)) → 〈IfGoto(n)x; (n, (st, σ)), (m + 1, (st, σ))〉

instr b̀ta (st, σ) → 〈instrs; (st′, σ′)〉
instr b̀ta (m, (st, σ)) → 〈instrs; (m + 1, (st′, σ′))〉

Program

p(m) b̀ta (m, (st, σ)) → 〈instrs; brs〉
p b̀ta (m, (st, σ)) → 〈instrs; brs〉

Fig. 3. Trace semantics for binding time trees

For each BT-state one of rules (fig. 3) is applied. The rule shows an an-
notated instruction at new node and one or two new BT-states at ridges in
subject to current BT-state and instruction. For example, if there are BT-state
(m, (x : st, σ)) and current instruction IfGoto(n), then it is needed to add new
node with two new ridges to BT-tree. The node must contain annotated in-
struction IfGoto(n)x and the ridges must contain BT-states (n, (st, σ)) and
(m + 1, (st, σ)).

In come cases new instruction Lifting(n) is added to a BT-tree. This in-
struction tells residual program generator that static (known) value in stack at
depth n must be residualized be means of generating Const(c) instruction and
some stack instructions. For interpretation Lifting(n) instruction means no
operation.

82 Yuri A. Klimov

Source program

p = [IfGoto(2), Swap, Dup, Binary(×), Binary(+)]

Annotated program

[S, S, D]
↓ (0, ([S, S, D], σinit))

IfGoto(2)S

(1, ([S, D], σinit)) ↙ ↘ (2, ([S, D], σinit))
SwapS DupS

(2, ([D, S], σinit)) ↓ ↓ (3, ([S, S, D], σinit))
DupD Binary(×)S

(3, ([D, D, S], σinit)) ↓ ↓ (4, ([S, D], σinit))
Binary(×)D Lifting(0)D

(4, ([D, S], σinit)) ↓ Binary(+)D

Lifting(1)D ↓ (5, ([D], σinit))
Binary(+)D [D]

(5, ([D], σinit)) ↓
[D]

Fig. 4. BT-tree for the program p(x, y, z) = if x then y2 + z else z2 + y; x and
y are static (known), z is dynamic (unknown).

3.2 Whistling

During BT-tree building all BT-states are checked for conjunction. If two BT-
states (may be at different branches) are equal (whistling) when nodes at the end
of this ridges are be merged into the new node. It is permitted because BT-tree
constructed from some BT-state depends on this BT-state only.

Building of BT-graph is ending because there are only finite numbers of all
possible BT-states for a SIL-program. Residual BT-graph is graph representation
of annotated program. Residual Program Generating for such annotated program
is identical to [2].

3.3 Example

Let’s consider a small program p (fig. 4). The polyvariant BTA produces a BT-
graph represented at fig. 4.

This BT-graph contains two instructions Binary(×) with different BT-an-
notations according to different BT-annotations of stack at the same program
point. At the left hand size instruction Binary(×) annotated as dynamic (D),
while at the right hand size instruction Binary(×) annotated as static (S).

This means that if first argument of p is false during specialization then
instruction Binary(×) will be residualized. In other case instruction Binary(×)
will be evaluated during residual program generating.

An Approach to Polyvariant Binding Time Analysis 83

4 Related Work

In many prior works monovariant BTAs [9] for functional languages are de-
scribed. In [3,7,17] polyvariant BTAs for functional languages are presented.
In minority works [1,2,15,16] monovariant or polyvariant BTAs for imperative
languages are considered [13].

L. O. Andersen [1] uses C language. P. Bertelsen [2] and H. Masuhara and
A. Yonezawa [15] describe monovariant BTA for various subsets of stack-based
Java Byte Code [8]. In both papers simple stack-based language like SIL (which
is described in this paper) is uses: in [2] SIL is extended with array instruction
and in [15] SIL is extended with method invocation instruction.

U. P. Schultz [16] introduces monovariant BTA some subset of Java language
[8]: object-oriented but not stack-based language. Also he suggests some polyvari-
ant (class polyvariant and method polyvariant) extensions of BTA. N. H. Chris-
tensen and R. Glück [5] present polyvariant BTA for flowchart imperative lan-
guage.

Presented BTA extends prior monovariant BTAs for stack-based language by
introducing control-point polyvariant, stack polyvariant and environment poly-
variant annotation method. It uses infinite control-flow tree for building finite
annotated graph. This new method bases on ideas of Supercompilation [18]. It
is possible to enhance this method for a object-oriented stack-based language
[10,11,12].

5 Conclusion

In this paper polyvariant BTA for simple stack-based language is introduced.
This method is fully automatic and it is used in specializer CILPE [4,14].

In some cases polyvariant BTA can produce a huge residual program. I would
like to investigate extensions of polyvariant BTA for producing a program of
reasonable size. Another direction of research is to enhance this method for
object-oriented stack-based languages such as Java Byte Code (Java platform)
[8] and Common Intermediate Language (Microsoft .NET platform) [6] which
are used in popular virtual machines.

References

1. L. O. Andersen. Program Analysis and Specialization for the C Programming
Language. PhD thesis, Computer Science Department, University of Copenhagen,
1994. DIKU Technical Report 94/19.

2. P. Bertelsen. Binding-time analysis for a JVM core language. Unpublished note;
available from http://www.dina.kvl.dk/\simpmb. 1999.

3. M. A. Bulyonkov. Extracting polyvariant binding time analysis from polyvariant
specializer. Partial evaluation and semantics-based program manipulation. Pro-
ceedings, 59–65. ACM Press, 1993.

84 Yuri A. Klimov

4. A. M. Chepovsky, An. V. Klimov, Ar. V. Klimov, Yu. A. Klimov, A. S. Mishchenko,
S. A. Romanenko, S. Yu. Skorobogatov. Partial Evaluation for Common Inter-
mediate Language. M. Broy and A. V. Zamulin (eds.), Perspectives of Systems
Informatics. Proceedings, LNCS 2890, 171–177. Springer-Verlag, 2003.

5. N. H. Christensen, R. Glück Offline partial evaluation can be as accurate as online
partial evaluation. ACM Transactions on Programming Languages and Systems,
vol. 26(1), 191-2004. ACM Press, 2004.

6. Common Language Infrastructure. http://msdn2.microsoft.com/en-us/

netframework/aa569283.aspx.
7. C. Consel. Polyvariant binding-time analysis for applicative languages. Partial

evaluation and semantics-based program manipulation. Proceedings, 66–77. ACM
Press, 1993.

8. Java Virtual Machine. http://java.sun.com/docs/books/jvms/.
9. N. D. Jones, C. K. Gomard, P. Sestoft. Partial Evaluation and Automatic Compiler

Generation. C.A.R. Hoare Series, Prentice-Hall, 1993.
10. Yu. A. Klimov. Polyvariant binding time analysis in specializer CILPE for Common

Intermediate Language of Microsoft .NET planform. Microsoft technologies in
theory and practice of programming. Proceedings, 128. 2005. (In Russian)

11. Yu. A. Klimov. About polyvariant binding time analysis for specializer for object-
oriented language. Scientific service in the Internet: technology of distributed com-
putations. Proceedings, 89–91. 2005. (In Russian)

12. Yu. A. Klimov. Residual program generator and correctness of specializer for
object-oriented language. Scientific service in the Internet: technology of parallel
programming. Proceedings, 137-140. 2006. (In Russian)

13. Yu. A. Klimov. Program specialization for object-oriented languages by partial
evaluation: approaches and problems. Preprint No. 12, Keldysh Institute of Applied
Mathematics, Russian Academy of Sciences, 2008. (In Russian)

14. Yu. A. Klimov. Specializer CILPE: examples of object-oriented program specializa-
tion. Preprint No. 30, Keldysh Institute of Applied Mathematics, Russian Academy
of Sciences, 2008. (In Russian)

15. H. Masuhara, A. Yonezawa. Run-time Program Specialization in Java Bytecode.
Workshop on Systems for Programming and Applications. Proceedings. 1999.

16. U. P. Schultz. Object-Oriented Software Engineering Using Partial Evaluation.
PhD thesis, University of Rennes I, Rennes, France, December 2000.

17. P. Thiemann, M. Sperber. Polyvariant expansion and compiler generators.
D. Bjørner, M. Broy, I. V. Pottosin (eds.), Perspectives of Systems Informatics.
Proceedings, LNCS 1181, 285–296. Springer-Verlag, 1996.

18. V. F. Turchin. The concept of a supercompiler. ACM Transactions on Program-
ming Languages and Systems, 8(3):292–325. ACM Press, 1986.

